at v4.13 219 kB view raw
1/* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17#include <linux/stddef.h> 18#include <linux/mm.h> 19#include <linux/swap.h> 20#include <linux/interrupt.h> 21#include <linux/pagemap.h> 22#include <linux/jiffies.h> 23#include <linux/bootmem.h> 24#include <linux/memblock.h> 25#include <linux/compiler.h> 26#include <linux/kernel.h> 27#include <linux/kmemcheck.h> 28#include <linux/kasan.h> 29#include <linux/module.h> 30#include <linux/suspend.h> 31#include <linux/pagevec.h> 32#include <linux/blkdev.h> 33#include <linux/slab.h> 34#include <linux/ratelimit.h> 35#include <linux/oom.h> 36#include <linux/notifier.h> 37#include <linux/topology.h> 38#include <linux/sysctl.h> 39#include <linux/cpu.h> 40#include <linux/cpuset.h> 41#include <linux/memory_hotplug.h> 42#include <linux/nodemask.h> 43#include <linux/vmalloc.h> 44#include <linux/vmstat.h> 45#include <linux/mempolicy.h> 46#include <linux/memremap.h> 47#include <linux/stop_machine.h> 48#include <linux/sort.h> 49#include <linux/pfn.h> 50#include <linux/backing-dev.h> 51#include <linux/fault-inject.h> 52#include <linux/page-isolation.h> 53#include <linux/page_ext.h> 54#include <linux/debugobjects.h> 55#include <linux/kmemleak.h> 56#include <linux/compaction.h> 57#include <trace/events/kmem.h> 58#include <trace/events/oom.h> 59#include <linux/prefetch.h> 60#include <linux/mm_inline.h> 61#include <linux/migrate.h> 62#include <linux/hugetlb.h> 63#include <linux/sched/rt.h> 64#include <linux/sched/mm.h> 65#include <linux/page_owner.h> 66#include <linux/kthread.h> 67#include <linux/memcontrol.h> 68#include <linux/ftrace.h> 69#include <linux/nmi.h> 70 71#include <asm/sections.h> 72#include <asm/tlbflush.h> 73#include <asm/div64.h> 74#include "internal.h" 75 76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 77static DEFINE_MUTEX(pcp_batch_high_lock); 78#define MIN_PERCPU_PAGELIST_FRACTION (8) 79 80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 81DEFINE_PER_CPU(int, numa_node); 82EXPORT_PER_CPU_SYMBOL(numa_node); 83#endif 84 85#ifdef CONFIG_HAVE_MEMORYLESS_NODES 86/* 87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 90 * defined in <linux/topology.h>. 91 */ 92DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 93EXPORT_PER_CPU_SYMBOL(_numa_mem_); 94int _node_numa_mem_[MAX_NUMNODES]; 95#endif 96 97/* work_structs for global per-cpu drains */ 98DEFINE_MUTEX(pcpu_drain_mutex); 99DEFINE_PER_CPU(struct work_struct, pcpu_drain); 100 101#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 102volatile unsigned long latent_entropy __latent_entropy; 103EXPORT_SYMBOL(latent_entropy); 104#endif 105 106/* 107 * Array of node states. 108 */ 109nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 110 [N_POSSIBLE] = NODE_MASK_ALL, 111 [N_ONLINE] = { { [0] = 1UL } }, 112#ifndef CONFIG_NUMA 113 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 114#ifdef CONFIG_HIGHMEM 115 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 116#endif 117 [N_MEMORY] = { { [0] = 1UL } }, 118 [N_CPU] = { { [0] = 1UL } }, 119#endif /* NUMA */ 120}; 121EXPORT_SYMBOL(node_states); 122 123/* Protect totalram_pages and zone->managed_pages */ 124static DEFINE_SPINLOCK(managed_page_count_lock); 125 126unsigned long totalram_pages __read_mostly; 127unsigned long totalreserve_pages __read_mostly; 128unsigned long totalcma_pages __read_mostly; 129 130int percpu_pagelist_fraction; 131gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 132 133/* 134 * A cached value of the page's pageblock's migratetype, used when the page is 135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 136 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 137 * Also the migratetype set in the page does not necessarily match the pcplist 138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 139 * other index - this ensures that it will be put on the correct CMA freelist. 140 */ 141static inline int get_pcppage_migratetype(struct page *page) 142{ 143 return page->index; 144} 145 146static inline void set_pcppage_migratetype(struct page *page, int migratetype) 147{ 148 page->index = migratetype; 149} 150 151#ifdef CONFIG_PM_SLEEP 152/* 153 * The following functions are used by the suspend/hibernate code to temporarily 154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 155 * while devices are suspended. To avoid races with the suspend/hibernate code, 156 * they should always be called with pm_mutex held (gfp_allowed_mask also should 157 * only be modified with pm_mutex held, unless the suspend/hibernate code is 158 * guaranteed not to run in parallel with that modification). 159 */ 160 161static gfp_t saved_gfp_mask; 162 163void pm_restore_gfp_mask(void) 164{ 165 WARN_ON(!mutex_is_locked(&pm_mutex)); 166 if (saved_gfp_mask) { 167 gfp_allowed_mask = saved_gfp_mask; 168 saved_gfp_mask = 0; 169 } 170} 171 172void pm_restrict_gfp_mask(void) 173{ 174 WARN_ON(!mutex_is_locked(&pm_mutex)); 175 WARN_ON(saved_gfp_mask); 176 saved_gfp_mask = gfp_allowed_mask; 177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 178} 179 180bool pm_suspended_storage(void) 181{ 182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 183 return false; 184 return true; 185} 186#endif /* CONFIG_PM_SLEEP */ 187 188#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 189unsigned int pageblock_order __read_mostly; 190#endif 191 192static void __free_pages_ok(struct page *page, unsigned int order); 193 194/* 195 * results with 256, 32 in the lowmem_reserve sysctl: 196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 197 * 1G machine -> (16M dma, 784M normal, 224M high) 198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 201 * 202 * TBD: should special case ZONE_DMA32 machines here - in those we normally 203 * don't need any ZONE_NORMAL reservation 204 */ 205int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 206#ifdef CONFIG_ZONE_DMA 207 256, 208#endif 209#ifdef CONFIG_ZONE_DMA32 210 256, 211#endif 212#ifdef CONFIG_HIGHMEM 213 32, 214#endif 215 32, 216}; 217 218EXPORT_SYMBOL(totalram_pages); 219 220static char * const zone_names[MAX_NR_ZONES] = { 221#ifdef CONFIG_ZONE_DMA 222 "DMA", 223#endif 224#ifdef CONFIG_ZONE_DMA32 225 "DMA32", 226#endif 227 "Normal", 228#ifdef CONFIG_HIGHMEM 229 "HighMem", 230#endif 231 "Movable", 232#ifdef CONFIG_ZONE_DEVICE 233 "Device", 234#endif 235}; 236 237char * const migratetype_names[MIGRATE_TYPES] = { 238 "Unmovable", 239 "Movable", 240 "Reclaimable", 241 "HighAtomic", 242#ifdef CONFIG_CMA 243 "CMA", 244#endif 245#ifdef CONFIG_MEMORY_ISOLATION 246 "Isolate", 247#endif 248}; 249 250compound_page_dtor * const compound_page_dtors[] = { 251 NULL, 252 free_compound_page, 253#ifdef CONFIG_HUGETLB_PAGE 254 free_huge_page, 255#endif 256#ifdef CONFIG_TRANSPARENT_HUGEPAGE 257 free_transhuge_page, 258#endif 259}; 260 261int min_free_kbytes = 1024; 262int user_min_free_kbytes = -1; 263int watermark_scale_factor = 10; 264 265static unsigned long __meminitdata nr_kernel_pages; 266static unsigned long __meminitdata nr_all_pages; 267static unsigned long __meminitdata dma_reserve; 268 269#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 270static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 271static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 272static unsigned long __initdata required_kernelcore; 273static unsigned long __initdata required_movablecore; 274static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 275static bool mirrored_kernelcore; 276 277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278int movable_zone; 279EXPORT_SYMBOL(movable_zone); 280#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 281 282#if MAX_NUMNODES > 1 283int nr_node_ids __read_mostly = MAX_NUMNODES; 284int nr_online_nodes __read_mostly = 1; 285EXPORT_SYMBOL(nr_node_ids); 286EXPORT_SYMBOL(nr_online_nodes); 287#endif 288 289int page_group_by_mobility_disabled __read_mostly; 290 291#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 292static inline void reset_deferred_meminit(pg_data_t *pgdat) 293{ 294 unsigned long max_initialise; 295 unsigned long reserved_lowmem; 296 297 /* 298 * Initialise at least 2G of a node but also take into account that 299 * two large system hashes that can take up 1GB for 0.25TB/node. 300 */ 301 max_initialise = max(2UL << (30 - PAGE_SHIFT), 302 (pgdat->node_spanned_pages >> 8)); 303 304 /* 305 * Compensate the all the memblock reservations (e.g. crash kernel) 306 * from the initial estimation to make sure we will initialize enough 307 * memory to boot. 308 */ 309 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn, 310 pgdat->node_start_pfn + max_initialise); 311 max_initialise += reserved_lowmem; 312 313 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages); 314 pgdat->first_deferred_pfn = ULONG_MAX; 315} 316 317/* Returns true if the struct page for the pfn is uninitialised */ 318static inline bool __meminit early_page_uninitialised(unsigned long pfn) 319{ 320 int nid = early_pfn_to_nid(pfn); 321 322 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 323 return true; 324 325 return false; 326} 327 328/* 329 * Returns false when the remaining initialisation should be deferred until 330 * later in the boot cycle when it can be parallelised. 331 */ 332static inline bool update_defer_init(pg_data_t *pgdat, 333 unsigned long pfn, unsigned long zone_end, 334 unsigned long *nr_initialised) 335{ 336 /* Always populate low zones for address-contrained allocations */ 337 if (zone_end < pgdat_end_pfn(pgdat)) 338 return true; 339 (*nr_initialised)++; 340 if ((*nr_initialised > pgdat->static_init_size) && 341 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 342 pgdat->first_deferred_pfn = pfn; 343 return false; 344 } 345 346 return true; 347} 348#else 349static inline void reset_deferred_meminit(pg_data_t *pgdat) 350{ 351} 352 353static inline bool early_page_uninitialised(unsigned long pfn) 354{ 355 return false; 356} 357 358static inline bool update_defer_init(pg_data_t *pgdat, 359 unsigned long pfn, unsigned long zone_end, 360 unsigned long *nr_initialised) 361{ 362 return true; 363} 364#endif 365 366/* Return a pointer to the bitmap storing bits affecting a block of pages */ 367static inline unsigned long *get_pageblock_bitmap(struct page *page, 368 unsigned long pfn) 369{ 370#ifdef CONFIG_SPARSEMEM 371 return __pfn_to_section(pfn)->pageblock_flags; 372#else 373 return page_zone(page)->pageblock_flags; 374#endif /* CONFIG_SPARSEMEM */ 375} 376 377static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 378{ 379#ifdef CONFIG_SPARSEMEM 380 pfn &= (PAGES_PER_SECTION-1); 381 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 382#else 383 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 384 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 385#endif /* CONFIG_SPARSEMEM */ 386} 387 388/** 389 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 390 * @page: The page within the block of interest 391 * @pfn: The target page frame number 392 * @end_bitidx: The last bit of interest to retrieve 393 * @mask: mask of bits that the caller is interested in 394 * 395 * Return: pageblock_bits flags 396 */ 397static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 398 unsigned long pfn, 399 unsigned long end_bitidx, 400 unsigned long mask) 401{ 402 unsigned long *bitmap; 403 unsigned long bitidx, word_bitidx; 404 unsigned long word; 405 406 bitmap = get_pageblock_bitmap(page, pfn); 407 bitidx = pfn_to_bitidx(page, pfn); 408 word_bitidx = bitidx / BITS_PER_LONG; 409 bitidx &= (BITS_PER_LONG-1); 410 411 word = bitmap[word_bitidx]; 412 bitidx += end_bitidx; 413 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 414} 415 416unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 417 unsigned long end_bitidx, 418 unsigned long mask) 419{ 420 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 421} 422 423static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 424{ 425 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 426} 427 428/** 429 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 430 * @page: The page within the block of interest 431 * @flags: The flags to set 432 * @pfn: The target page frame number 433 * @end_bitidx: The last bit of interest 434 * @mask: mask of bits that the caller is interested in 435 */ 436void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 437 unsigned long pfn, 438 unsigned long end_bitidx, 439 unsigned long mask) 440{ 441 unsigned long *bitmap; 442 unsigned long bitidx, word_bitidx; 443 unsigned long old_word, word; 444 445 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 446 447 bitmap = get_pageblock_bitmap(page, pfn); 448 bitidx = pfn_to_bitidx(page, pfn); 449 word_bitidx = bitidx / BITS_PER_LONG; 450 bitidx &= (BITS_PER_LONG-1); 451 452 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 453 454 bitidx += end_bitidx; 455 mask <<= (BITS_PER_LONG - bitidx - 1); 456 flags <<= (BITS_PER_LONG - bitidx - 1); 457 458 word = READ_ONCE(bitmap[word_bitidx]); 459 for (;;) { 460 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 461 if (word == old_word) 462 break; 463 word = old_word; 464 } 465} 466 467void set_pageblock_migratetype(struct page *page, int migratetype) 468{ 469 if (unlikely(page_group_by_mobility_disabled && 470 migratetype < MIGRATE_PCPTYPES)) 471 migratetype = MIGRATE_UNMOVABLE; 472 473 set_pageblock_flags_group(page, (unsigned long)migratetype, 474 PB_migrate, PB_migrate_end); 475} 476 477#ifdef CONFIG_DEBUG_VM 478static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 479{ 480 int ret = 0; 481 unsigned seq; 482 unsigned long pfn = page_to_pfn(page); 483 unsigned long sp, start_pfn; 484 485 do { 486 seq = zone_span_seqbegin(zone); 487 start_pfn = zone->zone_start_pfn; 488 sp = zone->spanned_pages; 489 if (!zone_spans_pfn(zone, pfn)) 490 ret = 1; 491 } while (zone_span_seqretry(zone, seq)); 492 493 if (ret) 494 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 495 pfn, zone_to_nid(zone), zone->name, 496 start_pfn, start_pfn + sp); 497 498 return ret; 499} 500 501static int page_is_consistent(struct zone *zone, struct page *page) 502{ 503 if (!pfn_valid_within(page_to_pfn(page))) 504 return 0; 505 if (zone != page_zone(page)) 506 return 0; 507 508 return 1; 509} 510/* 511 * Temporary debugging check for pages not lying within a given zone. 512 */ 513static int __maybe_unused bad_range(struct zone *zone, struct page *page) 514{ 515 if (page_outside_zone_boundaries(zone, page)) 516 return 1; 517 if (!page_is_consistent(zone, page)) 518 return 1; 519 520 return 0; 521} 522#else 523static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 524{ 525 return 0; 526} 527#endif 528 529static void bad_page(struct page *page, const char *reason, 530 unsigned long bad_flags) 531{ 532 static unsigned long resume; 533 static unsigned long nr_shown; 534 static unsigned long nr_unshown; 535 536 /* 537 * Allow a burst of 60 reports, then keep quiet for that minute; 538 * or allow a steady drip of one report per second. 539 */ 540 if (nr_shown == 60) { 541 if (time_before(jiffies, resume)) { 542 nr_unshown++; 543 goto out; 544 } 545 if (nr_unshown) { 546 pr_alert( 547 "BUG: Bad page state: %lu messages suppressed\n", 548 nr_unshown); 549 nr_unshown = 0; 550 } 551 nr_shown = 0; 552 } 553 if (nr_shown++ == 0) 554 resume = jiffies + 60 * HZ; 555 556 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 557 current->comm, page_to_pfn(page)); 558 __dump_page(page, reason); 559 bad_flags &= page->flags; 560 if (bad_flags) 561 pr_alert("bad because of flags: %#lx(%pGp)\n", 562 bad_flags, &bad_flags); 563 dump_page_owner(page); 564 565 print_modules(); 566 dump_stack(); 567out: 568 /* Leave bad fields for debug, except PageBuddy could make trouble */ 569 page_mapcount_reset(page); /* remove PageBuddy */ 570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 571} 572 573/* 574 * Higher-order pages are called "compound pages". They are structured thusly: 575 * 576 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 577 * 578 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 579 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 580 * 581 * The first tail page's ->compound_dtor holds the offset in array of compound 582 * page destructors. See compound_page_dtors. 583 * 584 * The first tail page's ->compound_order holds the order of allocation. 585 * This usage means that zero-order pages may not be compound. 586 */ 587 588void free_compound_page(struct page *page) 589{ 590 __free_pages_ok(page, compound_order(page)); 591} 592 593void prep_compound_page(struct page *page, unsigned int order) 594{ 595 int i; 596 int nr_pages = 1 << order; 597 598 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 599 set_compound_order(page, order); 600 __SetPageHead(page); 601 for (i = 1; i < nr_pages; i++) { 602 struct page *p = page + i; 603 set_page_count(p, 0); 604 p->mapping = TAIL_MAPPING; 605 set_compound_head(p, page); 606 } 607 atomic_set(compound_mapcount_ptr(page), -1); 608} 609 610#ifdef CONFIG_DEBUG_PAGEALLOC 611unsigned int _debug_guardpage_minorder; 612bool _debug_pagealloc_enabled __read_mostly 613 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 614EXPORT_SYMBOL(_debug_pagealloc_enabled); 615bool _debug_guardpage_enabled __read_mostly; 616 617static int __init early_debug_pagealloc(char *buf) 618{ 619 if (!buf) 620 return -EINVAL; 621 return kstrtobool(buf, &_debug_pagealloc_enabled); 622} 623early_param("debug_pagealloc", early_debug_pagealloc); 624 625static bool need_debug_guardpage(void) 626{ 627 /* If we don't use debug_pagealloc, we don't need guard page */ 628 if (!debug_pagealloc_enabled()) 629 return false; 630 631 if (!debug_guardpage_minorder()) 632 return false; 633 634 return true; 635} 636 637static void init_debug_guardpage(void) 638{ 639 if (!debug_pagealloc_enabled()) 640 return; 641 642 if (!debug_guardpage_minorder()) 643 return; 644 645 _debug_guardpage_enabled = true; 646} 647 648struct page_ext_operations debug_guardpage_ops = { 649 .need = need_debug_guardpage, 650 .init = init_debug_guardpage, 651}; 652 653static int __init debug_guardpage_minorder_setup(char *buf) 654{ 655 unsigned long res; 656 657 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 658 pr_err("Bad debug_guardpage_minorder value\n"); 659 return 0; 660 } 661 _debug_guardpage_minorder = res; 662 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 663 return 0; 664} 665early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 666 667static inline bool set_page_guard(struct zone *zone, struct page *page, 668 unsigned int order, int migratetype) 669{ 670 struct page_ext *page_ext; 671 672 if (!debug_guardpage_enabled()) 673 return false; 674 675 if (order >= debug_guardpage_minorder()) 676 return false; 677 678 page_ext = lookup_page_ext(page); 679 if (unlikely(!page_ext)) 680 return false; 681 682 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 683 684 INIT_LIST_HEAD(&page->lru); 685 set_page_private(page, order); 686 /* Guard pages are not available for any usage */ 687 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 688 689 return true; 690} 691 692static inline void clear_page_guard(struct zone *zone, struct page *page, 693 unsigned int order, int migratetype) 694{ 695 struct page_ext *page_ext; 696 697 if (!debug_guardpage_enabled()) 698 return; 699 700 page_ext = lookup_page_ext(page); 701 if (unlikely(!page_ext)) 702 return; 703 704 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 705 706 set_page_private(page, 0); 707 if (!is_migrate_isolate(migratetype)) 708 __mod_zone_freepage_state(zone, (1 << order), migratetype); 709} 710#else 711struct page_ext_operations debug_guardpage_ops; 712static inline bool set_page_guard(struct zone *zone, struct page *page, 713 unsigned int order, int migratetype) { return false; } 714static inline void clear_page_guard(struct zone *zone, struct page *page, 715 unsigned int order, int migratetype) {} 716#endif 717 718static inline void set_page_order(struct page *page, unsigned int order) 719{ 720 set_page_private(page, order); 721 __SetPageBuddy(page); 722} 723 724static inline void rmv_page_order(struct page *page) 725{ 726 __ClearPageBuddy(page); 727 set_page_private(page, 0); 728} 729 730/* 731 * This function checks whether a page is free && is the buddy 732 * we can do coalesce a page and its buddy if 733 * (a) the buddy is not in a hole (check before calling!) && 734 * (b) the buddy is in the buddy system && 735 * (c) a page and its buddy have the same order && 736 * (d) a page and its buddy are in the same zone. 737 * 738 * For recording whether a page is in the buddy system, we set ->_mapcount 739 * PAGE_BUDDY_MAPCOUNT_VALUE. 740 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 741 * serialized by zone->lock. 742 * 743 * For recording page's order, we use page_private(page). 744 */ 745static inline int page_is_buddy(struct page *page, struct page *buddy, 746 unsigned int order) 747{ 748 if (page_is_guard(buddy) && page_order(buddy) == order) { 749 if (page_zone_id(page) != page_zone_id(buddy)) 750 return 0; 751 752 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 753 754 return 1; 755 } 756 757 if (PageBuddy(buddy) && page_order(buddy) == order) { 758 /* 759 * zone check is done late to avoid uselessly 760 * calculating zone/node ids for pages that could 761 * never merge. 762 */ 763 if (page_zone_id(page) != page_zone_id(buddy)) 764 return 0; 765 766 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 767 768 return 1; 769 } 770 return 0; 771} 772 773/* 774 * Freeing function for a buddy system allocator. 775 * 776 * The concept of a buddy system is to maintain direct-mapped table 777 * (containing bit values) for memory blocks of various "orders". 778 * The bottom level table contains the map for the smallest allocatable 779 * units of memory (here, pages), and each level above it describes 780 * pairs of units from the levels below, hence, "buddies". 781 * At a high level, all that happens here is marking the table entry 782 * at the bottom level available, and propagating the changes upward 783 * as necessary, plus some accounting needed to play nicely with other 784 * parts of the VM system. 785 * At each level, we keep a list of pages, which are heads of continuous 786 * free pages of length of (1 << order) and marked with _mapcount 787 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 788 * field. 789 * So when we are allocating or freeing one, we can derive the state of the 790 * other. That is, if we allocate a small block, and both were 791 * free, the remainder of the region must be split into blocks. 792 * If a block is freed, and its buddy is also free, then this 793 * triggers coalescing into a block of larger size. 794 * 795 * -- nyc 796 */ 797 798static inline void __free_one_page(struct page *page, 799 unsigned long pfn, 800 struct zone *zone, unsigned int order, 801 int migratetype) 802{ 803 unsigned long combined_pfn; 804 unsigned long uninitialized_var(buddy_pfn); 805 struct page *buddy; 806 unsigned int max_order; 807 808 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 809 810 VM_BUG_ON(!zone_is_initialized(zone)); 811 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 812 813 VM_BUG_ON(migratetype == -1); 814 if (likely(!is_migrate_isolate(migratetype))) 815 __mod_zone_freepage_state(zone, 1 << order, migratetype); 816 817 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 818 VM_BUG_ON_PAGE(bad_range(zone, page), page); 819 820continue_merging: 821 while (order < max_order - 1) { 822 buddy_pfn = __find_buddy_pfn(pfn, order); 823 buddy = page + (buddy_pfn - pfn); 824 825 if (!pfn_valid_within(buddy_pfn)) 826 goto done_merging; 827 if (!page_is_buddy(page, buddy, order)) 828 goto done_merging; 829 /* 830 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 831 * merge with it and move up one order. 832 */ 833 if (page_is_guard(buddy)) { 834 clear_page_guard(zone, buddy, order, migratetype); 835 } else { 836 list_del(&buddy->lru); 837 zone->free_area[order].nr_free--; 838 rmv_page_order(buddy); 839 } 840 combined_pfn = buddy_pfn & pfn; 841 page = page + (combined_pfn - pfn); 842 pfn = combined_pfn; 843 order++; 844 } 845 if (max_order < MAX_ORDER) { 846 /* If we are here, it means order is >= pageblock_order. 847 * We want to prevent merge between freepages on isolate 848 * pageblock and normal pageblock. Without this, pageblock 849 * isolation could cause incorrect freepage or CMA accounting. 850 * 851 * We don't want to hit this code for the more frequent 852 * low-order merging. 853 */ 854 if (unlikely(has_isolate_pageblock(zone))) { 855 int buddy_mt; 856 857 buddy_pfn = __find_buddy_pfn(pfn, order); 858 buddy = page + (buddy_pfn - pfn); 859 buddy_mt = get_pageblock_migratetype(buddy); 860 861 if (migratetype != buddy_mt 862 && (is_migrate_isolate(migratetype) || 863 is_migrate_isolate(buddy_mt))) 864 goto done_merging; 865 } 866 max_order++; 867 goto continue_merging; 868 } 869 870done_merging: 871 set_page_order(page, order); 872 873 /* 874 * If this is not the largest possible page, check if the buddy 875 * of the next-highest order is free. If it is, it's possible 876 * that pages are being freed that will coalesce soon. In case, 877 * that is happening, add the free page to the tail of the list 878 * so it's less likely to be used soon and more likely to be merged 879 * as a higher order page 880 */ 881 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 882 struct page *higher_page, *higher_buddy; 883 combined_pfn = buddy_pfn & pfn; 884 higher_page = page + (combined_pfn - pfn); 885 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 886 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 887 if (pfn_valid_within(buddy_pfn) && 888 page_is_buddy(higher_page, higher_buddy, order + 1)) { 889 list_add_tail(&page->lru, 890 &zone->free_area[order].free_list[migratetype]); 891 goto out; 892 } 893 } 894 895 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 896out: 897 zone->free_area[order].nr_free++; 898} 899 900/* 901 * A bad page could be due to a number of fields. Instead of multiple branches, 902 * try and check multiple fields with one check. The caller must do a detailed 903 * check if necessary. 904 */ 905static inline bool page_expected_state(struct page *page, 906 unsigned long check_flags) 907{ 908 if (unlikely(atomic_read(&page->_mapcount) != -1)) 909 return false; 910 911 if (unlikely((unsigned long)page->mapping | 912 page_ref_count(page) | 913#ifdef CONFIG_MEMCG 914 (unsigned long)page->mem_cgroup | 915#endif 916 (page->flags & check_flags))) 917 return false; 918 919 return true; 920} 921 922static void free_pages_check_bad(struct page *page) 923{ 924 const char *bad_reason; 925 unsigned long bad_flags; 926 927 bad_reason = NULL; 928 bad_flags = 0; 929 930 if (unlikely(atomic_read(&page->_mapcount) != -1)) 931 bad_reason = "nonzero mapcount"; 932 if (unlikely(page->mapping != NULL)) 933 bad_reason = "non-NULL mapping"; 934 if (unlikely(page_ref_count(page) != 0)) 935 bad_reason = "nonzero _refcount"; 936 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 937 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 938 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 939 } 940#ifdef CONFIG_MEMCG 941 if (unlikely(page->mem_cgroup)) 942 bad_reason = "page still charged to cgroup"; 943#endif 944 bad_page(page, bad_reason, bad_flags); 945} 946 947static inline int free_pages_check(struct page *page) 948{ 949 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 950 return 0; 951 952 /* Something has gone sideways, find it */ 953 free_pages_check_bad(page); 954 return 1; 955} 956 957static int free_tail_pages_check(struct page *head_page, struct page *page) 958{ 959 int ret = 1; 960 961 /* 962 * We rely page->lru.next never has bit 0 set, unless the page 963 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 964 */ 965 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 966 967 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 968 ret = 0; 969 goto out; 970 } 971 switch (page - head_page) { 972 case 1: 973 /* the first tail page: ->mapping is compound_mapcount() */ 974 if (unlikely(compound_mapcount(page))) { 975 bad_page(page, "nonzero compound_mapcount", 0); 976 goto out; 977 } 978 break; 979 case 2: 980 /* 981 * the second tail page: ->mapping is 982 * page_deferred_list().next -- ignore value. 983 */ 984 break; 985 default: 986 if (page->mapping != TAIL_MAPPING) { 987 bad_page(page, "corrupted mapping in tail page", 0); 988 goto out; 989 } 990 break; 991 } 992 if (unlikely(!PageTail(page))) { 993 bad_page(page, "PageTail not set", 0); 994 goto out; 995 } 996 if (unlikely(compound_head(page) != head_page)) { 997 bad_page(page, "compound_head not consistent", 0); 998 goto out; 999 } 1000 ret = 0; 1001out: 1002 page->mapping = NULL; 1003 clear_compound_head(page); 1004 return ret; 1005} 1006 1007static __always_inline bool free_pages_prepare(struct page *page, 1008 unsigned int order, bool check_free) 1009{ 1010 int bad = 0; 1011 1012 VM_BUG_ON_PAGE(PageTail(page), page); 1013 1014 trace_mm_page_free(page, order); 1015 kmemcheck_free_shadow(page, order); 1016 1017 /* 1018 * Check tail pages before head page information is cleared to 1019 * avoid checking PageCompound for order-0 pages. 