at v4.13 13 kB view raw
1/* flow.c: Generic flow cache. 2 * 3 * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru) 4 * Copyright (C) 2003 David S. Miller (davem@redhat.com) 5 */ 6 7#include <linux/kernel.h> 8#include <linux/module.h> 9#include <linux/list.h> 10#include <linux/jhash.h> 11#include <linux/interrupt.h> 12#include <linux/mm.h> 13#include <linux/random.h> 14#include <linux/init.h> 15#include <linux/slab.h> 16#include <linux/smp.h> 17#include <linux/completion.h> 18#include <linux/percpu.h> 19#include <linux/bitops.h> 20#include <linux/notifier.h> 21#include <linux/cpu.h> 22#include <linux/cpumask.h> 23#include <linux/mutex.h> 24#include <net/flow.h> 25#include <linux/atomic.h> 26#include <linux/security.h> 27#include <net/net_namespace.h> 28 29struct flow_cache_entry { 30 union { 31 struct hlist_node hlist; 32 struct list_head gc_list; 33 } u; 34 struct net *net; 35 u16 family; 36 u8 dir; 37 u32 genid; 38 struct flowi key; 39 struct flow_cache_object *object; 40}; 41 42struct flow_flush_info { 43 struct flow_cache *cache; 44 atomic_t cpuleft; 45 struct completion completion; 46}; 47 48static struct kmem_cache *flow_cachep __read_mostly; 49 50#define flow_cache_hash_size(cache) (1U << (cache)->hash_shift) 51#define FLOW_HASH_RND_PERIOD (10 * 60 * HZ) 52 53static void flow_cache_new_hashrnd(unsigned long arg) 54{ 55 struct flow_cache *fc = (void *) arg; 56 int i; 57 58 for_each_possible_cpu(i) 59 per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1; 60 61 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; 62 add_timer(&fc->rnd_timer); 63} 64 65static int flow_entry_valid(struct flow_cache_entry *fle, 66 struct netns_xfrm *xfrm) 67{ 68 if (atomic_read(&xfrm->flow_cache_genid) != fle->genid) 69 return 0; 70 if (fle->object && !fle->object->ops->check(fle->object)) 71 return 0; 72 return 1; 73} 74 75static void flow_entry_kill(struct flow_cache_entry *fle, 76 struct netns_xfrm *xfrm) 77{ 78 if (fle->object) 79 fle->object->ops->delete(fle->object); 80 kmem_cache_free(flow_cachep, fle); 81} 82 83static void flow_cache_gc_task(struct work_struct *work) 84{ 85 struct list_head gc_list; 86 struct flow_cache_entry *fce, *n; 87 struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm, 88 flow_cache_gc_work); 89 90 INIT_LIST_HEAD(&gc_list); 91 spin_lock_bh(&xfrm->flow_cache_gc_lock); 92 list_splice_tail_init(&xfrm->flow_cache_gc_list, &gc_list); 93 spin_unlock_bh(&xfrm->flow_cache_gc_lock); 94 95 list_for_each_entry_safe(fce, n, &gc_list, u.gc_list) { 96 flow_entry_kill(fce, xfrm); 97 atomic_dec(&xfrm->flow_cache_gc_count); 98 } 99} 100 101static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp, 102 unsigned int deleted, 103 struct list_head *gc_list, 104 struct netns_xfrm *xfrm) 105{ 106 if (deleted) { 107 atomic_add(deleted, &xfrm->flow_cache_gc_count); 108 fcp->hash_count -= deleted; 109 spin_lock_bh(&xfrm->flow_cache_gc_lock); 110 list_splice_tail(gc_list, &xfrm->flow_cache_gc_list); 111 spin_unlock_bh(&xfrm->flow_cache_gc_lock); 112 schedule_work(&xfrm->flow_cache_gc_work); 113 } 114} 115 116static void __flow_cache_shrink(struct flow_cache *fc, 117 struct flow_cache_percpu *fcp, 118 unsigned int shrink_to) 119{ 120 struct flow_cache_entry *fle; 121 struct hlist_node *tmp; 122 LIST_HEAD(gc_list); 123 unsigned int deleted = 0; 124 struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm, 125 flow_cache_global); 126 unsigned int i; 127 128 for (i = 0; i < flow_cache_hash_size(fc); i++) { 129 unsigned int saved = 0; 130 131 