1020 */ 1021 if (unlikely(order)) { 1022 bool compound = PageCompound(page); 1023 int i; 1024 1025 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1026 1027 if (compound) 1028 ClearPageDoubleMap(page); 1029 for (i = 1; i < (1 << order); i++) { 1030 if (compound) 1031 bad += free_tail_pages_check(page, page + i); 1032 if (unlikely(free_pages_check(page + i))) { 1033 bad++; 1034 continue; 1035 } 1036 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1037 } 1038 } 1039 if (PageMappingFlags(page)) 1040 page->mapping = NULL; 1041 if (memcg_kmem_enabled() && PageKmemcg(page)) 1042 memcg_kmem_uncharge(page, order); 1043 if (check_free) 1044 bad += free_pages_check(page); 1045 if (bad) 1046 return false; 1047 1048 page_cpupid_reset_last(page); 1049 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1050 reset_page_owner(page, order); 1051 1052 if (!PageHighMem(page)) { 1053 debug_check_no_locks_freed(page_address(page), 1054 PAGE_SIZE << order); 1055 debug_check_no_obj_freed(page_address(page), 1056 PAGE_SIZE << order); 1057 } 1058 arch_free_page(page, order); 1059 kernel_poison_pages(page, 1 << order, 0); 1060 kernel_map_pages(page, 1 << order, 0); 1061 kasan_free_pages(page, order); 1062 1063 return true; 1064} 1065 1066#ifdef CONFIG_DEBUG_VM 1067static inline bool free_pcp_prepare(struct page *page) 1068{ 1069 return free_pages_prepare(page, 0, true); 1070} 1071 1072static inline bool bulkfree_pcp_prepare(struct page *page) 1073{ 1074 return false; 1075} 1076#else 1077static bool free_pcp_prepare(struct page *page) 1078{ 1079 return free_pages_prepare(page, 0, false); 1080} 1081 1082static bool bulkfree_pcp_prepare(struct page *page) 1083{ 1084 return free_pages_check(page); 1085} 1086#endif /* CONFIG_DEBUG_VM */ 1087 1088/* 1089 * Frees a number of pages from the PCP lists 1090 * Assumes all pages on list are in same zone, and of same order. 1091 * count is the number of pages to free. 1092 * 1093 * If the zone was previously in an "all pages pinned" state then look to 1094 * see if this freeing clears that state. 1095 * 1096 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1097 * pinned" detection logic. 1098 */ 1099static void free_pcppages_bulk(struct zone *zone, int count, 1100 struct per_cpu_pages *pcp) 1101{ 1102 int migratetype = 0; 1103 int batch_free = 0; 1104 bool isolated_pageblocks; 1105 1106 spin_lock(&zone->lock); 1107 isolated_pageblocks = has_isolate_pageblock(zone); 1108 1109 while (count) { 1110 struct page *page; 1111 struct list_head *list; 1112 1113 /* 1114 * Remove pages from lists in a round-robin fashion. A 1115 * batch_free count is maintained that is incremented when an 1116 * empty list is encountered. This is so more pages are freed 1117 * off fuller lists instead of spinning excessively around empty 1118 * lists 1119 */ 1120 do { 1121 batch_free++; 1122 if (++migratetype == MIGRATE_PCPTYPES) 1123 migratetype = 0; 1124 list = &pcp->lists[migratetype]; 1125 } while (list_empty(list)); 1126 1127 /* This is the only non-empty list. Free them all. */ 1128 if (batch_free == MIGRATE_PCPTYPES) 1129 batch_free = count; 1130 1131 do { 1132 int mt; /* migratetype of the to-be-freed page */ 1133 1134 page = list_last_entry(list, struct page, lru); 1135 /* must delete as __free_one_page list manipulates */ 1136 list_del(&page->lru); 1137 1138 mt = get_pcppage_migratetype(page); 1139 /* MIGRATE_ISOLATE page should not go to pcplists */ 1140 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1141 /* Pageblock could have been isolated meanwhile */ 1142 if (unlikely(isolated_pageblocks)) 1143 mt = get_pageblock_migratetype(page); 1144 1145 if (bulkfree_pcp_prepare(page)) 1146 continue; 1147 1148 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1149 trace_mm_page_pcpu_drain(page, 0, mt); 1150 } while (--count && --batch_free && !list_empty(list)); 1151 } 1152 spin_unlock(&zone->lock); 1153} 1154 1155static void free_one_page(struct zone *zone, 1156 struct page *page, unsigned long pfn, 1157 unsigned int order, 1158 int migratetype) 1159{ 1160 spin_lock(&zone->lock); 1161 if (unlikely(has_isolate_pageblock(zone) || 1162 is_migrate_isolate(migratetype))) { 1163 migratetype = get_pfnblock_migratetype(page, pfn); 1164 } 1165 __free_one_page(page, pfn, zone, order, migratetype); 1166 spin_unlock(&zone->lock); 1167} 1168 1169static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1170 unsigned long zone, int nid) 1171{ 1172 set_page_links(page, zone, nid, pfn); 1173 init_page_count(page); 1174 page_mapcount_reset(page); 1175 page_cpupid_reset_last(page); 1176 1177 INIT_LIST_HEAD(&page->lru); 1178#ifdef WANT_PAGE_VIRTUAL 1179 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1180 if (!is_highmem_idx(zone)) 1181 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1182#endif 1183} 1184 1185static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1186 int nid) 1187{ 1188 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 1189} 1190 1191#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1192static void init_reserved_page(unsigned long pfn) 1193{ 1194 pg_data_t *pgdat; 1195 int nid, zid; 1196 1197 if (!early_page_uninitialised(pfn)) 1198 return; 1199 1200 nid = early_pfn_to_nid(pfn); 1201 pgdat = NODE_DATA(nid); 1202 1203 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1204 struct zone *zone = &pgdat->node_zones[zid]; 1205 1206 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1207 break; 1208 } 1209 __init_single_pfn(pfn, zid, nid); 1210} 1211#else 1212static inline void init_reserved_page(unsigned long pfn) 1213{ 1214} 1215#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1216 1217/* 1218 * Initialised pages do not have PageReserved set. This function is 1219 * called for each range allocated by the bootmem allocator and 1220 * marks the pages PageReserved. The remaining valid pages are later 1221 * sent to the buddy page allocator. 1222 */ 1223void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1224{ 1225 unsigned long start_pfn = PFN_DOWN(start); 1226 unsigned long end_pfn = PFN_UP(end); 1227 1228 for (; start_pfn < end_pfn; start_pfn++) { 1229 if (pfn_valid(start_pfn)) { 1230 struct page *page = pfn_to_page(start_pfn); 1231 1232 init_reserved_page(start_pfn); 1233 1234 /* Avoid false-positive PageTail() */ 1235 INIT_LIST_HEAD(&page->lru); 1236 1237 SetPageReserved(page); 1238 } 1239 } 1240} 1241 1242static void __free_pages_ok(struct page *page, unsigned int order) 1243{ 1244 unsigned long flags; 1245 int migratetype; 1246 unsigned long pfn = page_to_pfn(page); 1247 1248 if (!free_pages_prepare(page, order, true)) 1249 return; 1250 1251 migratetype = get_pfnblock_migratetype(page, pfn); 1252 local_irq_save(flags); 1253 __count_vm_events(PGFREE, 1 << order); 1254 free_one_page(page_zone(page), page, pfn, order, migratetype); 1255 local_irq_restore(flags); 1256} 1257 1258static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1259{ 1260 unsigned int nr_pages = 1 << order; 1261 struct page *p = page; 1262 unsigned int loop; 1263 1264 prefetchw(p); 1265 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1266 prefetchw(p + 1); 1267 __ClearPageReserved(p); 1268 set_page_count(p, 0); 1269 } 1270 __ClearPageReserved(p); 1271 set_page_count(p, 0); 1272 1273 page_zone(page)->managed_pages += nr_pages; 1274 set_page_refcounted(page); 1275 __free_pages(page, order); 1276} 1277 1278#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1279 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1280 1281static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1282 1283int __meminit early_pfn_to_nid(unsigned long pfn) 1284{ 1285 static DEFINE_SPINLOCK(early_pfn_lock); 1286 int nid; 1287 1288 spin_lock(&early_pfn_lock); 1289 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1290 if (nid < 0) 1291 nid = first_online_node; 1292 spin_unlock(&early_pfn_lock); 1293 1294 return nid; 1295} 1296#endif 1297 1298#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1299static inline bool __meminit __maybe_unused 1300meminit_pfn_in_nid(unsigned long pfn, int node, 1301 struct mminit_pfnnid_cache *state) 1302{ 1303 int nid; 1304 1305 nid = __early_pfn_to_nid(pfn, state); 1306 if (nid >= 0 && nid != node) 1307 return false; 1308 return true; 1309} 1310 1311/* Only safe to use early in boot when initialisation is single-threaded */ 1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1313{ 1314 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1315} 1316 1317#else 1318 1319static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1320{ 1321 return true; 1322} 1323static inline bool __meminit __maybe_unused 1324meminit_pfn_in_nid(unsigned long pfn, int node, 1325 struct mminit_pfnnid_cache *state) 1326{ 1327 return true; 1328} 1329#endif 1330 1331 1332void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1333 unsigned int order) 1334{ 1335 if (early_page_uninitialised(pfn)) 1336 return; 1337 return __free_pages_boot_core(page, order); 1338} 1339 1340/* 1341 * Check that the whole (or subset of) a pageblock given by the interval of 1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1343 * with the migration of free compaction scanner. The scanners then need to 1344 * use only pfn_valid_within() check for arches that allow holes within 1345 * pageblocks. 1346 * 1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1348 * 1349 * It's possible on some configurations to have a setup like node0 node1 node0 1350 * i.e. it's possible that all pages within a zones range of pages do not 1351 * belong to a single zone. We assume that a border between node0 and node1 1352 * can occur within a single pageblock, but not a node0 node1 node0 1353 * interleaving within a single pageblock. It is therefore sufficient to check 1354 * the first and last page of a pageblock and avoid checking each individual 1355 * page in a pageblock. 1356 */ 1357struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1358 unsigned long end_pfn, struct zone *zone) 1359{ 1360 struct page *start_page; 1361 struct page *end_page; 1362 1363 /* end_pfn is one past the range we are checking */ 1364 end_pfn--; 1365 1366 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1367 return NULL; 1368 1369 start_page = pfn_to_online_page(start_pfn); 1370 if (!start_page) 1371 return NULL; 1372 1373 if (page_zone(start_page) != zone) 1374 return NULL; 1375 1376 end_page = pfn_to_page(end_pfn); 1377 1378 /* This gives a shorter code than deriving page_zone(end_page) */ 1379 if (page_zone_id(start_page) != page_zone_id(end_page)) 1380 return NULL; 1381 1382 return start_page; 1383} 1384 1385void set_zone_contiguous(struct zone *zone) 1386{ 1387 unsigned long block_start_pfn = zone->zone_start_pfn; 1388 unsigned long block_end_pfn; 1389 1390 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1391 for (; block_start_pfn < zone_end_pfn(zone); 1392 block_start_pfn = block_end_pfn, 1393 block_end_pfn += pageblock_nr_pages) { 1394 1395 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1396 1397 if (!__pageblock_pfn_to_page(block_start_pfn, 1398 block_end_pfn, zone)) 1399 return; 1400 } 1401 1402 /* We confirm that there is no hole */ 1403 zone->contiguous = true; 1404} 1405 1406void clear_zone_contiguous(struct zone *zone) 1407{ 1408 zone->contiguous = false; 1409} 1410 1411#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1412static void __init deferred_free_range(struct page *page, 1413 unsigned long pfn, int nr_pages) 1414{ 1415 int i; 1416 1417 if (!page) 1418 return; 1419 1420 /* Free a large naturally-aligned chunk if possible */ 1421 if (nr_pages == pageblock_nr_pages && 1422 (pfn & (pageblock_nr_pages - 1)) == 0) { 1423 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1424 __free_pages_boot_core(page, pageblock_order); 1425 return; 1426 } 1427 1428 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1429 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1430 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1431 __free_pages_boot_core(page, 0); 1432 } 1433} 1434 1435/* Completion tracking for deferred_init_memmap() threads */ 1436static atomic_t pgdat_init_n_undone __initdata; 1437static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1438 1439static inline void __init pgdat_init_report_one_done(void) 1440{ 1441 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1442 complete(&pgdat_init_all_done_comp); 1443} 1444 1445/* Initialise remaining memory on a node */ 1446static int __init deferred_init_memmap(void *data) 1447{ 1448 pg_data_t *pgdat = data; 1449 int nid = pgdat->node_id; 1450 struct mminit_pfnnid_cache nid_init_state = { }; 1451 unsigned long start = jiffies; 1452 unsigned long nr_pages = 0; 1453 unsigned long walk_start, walk_end; 1454 int i, zid; 1455 struct zone *zone; 1456 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1457 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1458 1459 if (first_init_pfn == ULONG_MAX) { 1460 pgdat_init_report_one_done(); 1461 return 0; 1462 } 1463 1464 /* Bind memory initialisation thread to a local node if possible */ 1465 if (!cpumask_empty(cpumask)) 1466 set_cpus_allowed_ptr(current, cpumask); 1467 1468 /* Sanity check boundaries */ 1469 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1470 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1471 pgdat->first_deferred_pfn = ULONG_MAX; 1472 1473 /* Only the highest zone is deferred so find it */ 1474 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1475 zone = pgdat->node_zones + zid; 1476 if (first_init_pfn < zone_end_pfn(zone)) 1477 break; 1478 } 1479 1480 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1481 unsigned long pfn, end_pfn; 1482 struct page *page = NULL; 1483 struct page *free_base_page = NULL; 1484 unsigned long free_base_pfn = 0; 1485 int nr_to_free = 0; 1486 1487 end_pfn = min(walk_end, zone_end_pfn(zone)); 1488 pfn = first_init_pfn; 1489 if (pfn < walk_start) 1490 pfn = walk_start; 1491 if (pfn < zone->zone_start_pfn) 1492 pfn = zone->zone_start_pfn; 1493 1494 for (; pfn < end_pfn; pfn++) { 1495 if (!pfn_valid_within(pfn)) 1496 goto free_range; 1497 1498 /* 1499 * Ensure pfn_valid is checked every 1500 * pageblock_nr_pages for memory holes 1501 */ 1502 if ((pfn & (pageblock_nr_pages - 1)) == 0) { 1503 if (!pfn_valid(pfn)) { 1504 page = NULL; 1505 goto free_range; 1506 } 1507 } 1508 1509 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1510 page = NULL; 1511 goto free_range; 1512 } 1513 1514 /* Minimise pfn page lookups and scheduler checks */ 1515 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) { 1516 page++; 1517 } else { 1518 nr_pages += nr_to_free; 1519 deferred_free_range(free_base_page, 1520 free_base_pfn, nr_to_free); 1521 free_base_page = NULL; 1522 free_base_pfn = nr_to_free = 0; 1523 1524 page = pfn_to_page(pfn); 1525 cond_resched(); 1526 } 1527 1528 if (page->flags) { 1529 VM_BUG_ON(page_zone(page) != zone); 1530 goto free_range; 1531 } 1532 1533 __init_single_page(page, pfn, zid, nid); 1534 if (!free_base_page) { 1535 free_base_page = page; 1536 free_base_pfn = pfn; 1537 nr_to_free = 0; 1538 } 1539 nr_to_free++; 1540 1541 /* Where possible, batch up pages for a single free */ 1542 continue; 1543free_range: 1544 /* Free the current block of pages to allocator */ 1545 nr_pages += nr_to_free; 1546 deferred_free_range(free_base_page, free_base_pfn, 1547 nr_to_free); 1548 free_base_page = NULL; 1549 free_base_pfn = nr_to_free = 0; 1550 } 1551 /* Free the last block of pages to allocator */ 1552 nr_pages += nr_to_free; 1553 deferred_free_range(free_base_page, free_base_pfn, nr_to_free); 1554 1555 first_init_pfn = max(end_pfn, first_init_pfn); 1556 } 1557 1558 /* Sanity check that the next zone really is unpopulated */ 1559 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1560 1561 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1562 jiffies_to_msecs(jiffies - start)); 1563 1564 pgdat_init_report_one_done(); 1565 return 0; 1566} 1567#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1568 1569void __init page_alloc_init_late(void) 1570{ 1571 struct zone *zone; 1572 1573#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1574 int nid; 1575 1576 /* There will be num_node_state(N_MEMORY) threads */ 1577 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1578 for_each_node_state(nid, N_MEMORY) { 1579 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1580 } 1581 1582 /* Block until all are initialised */ 1583 wait_for_completion(&pgdat_init_all_done_comp); 1584 1585 /* Reinit limits that are based on free pages after the kernel is up */ 1586 files_maxfiles_init(); 1587#endif 1588#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1589 /* Discard memblock private memory */ 1590 memblock_discard(); 1591#endif 1592 1593 for_each_populated_zone(zone) 1594 set_zone_contiguous(zone); 1595} 1596 1597#ifdef CONFIG_CMA 1598/* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1599void __init init_cma_reserved_pageblock(struct page *page) 1600{ 1601 unsigned i = pageblock_nr_pages; 1602 struct page *p = page; 1603 1604 do { 1605 __ClearPageReserved(p); 1606 set_page_count(p, 0); 1607 } while (++p, --i); 1608 1609 set_pageblock_migratetype(page, MIGRATE_CMA); 1610 1611 if (pageblock_order >= MAX_ORDER) { 1612 i = pageblock_nr_pages; 1613 p = page; 1614 do { 1615 set_page_refcounted(p); 1616 __free_pages(p, MAX_ORDER - 1); 1617 p += MAX_ORDER_NR_PAGES; 1618 } while (i -= MAX_ORDER_NR_PAGES); 1619 } else { 1620 set_page_refcounted(page); 1621 __free_pages(page, pageblock_order); 1622 } 1623 1624 adjust_managed_page_count(page, pageblock_nr_pages); 1625} 1626#endif 1627 1628/* 1629 * The order of subdivision here is critical for the IO subsystem. 1630 * Please do not alter this order without good reasons and regression 1631 * testing. Specifically, as large blocks of memory are subdivided, 1632 * the order in which smaller blocks are delivered depends on the order 1633 * they're subdivided in this function. This is the primary factor 1634 * influencing the order in which pages are delivered to the IO 1635 * subsystem according to empirical testing, and this is also justified 1636 * by considering the behavior of a buddy system containing a single 1637 * large block of memory acted on by a series of small allocations. 1638 * This behavior is a critical factor in sglist merging's success. 1639 * 1640 * -- nyc 1641 */ 1642static inline void expand(struct zone *zone, struct page *page, 1643 int low, int high, struct free_area *area, 1644 int migratetype) 1645{ 1646 unsigned long size = 1 << high; 1647 1648 while (high > low) { 1649 area--; 1650 high--; 1651 size >>= 1; 1652 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1653 1654 /* 1655 * Mark as guard pages (or page), that will allow to 1656 * merge back to allocator when buddy will be freed. 1657 * Corresponding page table entries will not be touched, 1658 * pages will stay not present in virtual address space 1659 */ 1660 if (set_page_guard(zone, &page[size], high, migratetype)) 1661 continue; 1662 1663 list_add(&page[size].lru, &area->free_list[migratetype]); 1664 area->nr_free++; 1665 set_page_order(&page[size], high); 1666 } 1667} 1668 1669static void check_new_page_bad(struct page *page) 1670{ 1671 const char *bad_reason = NULL; 1672 unsigned long bad_flags = 0; 1673 1674 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1675 bad_reason = "nonzero mapcount"; 1676 if (unlikely(page->mapping != NULL)) 1677 bad_reason = "non-NULL mapping"; 1678 if (unlikely(page_ref_count(page) != 0)) 1679 bad_reason = "nonzero _count"; 1680 if (unlikely(page->flags & __PG_HWPOISON)) { 1681 bad_reason = "HWPoisoned (hardware-corrupted)"; 1682 bad_flags = __PG_HWPOISON; 1683 /* Don't complain about hwpoisoned pages */ 1684 page_mapcount_reset(page); /* remove PageBuddy */ 1685 return; 1686 } 1687 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1688 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1689 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1690 } 1691#ifdef CONFIG_MEMCG 1692 if (unlikely(page->mem_cgroup)) 1693 bad_reason = "page still charged to cgroup"; 1694#endif 1695 bad_page(page, bad_reason, bad_flags); 1696} 1697 1698/* 1699 * This page is about to be returned from the page allocator 1700 */ 1701static inline int check_new_page(struct page *page) 1702{ 1703 if (likely(page_expected_state(page, 1704 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1705 return 0; 1706 1707 check_new_page_bad(page); 1708 return 1; 1709} 1710 1711static inline bool free_pages_prezeroed(void) 1712{ 1713 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1714 page_poisoning_enabled(); 1715} 1716 1717#ifdef CONFIG_DEBUG_VM 1718static bool check_pcp_refill(struct page *page) 1719{ 1720 return false; 1721} 1722 1723static bool check_new_pcp(struct page *page) 1724{ 1725 return check_new_page(page); 1726} 1727#else 1728static bool check_pcp_refill(struct page *page) 1729{ 1730 return check_new_page(page); 1731} 1732static bool check_new_pcp(struct page *page) 1733{ 1734 return false; 1735} 1736#endif /* CONFIG_DEBUG_VM */ 1737 1738static bool check_new_pages(struct page *page, unsigned int order) 1739{ 1740 int i; 1741 for (i = 0; i < (1 << order); i++) { 1742 struct page *p = page + i; 1743 1744 if (unlikely(check_new_page(p))) 1745 return true; 1746 } 1747 1748 return false; 1749} 1750 1751inline void post_alloc_hook(struct page *page, unsigned int order, 1752 gfp_t gfp_flags) 1753{ 1754 set_page_private(page, 0); 1755 set_page_refcounted(page); 1756 1757 arch_alloc_page(page, order); 1758 kernel_map_pages(page, 1 << order, 1); 1759 kernel_poison_pages(page, 1 << order, 1); 1760 kasan_alloc_pages(page, order); 1761 set_page_owner(page, order, gfp_flags); 1762} 1763 1764static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1765 unsigned int alloc_flags) 1766{ 1767 int i; 1768 1769 post_alloc_hook(page, order, gfp_flags); 1770 1771 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1772 for (i = 0; i < (1 << order); i++) 1773 clear_highpage(page + i); 1774 1775 if (order && (gfp_flags & __GFP_COMP)) 1776 prep_compound_page(page, order); 1777 1778 /* 1779 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1780 * allocate the page. The expectation is that the caller is taking 1781 * steps that will free more memory. The caller should avoid the page 1782 * being used for !PFMEMALLOC purposes. 1783 */ 1784 if (alloc_flags & ALLOC_NO_WATERMARKS) 1785 set_page_pfmemalloc(page); 1786 else 1787 clear_page_pfmemalloc(page); 1788} 1789 1790/* 1791 * Go through the free lists for the given migratetype and remove 1792 * the smallest available page from the freelists 1793 */ 1794static inline 1795struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1796 int migratetype) 1797{ 1798 unsigned int current_order; 1799 struct free_area *area; 1800 struct page *page; 1801 1802 /* Find a page of the appropriate size in the preferred list */ 1803 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1804 area = &(zone->free_area[current_order]); 1805 page = list_first_entry_or_null(&area->free_list[migratetype], 1806 struct page, lru); 1807 if (!page) 1808 continue; 1809 list_del(&page->lru); 1810 rmv_page_order(page); 1811 area->nr_free--; 1812 expand(zone, page, order, current_order, area, migratetype); 1813 set_pcppage_migratetype(page, migratetype); 1814 return page; 1815 } 1816 1817 return NULL; 1818} 1819 1820 1821/* 1822 * This array describes the order lists are fallen back to when 1823 * the free lists for the desirable migrate type are depleted 1824 */ 1825static int fallbacks[MIGRATE_TYPES][4] = { 1826 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1827 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1828 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1829#ifdef CONFIG_CMA 1830 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1831#endif 1832#ifdef CONFIG_MEMORY_ISOLATION 1833 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1834#endif 1835}; 1836 1837#ifdef CONFIG_CMA 1838static struct page *__rmqueue_cma_fallback(struct zone *zone, 1839 unsigned int order) 1840{ 1841 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1842} 1843#else 1844static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1845 unsigned int order) { return NULL; } 1846#endif 1847 1848/* 1849 * Move the free pages in a range to the free lists of the requested type. 1850 * Note that start_page and end_pages are not aligned on a pageblock 1851 * boundary. If alignment is required, use move_freepages_block() 1852 */ 1853static int move_freepages(struct zone *zone, 1854 struct page *start_page, struct page *end_page, 1855 int migratetype, int *num_movable) 1856{ 1857 struct page *page; 1858 unsigned int order; 1859 int pages_moved = 0; 1860 1861#ifndef CONFIG_HOLES_IN_ZONE 1862 /* 1863 * page_zone is not safe to call in this context when 1864 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1865 * anyway as we check zone boundaries in move_freepages_block(). 1866 * Remove at a later date when no bug reports exist related to 1867 * grouping pages by mobility 1868 */ 1869 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1870#endif 1871 1872 if (num_movable) 1873 *num_movable = 0; 1874 1875 for (page = start_page; page <= end_page;) { 1876 if (!pfn_valid_within(page_to_pfn(page))) { 1877 page++; 1878 continue; 1879 } 1880 1881 /* Make sure we are not inadvertently changing nodes */ 1882 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1883 1884 if (!PageBuddy(page)) { 1885 /* 1886 * We assume that pages that could be isolated for 1887 * migration are movable. But we don't actually try 1888 * isolating, as that would be expensive. 1889 */ 1890 if (num_movable && 1891 (PageLRU(page) || __PageMovable(page))) 1892 (*num_movable)++; 1893 1894 page++; 1895 continue; 1896 } 1897 1898 order = page_order(page); 1899 list_move(&page->lru, 1900 &zone->free_area[order].free_list[migratetype]); 1901 page += 1 << order; 1902 pages_moved += 1 << order; 1903 } 1904 1905 return pages_moved; 1906} 1907 1908int move_freepages_block(struct zone *zone, struct page *page, 1909 int migratetype, int *num_movable) 1910{ 1911 unsigned long start_pfn, end_pfn; 1912 struct page *start_page, *end_page; 1913 1914 start_pfn = page_to_pfn(page); 1915 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1916 start_page = pfn_to_page(start_pfn); 1917 end_page = start_page + pageblock_nr_pages - 1; 1918 end_pfn = start_pfn + pageblock_nr_pages - 1; 1919 1920 /* Do not cross zone boundaries */ 1921 if (!zone_spans_pfn(zone, start_pfn)) 1922 start_page = page; 1923 if (!zone_spans_pfn(zone, end_pfn)) 1924 return 0; 1925 1926 return move_freepages(zone, start_page, end_page, migratetype, 1927 num_movable); 1928} 1929 1930static void change_pageblock_range(struct page *pageblock_page, 1931 int start_order, int migratetype) 1932{ 1933 int nr_pageblocks = 1 << (start_order - pageblock_order); 1934 1935 while (nr_pageblocks--) { 1936 set_pageblock_migratetype(pageblock_page, migratetype); 1937 pageblock_page += pageblock_nr_pages; 1938 } 1939} 1940 1941/* 1942 * When we are falling back to another migratetype during allocation, try to 1943 * steal extra free pages from the same pageblocks to satisfy further 1944 * allocations, instead of polluting multiple pageblocks. 1945 * 1946 * If we are stealing a relatively large buddy page, it is likely there will 1947 * be more free pages in the pageblock, so try to steal them all. For 1948 * reclaimable and unmovable allocations, we steal regardless of page size, 1949 * as fragmentation caused by those allocations polluting movable pageblocks 1950 * is worse than movable allocations stealing from unmovable and reclaimable 1951 * pageblocks. 1952 */ 1953static bool can_steal_fallback(unsigned int order, int start_mt) 1954{ 1955 /* 1956 * Leaving this order check is intended, although there is 1957 * relaxed order check in next check. The reason is that 1958 * we can actually steal whole pageblock if this condition met, 1959 * but, below check doesn't guarantee it and that is just heuristic 1960 * so could be changed anytime. 1961 */ 1962 if (order >= pageblock_order) 1963 return true; 1964 1965 if (order >= pageblock_order / 2 || 1966 start_mt == MIGRATE_RECLAIMABLE || 1967 start_mt == MIGRATE_UNMOVABLE || 1968 page_group_by_mobility_disabled) 1969 return true; 1970 1971 return false; 1972} 1973 1974/* 1975 * This function implements actual steal behaviour. If order is large enough, 1976 * we can steal whole pageblock. If not, we first move freepages in this 1977 * pageblock to our migratetype and determine how many already-allocated pages 1978 * are there in the pageblock with a compatible migratetype. If at least half 1979 * of pages are free or compatible, we can change migratetype of the pageblock 1980 * itself, so pages freed in the future will be put on the correct free list. 1981 */ 1982static void steal_suitable_fallback(struct zone *zone, struct page *page, 1983 int start_type, bool whole_block) 1984{ 1985 unsigned int current_order = page_order(page); 1986 struct free_area *area; 1987 int free_pages, movable_pages, alike_pages; 1988 int old_block_type; 1989 1990 old_block_type = get_pageblock_migratetype(page); 1991 1992 /* 1993 * This can happen due to races and we want to prevent broken 1994 * highatomic accounting. 1995 */ 1996 if (is_migrate_highatomic(old_block_type)) 1997 goto single_page; 1998 1999 /* Take ownership for orders >= pageblock_order */ 2000 if (current_order >= pageblock_order) { 2001 change_pageblock_range(page, current_order, start_type); 2002 goto single_page; 2003 } 2004 2005 /* We are not allowed to try stealing from the whole block */ 2006 if (!whole_block) 2007 goto single_page; 2008 2009 free_pages = move_freepages_block(zone, page, start_type, 2010 &movable_pages); 2011 /* 2012 * Determine how many pages are compatible with our allocation. 2013 * For movable allocation, it's the number of movable pages which 2014 * we just obtained. For other types it's a bit more tricky. 2015 */ 2016 if (start_type == MIGRATE_MOVABLE) { 2017 alike_pages = movable_pages; 2018 } else { 2019 /* 2020 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2021 * to MOVABLE pageblock, consider all non-movable pages as 2022 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2023 * vice versa, be conservative since we can't distinguish the 2024 * exact migratetype of non-movable pages. 2025 */ 2026 if (old_block_type == MIGRATE_MOVABLE) 2027 alike_pages = pageblock_nr_pages 2028 - (free_pages + movable_pages); 2029 else 2030 alike_pages = 0; 2031 } 2032 2033 /* moving whole block can fail due to zone boundary conditions */ 2034 if (!free_pages) 2035 goto single_page; 2036 2037 /* 2038 * If a sufficient number of pages in the block are either free or of 2039 * comparable migratability as our allocation, claim the whole block. 2040 */ 2041 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2042 page_group_by_mobility_disabled) 2043 set_pageblock_migratetype(page, start_type); 2044 2045 return; 2046 2047single_page: 2048 area = &zone->free_area[current_order]; 2049 list_move(&page->lru, &area->free_list[start_type]); 2050} 2051 2052/* 2053 * Check whether there is a suitable fallback freepage with requested order. 2054 * If only_stealable is true, this function returns fallback_mt only if 2055 * we can steal other freepages all together. This would help to reduce 2056 * fragmentation due to mixed migratetype pages in one pageblock. 2057 */ 2058int find_suitable_fallback(struct free_area *area, unsigned int order, 2059 int migratetype, bool only_stealable, bool *can_steal) 2060{ 2061 int i; 2062 int fallback_mt; 2063 2064 if (area->nr_free == 0) 2065 return -1; 2066 2067 *can_steal = false; 2068 for (i = 0;; i++) { 2069 fallback_mt = fallbacks[migratetype][i]; 2070 if (fallback_mt == MIGRATE_TYPES) 2071 break; 2072 2073 if (list_empty(&area->free_list[fallback_mt])) 2074 continue; 2075 2076 if (can_steal_fallback(order, migratetype)) 2077 *can_steal = true; 2078 2079 if (!only_stealable) 2080 return fallback_mt; 2081 2082 if (*can_steal) 2083 return fallback_mt; 2084 } 2085 2086 return -1; 2087} 2088 2089/* 2090 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2091 * there are no empty page blocks that contain a page with a suitable order 2092 */ 2093static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2094 unsigned int alloc_order) 2095{ 2096 int mt; 2097 unsigned long max_managed, flags; 2098 2099 /* 2100 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2101 * Check is race-prone but harmless. 2102 */ 2103 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2104 if (zone->nr_reserved_highatomic >= max_managed) 2105 return; 2106 2107 spin_lock_irqsave(&zone->lock, flags); 2108 2109 /* Recheck the nr_reserved_highatomic limit under the lock */ 2110 if (zone->nr_reserved_highatomic >= max_managed) 2111 goto out_unlock; 2112 2113 /* Yoink! */ 2114 mt = get_pageblock_migratetype(page); 2115 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2116 && !is_migrate_cma(mt)) { 2117 zone->nr_reserved_highatomic += pageblock_nr_pages; 2118 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2119 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2120 } 2121 2122out_unlock: 2123 spin_unlock_irqrestore(&zone->lock, flags); 2124} 2125 2126/* 2127 * Used when an allocation is about to fail under memory pressure. This 2128 * potentially hurts the reliability of high-order allocations when under 2129 * intense memory pressure but failed atomic allocations should be easier 2130 * to recover from than an OOM. 2131 * 2132 * If @force is true, try to unreserve a pageblock even though highatomic 2133 * pageblock is exhausted. 2134 */ 2135static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2136 bool force) 2137{ 2138 struct zonelist *zonelist = ac->zonelist; 2139 unsigned long flags; 2140 struct zoneref *z; 2141 struct zone *zone; 2142 struct page *page; 2143 int order; 2144 bool ret; 2145 2146 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2147 ac->nodemask) { 2148 /* 2149 * Preserve at least one pageblock unless memory pressure 2150 * is really high. 2151 */ 2152 if (!force && zone->nr_reserved_highatomic <= 2153 pageblock_nr_pages) 2154 continue; 2155 2156 spin_lock_irqsave(&zone->lock, flags); 2157 for (order = 0; order < MAX_ORDER; order++) { 2158 struct free_area *area = &(zone->free_area[order]); 2159 2160 page = list_first_entry_or_null( 2161 &area->free_list[MIGRATE_HIGHATOMIC], 2162 struct page, lru); 2163 if (!page) 2164 continue; 2165 2166 /* 2167 * In page freeing path, migratetype change is racy so 2168 * we can counter several free pages in a pageblock 2169 * in this loop althoug we changed the pageblock type 2170 * from highatomic to ac->migratetype. So we should 2171 * adjust the count once. 2172 */ 2173 if (is_migrate_highatomic_page(page)) { 2174 /* 2175 * It should never happen but changes to 2176 * locking could inadvertently allow a per-cpu 2177 * drain to add pages to MIGRATE_HIGHATOMIC 2178 * while unreserving so be safe and watch for 2179 * underflows. 2180 */ 2181 zone->nr_reserved_highatomic -= min( 2182 pageblock_nr_pages, 2183 zone->nr_reserved_highatomic); 2184 } 2185 2186 /* 2187 * Convert to ac->migratetype and avoid the normal 2188 * pageblock stealing heuristics. Minimally, the caller 2189 * is doing the work and needs the pages. More 2190 * importantly, if the block was always converted to 2191 * MIGRATE_UNMOVABLE or another type then the number 2192 * of pageblocks that cannot be completely freed 2193 * may increase. 2194 */ 2195 set_pageblock_migratetype(page, ac->migratetype); 2196 ret = move_freepages_block(zone, page, ac->migratetype, 2197 NULL); 2198 if (ret) { 2199 spin_unlock_irqrestore(&zone->lock, flags); 2200 return ret; 2201 } 2202 } 2203 spin_unlock_irqrestore(&zone->lock, flags); 2204 } 2205 2206 return false; 2207} 2208 2209/* 2210 * Try finding a free buddy page on the fallback list and put it on the free 2211 * list of requested migratetype, possibly along with other pages from the same 2212 * block, depending on fragmentation avoidance heuristics. Returns true if 2213 * fallback was found so that __rmqueue_smallest() can grab it. 2214 * 2215 * The use of signed ints for order and current_order is a deliberate 2216 * deviation from the rest of this file, to make the for loop 2217 * condition simpler. 2218 */ 2219static inline bool 2220__rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2221{ 2222 struct free_area *area; 2223 int current_order; 2224 struct page *page; 2225 int fallback_mt; 2226 bool can_steal; 2227 2228 /* 2229 * Find the largest available free page in the other list. This roughly 2230 * approximates finding the pageblock with the most free pages, which 2231 * would be too costly to do exactly. 2232 */ 2233 for (current_order = MAX_ORDER - 1; current_order >= order; 2234 --current_order) { 2235 area = &(zone->free_area[current_order]); 2236 fallback_mt = find_suitable_fallback(area, current_order, 2237 start_migratetype, false, &can_steal); 2238 if (fallback_mt == -1) 2239 continue; 2240 2241 /* 2242 * We cannot steal all free pages from the pageblock and the 2243 * requested migratetype is movable. In that case it's better to 2244 * steal and split the smallest available page instead of the 2245 * largest available page, because even if the next movable 2246 * allocation falls back into a different pageblock than this 2247 * one, it won't cause permanent fragmentation. 2248 */ 2249 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2250 && current_order > order) 2251 goto find_smallest; 2252 2253 goto do_steal; 2254 } 2255 2256 return false; 2257 2258find_smallest: 2259 for (current_order = order; current_order < MAX_ORDER; 2260 current_order++) { 2261 area = &(zone->free_area[current_order]); 2262 fallback_mt = find_suitable_fallback(area, current_order, 2263 start_migratetype, false, &can_steal); 2264 if (fallback_mt != -1) 2265 break; 2266 } 2267 2268 /* 2269 * This should not happen - we already found a suitable fallback 2270 * when looking for the largest page. 2271 */ 2272 VM_BUG_ON(current_order == MAX_ORDER); 2273 2274do_steal: 2275 page = list_first_entry(&area->free_list[fallback_mt], 2276 struct page, lru); 2277 2278 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2279 2280 trace_mm_page_alloc_extfrag(page, order, current_order, 2281 start_migratetype, fallback_mt); 2282 2283 return true; 2284 2285} 2286 2287/* 2288 * Do the hard work of removing an element from the buddy allocator. 2289 * Call me with the zone->lock already held. 2290 */ 2291static struct page *__rmqueue(struct zone *zone, unsigned int order, 2292 int migratetype) 2293{ 2294 struct page *page; 2295 2296retry: 2297 page = __rmqueue_smallest(zone, order, migratetype); 2298 if (unlikely(!page)) { 2299 if (migratetype == MIGRATE_MOVABLE) 2300 page = __rmqueue_cma_fallback(zone, order); 2301 2302 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2303 goto retry; 2304 } 2305 2306 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2307 return page; 2308} 2309 2310/* 2311 * Obtain a specified number of elements from the buddy allocator, all under 2312 * a single hold of the lock, for efficiency. Add them to the supplied list. 2313 * Returns the number of new pages which were placed at *list. 2314 */ 2315static int rmqueue_bulk(struct zone *zone, unsigned int order, 2316 unsigned long count, struct list_head *list, 2317 int migratetype, bool cold) 2318{ 2319 int i, alloced = 0; 2320 2321 spin_lock(&zone->lock); 2322 for (i = 0; i < count; ++i) { 2323 struct page *page = __rmqueue(zone, order, migratetype); 2324 if (unlikely(page == NULL)) 2325 break; 2326 2327 if (unlikely(check_pcp_refill(page))) 2328 continue; 2329 2330 /* 2331 * Split buddy pages returned by expand() are received here 2332 * in physical page order. The page is added to the callers and 2333 * list and the list head then moves forward. From the callers 2334 * perspective, the linked list is ordered by page number in 2335 * some conditions. This is useful for IO devices that can 2336 * merge IO requests if the physical pages are ordered 2337 * properly. 2338 */ 2339 if (likely(!cold)) 2340 list_add(&page->lru, list); 2341 else 2342 list_add_tail(&page->lru, list); 2343 list = &page->lru; 2344 alloced++; 2345 if (is_migrate_cma(get_pcppage_migratetype(page))) 2346 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2347 -(1 << order)); 2348 } 2349 2350 /* 2351 * i pages were removed from the buddy list even if some leak due 2352 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2353 * on i. Do not confuse with 'alloced' which is the number of 2354 * pages added to the pcp list. 2355 */ 2356 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2357 spin_unlock(&zone->lock); 2358 return alloced; 2359} 2360 2361#ifdef CONFIG_NUMA 2362/* 2363 * Called from the vmstat counter updater to drain pagesets of this 2364 * currently executing processor on remote nodes after they have 2365 * expired. 2366 * 2367 * Note that this function must be called with the thread pinned to 2368 * a single processor. 2369 */ 2370void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2371{ 2372 unsigned long flags; 2373 int to_drain, batch; 2374 2375 local_irq_save(flags); 2376 batch = READ_ONCE(pcp->batch); 2377 to_drain = min(pcp->count, batch); 2378 if (to_drain > 0) { 2379 free_pcppages_bulk(zone, to_drain, pcp); 2380 pcp->count -= to_drain; 2381 } 2382 local_irq_restore(flags); 2383} 2384#endif 2385 2386/* 2387 * Drain pcplists of the indicated processor and zone. 2388 * 2389 * The processor must either be the current processor and the 2390 * thread pinned to the current processor or a processor that 2391 * is not online. 2392 */ 2393static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2394{ 2395 unsigned long flags; 2396 struct per_cpu_pageset *pset; 2397 struct per_cpu_pages *pcp; 2398 2399 local_irq_save(flags); 2400 pset = per_cpu_ptr(zone->pageset, cpu); 2401 2402 pcp = &pset->pcp; 2403 if (pcp->count) { 2404 free_pcppages_bulk(zone, pcp->count, pcp); 2405 pcp->count = 0; 2406 } 2407 local_irq_restore(flags); 2408} 2409 2410/* 2411 * Drain pcplists of all zones on the indicated processor. 2412 * 2413 * The processor must either be the current processor and the 2414 * thread pinned to the current processor or a processor that 2415 * is not online. 2416 */ 2417static void drain_pages(unsigned int cpu) 2418{ 2419 struct zone *zone; 2420 2421 for_each_populated_zone(zone) { 2422 drain_pages_zone(cpu, zone); 2423 } 2424} 2425 2426/* 2427 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2428 * 2429 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2430 * the single zone's pages. 2431 */ 2432void drain_local_pages(struct zone *zone) 2433{ 2434 int cpu = smp_processor_id(); 2435 2436 if (zone) 2437 drain_pages_zone(cpu, zone); 2438 else 2439 drain_pages(cpu); 2440} 2441 2442static void drain_local_pages_wq(struct work_struct *work) 2443{ 2444 /* 2445 * drain_all_pages doesn't use proper cpu hotplug protection so 2446 * we can race with cpu offline when the WQ can move this from 2447 * a cpu pinned worker to an unbound one. We can operate on a different 2448 * cpu which is allright but we also have to make sure to not move to 2449 * a different one. 2450 */ 2451 preempt_disable(); 2452 drain_local_pages(NULL); 2453 preempt_enable(); 2454} 2455 2456/* 2457 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2458 * 2459 * When zone parameter is non-NULL, spill just the single zone's pages. 2460 * 2461 * Note that this can be extremely slow as the draining happens in a workqueue. 2462 */ 2463void drain_all_pages(struct zone *zone) 2464{ 2465 int cpu; 2466 2467 /* 2468 * Allocate in the BSS so we wont require allocation in 2469 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2470 */ 2471 static cpumask_t cpus_with_pcps; 2472 2473 /* 2474 * Make sure nobody triggers this path before mm_percpu_wq is fully 2475 * initialized. 2476 */ 2477 if (WARN_ON_ONCE(!mm_percpu_wq)) 2478 return; 2479 2480 /* Workqueues cannot recurse */ 2481 if (current->flags & PF_WQ_WORKER) 2482 return; 2483 2484 /* 2485 * Do not drain if one is already in progress unless it's specific to 2486 * a zone. Such callers are primarily CMA and memory hotplug and need 2487 * the drain to be complete when the call returns. 2488 */ 2489 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2490 if (!zone) 2491 return; 2492 mutex_lock(&pcpu_drain_mutex); 2493 } 2494 2495 /* 2496 * We don't care about racing with CPU hotplug event 2497 * as offline notification will cause the notified 2498 * cpu to drain that CPU pcps and on_each_cpu_mask 2499 * disables preemption as part of its processing 2500 */ 2501 for_each_online_cpu(cpu) { 2502 struct per_cpu_pageset *pcp; 2503 struct zone *z; 2504 bool has_pcps = false; 2505 2506 if (zone) { 2507 pcp = per_cpu_ptr(zone->pageset, cpu); 2508 if (pcp->pcp.count) 2509 has_pcps = true; 2510 } else { 2511 for_each_populated_zone(z) { 2512 pcp = per_cpu_ptr(z->pageset, cpu); 2513 if (pcp->pcp.count) { 2514 has_pcps = true; 2515 break; 2516 } 2517 } 2518 } 2519 2520 if (has_pcps) 2521 cpumask_set_cpu(cpu, &cpus_with_pcps); 2522 else 2523 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2524 } 2525 2526 for_each_cpu(cpu, &cpus_with_pcps) { 2527 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2528 INIT_WORK(work, drain_local_pages_wq); 2529 queue_work_on(cpu, mm_percpu_wq, work); 2530 } 2531 for_each_cpu(cpu, &cpus_with_pcps) 2532 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2533 2534 mutex_unlock(&pcpu_drain_mutex); 2535} 2536 2537#ifdef CONFIG_HIBERNATION 2538 2539/* 2540 * Touch the watchdog for every WD_PAGE_COUNT pages. 2541 */ 2542#define WD_PAGE_COUNT (128*1024) 2543 2544void mark_free_pages(struct zone *zone) 2545{ 2546 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2547 unsigned long flags; 2548 unsigned int order, t; 2549 struct page *page; 2550 2551 if (zone_is_empty(zone)) 2552 return; 2553 2554 spin_lock_irqsave(&zone->lock, flags); 2555 2556 max_zone_pfn = zone_end_pfn(zone); 2557 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2558 if (pfn_valid(pfn)) { 2559 page = pfn_to_page(pfn); 2560 2561 if (!--page_count) { 2562 touch_nmi_watchdog(); 2563 page_count = WD_PAGE_COUNT; 2564 } 2565 2566 if (page_zone(page) != zone) 2567 continue; 2568 2569 if (!swsusp_page_is_forbidden(page)) 2570 swsusp_unset_page_free(page); 2571 } 2572 2573 for_each_migratetype_order(order, t) { 2574 list_for_each_entry(page, 2575 &zone->free_area[order].free_list[t], lru) { 2576 unsigned long i; 2577 2578 pfn = page_to_pfn(page); 2579 for (i = 0; i < (1UL << order); i++) { 2580 if (!--page_count) { 2581 touch_nmi_watchdog(); 2582 page_count = WD_PAGE_COUNT; 2583 } 2584 swsusp_set_page_free(pfn_to_page(pfn + i)); 2585 } 2586 } 2587 } 2588 spin_unlock_irqrestore(&zone->lock, flags); 2589} 2590#endif /* CONFIG_PM */ 2591 2592/* 2593 * Free a 0-order page 2594 * cold == true ? free a cold page : free a hot page 2595 */ 2596void free_hot_cold_page(struct page *page, bool cold) 2597{ 2598 struct zone *zone = page_zone(page); 2599 struct per_cpu_pages *pcp; 2600 unsigned long flags; 2601 unsigned long pfn = page_to_pfn(page); 2602 int migratetype; 2603 2604 if (!free_pcp_prepare(page)) 2605 return; 2606 2607 migratetype = get_pfnblock_migratetype(page, pfn); 2608 set_pcppage_migratetype(page, migratetype); 2609 local_irq_save(flags); 2610 __count_vm_event(PGFREE); 2611 2612 /* 2613 * We only track unmovable, reclaimable and movable on pcp lists. 2614 * Free ISOLATE pages back to the allocator because they are being 2615 * offlined but treat HIGHATOMIC as movable pages so we can get those 2616 * areas back if necessary. Otherwise, we may have to free 2617 * excessively into the page allocator 2618 */ 2619 if (migratetype >= MIGRATE_PCPTYPES) { 2620 if (unlikely(is_migrate_isolate(migratetype))) { 2621 free_one_page(zone, page, pfn, 0, migratetype); 2622 goto out; 2623 } 2624 migratetype = MIGRATE_MOVABLE; 2625 } 2626 2627 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2628 if (!cold) 2629 list_add(&page->lru, &pcp->lists[migratetype]); 2630 else 2631 list_add_tail(&page->lru, &pcp->lists[migratetype]); 2632 pcp->count++; 2633 if (pcp->count >= pcp->high) { 2634 unsigned long batch = READ_ONCE(pcp->batch); 2635 free_pcppages_bulk(zone, batch, pcp); 2636 pcp->count -= batch; 2637 } 2638 2639out: 2640 local_irq_restore(flags); 2641} 2642 2643/* 2644 * Free a list of 0-order pages 2645 */ 2646void free_hot_cold_page_list(struct list_head *list, bool cold) 2647{ 2648 struct page *page, *next; 2649 2650 list_for_each_entry_safe(page, next, list, lru) { 2651 trace_mm_page_free_batched(page, cold); 2652 free_hot_cold_page(page, cold); 2653 } 2654} 2655 2656/* 2657 * split_page takes a non-compound higher-order page, and splits it into 2658 * n (1<<order) sub-pages: page[0..n] 2659 * Each sub-page must be freed individually. 2660 * 2661 * Note: this is probably too low level an operation for use in drivers. 2662 * Please consult with lkml before using this in your driver. 2663 */ 2664void split_page(struct page *page, unsigned int order) 2665{ 2666 int i; 2667 2668 VM_BUG_ON_PAGE(PageCompound(page), page); 2669 VM_BUG_ON_PAGE(!page_count(page), page); 2670 2671#ifdef CONFIG_KMEMCHECK 2672 /* 2673 * Split shadow pages too, because free(page[0]) would 2674 * otherwise free the whole shadow. 2675 */ 2676 if (kmemcheck_page_is_tracked(page)) 2677 split_page(virt_to_page(page[0].shadow), order); 2678#endif 2679 2680 for (i = 1; i < (1 << order); i++) 2681 set_page_refcounted(page + i); 2682 split_page_owner(page, order); 2683} 2684EXPORT_SYMBOL_GPL(split_page); 2685 2686int __isolate_free_page(struct page *page, unsigned int order) 2687{ 2688 unsigned long watermark; 2689 struct zone *zone; 2690 int mt; 2691 2692 BUG_ON(!PageBuddy(page)); 2693 2694 zone = page_zone(page); 2695 mt = get_pageblock_migratetype(page); 2696 2697 if (!is_migrate_isolate(mt)) { 2698 /* 2699 * Obey watermarks as if the page was being allocated. We can 2700 * emulate a high-order watermark check with a raised order-0 2701 * watermark, because we already know our high-order page 2702 * exists. 2703 */ 2704 watermark = min_wmark_pages(zone) + (1UL << order); 2705 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2706 return 0; 2707 2708 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2709 } 2710 2711 /* Remove page from free list */ 2712 list_del(&page->lru); 2713 zone->free_area[order].nr_free--; 2714 rmv_page_order(page); 2715 2716 /* 2717 * Set the pageblock if the isolated page is at least half of a 2718 * pageblock 2719 */ 2720 if (order >= pageblock_order - 1) { 2721 struct page *endpage = page + (1 << order) - 1; 2722 for (; page < endpage; page += pageblock_nr_pages) { 2723 int mt = get_pageblock_migratetype(page); 2724 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2725 && !is_migrate_highatomic(mt)) 2726 set_pageblock_migratetype(page, 2727 MIGRATE_MOVABLE); 2728 } 2729 } 2730 2731 2732 return 1UL << order; 2733} 2734 2735/* 2736 * Update NUMA hit/miss statistics 2737 * 2738 * Must be called with interrupts disabled. 2739 */ 2740static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2741{ 2742#ifdef CONFIG_NUMA 2743 enum zone_stat_item local_stat = NUMA_LOCAL; 2744 2745 if (z->node != numa_node_id()) 2746 local_stat = NUMA_OTHER; 2747 2748 if (z->node == preferred_zone->node) 2749 __inc_zone_state(z, NUMA_HIT); 2750 else { 2751 __inc_zone_state(z, NUMA_MISS); 2752 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 2753 } 2754 __inc_zone_state(z, local_stat); 2755#endif 2756} 2757 2758/* Remove page from the per-cpu list, caller must protect the list */ 2759static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2760 bool cold, struct per_cpu_pages *pcp, 2761 struct list_head *list) 2762{ 2763 struct page *page; 2764 2765 do { 2766 if (list_empty(list)) { 2767 pcp->count += rmqueue_bulk(zone, 0, 2768 pcp->batch, list, 2769 migratetype, cold); 2770 if (unlikely(list_empty(list))) 2771 return NULL; 2772 } 2773 2774 if (cold) 2775 page = list_last_entry(list, struct page, lru); 2776 else 2777 page = list_first_entry(list, struct page, lru); 2778 2779 list_del(&page->lru); 2780 pcp->count--; 2781 } while (check_new_pcp(page)); 2782 2783 return page; 2784} 2785 2786/* Lock and remove page from the per-cpu list */ 2787static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2788 struct zone *zone, unsigned int order, 2789 gfp_t gfp_flags, int migratetype) 2790{ 2791 struct per_cpu_pages *pcp; 2792 struct list_head *list; 2793 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2794 struct page *page; 2795 unsigned long flags; 2796 2797 local_irq_save(flags); 2798 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2799 list = &pcp->lists[migratetype]; 2800 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list); 2801 if (page) { 2802 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2803 zone_statistics(preferred_zone, zone); 2804 } 2805 local_irq_restore(flags); 2806 return page; 2807} 2808 2809/* 2810 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2811 */ 2812static inline 2813struct page *rmqueue(struct zone *preferred_zone, 2814 struct zone *zone, unsigned int order, 2815 gfp_t gfp_flags, unsigned int alloc_flags, 2816 int migratetype) 2817{ 2818 unsigned long flags; 2819 struct page *page; 2820 2821 if (likely(order == 0)) { 2822 page = rmqueue_pcplist(preferred_zone, zone, order, 2823 gfp_flags, migratetype); 2824 goto out; 2825 } 2826 2827 /* 2828 * We most definitely don't want callers attempting to 2829 * allocate greater than order-1 page units with __GFP_NOFAIL. 2830 */ 2831 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2832 spin_lock_irqsave(&zone->lock, flags); 2833 2834 do { 2835 page = NULL; 2836 if (alloc_flags & ALLOC_HARDER) { 2837 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2838 if (page) 2839 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2840 } 2841 if (!page) 2842 page = __rmqueue(zone, order, migratetype); 2843 } while (page && check_new_pages(page, order)); 2844 spin_unlock(&zone->lock); 2845 if (!page) 2846 goto failed; 2847 __mod_zone_freepage_state(zone, -(1 << order), 2848 get_pcppage_migratetype(page)); 2849 2850 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2851 zone_statistics(preferred_zone, zone); 2852 local_irq_restore(flags); 2853 2854out: 2855 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2856 return page; 2857 2858failed: 2859 local_irq_restore(flags); 2860 return NULL; 2861} 2862 2863#ifdef CONFIG_FAIL_PAGE_ALLOC 2864 2865static struct { 2866 struct fault_attr attr; 2867 2868 bool ignore_gfp_highmem; 2869 bool ignore_gfp_reclaim; 2870 u32 min_order; 2871} fail_page_alloc = { 2872 .attr = FAULT_ATTR_INITIALIZER, 2873 .ignore_gfp_reclaim = true, 2874 .ignore_gfp_highmem = true, 2875 .min_order = 1, 2876}; 2877 2878static int __init setup_fail_page_alloc(char *str) 2879{ 2880 return setup_fault_attr(&fail_page_alloc.attr, str); 2881} 2882__setup("fail_page_alloc=", setup_fail_page_alloc); 2883 2884static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2885{ 2886 if (order < fail_page_alloc.min_order) 2887 return false; 2888 if (gfp_mask & __GFP_NOFAIL) 2889 return false; 2890 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2891 return false; 2892 if (fail_page_alloc.ignore_gfp_reclaim && 2893 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2894 return false; 2895 2896 return should_fail(&fail_page_alloc.attr, 1 << order); 2897} 2898 2899#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2900 2901static int __init fail_page_alloc_debugfs(void) 2902{ 2903 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2904 struct dentry *dir; 2905 2906 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2907 &fail_page_alloc.attr); 2908 if (IS_ERR(dir)) 2909 return PTR_ERR(dir); 2910 2911 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2912 &fail_page_alloc.ignore_gfp_reclaim)) 2913 goto fail; 2914 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2915 &fail_page_alloc.ignore_gfp_highmem)) 2916 goto fail; 2917 if (!debugfs_create_u32("min-order", mode, dir, 2918 &fail_page_alloc.min_order)) 2919 goto fail; 2920 2921 return 0; 2922fail: 2923 debugfs_remove_recursive(dir); 2924 2925 return -ENOMEM; 2926} 2927 2928late_initcall(fail_page_alloc_debugfs); 2929 2930#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2931 2932#else /* CONFIG_FAIL_PAGE_ALLOC */ 2933 2934static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2935{ 2936 return false; 2937} 2938 2939#endif /* CONFIG_FAIL_PAGE_ALLOC */ 2940 2941/* 2942 * Return true if free base pages are above 'mark'. For high-order checks it 2943 * will return true of the order-0 watermark is reached and there is at least 2944 * one free page of a suitable size. Checking now avoids taking the zone lock 2945 * to check in the allocation paths if no pages are free. 2946 */ 2947bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2948 int classzone_idx, unsigned int alloc_flags, 2949 long free_pages) 2950{ 2951 long min = mark; 2952 int o; 2953 const bool alloc_harder = (alloc_flags & ALLOC_HARDER); 2954 2955 /* free_pages may go negative - that's OK */ 2956 free_pages -= (1 << order) - 1; 2957 2958 if (alloc_flags & ALLOC_HIGH) 2959 min -= min / 2; 2960 2961 /* 2962 * If the caller does not have rights to ALLOC_HARDER then subtract 2963 * the high-atomic reserves. This will over-estimate the size of the 2964 * atomic reserve but it avoids a search. 2965 */ 2966 if (likely(!alloc_harder)) 2967 free_pages -= z->nr_reserved_highatomic; 2968 else 2969 min -= min / 4; 2970 2971#ifdef CONFIG_CMA 2972 /* If allocation can't use CMA areas don't use free CMA pages */ 2973 if (!(alloc_flags & ALLOC_CMA)) 2974 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 2975#endif 2976 2977 /* 2978 * Check watermarks for an order-0 allocation request. If these 2979 * are not met, then a high-order request also cannot go ahead 2980 * even if a suitable page happened to be free. 2981 */ 2982 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 2983 return false; 2984 2985 /* If this is an order-0 request then the watermark is fine */ 2986 if (!order) 2987 return true; 2988 2989 /* For a high-order request, check at least one suitable page is free */ 2990 for (o = order; o < MAX_ORDER; o++) { 2991 struct free_area *area = &z->free_area[o]; 2992 int mt; 2993 2994 if (!area->nr_free) 2995 continue; 2996 2997 if (alloc_harder) 2998 return true; 2999 3000 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3001 if (!list_empty(&area->free_list[mt])) 3002 return true; 3003 } 3004 3005#ifdef CONFIG_CMA 3006 if ((alloc_flags & ALLOC_CMA) && 3007 !list_empty(&area->free_list[MIGRATE_CMA])) { 3008 return true; 3009 } 3010#endif 3011 } 3012 return false; 3013} 3014 3015bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3016 int classzone_idx, unsigned int alloc_flags) 3017{ 3018 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3019 zone_page_state(z, NR_FREE_PAGES)); 3020} 3021 3022static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3023 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3024{ 3025 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3026 long cma_pages = 0; 3027 3028#ifdef CONFIG_CMA 3029 /* If allocation can't use CMA areas don't use free CMA pages */ 3030 if (!(alloc_flags & ALLOC_CMA)) 3031 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3032#endif 3033 3034 /* 3035 * Fast check for order-0 only. If this fails then the reserves 3036 * need to be calculated. There is a corner case where the check 3037 * passes but only the high-order atomic reserve are free. If 3038 * the caller is !atomic then it'll uselessly search the free 3039 * list. That corner case is then slower but it is harmless. 