hlist_for_each_entry_safe(fle, tmp, 132 &fcp->hash_table[i], u.hlist) { 133 if (saved < shrink_to && 134 flow_entry_valid(fle, xfrm)) { 135 saved++; 136 } else { 137 deleted++; 138 hlist_del(&fle->u.hlist); 139 list_add_tail(&fle->u.gc_list, &gc_list); 140 } 141 } 142 } 143 144 flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm); 145} 146 147static void flow_cache_shrink(struct flow_cache *fc, 148 struct flow_cache_percpu *fcp) 149{ 150 unsigned int shrink_to = fc->low_watermark / flow_cache_hash_size(fc); 151 152 __flow_cache_shrink(fc, fcp, shrink_to); 153} 154 155static void flow_new_hash_rnd(struct flow_cache *fc, 156 struct flow_cache_percpu *fcp) 157{ 158 get_random_bytes(&fcp->hash_rnd, sizeof(u32)); 159 fcp->hash_rnd_recalc = 0; 160 __flow_cache_shrink(fc, fcp, 0); 161} 162 163static u32 flow_hash_code(struct flow_cache *fc, 164 struct flow_cache_percpu *fcp, 165 const struct flowi *key, 166 unsigned int keysize) 167{ 168 const u32 *k = (const u32 *) key; 169 const u32 length = keysize * sizeof(flow_compare_t) / sizeof(u32); 170 171 return jhash2(k, length, fcp->hash_rnd) 172 & (flow_cache_hash_size(fc) - 1); 173} 174 175/* I hear what you're saying, use memcmp. But memcmp cannot make 176 * important assumptions that we can here, such as alignment. 177 */ 178static int flow_key_compare(const struct flowi *key1, const struct flowi *key2, 179 unsigned int keysize) 180{ 181 const flow_compare_t *k1, *k1_lim, *k2; 182 183 k1 = (const flow_compare_t *) key1; 184 k1_lim = k1 + keysize; 185 186 k2 = (const flow_compare_t *) key2; 187 188 do { 189 if (*k1++ != *k2++) 190 return 1; 191 } while (k1 < k1_lim); 192 193 return 0; 194} 195 196struct flow_cache_object * 197flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir, 198 flow_resolve_t resolver, void *ctx) 199{ 200 struct flow_cache *fc = &net->xfrm.flow_cache_global; 201 struct flow_cache_percpu *fcp; 202 struct flow_cache_entry *fle, *tfle; 203 struct flow_cache_object *flo; 204 unsigned int keysize; 205 unsigned int hash; 206 207 local_bh_disable(); 208 fcp = this_cpu_ptr(fc->percpu); 209 210 fle = NULL; 211 flo = NULL; 212 213 keysize = flow_key_size(family); 214 if (!keysize) 215 goto nocache; 216 217 /* Packet really early in init? Making flow_cache_init a 218 * pre-smp initcall would solve this. --RR */ 219 if (!fcp->hash_table) 220 goto nocache; 221 222 if (fcp->hash_rnd_recalc) 223 flow_new_hash_rnd(fc, fcp); 224 225 hash = flow_hash_code(fc, fcp, key, keysize); 226 hlist_for_each_entry(tfle, &fcp->hash_table[hash], u.hlist) { 227 if (tfle->net == net && 228 tfle->family == family && 229 tfle->dir == dir && 230 flow_key_compare(key, &tfle->key, keysize) == 0) { 231 fle = tfle; 232 break; 233 } 234 } 235 236 if (unlikely(!fle)) { 237 if (fcp->hash_count > fc->high_watermark) 238 flow_cache_shrink(fc, fcp); 239 240 if (atomic_read(&net->xfrm.flow_cache_gc_count) > 241 2 * num_online_cpus() * fc->high_watermark) { 242 flo = ERR_PTR(-ENOBUFS); 243 goto ret_object; 244 } 245 246 fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC); 247 if (fle) { 248 fle->net = net; 249 fle->family = family; 250 fle->dir = dir; 251 memcpy(&fle->key, key, keysize * sizeof(flow_compare_t)); 252 fle->object = NULL; 253 hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]); 254 fcp->hash_count++; 255 } 256 } else if (likely(fle->genid == atomic_read(&net->xfrm.flow_cache_genid))) { 257 flo = fle->object; 258 if (!flo) 259 goto ret_object; 260 flo = flo->ops->get(flo); 261 if (flo) 262 goto ret_object; 263 } else