3040 */ 3041 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3042 return true; 3043 3044 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3045 free_pages); 3046} 3047 3048bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3049 unsigned long mark, int classzone_idx) 3050{ 3051 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3052 3053 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3054 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3055 3056 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3057 free_pages); 3058} 3059 3060#ifdef CONFIG_NUMA 3061static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3062{ 3063 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3064 RECLAIM_DISTANCE; 3065} 3066#else /* CONFIG_NUMA */ 3067static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3068{ 3069 return true; 3070} 3071#endif /* CONFIG_NUMA */ 3072 3073/* 3074 * get_page_from_freelist goes through the zonelist trying to allocate 3075 * a page. 3076 */ 3077static struct page * 3078get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3079 const struct alloc_context *ac) 3080{ 3081 struct zoneref *z = ac->preferred_zoneref; 3082 struct zone *zone; 3083 struct pglist_data *last_pgdat_dirty_limit = NULL; 3084 3085 /* 3086 * Scan zonelist, looking for a zone with enough free. 3087 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3088 */ 3089 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3090 ac->nodemask) { 3091 struct page *page; 3092 unsigned long mark; 3093 3094 if (cpusets_enabled() && 3095 (alloc_flags & ALLOC_CPUSET) && 3096 !__cpuset_zone_allowed(zone, gfp_mask)) 3097 continue; 3098 /* 3099 * When allocating a page cache page for writing, we 3100 * want to get it from a node that is within its dirty 3101 * limit, such that no single node holds more than its 3102 * proportional share of globally allowed dirty pages. 3103 * The dirty limits take into account the node's 3104 * lowmem reserves and high watermark so that kswapd 3105 * should be able to balance it without having to 3106 * write pages from its LRU list. 3107 * 3108 * XXX: For now, allow allocations to potentially 3109 * exceed the per-node dirty limit in the slowpath 3110 * (spread_dirty_pages unset) before going into reclaim, 3111 * which is important when on a NUMA setup the allowed 3112 * nodes are together not big enough to reach the 3113 * global limit. The proper fix for these situations 3114 * will require awareness of nodes in the 3115 * dirty-throttling and the flusher threads. 3116 */ 3117 if (ac->spread_dirty_pages) { 3118 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3119 continue; 3120 3121 if (!node_dirty_ok(zone->zone_pgdat)) { 3122 last_pgdat_dirty_limit = zone->zone_pgdat; 3123 continue; 3124 } 3125 } 3126 3127 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3128 if (!zone_watermark_fast(zone, order, mark, 3129 ac_classzone_idx(ac), alloc_flags)) { 3130 int ret; 3131 3132 /* Checked here to keep the fast path fast */ 3133 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3134 if (alloc_flags & ALLOC_NO_WATERMARKS) 3135 goto try_this_zone; 3136 3137 if (node_reclaim_mode == 0 || 3138 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3139 continue; 3140 3141 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3142 switch (ret) { 3143 case NODE_RECLAIM_NOSCAN: 3144 /* did not scan */ 3145 continue; 3146 case NODE_RECLAIM_FULL: 3147 /* scanned but unreclaimable */ 3148 continue; 3149 default: 3150 /* did we reclaim enough */ 3151 if (zone_watermark_ok(zone, order, mark, 3152 ac_classzone_idx(ac), alloc_flags)) 3153 goto try_this_zone; 3154 3155 continue; 3156 } 3157 } 3158 3159try_this_zone: 3160 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3161 gfp_mask, alloc_flags, ac->migratetype); 3162 if (page) { 3163 prep_new_page(page, order, gfp_mask, alloc_flags); 3164 3165 /* 3166 * If this is a high-order atomic allocation then check 3167 * if the pageblock should be reserved for the future 3168 */ 3169 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3170 reserve_highatomic_pageblock(page, zone, order); 3171 3172 return page; 3173 } 3174 } 3175 3176 return NULL; 3177} 3178 3179/* 3180 * Large machines with many possible nodes should not always dump per-node 3181 * meminfo in irq context. 3182 */ 3183static inline bool should_suppress_show_mem(void) 3184{ 3185 bool ret = false; 3186 3187#if NODES_SHIFT > 8 3188 ret = in_interrupt(); 3189#endif 3190 return ret; 3191} 3192 3193static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3194{ 3195 unsigned int filter = SHOW_MEM_FILTER_NODES; 3196 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3197 3198 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3199 return; 3200 3201 /* 3202 * This documents exceptions given to allocations in certain 3203 * contexts that are allowed to allocate outside current's set 3204 * of allowed nodes. 3205 */ 3206 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3207 if (test_thread_flag(TIF_MEMDIE) || 3208 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3209 filter &= ~SHOW_MEM_FILTER_NODES; 3210 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3211 filter &= ~SHOW_MEM_FILTER_NODES; 3212 3213 show_mem(filter, nodemask); 3214} 3215 3216void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3217{ 3218 struct va_format vaf; 3219 va_list args; 3220 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3221 DEFAULT_RATELIMIT_BURST); 3222 3223 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3224 return; 3225 3226 pr_warn("%s: ", current->comm); 3227 3228 va_start(args, fmt); 3229 vaf.fmt = fmt; 3230 vaf.va = &args; 3231 pr_cont("%pV", &vaf); 3232 va_end(args); 3233 3234 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask); 3235 if (nodemask) 3236 pr_cont("%*pbl\n", nodemask_pr_args(nodemask)); 3237 else 3238 pr_cont("(null)\n"); 3239 3240 cpuset_print_current_mems_allowed(); 3241 3242 dump_stack(); 3243 warn_alloc_show_mem(gfp_mask, nodemask); 3244} 3245 3246static inline struct page * 3247__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3248 unsigned int alloc_flags, 3249 const struct alloc_context *ac) 3250{ 3251 struct page *page; 3252 3253 page = get_page_from_freelist(gfp_mask, order, 3254 alloc_flags|ALLOC_CPUSET, ac); 3255 /* 3256 * fallback to ignore cpuset restriction if our nodes 3257 * are depleted 3258 */ 3259 if (!page) 3260 page = get_page_from_freelist(gfp_mask, order, 3261 alloc_flags, ac); 3262 3263 return page; 3264} 3265 3266static inline struct page * 3267__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3268 const struct alloc_context *ac, unsigned long *did_some_progress) 3269{ 3270 struct oom_control oc = { 3271 .zonelist = ac->zonelist, 3272 .nodemask = ac->nodemask, 3273 .memcg = NULL, 3274 .gfp_mask = gfp_mask, 3275 .order = order, 3276 }; 3277 struct page *page; 3278 3279 *did_some_progress = 0; 3280 3281 /* 3282 * Acquire the oom lock. If that fails, somebody else is 3283 * making progress for us. 3284 */ 3285 if (!mutex_trylock(&oom_lock)) { 3286 *did_some_progress = 1; 3287 schedule_timeout_uninterruptible(1); 3288 return NULL; 3289 } 3290 3291 /* 3292 * Go through the zonelist yet one more time, keep very high watermark 3293 * here, this is only to catch a parallel oom killing, we must fail if 3294 * we're still under heavy pressure. But make sure that this reclaim 3295 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3296 * allocation which will never fail due to oom_lock already held. 3297 */ 3298 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3299 ~__GFP_DIRECT_RECLAIM, order, 3300 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3301 if (page) 3302 goto out; 3303 3304 /* Coredumps can quickly deplete all memory reserves */ 3305 if (current->flags & PF_DUMPCORE) 3306 goto out; 3307 /* The OOM killer will not help higher order allocs */ 3308 if (order > PAGE_ALLOC_COSTLY_ORDER) 3309 goto out; 3310 /* 3311 * We have already exhausted all our reclaim opportunities without any 3312 * success so it is time to admit defeat. We will skip the OOM killer 3313 * because it is very likely that the caller has a more reasonable 3314 * fallback than shooting a random task. 3315 */ 3316 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3317 goto out; 3318 /* The OOM killer does not needlessly kill tasks for lowmem */ 3319 if (ac->high_zoneidx < ZONE_NORMAL) 3320 goto out; 3321 if (pm_suspended_storage()) 3322 goto out; 3323 /* 3324 * XXX: GFP_NOFS allocations should rather fail than rely on 3325 * other request to make a forward progress. 3326 * We are in an unfortunate situation where out_of_memory cannot 3327 * do much for this context but let's try it to at least get 3328 * access to memory reserved if the current task is killed (see 3329 * out_of_memory). Once filesystems are ready to handle allocation 3330 * failures more gracefully we should just bail out here. 3331 */ 3332 3333 /* The OOM killer may not free memory on a specific node */ 3334 if (gfp_mask & __GFP_THISNODE) 3335 goto out; 3336 3337 /* Exhausted what can be done so it's blamo time */ 3338 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3339 *did_some_progress = 1; 3340 3341 /* 3342 * Help non-failing allocations by giving them access to memory 3343 * reserves 3344 */ 3345 if (gfp_mask & __GFP_NOFAIL) 3346 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3347 ALLOC_NO_WATERMARKS, ac); 3348 } 3349out: 3350 mutex_unlock(&oom_lock); 3351 return page; 3352} 3353 3354/* 3355 * Maximum number of compaction retries wit a progress before OOM 3356 * killer is consider as the only way to move forward. 3357 */ 3358#define MAX_COMPACT_RETRIES 16 3359 3360#ifdef CONFIG_COMPACTION 3361/* Try memory compaction for high-order allocations before reclaim */ 3362static struct page * 3363__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3364 unsigned int alloc_flags, const struct alloc_context *ac, 3365 enum compact_priority prio, enum compact_result *compact_result) 3366{ 3367 struct page *page; 3368 unsigned int noreclaim_flag; 3369 3370 if (!order) 3371 return NULL; 3372 3373 noreclaim_flag = memalloc_noreclaim_save(); 3374 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3375 prio); 3376 memalloc_noreclaim_restore(noreclaim_flag); 3377 3378 if (*compact_result <= COMPACT_INACTIVE) 3379 return NULL; 3380 3381 /* 3382 * At least in one zone compaction wasn't deferred or skipped, so let's 3383 * count a compaction stall 3384 */ 3385 count_vm_event(COMPACTSTALL); 3386 3387 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3388 3389 if (page) { 3390 struct zone *zone = page_zone(page); 3391 3392 zone->compact_blockskip_flush = false; 3393 compaction_defer_reset(zone, order, true); 3394 count_vm_event(COMPACTSUCCESS); 3395 return page; 3396 } 3397 3398 /* 3399 * It's bad if compaction run occurs and fails. The most likely reason 3400 * is that pages exist, but not enough to satisfy watermarks. 3401 */ 3402 count_vm_event(COMPACTFAIL); 3403 3404 cond_resched(); 3405 3406 return NULL; 3407} 3408 3409static inline bool 3410should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3411 enum compact_result compact_result, 3412 enum compact_priority *compact_priority, 3413 int *compaction_retries) 3414{ 3415 int max_retries = MAX_COMPACT_RETRIES; 3416 int min_priority; 3417 bool ret = false; 3418 int retries = *compaction_retries; 3419 enum compact_priority priority = *compact_priority; 3420 3421 if (!order) 3422 return false; 3423 3424 if (compaction_made_progress(compact_result)) 3425 (*compaction_retries)++; 3426 3427 /* 3428 * compaction considers all the zone as desperately out of memory 3429 * so it doesn't really make much sense to retry except when the 3430 * failure could be caused by insufficient priority 3431 */ 3432 if (compaction_failed(compact_result)) 3433 goto check_priority; 3434 3435 /* 3436 * make sure the compaction wasn't deferred or didn't bail out early 3437 * due to locks contention before we declare that we should give up. 3438 * But do not retry if the given zonelist is not suitable for 3439 * compaction. 3440 */ 3441 if (compaction_withdrawn(compact_result)) { 3442 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3443 goto out; 3444 } 3445 3446 /* 3447 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3448 * costly ones because they are de facto nofail and invoke OOM 3449 * killer to move on while costly can fail and users are ready 3450 * to cope with that. 1/4 retries is rather arbitrary but we 3451 * would need much more detailed feedback from compaction to 3452 * make a better decision. 3453 */ 3454 if (order > PAGE_ALLOC_COSTLY_ORDER) 3455 max_retries /= 4; 3456 if (*compaction_retries <= max_retries) { 3457 ret = true; 3458 goto out; 3459 } 3460 3461 /* 3462 * Make sure there are attempts at the highest priority if we exhausted 3463 * all retries or failed at the lower priorities. 3464 */ 3465check_priority: 3466 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3467 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3468 3469 if (*compact_priority > min_priority) { 3470 (*compact_priority)--; 3471 *compaction_retries = 0; 3472 ret = true; 3473 } 3474out: 3475 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3476 return ret; 3477} 3478#else 3479static inline struct page * 3480__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3481 unsigned int alloc_flags, const struct alloc_context *ac, 3482 enum compact_priority prio, enum compact_result *compact_result) 3483{ 3484 *compact_result = COMPACT_SKIPPED; 3485 return NULL; 3486} 3487 3488static inline bool 3489should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3490 enum compact_result compact_result, 3491 enum compact_priority *compact_priority, 3492 int *compaction_retries) 3493{ 3494 struct zone *zone; 3495 struct zoneref *z; 3496 3497 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3498 return false; 3499 3500 /* 3501 * There are setups with compaction disabled which would prefer to loop 3502 * inside the allocator rather than hit the oom killer prematurely. 3503 * Let's give them a good hope and keep retrying while the order-0 3504 * watermarks are OK. 3505 */ 3506 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3507 ac->nodemask) { 3508 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3509 ac_classzone_idx(ac), alloc_flags)) 3510 return true; 3511 } 3512 return false; 3513} 3514#endif /* CONFIG_COMPACTION */ 3515 3516/* Perform direct synchronous page reclaim */ 3517static int 3518__perform_reclaim(gfp_t gfp_mask, unsigned int order, 3519 const struct alloc_context *ac) 3520{ 3521 struct reclaim_state reclaim_state; 3522 int progress; 3523 unsigned int noreclaim_flag; 3524 3525 cond_resched(); 3526 3527 /* We now go into synchronous reclaim */ 3528 cpuset_memory_pressure_bump(); 3529 noreclaim_flag = memalloc_noreclaim_save(); 3530 lockdep_set_current_reclaim_state(gfp_mask); 3531 reclaim_state.reclaimed_slab = 0; 3532 current->reclaim_state = &reclaim_state; 3533 3534 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3535 ac->nodemask); 3536 3537 current->reclaim_state = NULL; 3538 lockdep_clear_current_reclaim_state(); 3539 memalloc_noreclaim_restore(noreclaim_flag); 3540 3541 cond_resched(); 3542 3543 return progress; 3544} 3545 3546/* The really slow allocator path where we enter direct reclaim */ 3547static inline struct page * 3548__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3549 unsigned int alloc_flags, const struct alloc_context *ac, 3550 unsigned long *did_some_progress) 3551{ 3552 struct page *page = NULL; 3553 bool drained = false; 3554 3555 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3556 if (unlikely(!(*did_some_progress))) 3557 return NULL; 3558 3559retry: 3560 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3561 3562 /* 3563 * If an allocation failed after direct reclaim, it could be because 3564 * pages are pinned on the per-cpu lists or in high alloc reserves. 3565 * Shrink them them and try again 3566 */ 3567 if (!page && !drained) { 3568 unreserve_highatomic_pageblock(ac, false); 3569 drain_all_pages(NULL); 3570 drained = true; 3571 goto retry; 3572 } 3573 3574 return page; 3575} 3576 3577static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3578{ 3579 struct zoneref *z; 3580 struct zone *zone; 3581 pg_data_t *last_pgdat = NULL; 3582 3583 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3584 ac->high_zoneidx, ac->nodemask) { 3585 if (last_pgdat != zone->zone_pgdat) 3586 wakeup_kswapd(zone, order, ac->high_zoneidx); 3587 last_pgdat = zone->zone_pgdat; 3588 } 3589} 3590 3591static inline unsigned int 3592gfp_to_alloc_flags(gfp_t gfp_mask) 3593{ 3594 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3595 3596 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3597 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3598 3599 /* 3600 * The caller may dip into page reserves a bit more if the caller 3601 * cannot run direct reclaim, or if the caller has realtime scheduling 3602 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3603 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3604 */ 3605 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3606 3607 if (gfp_mask & __GFP_ATOMIC) { 3608 /* 3609 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3610 * if it can't schedule. 3611 */ 3612 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3613 alloc_flags |= ALLOC_HARDER; 3614 /* 3615 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3616 * comment for __cpuset_node_allowed(). 3617 */ 3618 alloc_flags &= ~ALLOC_CPUSET; 3619 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3620 alloc_flags |= ALLOC_HARDER; 3621 3622#ifdef CONFIG_CMA 3623 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3624 alloc_flags |= ALLOC_CMA; 3625#endif 3626 return alloc_flags; 3627} 3628 3629bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3630{ 3631 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3632 return false; 3633 3634 if (gfp_mask & __GFP_MEMALLOC) 3635 return true; 3636 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3637 return true; 3638 if (!in_interrupt() && 3639 ((current->flags & PF_MEMALLOC) || 3640 unlikely(test_thread_flag(TIF_MEMDIE)))) 3641 return true; 3642 3643 return false; 3644} 3645 3646/* 3647 * Checks whether it makes sense to retry the reclaim to make a forward progress 3648 * for the given allocation request. 3649 * 3650 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3651 * without success, or when we couldn't even meet the watermark if we 3652 * reclaimed all remaining pages on the LRU lists. 3653 * 3654 * Returns true if a retry is viable or false to enter the oom path. 3655 */ 3656static inline bool 3657should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3658 struct alloc_context *ac, int alloc_flags, 3659 bool did_some_progress, int *no_progress_loops) 3660{ 3661 struct zone *zone; 3662 struct zoneref *z; 3663 3664 /* 3665 * Costly allocations might have made a progress but this doesn't mean 3666 * their order will become available due to high fragmentation so 3667 * always increment the no progress counter for them 3668 */ 3669 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3670 *no_progress_loops = 0; 3671 else 3672 (*no_progress_loops)++; 3673 3674 /* 3675 * Make sure we converge to OOM if we cannot make any progress 3676 * several times in the row. 3677 */ 3678 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3679 /* Before OOM, exhaust highatomic_reserve */ 3680 return unreserve_highatomic_pageblock(ac, true); 3681 } 3682 3683 /* 3684 * Keep reclaiming pages while there is a chance this will lead 3685 * somewhere. If none of the target zones can satisfy our allocation 3686 * request even if all reclaimable pages are considered then we are 3687 * screwed and have to go OOM. 3688 */ 3689 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3690 ac->nodemask) { 3691 unsigned long available; 3692 unsigned long reclaimable; 3693 unsigned long min_wmark = min_wmark_pages(zone); 3694 bool wmark; 3695 3696 available = reclaimable = zone_reclaimable_pages(zone); 3697 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3698 3699 /* 3700 * Would the allocation succeed if we reclaimed all 3701 * reclaimable pages? 3702 */ 3703 wmark = __zone_watermark_ok(zone, order, min_wmark, 3704 ac_classzone_idx(ac), alloc_flags, available); 3705 trace_reclaim_retry_zone(z, order, reclaimable, 3706 available, min_wmark, *no_progress_loops, wmark); 3707 if (wmark) { 3708 /* 3709 * If we didn't make any progress and have a lot of 3710 * dirty + writeback pages then we should wait for 3711 * an IO to complete to slow down the reclaim and 3712 * prevent from pre mature OOM 3713 */ 3714 if (!did_some_progress) { 3715 unsigned long write_pending; 3716 3717 write_pending = zone_page_state_snapshot(zone, 3718 NR_ZONE_WRITE_PENDING); 3719 3720 if (2 * write_pending > reclaimable) { 3721 congestion_wait(BLK_RW_ASYNC, HZ/10); 3722 return true; 3723 } 3724 } 3725 3726 /* 3727 * Memory allocation/reclaim might be called from a WQ 3728 * context and the current implementation of the WQ 3729 * concurrency control doesn't recognize that 3730 * a particular WQ is congested if the worker thread is 3731 * looping without ever sleeping. Therefore we have to 3732 * do a short sleep here rather than calling 3733 * cond_resched(). 3734 */ 3735 if (current->flags & PF_WQ_WORKER) 3736 schedule_timeout_uninterruptible(1); 3737 else 3738 cond_resched(); 3739 3740 return true; 3741 } 3742 } 3743 3744 return false; 3745} 3746 3747static inline bool 3748check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3749{ 3750 /* 3751 * It's possible that cpuset's mems_allowed and the nodemask from 3752 * mempolicy don't intersect. This should be normally dealt with by 3753 * policy_nodemask(), but it's possible to race with cpuset update in 3754 * such a way the check therein was true, and then it became false 3755 * before we got our cpuset_mems_cookie here. 3756 * This assumes that for all allocations, ac->nodemask can come only 3757 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3758 * when it does not intersect with the cpuset restrictions) or the 3759 * caller can deal with a violated nodemask. 3760 */ 3761 if (cpusets_enabled() && ac->nodemask && 3762 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3763 ac->nodemask = NULL; 3764 return true; 3765 } 3766 3767 /* 3768 * When updating a task's mems_allowed or mempolicy nodemask, it is 3769 * possible to race with parallel threads in such a way that our 3770 * allocation can fail while the mask is being updated. If we are about 3771 * to fail, check if the cpuset changed during allocation and if so, 3772 * retry. 3773 */ 3774 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3775 return true; 3776 3777 return false; 3778} 3779 3780static inline struct page * 3781__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3782 struct alloc_context *ac) 3783{ 3784 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3785 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3786 struct page *page = NULL; 3787 unsigned int alloc_flags; 3788 unsigned long did_some_progress; 3789 enum compact_priority compact_priority; 3790 enum compact_result compact_result; 3791 int compaction_retries; 3792 int no_progress_loops; 3793 unsigned long alloc_start = jiffies; 3794 unsigned int stall_timeout = 10 * HZ; 3795 unsigned int cpuset_mems_cookie; 3796 3797 /* 3798 * In the slowpath, we sanity check order to avoid ever trying to 3799 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3800 * be using allocators in order of preference for an area that is 3801 * too large. 3802 */ 3803 if (order >= MAX_ORDER) { 3804 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3805 return NULL; 3806 } 3807 3808 /* 3809 * We also sanity check to catch abuse of atomic reserves being used by 3810 * callers that are not in atomic context. 3811 */ 3812 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3813 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3814 gfp_mask &= ~__GFP_ATOMIC; 3815 3816retry_cpuset: 3817 compaction_retries = 0; 3818 no_progress_loops = 0; 3819 compact_priority = DEF_COMPACT_PRIORITY; 3820 cpuset_mems_cookie = read_mems_allowed_begin(); 3821 3822 /* 3823 * The fast path uses conservative alloc_flags to succeed only until 3824 * kswapd needs to be woken up, and to avoid the cost of setting up 3825 * alloc_flags precisely. So we do that now. 3826 */ 3827 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3828 3829 /* 3830 * We need to recalculate the starting point for the zonelist iterator 3831 * because we might have used different nodemask in the fast path, or 3832 * there was a cpuset modification and we are retrying - otherwise we 3833 * could end up iterating over non-eligible zones endlessly. 3834 */ 3835 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3836 ac->high_zoneidx, ac->nodemask); 3837 if (!ac->preferred_zoneref->zone) 3838 goto nopage; 3839 3840 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3841 wake_all_kswapds(order, ac); 3842 3843 /* 3844 * The adjusted alloc_flags might result in immediate success, so try 3845 * that first 3846 */ 3847 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3848 if (page) 3849 goto got_pg; 3850 3851 /* 3852 * For costly allocations, try direct compaction first, as it's likely 3853 * that we have enough base pages and don't need to reclaim. For non- 3854 * movable high-order allocations, do that as well, as compaction will 3855 * try prevent permanent fragmentation by migrating from blocks of the 3856 * same migratetype. 3857 * Don't try this for allocations that are allowed to ignore 3858 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 3859 */ 3860 if (can_direct_reclaim && 3861 (costly_order || 3862 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 3863 && !gfp_pfmemalloc_allowed(gfp_mask)) { 3864 page = __alloc_pages_direct_compact(gfp_mask, order, 3865 alloc_flags, ac, 3866 INIT_COMPACT_PRIORITY, 3867 &compact_result); 3868 if (page) 3869 goto got_pg; 3870 3871 /* 3872 * Checks for costly allocations with __GFP_NORETRY, which 3873 * includes THP page fault allocations 3874 */ 3875 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 3876 /* 3877 * If compaction is deferred for high-order allocations, 3878 * it is because sync compaction recently failed. If 3879 * this is the case and the caller requested a THP 3880 * allocation, we do not want to heavily disrupt the 3881 * system, so we fail the allocation instead of entering 3882 * direct reclaim. 3883 */ 3884 if (compact_result == COMPACT_DEFERRED) 3885 goto nopage; 3886 3887 /* 3888 * Looks like reclaim/compaction is worth trying, but 3889 * sync compaction could be very expensive, so keep 3890 * using async compaction. 3891 */ 3892 compact_priority = INIT_COMPACT_PRIORITY; 3893 } 3894 } 3895 3896retry: 3897 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 3898 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3899 wake_all_kswapds(order, ac); 3900 3901 if (gfp_pfmemalloc_allowed(gfp_mask)) 3902 alloc_flags = ALLOC_NO_WATERMARKS; 3903 3904 /* 3905 * Reset the zonelist iterators if memory policies can be ignored. 3906 * These allocations are high priority and system rather than user 3907 * orientated. 