if (fle->object) { 264 flo = fle->object; 265 flo->ops->delete(flo); 266 fle->object = NULL; 267 } 268 269nocache: 270 flo = NULL; 271 if (fle) { 272 flo = fle->object; 273 fle->object = NULL; 274 } 275 flo = resolver(net, key, family, dir, flo, ctx); 276 if (fle) { 277 fle->genid = atomic_read(&net->xfrm.flow_cache_genid); 278 if (!IS_ERR(flo)) 279 fle->object = flo; 280 else 281 fle->genid--; 282 } else { 283 if (!IS_ERR_OR_NULL(flo)) 284 flo->ops->delete(flo); 285 } 286ret_object: 287 local_bh_enable(); 288 return flo; 289} 290EXPORT_SYMBOL(flow_cache_lookup); 291 292static void flow_cache_flush_tasklet(unsigned long data) 293{ 294 struct flow_flush_info *info = (void *)data; 295 struct flow_cache *fc = info->cache; 296 struct flow_cache_percpu *fcp; 297 struct flow_cache_entry *fle; 298 struct hlist_node *tmp; 299 LIST_HEAD(gc_list); 300 unsigned int deleted = 0; 301 struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm, 302 flow_cache_global); 303 unsigned int i; 304 305 fcp = this_cpu_ptr(fc->percpu); 306 for (i = 0; i < flow_cache_hash_size(fc); i++) { 307 hlist_for_each_entry_safe(fle, tmp, 308 &fcp->hash_table[i], u.hlist) { 309 if (flow_entry_valid(fle, xfrm)) 310 continue; 311 312 deleted++; 313 hlist_del(&fle->u.hlist); 314 list_add_tail(&fle->u.gc_list, &gc_list); 315 } 316 } 317 318 flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm); 319 320 if (atomic_dec_and_test(&info->cpuleft)) 321 complete(&info->completion); 322} 323 324/* 325 * Return whether a cpu needs flushing. Conservatively, we assume 326 * the presence of any entries means the core may require flushing, 327 * since the flow_cache_ops.check() function may assume it's running 328 * on the same core as the per-cpu cache component. 329 */ 330static int flow_cache_percpu_empty(struct flow_cache *fc, int cpu) 331{ 332 struct flow_cache_percpu *fcp; 333 unsigned int i; 334 335 fcp = per_cpu_ptr(fc->percpu, cpu); 336 for (i = 0; i < flow_cache_hash_size(fc); i++) 337 if (!hlist_empty(&fcp->hash_table[i])) 338 return 0; 339 return 1; 340} 341 342static void flow_cache_flush_per_cpu(void *data) 343{ 344 struct flow_flush_info *info = data; 345 struct tasklet_struct *tasklet; 346 347 tasklet = &this_cpu_ptr(info->cache->percpu)->flush_tasklet; 348 tasklet->data = (unsigned long)info; 349 tasklet_schedule(tasklet); 350} 351 352void flow_cache_flush(struct net *net) 353{ 354 struct flow_flush_info info; 355 cpumask_var_t mask; 356 int i, self; 357 358 /* Track which cpus need flushing to avoid disturbing all cores. */ 359 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 360 return; 361 cpumask_clear(mask); 362 363 /* Don't want cpus going down or up during this. */ 364 get_online_cpus(); 365 mutex_lock(&net->xfrm.flow_flush_sem); 366 info.cache = &net->xfrm.flow_cache_global; 367 for_each_online_cpu(i) 368 if (!flow_cache_percpu_empty(info.cache, i)) 369 cpumask_set_cpu(i, mask); 370 atomic_set(&info.cpuleft, cpumask_weight(mask)); 371 if (atomic_read(&info.cpuleft) == 0) 372 goto done; 373 374 init_completion(&info.completion); 375 376 local_bh_disable(); 377 self = cpumask_test_and_clear_cpu(smp_processor_id(), mask); 378 on_each_cpu_mask(mask, flow_cache_flush_per_cpu, &info, 0); 379 if (self) 380 flow_cache_flush_tasklet((unsigned long)&info); 381 local_bh_enable(); 382 383 wait_for_completion(&info.completion); 384 385done: 386 mutex_unlock(&net->xfrm.flow_flush_sem); 387 put_online_cpus(); 388 free_cpumask_var(mask); 389} 390 391static void flow_cache_flush_task(struct