3908 */ 3909 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) { 3910 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3911 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3912 ac->high_zoneidx, ac->nodemask); 3913 } 3914 3915 /* Attempt with potentially adjusted zonelist and alloc_flags */ 3916 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3917 if (page) 3918 goto got_pg; 3919 3920 /* Caller is not willing to reclaim, we can't balance anything */ 3921 if (!can_direct_reclaim) 3922 goto nopage; 3923 3924 /* Make sure we know about allocations which stall for too long */ 3925 if (time_after(jiffies, alloc_start + stall_timeout)) { 3926 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask, 3927 "page allocation stalls for %ums, order:%u", 3928 jiffies_to_msecs(jiffies-alloc_start), order); 3929 stall_timeout += 10 * HZ; 3930 } 3931 3932 /* Avoid recursion of direct reclaim */ 3933 if (current->flags & PF_MEMALLOC) 3934 goto nopage; 3935 3936 /* Try direct reclaim and then allocating */ 3937 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3938 &did_some_progress); 3939 if (page) 3940 goto got_pg; 3941 3942 /* Try direct compaction and then allocating */ 3943 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3944 compact_priority, &compact_result); 3945 if (page) 3946 goto got_pg; 3947 3948 /* Do not loop if specifically requested */ 3949 if (gfp_mask & __GFP_NORETRY) 3950 goto nopage; 3951 3952 /* 3953 * Do not retry costly high order allocations unless they are 3954 * __GFP_RETRY_MAYFAIL 3955 */ 3956 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 3957 goto nopage; 3958 3959 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 3960 did_some_progress > 0, &no_progress_loops)) 3961 goto retry; 3962 3963 /* 3964 * It doesn't make any sense to retry for the compaction if the order-0 3965 * reclaim is not able to make any progress because the current 3966 * implementation of the compaction depends on the sufficient amount 3967 * of free memory (see __compaction_suitable) 3968 */ 3969 if (did_some_progress > 0 && 3970 should_compact_retry(ac, order, alloc_flags, 3971 compact_result, &compact_priority, 3972 &compaction_retries)) 3973 goto retry; 3974 3975 3976 /* Deal with possible cpuset update races before we start OOM killing */ 3977 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 3978 goto retry_cpuset; 3979 3980 /* Reclaim has failed us, start killing things */ 3981 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3982 if (page) 3983 goto got_pg; 3984 3985 /* Avoid allocations with no watermarks from looping endlessly */ 3986 if (test_thread_flag(TIF_MEMDIE) && 3987 (alloc_flags == ALLOC_NO_WATERMARKS || 3988 (gfp_mask & __GFP_NOMEMALLOC))) 3989 goto nopage; 3990 3991 /* Retry as long as the OOM killer is making progress */ 3992 if (did_some_progress) { 3993 no_progress_loops = 0; 3994 goto retry; 3995 } 3996 3997nopage: 3998 /* Deal with possible cpuset update races before we fail */ 3999 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4000 goto retry_cpuset; 4001 4002 /* 4003 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4004 * we always retry 4005 */ 4006 if (gfp_mask & __GFP_NOFAIL) { 4007 /* 4008 * All existing users of the __GFP_NOFAIL are blockable, so warn 4009 * of any new users that actually require GFP_NOWAIT 4010 */ 4011 if (WARN_ON_ONCE(!can_direct_reclaim)) 4012 goto fail; 4013 4014 /* 4015 * PF_MEMALLOC request from this context is rather bizarre 4016 * because we cannot reclaim anything and only can loop waiting 4017 * for somebody to do a work for us 4018 */ 4019 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4020 4021 /* 4022 * non failing costly orders are a hard requirement which we 4023 * are not prepared for much so let's warn about these users 4024 * so that we can identify them and convert them to something 4025 * else. 4026 */ 4027 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4028 4029 /* 4030 * Help non-failing allocations by giving them access to memory 4031 * reserves but do not use ALLOC_NO_WATERMARKS because this 4032 * could deplete whole memory reserves which would just make 4033 * the situation worse 4034 */ 4035 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4036 if (page) 4037 goto got_pg; 4038 4039 cond_resched(); 4040 goto retry; 4041 } 4042fail: 4043 warn_alloc(gfp_mask, ac->nodemask, 4044 "page allocation failure: order:%u", order); 4045got_pg: 4046 return page; 4047} 4048 4049static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4050 int preferred_nid, nodemask_t *nodemask, 4051 struct alloc_context *ac, gfp_t *alloc_mask, 4052 unsigned int *alloc_flags) 4053{ 4054 ac->high_zoneidx = gfp_zone(gfp_mask); 4055 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4056 ac->nodemask = nodemask; 4057 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4058 4059 if (cpusets_enabled()) { 4060 *alloc_mask |= __GFP_HARDWALL; 4061 if (!ac->nodemask) 4062 ac->nodemask = &cpuset_current_mems_allowed; 4063 else 4064 *alloc_flags |= ALLOC_CPUSET; 4065 } 4066 4067 lockdep_trace_alloc(gfp_mask); 4068 4069 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4070 4071 if (should_fail_alloc_page(gfp_mask, order)) 4072 return false; 4073 4074 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4075 *alloc_flags |= ALLOC_CMA; 4076 4077 return true; 4078} 4079 4080/* Determine whether to spread dirty pages and what the first usable zone */ 4081static inline void finalise_ac(gfp_t gfp_mask, 4082 unsigned int order, struct alloc_context *ac) 4083{ 4084 /* Dirty zone balancing only done in the fast path */ 4085 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4086 4087 /* 4088 * The preferred zone is used for statistics but crucially it is 4089 * also used as the starting point for the zonelist iterator. It 4090 * may get reset for allocations that ignore memory policies. 4091 */ 4092 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4093 ac->high_zoneidx, ac->nodemask); 4094} 4095 4096/* 4097 * This is the 'heart' of the zoned buddy allocator. 4098 */ 4099struct page * 4100__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4101 nodemask_t *nodemask) 4102{ 4103 struct page *page; 4104 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4105 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */ 4106 struct alloc_context ac = { }; 4107 4108 gfp_mask &= gfp_allowed_mask; 4109 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4110 return NULL; 4111 4112 finalise_ac(gfp_mask, order, &ac); 4113 4114 /* First allocation attempt */ 4115 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4116 if (likely(page)) 4117 goto out; 4118 4119 /* 4120 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4121 * resp. GFP_NOIO which has to be inherited for all allocation requests 4122 * from a particular context which has been marked by 4123 * memalloc_no{fs,io}_{save,restore}. 4124 */ 4125 alloc_mask = current_gfp_context(gfp_mask); 4126 ac.spread_dirty_pages = false; 4127 4128 /* 4129 * Restore the original nodemask if it was potentially replaced with 4130 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4131 */ 4132 if (unlikely(ac.nodemask != nodemask)) 4133 ac.nodemask = nodemask; 4134 4135 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4136 4137out: 4138 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4139 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4140 __free_pages(page, order); 4141 page = NULL; 4142 } 4143 4144 if (kmemcheck_enabled && page) 4145 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 4146 4147 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4148 4149 return page; 4150} 4151EXPORT_SYMBOL(__alloc_pages_nodemask); 4152 4153/* 4154 * Common helper functions. 4155 */ 4156unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4157{ 4158 struct page *page; 4159 4160 /* 4161 * __get_free_pages() returns a 32-bit address, which cannot represent 4162 * a highmem page 4163 */ 4164 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4165 4166 page = alloc_pages(gfp_mask, order); 4167 if (!page) 4168 return 0; 4169 return (unsigned long) page_address(page); 4170} 4171EXPORT_SYMBOL(__get_free_pages); 4172 4173unsigned long get_zeroed_page(gfp_t gfp_mask) 4174{ 4175 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4176} 4177EXPORT_SYMBOL(get_zeroed_page); 4178 4179void __free_pages(struct page *page, unsigned int order) 4180{ 4181 if (put_page_testzero(page)) { 4182 if (order == 0) 4183 free_hot_cold_page(page, false); 4184 else 4185 __free_pages_ok(page, order); 4186 } 4187} 4188 4189EXPORT_SYMBOL(__free_pages); 4190 4191void free_pages(unsigned long addr, unsigned int order) 4192{ 4193 if (addr != 0) { 4194 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4195 __free_pages(virt_to_page((void *)addr), order); 4196 } 4197} 4198 4199EXPORT_SYMBOL(free_pages); 4200 4201/* 4202 * Page Fragment: 4203 * An arbitrary-length arbitrary-offset area of memory which resides 4204 * within a 0 or higher order page. Multiple fragments within that page 4205 * are individually refcounted, in the page's reference counter. 4206 * 4207 * The page_frag functions below provide a simple allocation framework for 4208 * page fragments. This is used by the network stack and network device 4209 * drivers to provide a backing region of memory for use as either an 4210 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4211 */ 4212static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4213 gfp_t gfp_mask) 4214{ 4215 struct page *page = NULL; 4216 gfp_t gfp = gfp_mask; 4217 4218#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4219 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4220 __GFP_NOMEMALLOC; 4221 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4222 PAGE_FRAG_CACHE_MAX_ORDER); 4223 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4224#endif 4225 if (unlikely(!page)) 4226 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4227 4228 nc->va = page ? page_address(page) : NULL; 4229 4230 return page; 4231} 4232 4233void __page_frag_cache_drain(struct page *page, unsigned int count) 4234{ 4235 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4236 4237 if (page_ref_sub_and_test(page, count)) { 4238 unsigned int order = compound_order(page); 4239 4240 if (order == 0) 4241 free_hot_cold_page(page, false); 4242 else 4243 __free_pages_ok(page, order); 4244 } 4245} 4246EXPORT_SYMBOL(__page_frag_cache_drain); 4247 4248void *page_frag_alloc(struct page_frag_cache *nc, 4249 unsigned int fragsz, gfp_t gfp_mask) 4250{ 4251 unsigned int size = PAGE_SIZE; 4252 struct page *page; 4253 int offset; 4254 4255 if (unlikely(!nc->va)) { 4256refill: 4257 page = __page_frag_cache_refill(nc, gfp_mask); 4258 if (!page) 4259 return NULL; 4260 4261#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4262 /* if size can vary use size else just use PAGE_SIZE */ 4263 size = nc->size; 4264#endif 4265 /* Even if we own the page, we do not use atomic_set(). 4266 * This would break get_page_unless_zero() users. 4267 */ 4268 page_ref_add(page, size - 1); 4269 4270 /* reset page count bias and offset to start of new frag */ 4271 nc->pfmemalloc = page_is_pfmemalloc(page); 4272 nc->pagecnt_bias = size; 4273 nc->offset = size; 4274 } 4275 4276 offset = nc->offset - fragsz; 4277 if (unlikely(offset < 0)) { 4278 page = virt_to_page(nc->va); 4279 4280 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4281 goto refill; 4282 4283#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4284 /* if size can vary use size else just use PAGE_SIZE */ 4285 size = nc->size; 4286#endif 4287 /* OK, page count is 0, we can safely set it */ 4288 set_page_count(page, size); 4289 4290 /* reset page count bias and offset to start of new frag */ 4291 nc->pagecnt_bias = size; 4292 offset = size - fragsz; 4293 } 4294 4295 nc->pagecnt_bias--; 4296 nc->offset = offset; 4297 4298 return nc->va + offset; 4299} 4300EXPORT_SYMBOL(page_frag_alloc); 4301 4302/* 4303 * Frees a page fragment allocated out of either a compound or order 0 page. 4304 */ 4305void page_frag_free(void *addr) 4306{ 4307 struct page *page = virt_to_head_page(addr); 4308 4309 if (unlikely(put_page_testzero(page))) 4310 __free_pages_ok(page, compound_order(page)); 4311} 4312EXPORT_SYMBOL(page_frag_free); 4313 4314static void *make_alloc_exact(unsigned long addr, unsigned int order, 4315 size_t size) 4316{ 4317 if (addr) { 4318 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4319 unsigned long used = addr + PAGE_ALIGN(size); 4320 4321 split_page(virt_to_page((void *)addr), order); 4322 while (used < alloc_end) { 4323 free_page(used); 4324 used += PAGE_SIZE; 4325 } 4326 } 4327 return (void *)addr; 4328} 4329 4330/** 4331 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4332 * @size: the number of bytes to allocate 4333 * @gfp_mask: GFP flags for the allocation 4334 * 4335 * This function is similar to alloc_pages(), except that it allocates the 4336 * minimum number of pages to satisfy the request. alloc_pages() can only 4337 * allocate memory in power-of-two pages. 4338 * 4339 * This function is also limited by MAX_ORDER. 4340 * 4341 * Memory allocated by this function must be released by free_pages_exact(). 4342 */ 4343void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4344{ 4345 unsigned int order = get_order(size); 4346 unsigned long addr; 4347 4348 addr = __get_free_pages(gfp_mask, order); 4349 return make_alloc_exact(addr, order, size); 4350} 4351EXPORT_SYMBOL(alloc_pages_exact); 4352 4353/** 4354 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4355 * pages on a node. 4356 * @nid: the preferred node ID where memory should be allocated 4357 * @size: the number of bytes to allocate 4358 * @gfp_mask: GFP flags for the allocation 4359 * 4360 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4361 * back. 4362 */ 4363void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4364{ 4365 unsigned int order = get_order(size); 4366 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4367 if (!p) 4368 return NULL; 4369 return make_alloc_exact((unsigned long)page_address(p), order, size); 4370} 4371 4372/** 4373 * free_pages_exact - release memory allocated via alloc_pages_exact() 4374 * @virt: the value returned by alloc_pages_exact. 4375 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4376 * 4377 * Release the memory allocated by a previous call to alloc_pages_exact. 4378 */ 4379void free_pages_exact(void *virt, size_t size) 4380{ 4381 unsigned long addr = (unsigned long)virt; 4382 unsigned long end = addr + PAGE_ALIGN(size); 4383 4384 while (addr < end) { 4385 free_page(addr); 4386 addr += PAGE_SIZE; 4387 } 4388} 4389EXPORT_SYMBOL(free_pages_exact); 4390 4391/** 4392 * nr_free_zone_pages - count number of pages beyond high watermark 4393 * @offset: The zone index of the highest zone 4394 * 4395 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4396 * high watermark within all zones at or below a given zone index. For each 4397 * zone, the number of pages is calculated as: 4398 * 4399 * nr_free_zone_pages = managed_pages - high_pages 4400 */ 4401static unsigned long nr_free_zone_pages(int offset) 4402{ 4403 struct zoneref *z; 4404 struct zone *zone; 4405 4406 /* Just pick one node, since fallback list is circular */ 4407 unsigned long sum = 0; 4408 4409 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4410 4411 for_each_zone_zonelist(zone, z, zonelist, offset) { 4412 unsigned long size = zone->managed_pages; 4413 unsigned long high = high_wmark_pages(zone); 4414 if (size > high) 4415 sum += size - high; 4416 } 4417 4418 return sum; 4419} 4420 4421/** 4422 * nr_free_buffer_pages - count number of pages beyond high watermark 4423 * 4424 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4425 * watermark within ZONE_DMA and ZONE_NORMAL. 4426 */ 4427unsigned long nr_free_buffer_pages(void) 4428{ 4429 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4430} 4431EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4432 4433/** 4434 * nr_free_pagecache_pages - count number of pages beyond high watermark 4435 * 4436 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4437 * high watermark within all zones. 4438 */ 4439unsigned long nr_free_pagecache_pages(void) 4440{ 4441 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4442} 4443 4444static inline void show_node(struct zone *zone) 4445{ 4446 if (IS_ENABLED(CONFIG_NUMA)) 4447 printk("Node %d ", zone_to_nid(zone)); 4448} 4449 4450long si_mem_available(void) 4451{ 4452 long available; 4453 unsigned long pagecache; 4454 unsigned long wmark_low = 0; 4455 unsigned long pages[NR_LRU_LISTS]; 4456 struct zone *zone; 4457 int lru; 4458 4459 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4460 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4461 4462 for_each_zone(zone) 4463 wmark_low += zone->watermark[WMARK_LOW]; 4464 4465 /* 4466 * Estimate the amount of memory available for userspace allocations, 4467 * without causing swapping. 4468 */ 4469 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages; 4470 4471 /* 4472 * Not all the page cache can be freed, otherwise the system will 4473 * start swapping. Assume at least half of the page cache, or the 4474 * low watermark worth of cache, needs to stay. 4475 */ 4476 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4477 pagecache -= min(pagecache / 2, wmark_low); 4478 available += pagecache; 4479 4480 /* 4481 * Part of the reclaimable slab consists of items that are in use, 4482 * and cannot be freed. Cap this estimate at the low watermark. 4483 */ 4484 available += global_node_page_state(NR_SLAB_RECLAIMABLE) - 4485 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, 4486 wmark_low); 4487 4488 if (available < 0) 4489 available = 0; 4490 return available; 4491} 4492EXPORT_SYMBOL_GPL(si_mem_available); 4493 4494void si_meminfo(struct sysinfo *val) 4495{ 4496 val->totalram = totalram_pages; 4497 val->sharedram = global_node_page_state(NR_SHMEM); 4498 val->freeram = global_page_state(NR_FREE_PAGES); 4499 val->bufferram = nr_blockdev_pages(); 4500 val->totalhigh = totalhigh_pages; 4501 val->freehigh = nr_free_highpages(); 4502 val->mem_unit = PAGE_SIZE; 4503} 4504 4505EXPORT_SYMBOL(si_meminfo); 4506 4507#ifdef CONFIG_NUMA 4508void si_meminfo_node(struct sysinfo *val, int nid) 4509{ 4510 int zone_type; /* needs to be signed */ 4511 unsigned long managed_pages = 0; 4512 unsigned long managed_highpages = 0; 4513 unsigned long free_highpages = 0; 4514 pg_data_t *pgdat = NODE_DATA(nid); 4515 4516 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4517 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4518 val->totalram = managed_pages; 4519 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4520 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4521#ifdef CONFIG_HIGHMEM 4522 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4523 struct zone *zone = &pgdat->node_zones[zone_type]; 4524 4525 if (is_highmem(zone)) { 4526 managed_highpages += zone->managed_pages; 4527 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4528 } 4529 } 4530 val->totalhigh = managed_highpages; 4531 val->freehigh = free_highpages; 4532#else 4533 val->totalhigh = managed_highpages; 4534 val->freehigh = free_highpages; 4535#endif 4536 val->mem_unit = PAGE_SIZE; 4537} 4538#endif 4539 4540/* 4541 * Determine whether the node should be displayed or not, depending on whether 4542 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4543 */ 4544static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4545{ 4546 if (!(flags & SHOW_MEM_FILTER_NODES)) 4547 return false; 4548 4549 /* 4550 * no node mask - aka implicit memory numa policy. Do not bother with 4551 * the synchronization - read_mems_allowed_begin - because we do not 4552 * have to be precise here. 4553 */ 4554 if (!nodemask) 4555 nodemask = &cpuset_current_mems_allowed; 4556 4557 return !node_isset(nid, *nodemask); 4558} 4559 4560#define K(x) ((x) << (PAGE_SHIFT-10)) 4561 4562static void show_migration_types(unsigned char type) 4563{ 4564 static const char types[MIGRATE_TYPES] = { 4565 [MIGRATE_UNMOVABLE] = 'U', 4566 [MIGRATE_MOVABLE] = 'M', 4567 [MIGRATE_RECLAIMABLE] = 'E', 4568 [MIGRATE_HIGHATOMIC] = 'H', 4569#ifdef CONFIG_CMA 4570 [MIGRATE_CMA] = 'C', 4571#endif 4572#ifdef CONFIG_MEMORY_ISOLATION 4573 [MIGRATE_ISOLATE] = 'I', 4574#endif 4575 }; 4576 char tmp[MIGRATE_TYPES + 1]; 4577 char *p = tmp; 4578 int i; 4579 4580 for (i = 0; i < MIGRATE_TYPES; i++) { 4581 if (type & (1 << i)) 4582 *p++ = types[i]; 4583 } 4584 4585 *p = '\0'; 4586 printk(KERN_CONT "(%s) ", tmp); 4587} 4588 4589/* 4590 * Show free area list (used inside shift_scroll-lock stuff) 4591 * We also calculate the percentage fragmentation. We do this by counting the 4592 * memory on each free list with the exception of the first item on the list. 4593 * 4594 * Bits in @filter: 4595 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4596 * cpuset. 4597 */ 4598void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4599{ 4600 unsigned long free_pcp = 0; 4601 int cpu; 4602 struct zone *zone; 4603 pg_data_t *pgdat; 4604 4605 for_each_populated_zone(zone) { 4606 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4607 continue; 4608 4609 for_each_online_cpu(cpu) 4610 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4611 } 4612 4613 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4614 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4615 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4616 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4617 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4618 " free:%lu free_pcp:%lu free_cma:%lu\n", 4619 global_node_page_state(NR_ACTIVE_ANON), 4620 global_node_page_state(NR_INACTIVE_ANON), 4621 global_node_page_state(NR_ISOLATED_ANON), 4622 global_node_page_state(NR_ACTIVE_FILE), 4623 global_node_page_state(NR_INACTIVE_FILE), 4624 global_node_page_state(NR_ISOLATED_FILE), 4625 global_node_page_state(NR_UNEVICTABLE), 4626 global_node_page_state(NR_FILE_DIRTY), 4627 global_node_page_state(NR_WRITEBACK), 4628 global_node_page_state(NR_UNSTABLE_NFS), 4629 global_node_page_state(NR_SLAB_RECLAIMABLE), 4630 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4631 global_node_page_state(NR_FILE_MAPPED), 4632 global_node_page_state(NR_SHMEM), 4633 global_page_state(NR_PAGETABLE), 4634 global_page_state(NR_BOUNCE), 4635 global_page_state(NR_FREE_PAGES), 4636 free_pcp, 4637 global_page_state(NR_FREE_CMA_PAGES)); 4638 4639 for_each_online_pgdat(pgdat) { 4640 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4641 continue; 4642 4643 printk("Node %d" 4644 " active_anon:%lukB" 4645 " inactive_anon:%lukB" 4646 " active_file:%lukB" 4647 " inactive_file:%lukB" 4648 " unevictable:%lukB" 4649 " isolated(anon):%lukB" 4650 " isolated(file):%lukB" 4651 " mapped:%lukB" 4652 " dirty:%lukB" 4653 " writeback:%lukB" 4654 " shmem:%lukB" 4655#ifdef CONFIG_TRANSPARENT_HUGEPAGE 4656 " shmem_thp: %lukB" 4657 " shmem_pmdmapped: %lukB" 4658 " anon_thp: %lukB" 4659#endif 4660 " writeback_tmp:%lukB" 4661 " unstable:%lukB" 4662 " all_unreclaimable? %s" 4663 "\n", 4664 pgdat->node_id, 4665 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4666 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4667 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4668 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4669 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4670 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4671 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4672 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4673 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4674 K(node_page_state(pgdat, NR_WRITEBACK)), 4675 K(node_page_state(pgdat, NR_SHMEM)), 4676#ifdef CONFIG_TRANSPARENT_HUGEPAGE 4677 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4678 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4679 * HPAGE_PMD_NR), 4680 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4681#endif 4682 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4683 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4684 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4685 "yes" : "no"); 4686 } 4687 4688 for_each_populated_zone(zone) { 4689 int i; 4690 4691 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4692 continue; 4693 4694 free_pcp = 0; 4695 for_each_online_cpu(cpu) 4696 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4697 4698 show_node(zone); 4699 printk(KERN_CONT 4700 "%s" 4701 " free:%lukB" 4702 " min:%lukB" 4703 " low:%lukB" 4704 " high:%lukB" 4705 " active_anon:%lukB" 4706 " inactive_anon:%lukB" 4707 " active_file:%lukB" 4708 " inactive_file:%lukB" 4709 " unevictable:%lukB" 4710 " writepending:%lukB" 4711 " present:%lukB" 4712 " managed:%lukB" 4713 " mlocked:%lukB" 4714 " kernel_stack:%lukB" 4715 " pagetables:%lukB" 4716 " bounce:%lukB" 4717 " free_pcp:%lukB" 4718 " local_pcp:%ukB" 4719 " free_cma:%lukB" 4720 "\n", 4721 zone->name, 4722 K(zone_page_state(zone, NR_FREE_PAGES)), 4723 K(min_wmark_pages(zone)), 4724 K(low_wmark_pages(zone)), 4725 K(high_wmark_pages(zone)), 4726 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4727 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4728 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4729 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4730 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4731 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4732 K(zone->present_pages), 4733 K(zone->managed_pages), 4734 K(zone_page_state(zone, NR_MLOCK)), 4735 zone_page_state(zone, NR_KERNEL_STACK_KB), 4736 K(zone_page_state(zone, NR_PAGETABLE)), 4737 K(zone_page_state(zone, NR_BOUNCE)), 4738 K(free_pcp), 4739 K(this_cpu_read(zone->pageset->pcp.count)), 4740 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4741 printk("lowmem_reserve[]:"); 4742 for (i = 0; i < MAX_NR_ZONES; i++) 4743 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4744 printk(KERN_CONT "\n"); 4745 } 4746 4747 for_each_populated_zone(zone) { 4748 unsigned int order; 4749 unsigned long nr[MAX_ORDER], flags, total = 0; 4750 unsigned char types[MAX_ORDER]; 4751 4752 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4753 continue; 4754 show_node(zone); 4755 printk(KERN_CONT "%s: ", zone->name); 4756 4757 spin_lock_irqsave(&zone->lock, flags); 4758 for (order = 0; order < MAX_ORDER; order++) { 4759 struct free_area *area = &zone->free_area[order]; 4760 int type; 4761 4762 nr[order] = area->nr_free; 4763 total += nr[order] << order; 4764 4765 types[order] = 0; 4766 for (type = 0; type < MIGRATE_TYPES; type++) { 4767 if (!list_empty(&area->free_list[type])) 4768 types[order] |= 1 << type; 4769 } 4770 } 4771 spin_unlock_irqrestore(&zone->lock, flags); 4772 for (order = 0; order < MAX_ORDER; order++) { 4773 printk(KERN_CONT "%lu*%lukB ", 4774 nr[order], K(1UL) << order); 4775 if (nr[order]) 4776 show_migration_types(types[order]); 4777 } 4778 printk(KERN_CONT "= %lukB\n", K(total)); 4779 } 4780 4781 hugetlb_show_meminfo(); 4782 4783 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4784 4785 show_swap_cache_info(); 4786} 4787 4788static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4789{ 4790 zoneref->zone = zone; 4791 zoneref->zone_idx = zone_idx(zone); 4792} 4793 4794/* 4795 * Builds allocation fallback zone lists. 4796 * 4797 * Add all populated zones of a node to the zonelist. 4798 */ 4799static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 4800 int nr_zones) 4801{ 4802 struct zone *zone; 4803 enum zone_type zone_type = MAX_NR_ZONES; 4804 4805 do { 4806 zone_type--; 4807 zone = pgdat->node_zones + zone_type; 4808 if (managed_zone(zone)) { 4809 zoneref_set_zone(zone, 4810 &zonelist->_zonerefs[nr_zones++]); 4811 check_highest_zone(zone_type); 4812 } 4813 } while (zone_type); 4814 4815 return nr_zones; 4816} 4817 4818 4819/* 4820 * zonelist_order: 4821 * 0 = automatic detection of better ordering. 4822 * 1 = order by ([node] distance, -zonetype) 4823 * 2 = order by (-zonetype, [node] distance) 4824 * 4825 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 4826 * the same zonelist. So only NUMA can configure this param. 4827 */ 4828#define ZONELIST_ORDER_DEFAULT 0 4829#define ZONELIST_ORDER_NODE 1 4830#define ZONELIST_ORDER_ZONE 2 4831 4832/* zonelist order in the kernel. 4833 * set_zonelist_order() will set this to NODE or ZONE. 4834 */ 4835static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 4836static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 4837 4838 4839#ifdef CONFIG_NUMA 4840/* The value user specified ....changed by config */ 4841static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4842/* string for sysctl */ 4843#define NUMA_ZONELIST_ORDER_LEN 16 4844char numa_zonelist_order[16] = "default"; 4845 4846/* 4847 * interface for configure zonelist ordering. 4848 * command line option "numa_zonelist_order" 4849 * = "[dD]efault - default, automatic configuration. 4850 * = "[nN]ode - order by node locality, then by zone within node 4851 * = "[zZ]one - order by zone, then by locality within zone 4852 */ 4853 4854static int __parse_numa_zonelist_order(char *s) 4855{ 4856 if (*s == 'd' || *s == 'D') { 4857 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4858 } else if (*s == 'n' || *s == 'N') { 4859 user_zonelist_order = ZONELIST_ORDER_NODE; 4860 } else if (*s == 'z' || *s == 'Z') { 4861 user_zonelist_order = ZONELIST_ORDER_ZONE; 4862 } else { 4863 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s); 4864 return -EINVAL; 4865 } 4866 return 0; 4867} 4868 4869static __init int setup_numa_zonelist_order(char *s) 4870{ 4871 int ret; 4872 4873 if (!s) 4874 return 0; 4875 4876 ret = __parse_numa_zonelist_order(s); 4877 if (ret == 0) 4878 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 4879 4880 return ret; 4881} 4882early_param("numa_zonelist_order", setup_numa_zonelist_order); 4883 4884/* 4885 * sysctl handler for numa_zonelist_order 4886 */ 4887int numa_zonelist_order_handler(struct ctl_table *table, int write, 4888 void __user *buffer, size_t *length, 4889 loff_t *ppos) 4890{ 4891 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 4892 int ret; 4893 static DEFINE_MUTEX(zl_order_mutex); 4894 4895 mutex_lock(&zl_order_mutex); 4896 if (write) { 4897 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 4898 ret = -EINVAL; 4899 goto out; 4900 } 4901 strcpy(saved_string, (char *)table->data); 4902 } 4903 ret = proc_dostring(table, write, buffer, length, ppos); 4904 if (ret) 4905 goto out; 4906 if (write) { 4907 int oldval = user_zonelist_order; 4908 4909 ret = __parse_numa_zonelist_order((char *)table->data); 4910 if (ret) { 4911 /* 4912 * bogus value. restore saved string 4913 */ 4914 strncpy((char *)table->data, saved_string, 4915 NUMA_ZONELIST_ORDER_LEN); 4916 user_zonelist_order = oldval; 4917 } else if (oldval != user_zonelist_order) { 4918 mem_hotplug_begin(); 4919 mutex_lock(&zonelists_mutex); 4920 build_all_zonelists(NULL, NULL); 4921 mutex_unlock(&zonelists_mutex); 4922 mem_hotplug_done(); 4923 } 4924 } 4925out: 4926 mutex_unlock(&zl_order_mutex); 4927 return ret; 4928} 4929 4930 4931#define MAX_NODE_LOAD (nr_online_nodes) 4932static int node_load[MAX_NUMNODES]; 4933 4934/** 4935 * find_next_best_node - find the next node that should appear in a given node's fallback list 4936 * @node: node whose fallback list we're appending 4937 * @used_node_mask: nodemask_t of already used nodes 4938 * 4939 * We use a number of factors to determine which is the next node that should 4940 * appear on a given node's fallback list. The node should not have appeared 4941 * already in @node's fallback list, and it should be the next closest node 4942 * according to the distance array (which contains arbitrary distance values 4943 * from each node to each node in the system), and should also prefer nodes 4944 * with no CPUs, since presumably they'll have very little allocation pressure 4945 * on them otherwise. 4946 * It returns -1 if no node is found. 4947 */ 4948static int find_next_best_node(int node, nodemask_t *used_node_mask) 4949{ 4950 int n, val; 4951 int min_val = INT_MAX; 4952 int best_node = NUMA_NO_NODE; 4953 const struct cpumask *tmp = cpumask_of_node(0); 4954 4955 /* Use the local node if we haven't already */ 4956 if (!node_isset(node, *used_node_mask)) { 4957 node_set(node, *used_node_mask); 4958 return node; 4959 } 4960 4961 for_each_node_state(n, N_MEMORY) { 4962 4963 /* Don't want a node to appear more than once */ 4964 if (node_isset(n, *used_node_mask)) 4965 continue; 4966 4967 /* Use the distance array to find the distance */ 4968 val = node_distance(node, n); 4969 4970 /* Penalize nodes under us ("prefer the next node") */ 4971 val += (n < node); 4972 4973 /* Give preference to headless and unused nodes */ 4974 tmp = cpumask_of_node(n); 4975 if (!cpumask_empty(tmp)) 4976 val += PENALTY_FOR_NODE_WITH_CPUS; 4977 4978 /* Slight preference for less loaded node */ 4979 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4980 val += node_load[n]; 4981 4982 if (val < min_val) { 4983 min_val = val; 4984 best_node = n; 4985 } 4986 } 4987 4988 if (best_node >= 0) 4989 node_set(best_node, *used_node_mask); 4990 4991 return best_node; 4992} 4993 4994 4995/* 4996 * Build zonelists ordered by node and zones within node. 4997 * This results in maximum locality--normal zone overflows into local 4998 * DMA zone, if any--but risks exhausting DMA zone. 4999 */ 5000static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 5001{ 5002 int j; 5003 struct zonelist *zonelist; 5004 5005 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 5006 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 5007 ; 5008 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 5009 zonelist->_zonerefs[j].zone = NULL; 5010 zonelist->_zonerefs[j].zone_idx = 0; 5011} 5012 5013/* 5014 * Build gfp_thisnode zonelists 5015 */ 5016static void build_thisnode_zonelists(pg_data_t *pgdat) 5017{ 5018 int j; 5019 struct zonelist *zonelist; 5020 5021 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK]; 5022 j = build_zonelists_node(pgdat, zonelist, 0); 5023 zonelist->_zonerefs[j].zone = NULL; 5024 zonelist->_zonerefs[j].zone_idx = 0; 5025} 5026 5027/* 5028 * Build zonelists ordered by zone and nodes within zones. 5029 * This results in conserving DMA zone[s] until all Normal memory is 5030 * exhausted, but results in overflowing to remote node while memory 5031 * may still exist in local DMA zone. 5032 */ 5033static int node_order[MAX_NUMNODES]; 5034 5035static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 5036{ 5037 int pos, j, node; 5038 int zone_type; /* needs to be signed */ 5039 struct zone *z; 5040 struct zonelist *zonelist; 5041 5042 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 5043 pos = 0; 5044 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 5045 for (j = 0; j < nr_nodes; j++) { 5046 node = node_order[j]; 5047 z = &NODE_DATA(node)->node_zones[zone_type]; 5048 if (managed_zone(z)) { 5049 zoneref_set_zone(z, 5050 &zonelist->_zonerefs[pos++]); 5051 check_highest_zone(zone_type); 5052 } 5053 } 5054 } 5055 zonelist->_zonerefs[pos].zone = NULL; 5056 zonelist->_zonerefs[pos].zone_idx = 0; 5057} 5058 5059#if defined(CONFIG_64BIT) 5060/* 5061 * Devices that require DMA32/DMA are relatively rare and do not justify a 5062 * penalty to every machine in case the specialised case applies. Default 5063 * to Node-ordering on 64-bit NUMA machines 5064 */ 5065static int default_zonelist_order(void) 5066{ 5067 return ZONELIST_ORDER_NODE; 5068} 5069#else 5070/* 5071 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 5072 * by the kernel. If processes running on node 0 deplete the low memory zone 5073 * then reclaim will occur more frequency increasing stalls and potentially 5074 * be easier to OOM if a large percentage of the zone is under writeback or 5075 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 5076 * Hence, default to zone ordering on 32-bit. 5077 */ 5078static int default_zonelist_order(void) 5079{ 5080 return ZONELIST_ORDER_ZONE; 5081} 5082#endif /* CONFIG_64BIT */ 5083 5084static void set_zonelist_order(void) 5085{ 5086 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 5087 current_zonelist_order = default_zonelist_order(); 5088 else 5089 current_zonelist_order = user_zonelist_order; 5090} 5091 5092static void build_zonelists(pg_data_t *pgdat) 5093{ 5094 int i, node, load; 5095 nodemask_t used_mask; 5096 int local_node, prev_node; 5097 struct zonelist *zonelist; 5098 unsigned int order = current_zonelist_order; 5099 5100 /* initialize zonelists */ 5101 for (i = 0; i < MAX_ZONELISTS; i++) { 5102 zonelist = pgdat->node_zonelists + i; 5103 zonelist->_zonerefs[0].zone = NULL; 5104 zonelist->_zonerefs[0].zone_idx = 0; 5105 } 5106 5107 /* NUMA-aware ordering of nodes */ 5108 local_node = pgdat->node_id; 5109 load = nr_online_nodes; 5110 prev_node = local_node; 5111 nodes_clear(used_mask); 5112 5113 memset(node_order, 0, sizeof(node_order)); 5114 i = 0; 5115 5116 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5117 /* 5118 * We don't want to pressure a particular node. 5119 * So adding penalty to the first node in same 5120 * distance group to make it round-robin. 5121 */ 5122 if (node_distance(local_node, node) != 5123 node_distance(local_node, prev_node)) 5124 node_load[node] = load; 5125 5126 prev_node = node; 5127 load--; 5128 if (order == ZONELIST_ORDER_NODE) 5129 build_zonelists_in_node_order(pgdat, node); 5130 else 5131 node_order[i++] = node; /* remember order */ 5132 } 5133 5134 if (order == ZONELIST_ORDER_ZONE) { 5135 /* calculate node order -- i.e., DMA last! */ 5136 build_zonelists_in_zone_order(pgdat, i); 5137 } 5138 5139 build_thisnode_zonelists(pgdat); 5140} 5141 5142#ifdef CONFIG_HAVE_MEMORYLESS_NODES 5143/* 5144 * Return node id of node used for "local" allocations. 5145 * I.e., first node id of first zone in arg node's generic zonelist. 5146 * Used for initializing percpu 'numa_mem', which is used primarily 5147 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5148 */ 5149int local_memory_node(int node) 5150{ 5151 struct zoneref *z; 5152 5153 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5154 gfp_zone(GFP_KERNEL), 5155 NULL); 5156 return z->zone->node; 5157} 5158#endif 5159 5160static void setup_min_unmapped_ratio(void); 5161static void setup_min_slab_ratio(void); 5162#else /* CONFIG_NUMA */ 5163 5164static void set_zonelist_order(void) 5165{ 5166 current_zonelist_order = ZONELIST_ORDER_ZONE; 5167} 5168 5169static void build_zonelists(pg_data_t *pgdat) 5170{ 5171 int node, local_node; 5172 enum zone_type j; 5173 struct zonelist *zonelist; 5174 5175 local_node = pgdat->node_id; 5176 5177 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 5178 j = build_zonelists_node(pgdat, zonelist, 0); 5179 5180 /* 5181 * Now we build the zonelist so that it contains the zones 5182 * of all the other nodes. 5183 * We don't want to pressure a particular node, so when 5184 * building the zones for node N, we make sure that the 5185 * zones coming right after the local ones are those from 5186 * node N+1 (modulo N) 5187 */ 5188 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5189 if (!node_online(node)) 5190 continue; 5191 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 5192 } 5193 for (node = 0; node < local_node; node++) { 5194 if (!node_online(node)) 5195 continue; 5196 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 5197 } 5198 5199 zonelist->_zonerefs[j].zone = NULL; 5200 zonelist->_zonerefs[j].zone_idx = 0; 5201} 5202 5203#endif /* CONFIG_NUMA */ 5204 5205/* 5206 * Boot pageset table. One per cpu which is going to be used for all 5207 * zones and all nodes. The parameters will be set in such a way 5208 * that an item put on a list will immediately be handed over to 5209 * the buddy list. This is safe since pageset manipulation is done 5210 * with interrupts disabled. 5211 * 5212 * The boot_pagesets must be kept even after bootup is complete for 5213 * unused processors and/or zones. They do play a role for bootstrapping 5214 * hotplugged processors. 5215 * 5216 * zoneinfo_show() and maybe other functions do 5217 * not check if the processor is online before following the pageset pointer. 5218 * Other parts of the kernel may not check if the zone is available. 5219 */ 5220static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5221static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5222static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5223static void setup_zone_pageset(struct zone *zone); 5224 5225/* 5226 * Global mutex to protect against size modification of zonelists 5227 * as well as to serialize pageset setup for the new populated zone. 5228 */ 5229DEFINE_MUTEX(zonelists_mutex); 5230 5231/* return values int ....just for stop_machine() */ 5232static int __build_all_zonelists(void *data) 5233{ 5234 int nid; 5235 int cpu; 5236 pg_data_t *self = data; 5237 5238#ifdef CONFIG_NUMA 5239 memset(node_load, 0, sizeof(node_load)); 5240#endif 5241 5242 if (self && !node_online(self->node_id)) { 5243 build_zonelists(self); 5244 } 5245 5246 for_each_online_node(nid) { 5247 pg_data_t *pgdat = NODE_DATA(nid); 5248 5249 build_zonelists(pgdat); 5250 } 5251 5252 /* 5253 * Initialize the boot_pagesets that are going to be used 5254 * for bootstrapping processors. The real pagesets for 5255 * each zone will be allocated later when the per cpu 5256 * allocator is available. 5257 * 5258 * boot_pagesets are used also for bootstrapping offline 5259 * cpus if the system is already booted because the pagesets 5260 * are needed to initialize allocators on a specific cpu too. 5261 * F.e. the percpu allocator needs the page allocator which 5262 * needs the percpu allocator in order to allocate its pagesets 5263 * (a chicken-egg dilemma). 5264 */ 5265 for_each_possible_cpu(cpu) { 5266 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5267 5268#ifdef CONFIG_HAVE_MEMORYLESS_NODES 5269 /* 5270 * We now know the "local memory node" for each node-- 5271 * i.e., the node of the first zone in the generic zonelist. 5272 * Set up numa_mem percpu variable for on-line cpus. During 5273 * boot, only the boot cpu should be on-line; we'll init the 5274 * secondary cpus' numa_mem as they come on-line. During 5275 * node/memory hotplug, we'll fixup all on-line cpus. 5276 */ 5277 if (cpu_online(cpu)) 5278 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5279#endif 5280 } 5281 5282 return 0; 5283} 5284 5285static noinline void __init 5286build_all_zonelists_init(void) 5287{ 5288 __build_all_zonelists(NULL); 5289 mminit_verify_zonelist(); 5290 cpuset_init_current_mems_allowed(); 5291} 5292 5293/* 5294 * Called with zonelists_mutex held always 5295 * unless system_state == SYSTEM_BOOTING. 5296 * 5297 * __ref due to (1) call of __meminit annotated setup_zone_pageset 5298 * [we're only called with non-NULL zone through __meminit paths] and 5299 * (2) call of __init annotated helper build_all_zonelists_init 5300 * [protected by SYSTEM_BOOTING]. 5301 */ 5302void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 5303{ 5304 set_zonelist_order(); 5305 5306 if (system_state == SYSTEM_BOOTING) { 5307 build_all_zonelists_init(); 5308 } else { 5309#ifdef CONFIG_MEMORY_HOTPLUG 5310 if (zone) 5311 setup_zone_pageset(zone); 5312#endif 5313 /* we have to stop all cpus to guarantee there is no user 5314 of zonelist */ 5315 stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL); 5316 /* cpuset refresh routine should be here */ 5317 } 5318 vm_total_pages = nr_free_pagecache_pages(); 5319 /* 5320 * Disable grouping by mobility if the number of pages in the 5321 * system is too low to allow the mechanism to work. It would be 5322 * more accurate, but expensive to check per-zone. This check is 5323 * made on memory-hotadd so a system can start with mobility 5324 * disabled and enable it later 5325 */ 5326 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5327 page_group_by_mobility_disabled = 1; 5328 else 5329 page_group_by_mobility_disabled = 0; 5330 5331 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n", 5332 nr_online_nodes, 5333 zonelist_order_name[current_zonelist_order], 5334 page_group_by_mobility_disabled ? "off" : "on", 5335 vm_total_pages); 5336#ifdef CONFIG_NUMA 5337 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5338#endif 5339} 5340 5341/* 5342 * Initially all pages are reserved - free ones are freed 5343 * up by free_all_bootmem() once the early boot process is 5344 * done. Non-atomic initialization, single-pass. 5345 */ 5346void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5347 unsigned long start_pfn, enum memmap_context context) 5348{ 5349 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 5350 unsigned long end_pfn = start_pfn + size; 5351 pg_data_t *pgdat = NODE_DATA(nid); 5352 unsigned long pfn; 5353 unsigned long nr_initialised = 0; 5354#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5355 struct memblock_region *r = NULL, *tmp; 5356#endif 5357 5358 if (highest_memmap_pfn < end_pfn - 1) 5359 highest_memmap_pfn = end_pfn - 1; 5360 5361 /* 5362 * Honor reservation requested by the driver for this ZONE_DEVICE 5363 * memory 5364 */ 5365 if (altmap && start_pfn == altmap->base_pfn) 5366 start_pfn += altmap->reserve; 5367 5368 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5369 /* 5370 * There can be holes in boot-time mem_map[]s handed to this 5371 * function. They do not exist on hotplugged memory. 5372 */ 5373 if (context != MEMMAP_EARLY) 5374 goto not_early; 5375 5376 if (!early_pfn_valid(pfn)) { 5377#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5378 /* 5379 * Skip to the pfn preceding the next valid one (or 5380 * end_pfn), such that we hit a valid pfn (or end_pfn) 5381 * on our next iteration of the loop. 5382 */ 5383 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; 5384#endif 5385 continue; 5386 } 5387 if (!early_pfn_in_nid(pfn, nid)) 5388 continue; 5389 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5390 break; 5391 5392#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5393 /* 5394 * Check given memblock attribute by firmware which can affect 5395 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5396 * mirrored, it's an overlapped memmap init. skip it. 5397 */ 5398 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5399 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5400 for_each_memblock(memory, tmp) 5401 if (pfn < memblock_region_memory_end_pfn(tmp)) 5402 break; 5403 r = tmp; 5404 } 5405 if (pfn >= memblock_region_memory_base_pfn(r) && 5406 memblock_is_mirror(r)) { 5407 /* already initialized as NORMAL */ 5408 pfn = memblock_region_memory_end_pfn(r); 5409 continue; 5410 } 5411 } 5412#endif 5413 5414not_early: 5415 /* 5416 * Mark the block movable so that blocks are reserved for 5417 * movable at startup. This will force kernel allocations 5418 * to reserve their blocks rather than leaking throughout 5419 * the address space during boot when many long-lived 5420 * kernel allocations are made. 5421 * 5422 * bitmap is created for zone's valid pfn range. but memmap 5423 * can be created for invalid pages (for alignment) 5424 * check here not to call set_pageblock_migratetype() against 5425 * pfn out of zone. 5426 */ 5427 if (!(pfn & (pageblock_nr_pages - 1))) { 5428 struct page *page = pfn_to_page(pfn); 5429 5430 __init_single_page(page, pfn, zone, nid); 5431 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5432 } else { 5433 __init_single_pfn(pfn, zone, nid); 5434 } 5435 } 5436} 5437 5438static void __meminit zone_init_free_lists(struct zone *zone) 5439{ 5440 unsigned int order, t; 5441 for_each_migratetype_order(order, t) { 5442 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5443 zone->free_area[order].nr_free = 0; 5444 } 5445} 5446 5447#ifndef __HAVE_ARCH_MEMMAP_INIT 5448#define memmap_init(size, nid, zone, start_pfn) \ 5449 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 5450#endif 5451 5452static int zone_batchsize(struct zone *zone) 5453{ 5454#ifdef CONFIG_MMU 5455 int batch; 5456 5457 /* 5458 * The per-cpu-pages pools are set to around 1000th of the 5459 * size of the zone. But no more than 1/2 of a meg. 5460 * 5461 * OK, so we don't know how big the cache is. So guess. 5462 */ 5463 batch = zone->managed_pages / 1024; 5464 if (batch * PAGE_SIZE > 512 * 1024) 5465 batch = (512 * 1024) / PAGE_SIZE; 5466 batch /= 4; /* We effectively *= 4 below */ 5467 if (batch < 1) 5468 batch = 1; 5469 5470 /* 5471 * Clamp the batch to a 2^n - 1 value. Having a power 5472 * of 2 value was found to be more likely to have 5473 * suboptimal cache aliasing properties in some cases. 5474 * 5475 * For example if 2 tasks are alternately allocating 5476 * batches of pages, one task can end up with a lot 5477 * of pages of one half of the possible page colors 5478 * and the other with pages of the other colors. 5479 */ 5480 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5481 5482 return batch; 5483 5484#else 5485 /* The deferral and batching of frees should be suppressed under NOMMU 5486 * conditions. 5487 * 5488 * The problem is that NOMMU needs to be able to allocate large chunks 5489 * of contiguous memory as there's no hardware page translation to 5490 * assemble apparent contiguous memory from discontiguous pages. 5491 * 5492 * Queueing large contiguous runs of pages for batching, however, 5493 * causes the pages to actually be freed in smaller chunks. As there 5494 * can be a significant delay between the individual batches being 5495 * recycled, this leads to the once large chunks of space being 5496 * fragmented and becoming unavailable for high-order allocations. 5497 */ 5498 return 0; 5499#endif 5500} 5501 5502/* 5503 * pcp->high and pcp->batch values are related and dependent on one another: 5504 * ->batch must never be higher then ->high. 5505 * The following function updates them in a safe manner without read side 5506 * locking. 5507 * 5508 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5509 * those fields changing asynchronously (acording the the above rule). 5510 * 5511 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5512 * outside of boot time (or some other assurance that no concurrent updaters 5513 * exist). 5514 */ 5515static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5516 unsigned long batch) 5517{ 5518 /* start with a fail safe value for batch */ 5519 pcp->batch = 1; 5520 smp_wmb(); 5521 5522 /* Update high, then batch, in order */ 5523 pcp->high = high; 5524 smp_wmb(); 5525 5526 pcp->batch = batch; 5527} 5528 5529/* a companion to pageset_set_high() */ 5530static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5531{ 5532 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5533} 5534 5535static void pageset_init(struct per_cpu_pageset *p) 5536{ 5537 struct per_cpu_pages *pcp; 5538 int migratetype; 5539 5540 memset(p, 0, sizeof(*p)); 5541 5542 pcp = &p->pcp; 5543 pcp->count = 0; 5544 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5545 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5546} 5547 5548static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5549{ 5550 pageset_init(p); 5551 pageset_set_batch(p, batch); 5552} 5553 5554/* 5555 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5556 * to the value high for the pageset p. 5557 */ 5558static void pageset_set_high(struct per_cpu_pageset *p, 5559 unsigned long high) 5560{ 5561 unsigned long batch = max(1UL, high / 4); 5562 if ((high / 4) > (PAGE_SHIFT * 8)) 5563 batch = PAGE_SHIFT * 8; 5564 5565 pageset_update(&p->pcp, high, batch); 5566} 5567 5568static void pageset_set_high_and_batch(struct zone *zone, 5569 struct per_cpu_pageset *pcp) 5570{ 5571 if (percpu_pagelist_fraction) 5572 pageset_set_high(pcp, 5573 (zone->managed_pages / 5574 percpu_pagelist_fraction)); 5575 else 5576 pageset_set_batch(pcp, zone_batchsize(zone)); 5577} 5578 5579static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5580{ 5581 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5582 5583 pageset_init(pcp); 5584 pageset_set_high_and_batch(zone, pcp); 5585} 5586 5587static void __meminit setup_zone_pageset(struct zone *zone) 5588{ 5589 int cpu; 5590 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5591 for_each_possible_cpu(cpu) 5592 zone_pageset_init(zone, cpu); 5593} 5594 5595/* 5596 * Allocate per cpu pagesets and initialize them. 5597 * Before this call only boot pagesets were available. 5598 */ 5599void __init setup_per_cpu_pageset(void) 5600{ 5601 struct pglist_data *pgdat; 5602 struct zone *zone; 5603 5604 for_each_populated_zone(zone) 5605 setup_zone_pageset(zone); 5606 5607 for_each_online_pgdat(pgdat) 5608 pgdat->per_cpu_nodestats = 5609 alloc_percpu(struct per_cpu_nodestat); 5610} 5611 5612static __meminit void zone_pcp_init(struct zone *zone) 5613{ 5614 /* 5615 * per cpu subsystem is not up at this point. The following code 5616 * relies on the ability of the linker to provide the 5617 * offset of a (static) per cpu variable into the per cpu area. 5618 */ 5619 zone->pageset = &boot_pageset; 5620 5621 if (populated_zone(zone)) 5622 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5623 zone->name, zone->present_pages, 5624 zone_batchsize(zone)); 5625} 5626 5627void __meminit init_currently_empty_zone(struct zone *zone, 5628 unsigned long zone_start_pfn, 5629 unsigned long size) 5630{ 5631 struct pglist_data *pgdat = zone->zone_pgdat; 5632 5633 pgdat->nr_zones = zone_idx(zone) + 1; 5634 5635 zone->zone_start_pfn = zone_start_pfn; 5636 5637 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5638 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5639 pgdat->node_id, 5640 (unsigned long)zone_idx(zone), 5641 zone_start_pfn, (zone_start_pfn + size)); 5642 5643 zone_init_free_lists(zone); 5644 zone->initialized = 1; 5645} 5646 5647#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5648#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5649 5650/* 5651 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5652 */ 5653int __meminit __early_pfn_to_nid(unsigned long pfn, 5654 struct mminit_pfnnid_cache *state) 5655{ 5656 unsigned long start_pfn, end_pfn; 5657 int nid; 5658 5659 if (state->last_start <= pfn && pfn < state->last_end) 5660 return state->last_nid; 5661 5662 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5663 if (nid != -1) { 5664 state->last_start = start_pfn; 5665 state->last_end = end_pfn; 5666 state->last_nid = nid; 5667 } 5668 5669 return nid; 5670} 5671#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5672 5673/** 5674 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5675 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5676 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5677 * 5678 * If an architecture guarantees that all ranges registered contain no holes 5679 * and may be freed, this this function may be used instead of calling 5680 * memblock_free_early_nid() manually. 5681 */ 5682void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5683{ 5684 unsigned long start_pfn, end_pfn; 5685 int i, this_nid; 5686 5687 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5688 start_pfn = min(start_pfn, max_low_pfn); 5689 end_pfn = min(end_pfn, max_low_pfn); 5690 5691 if (start_pfn < end_pfn) 5692 memblock_free_early_nid(PFN_PHYS(start_pfn), 5693 (end_pfn - start_pfn) << PAGE_SHIFT, 5694 this_nid); 5695 } 5696} 5697 5698/** 5699 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5700 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5701 * 5702 * If an architecture guarantees that all ranges registered contain no holes and may 5703 * be freed, this function may be used instead of calling memory_present() manually. 5704 */ 5705void __init sparse_memory_present_with_active_regions(int nid) 5706{ 5707 unsigned long start_pfn, end_pfn; 5708 int i, this_nid; 5709 5710 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5711 memory_present(this_nid, start_pfn, end_pfn); 5712} 5713 5714/** 5715 * get_pfn_range_for_nid - Return the start and end page frames for a node 5716 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5717 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5718 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5719 * 5720 * It returns the start and end page frame of a node based on information 5721 * provided by memblock_set_node(). If called for a node 5722 * with no available memory, a warning is printed and the start and end 5723 * PFNs will be 0. 5724 */ 5725void __meminit get_pfn_range_for_nid(unsigned int nid, 5726 unsigned long *start_pfn, unsigned long *end_pfn) 5727{ 5728 unsigned long this_start_pfn, this_end_pfn; 5729 int i; 5730 5731 *start_pfn = -1UL; 5732 *end_pfn = 0; 5733 5734 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5735 *start_pfn = min(*start_pfn, this_start_pfn); 5736 *end_pfn = max(*end_pfn, this_end_pfn); 5737 } 5738 5739 if (*start_pfn == -1UL) 5740 *start_pfn = 0; 5741} 5742 5743/* 5744 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5745 * assumption is made that zones within a node are ordered in monotonic 5746 * increasing memory addresses so that the "highest" populated zone is used 5747 */ 5748static void __init find_usable_zone_for_movable(void) 5749{ 5750 int zone_index; 5751 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5752 if (zone_index == ZONE_MOVABLE) 5753 continue; 5754 5755 if (arch_zone_highest_possible_pfn[zone_index] > 5756 arch_zone_lowest_possible_pfn[zone_index]) 5757 break; 5758 } 5759 5760 VM_BUG_ON(zone_index == -1); 5761 movable_zone = zone_index; 5762} 5763 5764/* 5765 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5766 * because it is sized independent of architecture. Unlike the other zones, 5767 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5768 * in each node depending on the size of each node and how evenly kernelcore 5769 * is distributed. This helper function adjusts the zone ranges 5770 * provided by the architecture for a given node by using the end of the 5771 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5772 * zones within a node are in order of monotonic increases memory addresses 5773 */ 5774static void __meminit adjust_zone_range_for_zone_movable(int nid, 5775 unsigned long zone_type, 5776 unsigned long node_start_pfn, 5777 unsigned long node_end_pfn, 5778 unsigned long *zone_start_pfn, 5779 unsigned long *zone_end_pfn) 5780{ 5781 /* Only adjust if ZONE_MOVABLE is on this node */ 5782 if (zone_movable_pfn[nid]) { 5783 /* Size ZONE_MOVABLE */ 5784 if (zone_type == ZONE_MOVABLE) { 5785 *zone_start_pfn = zone_movable_pfn[nid]; 5786 *zone_end_pfn = min(node_end_pfn, 5787 arch_zone_highest_possible_pfn[movable_zone]); 5788 5789 /* Adjust for ZONE_MOVABLE starting within this range */ 5790 } else if (!mirrored_kernelcore && 5791 *zone_start_pfn < zone_movable_pfn[nid] && 5792 *zone_end_pfn > zone_movable_pfn[nid]) { 5793 *zone_end_pfn = zone_movable_pfn[nid]; 5794 5795 /* Check if this whole range is within ZONE_MOVABLE */ 5796 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5797 *zone_start_pfn = *zone_end_pfn; 5798 } 5799} 5800 5801/* 5802 * Return the number of pages a zone spans in a node, including holes 5803 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5804 */ 5805static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5806 unsigned long zone_type, 5807 unsigned long node_start_pfn, 5808 unsigned long node_end_pfn, 5809 unsigned long *zone_start_pfn, 5810 unsigned long *zone_end_pfn, 5811 unsigned long *ignored) 5812{ 5813 /* When hotadd a new node from cpu_up(), the node should be empty */ 5814 if (!node_start_pfn && !node_end_pfn) 5815 return 0; 5816 5817 /* Get the start and end of the zone */ 5818 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5819 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5820 adjust_zone_range_for_zone_movable(nid, zone_type, 5821 node_start_pfn, node_end_pfn, 5822 zone_start_pfn, zone_end_pfn); 5823 5824 /* Check that this node has pages within the zone's required range */ 5825 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5826 return 0; 5827 5828 /* Move the zone boundaries inside the node if necessary */ 5829 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5830 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5831 5832 /* Return the spanned pages */ 5833 return *zone_end_pfn - *zone_start_pfn; 5834} 5835 5836/* 5837 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5838 * then all holes in the requested range will be accounted for. 5839 */ 5840unsigned long __meminit __absent_pages_in_range(int nid, 5841 unsigned long range_start_pfn, 5842 unsigned long range_end_pfn) 5843{ 5844 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5845 unsigned long start_pfn, end_pfn; 5846 int i; 5847 5848 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5849 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5850 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5851 nr_absent -= end_pfn - start_pfn; 5852 } 5853 return nr_absent; 5854} 5855 5856/** 5857 * absent_pages_in_range - Return number of page frames in holes within a range 5858 * @start_pfn: The start PFN to start searching for holes 5859 * @end_pfn: The end PFN to stop searching for holes 5860 * 5861 * It returns the number of pages frames in memory holes within a range. 