work_struct *work) 392{ 393 struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm, 394 flow_cache_flush_work); 395 struct net *net = container_of(xfrm, struct net, xfrm); 396 397 flow_cache_flush(net); 398} 399 400void flow_cache_flush_deferred(struct net *net) 401{ 402 schedule_work(&net->xfrm.flow_cache_flush_work); 403} 404 405static int flow_cache_cpu_prepare(struct flow_cache *fc, int cpu) 406{ 407 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu); 408 unsigned int sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc); 409 410 if (!fcp->hash_table) { 411 fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu)); 412 if (!fcp->hash_table) { 413 pr_err("NET: failed to allocate flow cache sz %u\n", sz); 414 return -ENOMEM; 415 } 416 fcp->hash_rnd_recalc = 1; 417 fcp->hash_count = 0; 418 tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0); 419 } 420 return 0; 421} 422 423static int flow_cache_cpu_up_prep(unsigned int cpu, struct hlist_node *node) 424{ 425 struct flow_cache *fc = hlist_entry_safe(node, struct flow_cache, node); 426 427 return flow_cache_cpu_prepare(fc, cpu); 428} 429 430static int flow_cache_cpu_dead(unsigned int cpu, struct hlist_node *node) 431{ 432 struct flow_cache *fc = hlist_entry_safe(node, struct flow_cache, node); 433 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu); 434 435 __flow_cache_shrink(fc, fcp, 0); 436 return 0; 437} 438 439int flow_cache_init(struct net *net) 440{ 441 int i; 442 struct flow_cache *fc = &net->xfrm.flow_cache_global; 443 444 if (!flow_cachep) 445 flow_cachep = kmem_cache_create("flow_cache", 446 sizeof(struct flow_cache_entry), 447 0, SLAB_PANIC, NULL); 448 spin_lock_init(&net->xfrm.flow_cache_gc_lock); 449 INIT_LIST_HEAD(&net->xfrm.flow_cache_gc_list); 450 INIT_WORK(&net->xfrm.flow_cache_gc_work, flow_cache_gc_task); 451 INIT_WORK(&net->xfrm.flow_cache_flush_work, flow_cache_flush_task); 452 mutex_init(&net->xfrm.flow_flush_sem); 453 atomic_set(&net->xfrm.flow_cache_gc_count, 0); 454 455 fc->hash_shift = 10; 456 fc->low_watermark = 2 * flow_cache_hash_size(fc); 457 fc->high_watermark = 4 * flow_cache_hash_size(fc); 458 459 fc->percpu = alloc_percpu(struct flow_cache_percpu); 460 if (!fc->percpu) 461 return -ENOMEM; 462 463 if (cpuhp_state_add_instance(CPUHP_NET_FLOW_PREPARE, &fc->node)) 464 goto err; 465 466 setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd, 467 (unsigned long) fc); 468 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; 469 add_timer(&fc->rnd_timer); 470 471 return 0; 472 473err: 474 for_each_possible_cpu(i) { 475 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i); 476 kfree(fcp->hash_table); 477 fcp->hash_table = NULL; 478 } 479 480 free_percpu(fc->percpu); 481 fc->percpu = NULL; 482 483 return -ENOMEM; 484} 485EXPORT_SYMBOL(flow_cache_init); 486 487void flow_cache_fini(struct net *net) 488{ 489 int i; 490 struct flow_cache *fc = &net->xfrm.flow_cache_global; 491 492 del_timer_sync(&fc->rnd_timer); 493 494 cpuhp_state_remove_instance_nocalls(CPUHP_NET_FLOW_PREPARE, &fc->node); 495 496 for_each_possible_cpu(i) { 497 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i); 498 kfree(fcp->hash_table); 499 fcp->hash_table = NULL; 500 } 501 502 free_percpu(fc->percpu); 503 fc->percpu = NULL; 504} 505EXPORT_SYMBOL(flow_cache_fini); 506 507void __init flow_cache_hp_init(void) 508{ 509 int ret; 510 511 ret = cpuhp_setup_state_multi(CPUHP_NET_FLOW_PREPARE, 512 "net/flow:prepare", 513 flow_cache_cpu_up_prep, 514 flow_cache_cpu_dead); 515 WARN_ON(ret < 0); 516}