5862 */ 5863unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5864 unsigned long end_pfn) 5865{ 5866 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5867} 5868 5869/* Return the number of page frames in holes in a zone on a node */ 5870static unsigned long __meminit zone_absent_pages_in_node(int nid, 5871 unsigned long zone_type, 5872 unsigned long node_start_pfn, 5873 unsigned long node_end_pfn, 5874 unsigned long *ignored) 5875{ 5876 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5877 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5878 unsigned long zone_start_pfn, zone_end_pfn; 5879 unsigned long nr_absent; 5880 5881 /* When hotadd a new node from cpu_up(), the node should be empty */ 5882 if (!node_start_pfn && !node_end_pfn) 5883 return 0; 5884 5885 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5886 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5887 5888 adjust_zone_range_for_zone_movable(nid, zone_type, 5889 node_start_pfn, node_end_pfn, 5890 &zone_start_pfn, &zone_end_pfn); 5891 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5892 5893 /* 5894 * ZONE_MOVABLE handling. 5895 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5896 * and vice versa. 5897 */ 5898 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5899 unsigned long start_pfn, end_pfn; 5900 struct memblock_region *r; 5901 5902 for_each_memblock(memory, r) { 5903 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5904 zone_start_pfn, zone_end_pfn); 5905 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5906 zone_start_pfn, zone_end_pfn); 5907 5908 if (zone_type == ZONE_MOVABLE && 5909 memblock_is_mirror(r)) 5910 nr_absent += end_pfn - start_pfn; 5911 5912 if (zone_type == ZONE_NORMAL && 5913 !memblock_is_mirror(r)) 5914 nr_absent += end_pfn - start_pfn; 5915 } 5916 } 5917 5918 return nr_absent; 5919} 5920 5921#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5922static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5923 unsigned long zone_type, 5924 unsigned long node_start_pfn, 5925 unsigned long node_end_pfn, 5926 unsigned long *zone_start_pfn, 5927 unsigned long *zone_end_pfn, 5928 unsigned long *zones_size) 5929{ 5930 unsigned int zone; 5931 5932 *zone_start_pfn = node_start_pfn; 5933 for (zone = 0; zone < zone_type; zone++) 5934 *zone_start_pfn += zones_size[zone]; 5935 5936 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5937 5938 return zones_size[zone_type]; 5939} 5940 5941static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5942 unsigned long zone_type, 5943 unsigned long node_start_pfn, 5944 unsigned long node_end_pfn, 5945 unsigned long *zholes_size) 5946{ 5947 if (!zholes_size) 5948 return 0; 5949 5950 return zholes_size[zone_type]; 5951} 5952 5953#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5954 5955static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5956 unsigned long node_start_pfn, 5957 unsigned long node_end_pfn, 5958 unsigned long *zones_size, 5959 unsigned long *zholes_size) 5960{ 5961 unsigned long realtotalpages = 0, totalpages = 0; 5962 enum zone_type i; 5963 5964 for (i = 0; i < MAX_NR_ZONES; i++) { 5965 struct zone *zone = pgdat->node_zones + i; 5966 unsigned long zone_start_pfn, zone_end_pfn; 5967 unsigned long size, real_size; 5968 5969 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5970 node_start_pfn, 5971 node_end_pfn, 5972 &zone_start_pfn, 5973 &zone_end_pfn, 5974 zones_size); 5975 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5976 node_start_pfn, node_end_pfn, 5977 zholes_size); 5978 if (size) 5979 zone->zone_start_pfn = zone_start_pfn; 5980 else 5981 zone->zone_start_pfn = 0; 5982 zone->spanned_pages = size; 5983 zone->present_pages = real_size; 5984 5985 totalpages += size; 5986 realtotalpages += real_size; 5987 } 5988 5989 pgdat->node_spanned_pages = totalpages; 5990 pgdat->node_present_pages = realtotalpages; 5991 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5992 realtotalpages); 5993} 5994 5995#ifndef CONFIG_SPARSEMEM 5996/* 5997 * Calculate the size of the zone->blockflags rounded to an unsigned long 5998 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5999 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6000 * round what is now in bits to nearest long in bits, then return it in 6001 * bytes. 6002 */ 6003static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6004{ 6005 unsigned long usemapsize; 6006 6007 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6008 usemapsize = roundup(zonesize, pageblock_nr_pages); 6009 usemapsize = usemapsize >> pageblock_order; 6010 usemapsize *= NR_PAGEBLOCK_BITS; 6011 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6012 6013 return usemapsize / 8; 6014} 6015 6016static void __init setup_usemap(struct pglist_data *pgdat, 6017 struct zone *zone, 6018 unsigned long zone_start_pfn, 6019 unsigned long zonesize) 6020{ 6021 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6022 zone->pageblock_flags = NULL; 6023 if (usemapsize) 6024 zone->pageblock_flags = 6025 memblock_virt_alloc_node_nopanic(usemapsize, 6026 pgdat->node_id); 6027} 6028#else 6029static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6030 unsigned long zone_start_pfn, unsigned long zonesize) {} 6031#endif /* CONFIG_SPARSEMEM */ 6032 6033#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6034 6035/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6036void __paginginit set_pageblock_order(void) 6037{ 6038 unsigned int order; 6039 6040 /* Check that pageblock_nr_pages has not already been setup */ 6041 if (pageblock_order) 6042 return; 6043 6044 if (HPAGE_SHIFT > PAGE_SHIFT) 6045 order = HUGETLB_PAGE_ORDER; 6046 else 6047 order = MAX_ORDER - 1; 6048 6049 /* 6050 * Assume the largest contiguous order of interest is a huge page. 6051 * This value may be variable depending on boot parameters on IA64 and 6052 * powerpc. 6053 */ 6054 pageblock_order = order; 6055} 6056#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6057 6058/* 6059 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6060 * is unused as pageblock_order is set at compile-time. See 6061 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6062 * the kernel config 6063 */ 6064void __paginginit set_pageblock_order(void) 6065{ 6066} 6067 6068#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6069 6070static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 6071 unsigned long present_pages) 6072{ 6073 unsigned long pages = spanned_pages; 6074 6075 /* 6076 * Provide a more accurate estimation if there are holes within 6077 * the zone and SPARSEMEM is in use. If there are holes within the 6078 * zone, each populated memory region may cost us one or two extra 6079 * memmap pages due to alignment because memmap pages for each 6080 * populated regions may not be naturally aligned on page boundary. 6081 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6082 */ 6083 if (spanned_pages > present_pages + (present_pages >> 4) && 6084 IS_ENABLED(CONFIG_SPARSEMEM)) 6085 pages = present_pages; 6086 6087 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6088} 6089 6090/* 6091 * Set up the zone data structures: 6092 * - mark all pages reserved 6093 * - mark all memory queues empty 6094 * - clear the memory bitmaps 6095 * 6096 * NOTE: pgdat should get zeroed by caller. 6097 */ 6098static void __paginginit free_area_init_core(struct pglist_data *pgdat) 6099{ 6100 enum zone_type j; 6101 int nid = pgdat->node_id; 6102 6103 pgdat_resize_init(pgdat); 6104#ifdef CONFIG_NUMA_BALANCING 6105 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6106 pgdat->numabalancing_migrate_nr_pages = 0; 6107 pgdat->numabalancing_migrate_next_window = jiffies; 6108#endif 6109#ifdef CONFIG_TRANSPARENT_HUGEPAGE 6110 spin_lock_init(&pgdat->split_queue_lock); 6111 INIT_LIST_HEAD(&pgdat->split_queue); 6112 pgdat->split_queue_len = 0; 6113#endif 6114 init_waitqueue_head(&pgdat->kswapd_wait); 6115 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6116#ifdef CONFIG_COMPACTION 6117 init_waitqueue_head(&pgdat->kcompactd_wait); 6118#endif 6119 pgdat_page_ext_init(pgdat); 6120 spin_lock_init(&pgdat->lru_lock); 6121 lruvec_init(node_lruvec(pgdat)); 6122 6123 pgdat->per_cpu_nodestats = &boot_nodestats; 6124 6125 for (j = 0; j < MAX_NR_ZONES; j++) { 6126 struct zone *zone = pgdat->node_zones + j; 6127 unsigned long size, realsize, freesize, memmap_pages; 6128 unsigned long zone_start_pfn = zone->zone_start_pfn; 6129 6130 size = zone->spanned_pages; 6131 realsize = freesize = zone->present_pages; 6132 6133 /* 6134 * Adjust freesize so that it accounts for how much memory 6135 * is used by this zone for memmap. This affects the watermark 6136 * and per-cpu initialisations 6137 */ 6138 memmap_pages = calc_memmap_size(size, realsize); 6139 if (!is_highmem_idx(j)) { 6140 if (freesize >= memmap_pages) { 6141 freesize -= memmap_pages; 6142 if (memmap_pages) 6143 printk(KERN_DEBUG 6144 " %s zone: %lu pages used for memmap\n", 6145 zone_names[j], memmap_pages); 6146 } else 6147 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6148 zone_names[j], memmap_pages, freesize); 6149 } 6150 6151 /* Account for reserved pages */ 6152 if (j == 0 && freesize > dma_reserve) { 6153 freesize -= dma_reserve; 6154 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6155 zone_names[0], dma_reserve); 6156 } 6157 6158 if (!is_highmem_idx(j)) 6159 nr_kernel_pages += freesize; 6160 /* Charge for highmem memmap if there are enough kernel pages */ 6161 else if (nr_kernel_pages > memmap_pages * 2) 6162 nr_kernel_pages -= memmap_pages; 6163 nr_all_pages += freesize; 6164 6165 /* 6166 * Set an approximate value for lowmem here, it will be adjusted 6167 * when the bootmem allocator frees pages into the buddy system. 6168 * And all highmem pages will be managed by the buddy system. 6169 */ 6170 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6171#ifdef CONFIG_NUMA 6172 zone->node = nid; 6173#endif 6174 zone->name = zone_names[j]; 6175 zone->zone_pgdat = pgdat; 6176 spin_lock_init(&zone->lock); 6177 zone_seqlock_init(zone); 6178 zone_pcp_init(zone); 6179 6180 if (!size) 6181 continue; 6182 6183 set_pageblock_order(); 6184 setup_usemap(pgdat, zone, zone_start_pfn, size); 6185 init_currently_empty_zone(zone, zone_start_pfn, size); 6186 memmap_init(size, nid, j, zone_start_pfn); 6187 } 6188} 6189 6190static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6191{ 6192 unsigned long __maybe_unused start = 0; 6193 unsigned long __maybe_unused offset = 0; 6194 6195 /* Skip empty nodes */ 6196 if (!pgdat->node_spanned_pages) 6197 return; 6198 6199#ifdef CONFIG_FLAT_NODE_MEM_MAP 6200 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6201 offset = pgdat->node_start_pfn - start; 6202 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6203 if (!pgdat->node_mem_map) { 6204 unsigned long size, end; 6205 struct page *map; 6206 6207 /* 6208 * The zone's endpoints aren't required to be MAX_ORDER 6209 * aligned but the node_mem_map endpoints must be in order 6210 * for the buddy allocator to function correctly. 6211 */ 6212 end = pgdat_end_pfn(pgdat); 6213 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6214 size = (end - start) * sizeof(struct page); 6215 map = alloc_remap(pgdat->node_id, size); 6216 if (!map) 6217 map = memblock_virt_alloc_node_nopanic(size, 6218 pgdat->node_id); 6219 pgdat->node_mem_map = map + offset; 6220 } 6221#ifndef CONFIG_NEED_MULTIPLE_NODES 6222 /* 6223 * With no DISCONTIG, the global mem_map is just set as node 0's 6224 */ 6225 if (pgdat == NODE_DATA(0)) { 6226 mem_map = NODE_DATA(0)->node_mem_map; 6227#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6228 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6229 mem_map -= offset; 6230#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6231 } 6232#endif 6233#endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6234} 6235 6236void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6237 unsigned long node_start_pfn, unsigned long *zholes_size) 6238{ 6239 pg_data_t *pgdat = NODE_DATA(nid); 6240 unsigned long start_pfn = 0; 6241 unsigned long end_pfn = 0; 6242 6243 /* pg_data_t should be reset to zero when it's allocated */ 6244 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6245 6246 pgdat->node_id = nid; 6247 pgdat->node_start_pfn = node_start_pfn; 6248 pgdat->per_cpu_nodestats = NULL; 6249#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6250 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6251 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6252 (u64)start_pfn << PAGE_SHIFT, 6253 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6254#else 6255 start_pfn = node_start_pfn; 6256#endif 6257 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6258 zones_size, zholes_size); 6259 6260 alloc_node_mem_map(pgdat); 6261#ifdef CONFIG_FLAT_NODE_MEM_MAP 6262 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 6263 nid, (unsigned long)pgdat, 6264 (unsigned long)pgdat->node_mem_map); 6265#endif 6266 6267 reset_deferred_meminit(pgdat); 6268 free_area_init_core(pgdat); 6269} 6270 6271#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6272 6273#if MAX_NUMNODES > 1 6274/* 6275 * Figure out the number of possible node ids. 6276 */ 6277void __init setup_nr_node_ids(void) 6278{ 6279 unsigned int highest; 6280 6281 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6282 nr_node_ids = highest + 1; 6283} 6284#endif 6285 6286/** 6287 * node_map_pfn_alignment - determine the maximum internode alignment 6288 * 6289 * This function should be called after node map is populated and sorted. 6290 * It calculates the maximum power of two alignment which can distinguish 6291 * all the nodes. 6292 * 6293 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6294 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6295 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6296 * shifted, 1GiB is enough and this function will indicate so. 6297 * 6298 * This is used to test whether pfn -> nid mapping of the chosen memory 6299 * model has fine enough granularity to avoid incorrect mapping for the 6300 * populated node map. 6301 * 6302 * Returns the determined alignment in pfn's. 0 if there is no alignment 6303 * requirement (single node). 6304 */ 6305unsigned long __init node_map_pfn_alignment(void) 6306{ 6307 unsigned long accl_mask = 0, last_end = 0; 6308 unsigned long start, end, mask; 6309 int last_nid = -1; 6310 int i, nid; 6311 6312 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6313 if (!start || last_nid < 0 || last_nid == nid) { 6314 last_nid = nid; 6315 last_end = end; 6316 continue; 6317 } 6318 6319 /* 6320 * Start with a mask granular enough to pin-point to the 6321 * start pfn and tick off bits one-by-one until it becomes 6322 * too coarse to separate the current node from the last. 6323 */ 6324 mask = ~((1 << __ffs(start)) - 1); 6325 while (mask && last_end <= (start & (mask << 1))) 6326 mask <<= 1; 6327 6328 /* accumulate all internode masks */ 6329 accl_mask |= mask; 6330 } 6331 6332 /* convert mask to number of pages */ 6333 return ~accl_mask + 1; 6334} 6335 6336/* Find the lowest pfn for a node */ 6337static unsigned long __init find_min_pfn_for_node(int nid) 6338{ 6339 unsigned long min_pfn = ULONG_MAX; 6340 unsigned long start_pfn; 6341 int i; 6342 6343 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6344 min_pfn = min(min_pfn, start_pfn); 6345 6346 if (min_pfn == ULONG_MAX) { 6347 pr_warn("Could not find start_pfn for node %d\n", nid); 6348 return 0; 6349 } 6350 6351 return min_pfn; 6352} 6353 6354/** 6355 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6356 * 6357 * It returns the minimum PFN based on information provided via 6358 * memblock_set_node(). 6359 */ 6360unsigned long __init find_min_pfn_with_active_regions(void) 6361{ 6362 return find_min_pfn_for_node(MAX_NUMNODES); 6363} 6364 6365/* 6366 * early_calculate_totalpages() 6367 * Sum pages in active regions for movable zone. 6368 * Populate N_MEMORY for calculating usable_nodes. 6369 */ 6370static unsigned long __init early_calculate_totalpages(void) 6371{ 6372 unsigned long totalpages = 0; 6373 unsigned long start_pfn, end_pfn; 6374 int i, nid; 6375 6376 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6377 unsigned long pages = end_pfn - start_pfn; 6378 6379 totalpages += pages; 6380 if (pages) 6381 node_set_state(nid, N_MEMORY); 6382 } 6383 return totalpages; 6384} 6385 6386/* 6387 * Find the PFN the Movable zone begins in each node. Kernel memory 6388 * is spread evenly between nodes as long as the nodes have enough 6389 * memory. When they don't, some nodes will have more kernelcore than 6390 * others 6391 */ 6392static void __init find_zone_movable_pfns_for_nodes(void) 6393{ 6394 int i, nid; 6395 unsigned long usable_startpfn; 6396 unsigned long kernelcore_node, kernelcore_remaining; 6397 /* save the state before borrow the nodemask */ 6398 nodemask_t saved_node_state = node_states[N_MEMORY]; 6399 unsigned long totalpages = early_calculate_totalpages(); 6400 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6401 struct memblock_region *r; 6402 6403 /* Need to find movable_zone earlier when movable_node is specified. */ 6404 find_usable_zone_for_movable(); 6405 6406 /* 6407 * If movable_node is specified, ignore kernelcore and movablecore 6408 * options. 6409 */ 6410 if (movable_node_is_enabled()) { 6411 for_each_memblock(memory, r) { 6412 if (!memblock_is_hotpluggable(r)) 6413 continue; 6414 6415 nid = r->nid; 6416 6417 usable_startpfn = PFN_DOWN(r->base); 6418 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6419 min(usable_startpfn, zone_movable_pfn[nid]) : 6420 usable_startpfn; 6421 } 6422 6423 goto out2; 6424 } 6425 6426 /* 6427 * If kernelcore=mirror is specified, ignore movablecore option 6428 */ 6429 if (mirrored_kernelcore) { 6430 bool mem_below_4gb_not_mirrored = false; 6431 6432 for_each_memblock(memory, r) { 6433 if (memblock_is_mirror(r)) 6434 continue; 6435 6436 nid = r->nid; 6437 6438 usable_startpfn = memblock_region_memory_base_pfn(r); 6439 6440 if (usable_startpfn < 0x100000) { 6441 mem_below_4gb_not_mirrored = true; 6442 continue; 6443 } 6444 6445 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6446 min(usable_startpfn, zone_movable_pfn[nid]) : 6447 usable_startpfn; 6448 } 6449 6450 if (mem_below_4gb_not_mirrored) 6451 pr_warn("This configuration results in unmirrored kernel memory."); 6452 6453 goto out2; 6454 } 6455 6456 /* 6457 * If movablecore=nn[KMG] was specified, calculate what size of 6458 * kernelcore that corresponds so that memory usable for 6459 * any allocation type is evenly spread. If both kernelcore 6460 * and movablecore are specified, then the value of kernelcore 6461 * will be used for required_kernelcore if it's greater than 6462 * what movablecore would have allowed. 6463 */ 6464 if (required_movablecore) { 6465 unsigned long corepages; 6466 6467 /* 6468 * Round-up so that ZONE_MOVABLE is at least as large as what 6469 * was requested by the user 6470 */ 6471 required_movablecore = 6472 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6473 required_movablecore = min(totalpages, required_movablecore); 6474 corepages = totalpages - required_movablecore; 6475 6476 required_kernelcore = max(required_kernelcore, corepages); 6477 } 6478 6479 /* 6480 * If kernelcore was not specified or kernelcore size is larger 6481 * than totalpages, there is no ZONE_MOVABLE. 6482 */ 6483 if (!required_kernelcore || required_kernelcore >= totalpages) 6484 goto out; 6485 6486 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6487 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6488 6489restart: 6490 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6491 kernelcore_node = required_kernelcore / usable_nodes; 6492 for_each_node_state(nid, N_MEMORY) { 6493 unsigned long start_pfn, end_pfn; 6494 6495 /* 6496 * Recalculate kernelcore_node if the division per node 6497 * now exceeds what is necessary to satisfy the requested 6498 * amount of memory for the kernel 6499 */ 6500 if (required_kernelcore < kernelcore_node) 6501 kernelcore_node = required_kernelcore / usable_nodes; 6502 6503 /* 6504 * As the map is walked, we track how much memory is usable 6505 * by the kernel using kernelcore_remaining. When it is 6506 * 0, the rest of the node is usable by ZONE_MOVABLE 6507 */ 6508 kernelcore_remaining = kernelcore_node; 6509 6510 /* Go through each range of PFNs within this node */ 6511 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6512 unsigned long size_pages; 6513 6514 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6515 if (start_pfn >= end_pfn) 6516 continue; 6517 6518 /* Account for what is only usable for kernelcore */ 6519 if (start_pfn < usable_startpfn) { 6520 unsigned long kernel_pages; 6521 kernel_pages = min(end_pfn, usable_startpfn) 6522 - start_pfn; 6523 6524 kernelcore_remaining -= min(kernel_pages, 6525 kernelcore_remaining); 6526 required_kernelcore -= min(kernel_pages, 6527 required_kernelcore); 6528 6529 /* Continue if range is now fully accounted */ 6530 if (end_pfn <= usable_startpfn) { 6531 6532 /* 6533 * Push zone_movable_pfn to the end so 6534 * that if we have to rebalance 6535 * kernelcore across nodes, we will 6536 * not double account here 6537 */ 6538 zone_movable_pfn[nid] = end_pfn; 6539 continue; 6540 } 6541 start_pfn = usable_startpfn; 6542 } 6543 6544 /* 6545 * The usable PFN range for ZONE_MOVABLE is from 6546 * start_pfn->end_pfn. Calculate size_pages as the 6547 * number of pages used as kernelcore 6548 */ 6549 size_pages = end_pfn - start_pfn; 6550 if (size_pages > kernelcore_remaining) 6551 size_pages = kernelcore_remaining; 6552 zone_movable_pfn[nid] = start_pfn + size_pages; 6553 6554 /* 6555 * Some kernelcore has been met, update counts and 6556 * break if the kernelcore for this node has been 6557 * satisfied 6558 */ 6559 required_kernelcore -= min(required_kernelcore, 6560 size_pages); 6561 kernelcore_remaining -= size_pages; 6562 if (!kernelcore_remaining) 6563 break; 6564 } 6565 } 6566 6567 /* 6568 * If there is still required_kernelcore, we do another pass with one 6569 * less node in the count. This will push zone_movable_pfn[nid] further 6570 * along on the nodes that still have memory until kernelcore is 6571 * satisfied 6572 */ 6573 usable_nodes--; 6574 if (usable_nodes && required_kernelcore > usable_nodes) 6575 goto restart; 6576 6577out2: 6578 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6579 for (nid = 0; nid < MAX_NUMNODES; nid++) 6580 zone_movable_pfn[nid] = 6581 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6582 6583out: 6584 /* restore the node_state */ 6585 node_states[N_MEMORY] = saved_node_state; 6586} 6587 6588/* Any regular or high memory on that node ? */ 6589static void check_for_memory(pg_data_t *pgdat, int nid) 6590{ 6591 enum zone_type zone_type; 6592 6593 if (N_MEMORY == N_NORMAL_MEMORY) 6594 return; 6595 6596 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6597 struct zone *zone = &pgdat->node_zones[zone_type]; 6598 if (populated_zone(zone)) { 6599 node_set_state(nid, N_HIGH_MEMORY); 6600 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6601 zone_type <= ZONE_NORMAL) 6602 node_set_state(nid, N_NORMAL_MEMORY); 6603 break; 6604 } 6605 } 6606} 6607 6608/** 6609 * free_area_init_nodes - Initialise all pg_data_t and zone data 6610 * @max_zone_pfn: an array of max PFNs for each zone 6611 * 6612 * This will call free_area_init_node() for each active node in the system. 6613 * Using the page ranges provided by memblock_set_node(), the size of each 6614 * zone in each node and their holes is calculated. If the maximum PFN 6615 * between two adjacent zones match, it is assumed that the zone is empty. 6616 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6617 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6618 * starts where the previous one ended. For example, ZONE_DMA32 starts 6619 * at arch_max_dma_pfn. 6620 */ 6621void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6622{ 6623 unsigned long start_pfn, end_pfn; 6624 int i, nid; 6625 6626 /* Record where the zone boundaries are */ 6627 memset(arch_zone_lowest_possible_pfn, 0, 6628 sizeof(arch_zone_lowest_possible_pfn)); 6629 memset(arch_zone_highest_possible_pfn, 0, 6630 sizeof(arch_zone_highest_possible_pfn)); 6631 6632 start_pfn = find_min_pfn_with_active_regions(); 6633 6634 for (i = 0; i < MAX_NR_ZONES; i++) { 6635 if (i == ZONE_MOVABLE) 6636 continue; 6637 6638 end_pfn = max(max_zone_pfn[i], start_pfn); 6639 arch_zone_lowest_possible_pfn[i] = start_pfn; 6640 arch_zone_highest_possible_pfn[i] = end_pfn; 6641 6642 start_pfn = end_pfn; 6643 } 6644 6645 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6646 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6647 find_zone_movable_pfns_for_nodes(); 6648 6649 /* Print out the zone ranges */ 6650 pr_info("Zone ranges:\n"); 6651 for (i = 0; i < MAX_NR_ZONES; i++) { 6652 if (i == ZONE_MOVABLE) 6653 continue; 6654 pr_info(" %-8s ", zone_names[i]); 6655 if (arch_zone_lowest_possible_pfn[i] == 6656 arch_zone_highest_possible_pfn[i]) 6657 pr_cont("empty\n"); 6658 else 6659 pr_cont("[mem %#018Lx-%#018Lx]\n", 6660 (u64)arch_zone_lowest_possible_pfn[i] 6661 << PAGE_SHIFT, 6662 ((u64)arch_zone_highest_possible_pfn[i] 6663 << PAGE_SHIFT) - 1); 6664 } 6665 6666 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6667 pr_info("Movable zone start for each node\n"); 6668 for (i = 0; i < MAX_NUMNODES; i++) { 6669 if (zone_movable_pfn[i]) 6670 pr_info(" Node %d: %#018Lx\n", i, 6671 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6672 } 6673 6674 /* Print out the early node map */ 6675 pr_info("Early memory node ranges\n"); 6676 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6677 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6678 (u64)start_pfn << PAGE_SHIFT, 6679 ((u64)end_pfn << PAGE_SHIFT) - 1); 6680 6681 /* Initialise every node */ 6682 mminit_verify_pageflags_layout(); 6683 setup_nr_node_ids(); 6684 for_each_online_node(nid) { 6685 pg_data_t *pgdat = NODE_DATA(nid); 6686 free_area_init_node(nid, NULL, 6687 find_min_pfn_for_node(nid), NULL); 6688 6689 /* Any memory on that node */ 6690 if (pgdat->node_present_pages) 6691 node_set_state(nid, N_MEMORY); 6692 check_for_memory(pgdat, nid); 6693 } 6694} 6695 6696static int __init cmdline_parse_core(char *p, unsigned long *core) 6697{ 6698 unsigned long long coremem; 6699 if (!p) 6700 return -EINVAL; 6701 6702 coremem = memparse(p, &p); 6703 *core = coremem >> PAGE_SHIFT; 6704 6705 /* Paranoid check that UL is enough for the coremem value */ 6706 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6707 6708 return 0; 6709} 6710 6711/* 6712 * kernelcore=size sets the amount of memory for use for allocations that 6713 * cannot be reclaimed or migrated. 6714 */ 6715static int __init cmdline_parse_kernelcore(char *p) 6716{ 6717 /* parse kernelcore=mirror */ 6718 if (parse_option_str(p, "mirror")) { 6719 mirrored_kernelcore = true; 6720 return 0; 6721 } 6722 6723 return cmdline_parse_core(p, &required_kernelcore); 6724} 6725 6726/* 6727 * movablecore=size sets the amount of memory for use for allocations that 6728 * can be reclaimed or migrated. 6729 */ 6730static int __init cmdline_parse_movablecore(char *p) 6731{ 6732 return cmdline_parse_core(p, &required_movablecore); 6733} 6734 6735early_param("kernelcore", cmdline_parse_kernelcore); 6736early_param("movablecore", cmdline_parse_movablecore); 6737 6738#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6739 6740void adjust_managed_page_count(struct page *page, long count) 6741{ 6742 spin_lock(&managed_page_count_lock); 6743 page_zone(page)->managed_pages += count; 6744 totalram_pages += count; 6745#ifdef CONFIG_HIGHMEM 6746 if (PageHighMem(page)) 6747 totalhigh_pages += count; 6748#endif 6749 spin_unlock(&managed_page_count_lock); 6750} 6751EXPORT_SYMBOL(adjust_managed_page_count); 6752 6753unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6754{ 6755 void *pos; 6756 unsigned long pages = 0; 6757 6758 start = (void *)PAGE_ALIGN((unsigned long)start); 6759 end = (void *)((unsigned long)end & PAGE_MASK); 6760 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6761 if ((unsigned int)poison <= 0xFF) 6762 memset(pos, poison, PAGE_SIZE); 6763 free_reserved_page(virt_to_page(pos)); 6764 } 6765 6766 if (pages && s) 6767 pr_info("Freeing %s memory: %ldK\n", 6768 s, pages << (PAGE_SHIFT - 10)); 6769 6770 return pages; 6771} 6772EXPORT_SYMBOL(free_reserved_area); 6773 6774#ifdef CONFIG_HIGHMEM 6775void free_highmem_page(struct page *page) 6776{ 6777 __free_reserved_page(page); 6778 totalram_pages++; 6779 page_zone(page)->managed_pages++; 6780 totalhigh_pages++; 6781} 6782#endif 6783 6784 6785void __init mem_init_print_info(const char *str) 6786{ 6787 unsigned long physpages, codesize, datasize, rosize, bss_size; 6788 unsigned long init_code_size, init_data_size; 6789 6790 physpages = get_num_physpages(); 6791 codesize = _etext - _stext; 6792 datasize = _edata - _sdata; 6793 rosize = __end_rodata - __start_rodata; 6794 bss_size = __bss_stop - __bss_start; 6795 init_data_size = __init_end - __init_begin; 6796 init_code_size = _einittext - _sinittext; 6797 6798 /* 6799 * Detect special cases and adjust section sizes accordingly: 6800 * 1) .init.* may be embedded into .data sections 6801 * 2) .init.text.* may be out of [__init_begin, __init_end], 6802 * please refer to arch/tile/kernel/vmlinux.lds.S. 6803 * 3) .rodata.* may be embedded into .text or .data sections. 6804 */ 6805#define adj_init_size(start, end, size, pos, adj) \ 6806 do { \ 6807 if (start <= pos && pos < end && size > adj) \ 6808 size -= adj; \ 6809 } while (0) 6810 6811 adj_init_size(__init_begin, __init_end, init_data_size, 6812 _sinittext, init_code_size); 6813 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6814 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6815 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6816 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6817 6818#undef adj_init_size 6819 6820 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6821#ifdef CONFIG_HIGHMEM 6822 ", %luK highmem" 6823#endif 6824 "%s%s)\n", 6825 nr_free_pages() << (PAGE_SHIFT - 10), 6826 physpages << (PAGE_SHIFT - 10), 6827 codesize >> 10, datasize >> 10, rosize >> 10, 6828 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6829 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6830 totalcma_pages << (PAGE_SHIFT - 10), 6831#ifdef CONFIG_HIGHMEM 6832 totalhigh_pages << (PAGE_SHIFT - 10), 6833#endif 6834 str ? ", " : "", str ? str : ""); 6835} 6836 6837/** 6838 * set_dma_reserve - set the specified number of pages reserved in the first zone 6839 * @new_dma_reserve: The number of pages to mark reserved 6840 * 6841 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6842 * In the DMA zone, a significant percentage may be consumed by kernel image 6843 * and other unfreeable allocations which can skew the watermarks badly. This 6844 * function may optionally be used to account for unfreeable pages in the 6845 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6846 * smaller per-cpu batchsize. 6847 */ 6848void __init set_dma_reserve(unsigned long new_dma_reserve) 6849{ 6850 dma_reserve = new_dma_reserve; 6851} 6852 6853void __init free_area_init(unsigned long *zones_size) 6854{ 6855 free_area_init_node(0, zones_size, 6856 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6857} 6858 6859static int page_alloc_cpu_dead(unsigned int cpu) 6860{ 6861 6862 lru_add_drain_cpu(cpu); 6863 drain_pages(cpu); 6864 6865 /* 6866 * Spill the event counters of the dead processor 6867 * into the current processors event counters. 6868 * This artificially elevates the count of the current 6869 * processor. 6870 */ 6871 vm_events_fold_cpu(cpu); 6872 6873 /* 6874 * Zero the differential counters of the dead processor 6875 * so that the vm statistics are consistent. 6876 * 6877 * This is only okay since the processor is dead and cannot 6878 * race with what we are doing. 6879 */ 6880 cpu_vm_stats_fold(cpu); 6881 return 0; 6882} 6883 6884void __init page_alloc_init(void) 6885{ 6886 int ret; 6887 6888 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 6889 "mm/page_alloc:dead", NULL, 6890 page_alloc_cpu_dead); 6891 WARN_ON(ret < 0); 6892} 6893 6894/* 6895 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6896 * or min_free_kbytes changes. 6897 */ 6898static void calculate_totalreserve_pages(void) 6899{ 6900 struct pglist_data *pgdat; 6901 unsigned long reserve_pages = 0; 6902 enum zone_type i, j; 6903 6904 for_each_online_pgdat(pgdat) { 6905 6906 pgdat->totalreserve_pages = 0; 6907 6908 for (i = 0; i < MAX_NR_ZONES; i++) { 6909 struct zone *zone = pgdat->node_zones + i; 6910 long max = 0; 6911 6912 /* Find valid and maximum lowmem_reserve in the zone */ 6913 for (j = i; j < MAX_NR_ZONES; j++) { 6914 if (zone->lowmem_reserve[j] > max) 6915 max = zone->lowmem_reserve[j]; 6916 } 6917 6918 /* we treat the high watermark as reserved pages. */ 6919 max += high_wmark_pages(zone); 6920 6921 if (max > zone->managed_pages) 6922 max = zone->managed_pages; 6923 6924 pgdat->totalreserve_pages += max; 6925 6926 reserve_pages += max; 6927 } 6928 } 6929 totalreserve_pages = reserve_pages; 6930} 6931 6932/* 6933 * setup_per_zone_lowmem_reserve - called whenever 6934 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6935 * has a correct pages reserved value, so an adequate number of 6936 * pages are left in the zone after a successful __alloc_pages(). 6937 */ 6938static void setup_per_zone_lowmem_reserve(void) 6939{ 6940 struct pglist_data *pgdat; 6941 enum zone_type j, idx; 6942 6943 for_each_online_pgdat(pgdat) { 6944 for (j = 0; j < MAX_NR_ZONES; j++) { 6945 struct zone *zone = pgdat->node_zones + j; 6946 unsigned long managed_pages = zone->managed_pages; 6947 6948 zone->lowmem_reserve[j] = 0; 6949 6950 idx = j; 6951 while (idx) { 6952 struct zone *lower_zone; 6953 6954 idx--; 6955 6956 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6957 sysctl_lowmem_reserve_ratio[idx] = 1; 6958 6959 lower_zone = pgdat->node_zones + idx; 6960 lower_zone->lowmem_reserve[j] = managed_pages / 6961 sysctl_lowmem_reserve_ratio[idx]; 6962 managed_pages += lower_zone->managed_pages; 6963 } 6964 } 6965 } 6966 6967 /* update totalreserve_pages */ 6968 calculate_totalreserve_pages(); 6969} 6970 6971static void __setup_per_zone_wmarks(void) 6972{ 6973 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6974 unsigned long lowmem_pages = 0; 6975 struct zone *zone; 6976 unsigned long flags; 6977 6978 /* Calculate total number of !ZONE_HIGHMEM pages */ 6979 for_each_zone(zone) { 6980 if (!is_highmem(zone)) 6981 lowmem_pages += zone->managed_pages; 6982 } 6983 6984 for_each_zone(zone) { 6985 u64 tmp; 6986 6987 spin_lock_irqsave(&zone->lock, flags); 6988 tmp = (u64)pages_min * zone->managed_pages; 6989 do_div(tmp, lowmem_pages); 6990 if (is_highmem(zone)) { 6991 /* 6992 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6993 * need highmem pages, so cap pages_min to a small 6994 * value here. 6995 * 6996 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6997 * deltas control asynch page reclaim, and so should 6998 * not be capped for highmem. 6999 */ 7000 unsigned long min_pages; 7001 7002 min_pages = zone->managed_pages / 1024; 7003 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7004 zone->watermark[WMARK_MIN] = min_pages; 7005 } else { 7006 /* 7007 * If it's a lowmem zone, reserve a number of pages 7008 * proportionate to the zone's size. 7009 */ 7010 zone->watermark[WMARK_MIN] = tmp; 7011 } 7012 7013 /* 7014 * Set the kswapd watermarks distance according to the 7015 * scale factor in proportion to available memory, but 7016 * ensure a minimum size on small systems. 7017 */ 7018 tmp = max_t(u64, tmp >> 2, 7019 mult_frac(zone->managed_pages, 7020 watermark_scale_factor, 10000)); 7021 7022 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7023 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7024 7025 spin_unlock_irqrestore(&zone->lock, flags); 7026 } 7027 7028 /* update totalreserve_pages */ 7029 calculate_totalreserve_pages(); 7030} 7031 7032/** 7033 * setup_per_zone_wmarks - called when min_free_kbytes changes 7034 * or when memory is hot-{added|removed} 7035 * 7036 * Ensures that the watermark[min,low,high] values for each zone are set 7037 * correctly with respect to min_free_kbytes. 7038 */ 7039void setup_per_zone_wmarks(void) 7040{ 7041 mutex_lock(&zonelists_mutex); 7042 __setup_per_zone_wmarks(); 7043 mutex_unlock(&zonelists_mutex); 7044} 7045 7046/* 7047 * Initialise min_free_kbytes. 7048 * 7049 * For small machines we want it small (128k min). For large machines 7050 * we want it large (64MB max). But it is not linear, because network 7051 * bandwidth does not increase linearly with machine size. We use 7052 * 7053 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7054 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7055 * 7056 * which yields 7057 * 7058 * 16MB: 512k 7059 * 32MB: 724k 7060 * 64MB: 1024k 7061 * 128MB: 1448k 7062 * 256MB: 2048k 7063 * 512MB: 2896k 7064 * 1024MB: 4096k 7065 * 2048MB: 5792k 7066 * 4096MB: 8192k 7067 * 8192MB: 11584k 7068 * 16384MB: 16384k 7069 */ 7070int __meminit init_per_zone_wmark_min(void) 7071{ 7072 unsigned long lowmem_kbytes; 7073 int new_min_free_kbytes; 7074 7075 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7076 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7077 7078 if (new_min_free_kbytes > user_min_free_kbytes) { 7079 min_free_kbytes = new_min_free_kbytes; 7080 if (min_free_kbytes < 128) 7081 min_free_kbytes = 128; 7082 if (min_free_kbytes > 65536) 7083 min_free_kbytes = 65536; 7084 } else { 7085 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7086 new_min_free_kbytes, user_min_free_kbytes); 7087 } 7088 setup_per_zone_wmarks(); 7089 refresh_zone_stat_thresholds(); 7090 setup_per_zone_lowmem_reserve(); 7091 7092#ifdef CONFIG_NUMA 7093 setup_min_unmapped_ratio(); 7094 setup_min_slab_ratio(); 7095#endif 7096 7097 return 0; 7098} 7099core_initcall(init_per_zone_wmark_min) 7100 7101/* 7102 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7103 * that we can call two helper functions whenever min_free_kbytes 7104 * changes. 7105 */ 7106int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7107 void __user *buffer, size_t *length, loff_t *ppos) 7108{ 7109 int rc; 7110 7111 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7112 if (rc) 7113 return rc; 7114 7115 if (write) { 7116 user_min_free_kbytes = min_free_kbytes; 7117 setup_per_zone_wmarks(); 7118 } 7119 return 0; 7120} 7121 7122int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7123 void __user *buffer, size_t *length, loff_t *ppos) 7124{ 7125 int rc; 7126 7127 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7128 if (rc) 7129 return rc; 7130 7131 if (write) 7132 setup_per_zone_wmarks(); 7133 7134 return 0; 7135} 7136 7137#ifdef CONFIG_NUMA 7138static void setup_min_unmapped_ratio(void) 7139{ 7140 pg_data_t *pgdat; 7141 struct zone *zone; 7142 7143 for_each_online_pgdat(pgdat) 7144 pgdat->min_unmapped_pages = 0; 7145 7146 for_each_zone(zone) 7147 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7148 sysctl_min_unmapped_ratio) / 100; 7149} 7150 7151 7152int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7153 void __user *buffer, size_t *length, loff_t *ppos) 7154{ 7155 int rc; 7156 7157 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7158 if (rc) 7159 return rc; 7160 7161 setup_min_unmapped_ratio(); 7162 7163 return 0; 7164} 7165 7166static void setup_min_slab_ratio(void) 7167{ 7168 pg_data_t *pgdat; 7169 struct zone *zone; 7170 7171 for_each_online_pgdat(pgdat) 7172 pgdat->min_slab_pages = 0; 7173 7174 for_each_zone(zone) 7175 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7176 sysctl_min_slab_ratio) / 100; 7177} 7178 7179int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7180 void __user *buffer, size_t *length, loff_t *ppos) 7181{ 7182 int rc; 7183 7184 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7185 if (rc) 7186 return rc; 7187 7188 setup_min_slab_ratio(); 7189 7190 return 0; 7191} 7192#endif 7193 7194/* 7195 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7196 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7197 * whenever sysctl_lowmem_reserve_ratio changes. 7198 * 7199 * The reserve ratio obviously has absolutely no relation with the 7200 * minimum watermarks. The lowmem reserve ratio can only make sense 7201 * if in function of the boot time zone sizes. 7202 */ 7203int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7204 void __user *buffer, size_t *length, loff_t *ppos) 7205{ 7206 proc_dointvec_minmax(table, write, buffer, length, ppos); 7207 setup_per_zone_lowmem_reserve(); 7208 return 0; 7209} 7210 7211/* 7212 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7213 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7214 * pagelist can have before it gets flushed back to buddy allocator. 7215 */ 7216int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7217 void __user *buffer, size_t *length, loff_t *ppos) 7218{ 7219 struct zone *zone; 7220 int old_percpu_pagelist_fraction; 7221 int ret; 7222 7223 mutex_lock(&pcp_batch_high_lock); 7224 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7225 7226 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7227 if (!write || ret < 0) 7228 goto out; 7229 7230 /* Sanity checking to avoid pcp imbalance */ 7231 if (percpu_pagelist_fraction && 7232 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7233 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7234 ret = -EINVAL; 7235 goto out; 7236 } 7237 7238 /* No change? */ 7239 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7240 goto out; 7241 7242 for_each_populated_zone(zone) { 7243 unsigned int cpu; 7244 7245 for_each_possible_cpu(cpu) 7246 pageset_set_high_and_batch(zone, 7247 per_cpu_ptr(zone->pageset, cpu)); 7248 } 7249out: 7250 mutex_unlock(&pcp_batch_high_lock); 7251 return ret; 7252} 7253 7254#ifdef CONFIG_NUMA 7255int hashdist = HASHDIST_DEFAULT; 7256 7257static int __init set_hashdist(char *str) 7258{ 7259 if (!str) 7260 return 0; 7261 hashdist = simple_strtoul(str, &str, 0); 7262 return 1; 7263} 7264__setup("hashdist=", set_hashdist); 7265#endif 7266 7267#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7268/* 7269 * Returns the number of pages that arch has reserved but 7270 * is not known to alloc_large_system_hash(). 7271 */ 7272static unsigned long __init arch_reserved_kernel_pages(void) 7273{ 7274 return 0; 7275} 7276#endif 7277 7278/* 7279 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7280 * machines. As memory size is increased the scale is also increased but at 7281 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7282 * quadruples the scale is increased by one, which means the size of hash table 7283 * only doubles, instead of quadrupling as well. 7284 * Because 32-bit systems cannot have large physical memory, where this scaling 7285 * makes sense, it is disabled on such platforms. 7286 */ 7287#if __BITS_PER_LONG > 32 7288#define ADAPT_SCALE_BASE (64ul << 30) 7289#define ADAPT_SCALE_SHIFT 2 7290#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7291#endif 7292 7293/* 7294 * allocate a large system hash table from bootmem 7295 * - it is assumed that the hash table must contain an exact power-of-2 7296 * quantity of entries 7297 * - limit is the number of hash buckets, not the total allocation size 7298 */ 7299void *__init alloc_large_system_hash(const char *tablename, 7300 unsigned long bucketsize, 7301 unsigned long numentries, 7302 int scale, 7303 int flags, 7304 unsigned int *_hash_shift, 7305 unsigned int *_hash_mask, 7306 unsigned long low_limit, 7307 unsigned long high_limit) 7308{ 7309 unsigned long long max = high_limit; 7310 unsigned long log2qty, size; 7311 void *table = NULL; 7312 gfp_t gfp_flags; 7313 7314 /* allow the kernel cmdline to have a say */ 7315 if (!numentries) { 7316 /* round applicable memory size up to nearest megabyte */ 7317 numentries = nr_kernel_pages; 7318 numentries -= arch_reserved_kernel_pages(); 7319 7320 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7321 if (PAGE_SHIFT < 20) 7322 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7323 7324#if __BITS_PER_LONG > 32 7325 if (!high_limit) { 7326 unsigned long adapt; 7327 7328 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7329 adapt <<= ADAPT_SCALE_SHIFT) 7330 scale++; 7331 } 7332#endif 7333 7334 /* limit to 1 bucket per 2^scale bytes of low memory */ 7335 if (scale > PAGE_SHIFT) 7336 numentries >>= (scale - PAGE_SHIFT); 7337 else 7338 numentries <<= (PAGE_SHIFT - scale); 7339 7340 /* Make sure we've got at least a 0-order allocation.. */ 7341 if (unlikely(flags & HASH_SMALL)) { 7342 /* Makes no sense without HASH_EARLY */ 7343 WARN_ON(!(flags & HASH_EARLY)); 7344 if (!(numentries >> *_hash_shift)) { 7345 numentries = 1UL << *_hash_shift; 7346 BUG_ON(!numentries); 7347 } 7348 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7349 numentries = PAGE_SIZE / bucketsize; 7350 } 7351 numentries = roundup_pow_of_two(numentries); 7352 7353 /* limit allocation size to 1/16 total memory by default */ 7354 if (max == 0) { 7355 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7356 do_div(max, bucketsize); 7357 } 7358 max = min(max, 0x80000000ULL); 7359 7360 if (numentries < low_limit) 7361 numentries = low_limit; 7362 if (numentries > max) 7363 numentries = max; 7364 7365 log2qty = ilog2(numentries); 7366 7367 /* 7368 * memblock allocator returns zeroed memory already, so HASH_ZERO is 7369 * currently not used when HASH_EARLY is specified. 7370 */ 7371 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7372 do { 7373 size = bucketsize << log2qty; 7374 if (flags & HASH_EARLY) 7375 table = memblock_virt_alloc_nopanic(size, 0); 7376 else if (hashdist) 7377 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7378 else { 7379 /* 7380 * If bucketsize is not a power-of-two, we may free 7381 * some pages at the end of hash table which 7382 * alloc_pages_exact() automatically does 7383 */ 7384 if (get_order(size) < MAX_ORDER) { 7385 table = alloc_pages_exact(size, gfp_flags); 7386 kmemleak_alloc(table, size, 1, gfp_flags); 7387 } 7388 } 7389 } while (!table && size > PAGE_SIZE && --log2qty); 7390 7391 if (!table) 7392 panic("Failed to allocate %s hash table\n", tablename); 7393 7394 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7395 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7396 7397 if (_hash_shift) 7398 *_hash_shift = log2qty; 7399 if (_hash_mask) 7400 *_hash_mask = (1 << log2qty) - 1; 7401 7402 return table; 7403} 7404 7405/* 7406 * This function checks whether pageblock includes unmovable pages or not. 7407 * If @count is not zero, it is okay to include less @count unmovable pages 7408 * 7409 * PageLRU check without isolation or lru_lock could race so that 7410 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7411 * check without lock_page also may miss some movable non-lru pages at 7412 * race condition. So you can't expect this function should be exact. 7413 */ 7414bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7415 bool skip_hwpoisoned_pages) 7416{ 7417 unsigned long pfn, iter, found; 7418 int mt; 7419 7420 /* 7421 * For avoiding noise data, lru_add_drain_all() should be called 7422 * If ZONE_MOVABLE, the zone never contains unmovable pages 7423 */ 7424 if (zone_idx(zone) == ZONE_MOVABLE) 7425 return false; 7426 mt = get_pageblock_migratetype(page); 7427 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 7428 return false; 7429 7430 pfn = page_to_pfn(page); 7431 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7432 unsigned long check = pfn + iter; 7433 7434 if (!pfn_valid_within(check)) 7435 continue; 7436 7437 page = pfn_to_page(check); 7438 7439 /* 7440 * Hugepages are not in LRU lists, but they're movable. 7441 * We need not scan over tail pages bacause we don't 7442 * handle each tail page individually in migration. 7443 */ 7444 if (PageHuge(page)) { 7445 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7446 continue; 7447 } 7448 7449 /* 7450 * We can't use page_count without pin a page 7451 * because another CPU can free compound page. 7452 * This check already skips compound tails of THP 7453 * because their page->_refcount is zero at all time. 7454 */ 7455 if (!page_ref_count(page)) { 7456 if (PageBuddy(page)) 7457 iter += (1 << page_order(page)) - 1; 7458 continue; 7459 } 7460 7461 /* 7462 * The HWPoisoned page may be not in buddy system, and 7463 * page_count() is not 0. 7464 */ 7465 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7466 continue; 7467 7468 if (__PageMovable(page)) 7469 continue; 7470 7471 if (!PageLRU(page)) 7472 found++; 7473 /* 7474 * If there are RECLAIMABLE pages, we need to check 7475 * it. But now, memory offline itself doesn't call 7476 * shrink_node_slabs() and it still to be fixed. 7477 */ 7478 /* 7479 * If the page is not RAM, page_count()should be 0. 7480 * we don't need more check. This is an _used_ not-movable page. 7481 * 7482 * The problematic thing here is PG_reserved pages. PG_reserved 7483 * is set to both of a memory hole page and a _used_ kernel 7484 * page at boot. 7485 */ 7486 if (found > count) 7487 return true; 7488 } 7489 return false; 7490} 7491 7492bool is_pageblock_removable_nolock(struct page *page) 7493{ 7494 struct zone *zone; 7495 unsigned long pfn; 7496 7497 /* 7498 * We have to be careful here because we are iterating over memory 7499 * sections which are not zone aware so we might end up outside of 7500 * the zone but still within the section. 7501 * We have to take care about the node as well. If the node is offline 7502 * its NODE_DATA will be NULL - see page_zone. 7503 */ 7504 if (!node_online(page_to_nid(page))) 7505 return false; 7506 7507 zone = page_zone(page); 7508 pfn = page_to_pfn(page); 7509 if (!zone_spans_pfn(zone, pfn)) 7510 return false; 7511 7512 return !has_unmovable_pages(zone, page, 0, true); 7513} 7514 7515#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7516 7517static unsigned long pfn_max_align_down(unsigned long pfn) 7518{ 7519 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7520 pageblock_nr_pages) - 1); 7521} 7522 7523static unsigned long pfn_max_align_up(unsigned long pfn) 7524{ 7525 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7526 pageblock_nr_pages)); 7527} 7528 7529/* [start, end) must belong to a single zone. */ 7530static int __alloc_contig_migrate_range(struct compact_control *cc, 7531 unsigned long start, unsigned long end) 7532{ 7533 /* This function is based on compact_zone() from compaction.c. */ 7534 unsigned long nr_reclaimed; 7535 unsigned long pfn = start; 7536 unsigned int tries = 0; 7537 int ret = 0; 7538 7539 migrate_prep(); 7540 7541 while (pfn < end || !list_empty(&cc->migratepages)) { 7542 if (fatal_signal_pending(current)) { 7543 ret = -EINTR; 7544 break; 7545 } 7546 7547 if (list_empty(&cc->migratepages)) { 7548 cc->nr_migratepages = 0; 7549 pfn = isolate_migratepages_range(cc, pfn, end); 7550 if (!pfn) { 7551 ret = -EINTR; 7552 break; 7553 } 7554 tries = 0; 7555 } else if (++tries == 5) { 7556 ret = ret < 0 ? ret : -EBUSY; 7557 break; 7558 } 7559 7560 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7561 &cc->migratepages); 7562 cc->nr_migratepages -= nr_reclaimed; 7563 7564 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7565 NULL, 0, cc->mode, MR_CMA); 7566 } 7567 if (ret < 0) { 7568 putback_movable_pages(&cc->migratepages); 7569 return ret; 7570 } 7571 return 0; 7572} 7573 7574/** 7575 * alloc_contig_range() -- tries to allocate given range of pages 7576 * @start: start PFN to allocate 7577 * @end: one-past-the-last PFN to allocate 7578 * @migratetype: migratetype of the underlaying pageblocks (either 7579 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7580 * in range must have the same migratetype and it must 7581 * be either of the two. 7582 * @gfp_mask: GFP mask to use during compaction 7583 * 7584 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7585 * aligned, however it's the caller's responsibility to guarantee that 7586 * we are the only thread that changes migrate type of pageblocks the 7587 * pages fall in. 7588 * 7589 * The PFN range must belong to a single zone. 7590 * 7591 * Returns zero on success or negative error code. On success all 7592 * pages which PFN is in [start, end) are allocated for the caller and 7593 * need to be freed with free_contig_range(). 7594 */ 7595int alloc_contig_range(unsigned long start, unsigned long end, 7596 unsigned migratetype, gfp_t gfp_mask) 7597{ 7598 unsigned long outer_start, outer_end; 7599 unsigned int order; 7600 int ret = 0; 7601 7602 struct compact_control cc = { 7603 .nr_migratepages = 0, 7604 .order = -1, 7605 .zone = page_zone(pfn_to_page(start)), 7606 .mode = MIGRATE_SYNC, 7607 .ignore_skip_hint = true, 7608 .gfp_mask = current_gfp_context(gfp_mask), 7609 }; 7610 INIT_LIST_HEAD(&cc.migratepages); 7611 7612 /* 7613 * What we do here is we mark all pageblocks in range as 7614 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7615 * have different sizes, and due to the way page allocator 7616 * work, we align the range to biggest of the two pages so 7617 * that page allocator won't try to merge buddies from 7618 * different pageblocks and change MIGRATE_ISOLATE to some 7619 * other migration type. 7620 * 7621 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7622 * migrate the pages from an unaligned range (ie. pages that 7623 * we are interested in). This will put all the pages in 7624 * range back to page allocator as MIGRATE_ISOLATE. 7625 * 7626 * When this is done, we take the pages in range from page 7627 * allocator removing them from the buddy system. This way 7628 * page allocator will never consider using them. 7629 * 7630 * This lets us mark the pageblocks back as 7631 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7632 * aligned range but not in the unaligned, original range are 7633 * put back to page allocator so that buddy can use them. 7634 */ 7635 7636 ret = start_isolate_page_range(pfn_max_align_down(start), 7637 pfn_max_align_up(end), migratetype, 7638 false); 7639 if (ret) 7640 return ret; 7641 7642 /* 7643 * In case of -EBUSY, we'd like to know which page causes problem. 7644 * So, just fall through. We will check it in test_pages_isolated(). 7645 */ 7646 ret = __alloc_contig_migrate_range(&cc, start, end); 7647 if (ret && ret != -EBUSY) 7648 goto done; 7649 7650 /* 7651 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7652 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7653 * more, all pages in [start, end) are free in page allocator. 7654 * What we are going to do is to allocate all pages from 7655 * [start, end) (that is remove them from page allocator). 7656 * 7657 * The only problem is that pages at the beginning and at the 7658 * end of interesting range may be not aligned with pages that 7659 * page allocator holds, ie. they can be part of higher order 7660 * pages. Because of this, we reserve the bigger range and 7661 * once this is done free the pages we are not interested in. 7662 * 7663 * We don't have to hold zone->lock here because the pages are 7664 * isolated thus they won't get removed from buddy. 7665 */ 7666 7667 lru_add_drain_all(); 7668 drain_all_pages(cc.zone); 7669 7670 order = 0; 7671 outer_start = start; 7672 while (!PageBuddy(pfn_to_page(outer_start))) { 7673 if (++order >= MAX_ORDER) { 7674 outer_start = start; 7675 break; 7676 } 7677 outer_start &= ~0UL << order; 7678 } 7679 7680 if (outer_start != start) { 7681 order = page_order(pfn_to_page(outer_start)); 7682 7683 /* 7684 * outer_start page could be small order buddy page and 7685 * it doesn't include start page. Adjust outer_start 7686 * in this case to report failed page properly 7687 * on tracepoint in test_pages_isolated() 7688 */ 7689 if (outer_start + (1UL << order) <= start) 7690 outer_start = start; 7691 } 7692 7693 /* Make sure the range is really isolated. */ 7694 if (test_pages_isolated(outer_start, end, false)) { 7695 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 7696 __func__, outer_start, end); 7697 ret = -EBUSY; 7698 goto done; 7699 } 7700 7701 /* Grab isolated pages from freelists. */ 7702 outer_end = isolate_freepages_range(&cc, outer_start, end); 7703 if (!outer_end) { 7704 ret = -EBUSY; 7705 goto done; 7706 } 7707 7708 /* Free head and tail (if any) */ 7709 if (start != outer_start) 7710 free_contig_range(outer_start, start - outer_start); 7711 if (end != outer_end) 7712 free_contig_range(end, outer_end - end); 7713 7714done: 7715 undo_isolate_page_range(pfn_max_align_down(start), 7716 pfn_max_align_up(end), migratetype); 7717 return ret; 7718} 7719 7720void free_contig_range(unsigned long pfn, unsigned nr_pages) 7721{ 7722 unsigned int count = 0; 7723 7724 for (; nr_pages--; pfn++) { 7725 struct page *page = pfn_to_page(pfn); 7726 7727 count += page_count(page) != 1; 7728 __free_page(page); 7729 } 7730 WARN(count != 0, "%d pages are still in use!\n", count); 7731} 7732#endif 7733 7734#ifdef CONFIG_MEMORY_HOTPLUG 7735/* 7736 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7737 * page high values need to be recalulated. 7738 */ 7739void __meminit zone_pcp_update(struct zone *zone) 7740{ 7741 unsigned cpu; 7742 mutex_lock(&pcp_batch_high_lock); 7743 for_each_possible_cpu(cpu) 7744 pageset_set_high_and_batch(zone, 7745 per_cpu_ptr(zone->pageset, cpu)); 7746 mutex_unlock(&pcp_batch_high_lock); 7747} 7748#endif 7749 7750void zone_pcp_reset(struct zone *zone) 7751{ 7752 unsigned long flags; 7753 int cpu; 7754 struct per_cpu_pageset *pset; 7755 7756 /* avoid races with drain_pages() */ 7757 local_irq_save(flags); 7758 if (zone->pageset != &boot_pageset) { 7759 for_each_online_cpu(cpu) { 7760 pset = per_cpu_ptr(zone->pageset, cpu); 7761 drain_zonestat(zone, pset); 7762 } 7763 free_percpu(zone->pageset); 7764 zone->pageset = &boot_pageset; 7765 } 7766 local_irq_restore(flags); 7767} 7768 7769#ifdef CONFIG_MEMORY_HOTREMOVE 7770/* 7771 * All pages in the range must be in a single zone and isolated 7772 * before calling this. 7773 */ 7774void 7775__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7776{ 7777 struct page *page; 7778 struct zone *zone; 7779 unsigned int order, i; 7780 unsigned long pfn; 7781 unsigned long flags; 7782 /* find the first valid pfn */ 7783 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7784 if (pfn_valid(pfn)) 7785 break; 7786 if (pfn == end_pfn) 7787 return; 7788 offline_mem_sections(pfn, end_pfn); 7789 zone = page_zone(pfn_to_page(pfn)); 7790 spin_lock_irqsave(&zone->lock, flags); 7791 pfn = start_pfn; 7792 while (pfn < end_pfn) { 7793 if (!pfn_valid(pfn)) { 7794 pfn++; 7795 continue; 7796 } 7797 page = pfn_to_page(pfn); 7798 /* 7799 * The HWPoisoned page may be not in buddy system, and 7800 * page_count() is not 0. 7801 */ 7802 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7803 pfn++; 7804 SetPageReserved(page); 7805 continue; 7806 } 7807 7808 BUG_ON(page_count(page)); 7809 BUG_ON(!PageBuddy(page)); 7810 order = page_order(page); 7811#ifdef CONFIG_DEBUG_VM 7812 pr_info("remove from free list %lx %d %lx\n", 7813 pfn, 1 << order, end_pfn); 7814#endif 7815 list_del(&page->lru); 7816 rmv_page_order(page); 7817 zone->free_area[order].nr_free--; 7818 for (i = 0; i < (1 << order); i++) 7819 SetPageReserved((page+i)); 7820 pfn += (1 << order); 7821 } 7822 spin_unlock_irqrestore(&zone->lock, flags); 7823} 7824#endif 7825 7826bool is_free_buddy_page(struct page *page) 7827{ 7828 struct zone *zone = page_zone(page); 7829 unsigned long pfn = page_to_pfn(page); 7830 unsigned long flags; 7831 unsigned int order; 7832 7833 spin_lock_irqsave(&zone->lock, flags); 7834 for (order = 0; order < MAX_ORDER; order++) { 7835 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7836 7837 if (PageBuddy(page_head) && page_order(page_head) >= order) 7838 break; 7839 } 7840 spin_unlock_irqrestore(&zone->lock, flags); 7841 7842 return order < MAX_ORDER; 7843}