at v4.13 2373 lines 68 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40#ifndef _SOCK_H 41#define _SOCK_H 42 43#include <linux/hardirq.h> 44#include <linux/kernel.h> 45#include <linux/list.h> 46#include <linux/list_nulls.h> 47#include <linux/timer.h> 48#include <linux/cache.h> 49#include <linux/bitops.h> 50#include <linux/lockdep.h> 51#include <linux/netdevice.h> 52#include <linux/skbuff.h> /* struct sk_buff */ 53#include <linux/mm.h> 54#include <linux/security.h> 55#include <linux/slab.h> 56#include <linux/uaccess.h> 57#include <linux/page_counter.h> 58#include <linux/memcontrol.h> 59#include <linux/static_key.h> 60#include <linux/sched.h> 61#include <linux/wait.h> 62#include <linux/cgroup-defs.h> 63 64#include <linux/filter.h> 65#include <linux/rculist_nulls.h> 66#include <linux/poll.h> 67 68#include <linux/atomic.h> 69#include <linux/refcount.h> 70#include <net/dst.h> 71#include <net/checksum.h> 72#include <net/tcp_states.h> 73#include <linux/net_tstamp.h> 74#include <net/smc.h> 75 76/* 77 * This structure really needs to be cleaned up. 78 * Most of it is for TCP, and not used by any of 79 * the other protocols. 80 */ 81 82/* Define this to get the SOCK_DBG debugging facility. */ 83#define SOCK_DEBUGGING 84#ifdef SOCK_DEBUGGING 85#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 86 printk(KERN_DEBUG msg); } while (0) 87#else 88/* Validate arguments and do nothing */ 89static inline __printf(2, 3) 90void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 91{ 92} 93#endif 94 95/* This is the per-socket lock. The spinlock provides a synchronization 96 * between user contexts and software interrupt processing, whereas the 97 * mini-semaphore synchronizes multiple users amongst themselves. 98 */ 99typedef struct { 100 spinlock_t slock; 101 int owned; 102 wait_queue_head_t wq; 103 /* 104 * We express the mutex-alike socket_lock semantics 105 * to the lock validator by explicitly managing 106 * the slock as a lock variant (in addition to 107 * the slock itself): 108 */ 109#ifdef CONFIG_DEBUG_LOCK_ALLOC 110 struct lockdep_map dep_map; 111#endif 112} socket_lock_t; 113 114struct sock; 115struct proto; 116struct net; 117 118typedef __u32 __bitwise __portpair; 119typedef __u64 __bitwise __addrpair; 120 121/** 122 * struct sock_common - minimal network layer representation of sockets 123 * @skc_daddr: Foreign IPv4 addr 124 * @skc_rcv_saddr: Bound local IPv4 addr 125 * @skc_hash: hash value used with various protocol lookup tables 126 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 127 * @skc_dport: placeholder for inet_dport/tw_dport 128 * @skc_num: placeholder for inet_num/tw_num 129 * @skc_family: network address family 130 * @skc_state: Connection state 131 * @skc_reuse: %SO_REUSEADDR setting 132 * @skc_reuseport: %SO_REUSEPORT setting 133 * @skc_bound_dev_if: bound device index if != 0 134 * @skc_bind_node: bind hash linkage for various protocol lookup tables 135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 136 * @skc_prot: protocol handlers inside a network family 137 * @skc_net: reference to the network namespace of this socket 138 * @skc_node: main hash linkage for various protocol lookup tables 139 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 140 * @skc_tx_queue_mapping: tx queue number for this connection 141 * @skc_flags: place holder for sk_flags 142 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 143 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 144 * @skc_incoming_cpu: record/match cpu processing incoming packets 145 * @skc_refcnt: reference count 146 * 147 * This is the minimal network layer representation of sockets, the header 148 * for struct sock and struct inet_timewait_sock. 149 */ 150struct sock_common { 151 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 152 * address on 64bit arches : cf INET_MATCH() 153 */ 154 union { 155 __addrpair skc_addrpair; 156 struct { 157 __be32 skc_daddr; 158 __be32 skc_rcv_saddr; 159 }; 160 }; 161 union { 162 unsigned int skc_hash; 163 __u16 skc_u16hashes[2]; 164 }; 165 /* skc_dport && skc_num must be grouped as well */ 166 union { 167 __portpair skc_portpair; 168 struct { 169 __be16 skc_dport; 170 __u16 skc_num; 171 }; 172 }; 173 174 unsigned short skc_family; 175 volatile unsigned char skc_state; 176 unsigned char skc_reuse:4; 177 unsigned char skc_reuseport:1; 178 unsigned char skc_ipv6only:1; 179 unsigned char skc_net_refcnt:1; 180 int skc_bound_dev_if; 181 union { 182 struct hlist_node skc_bind_node; 183 struct hlist_node skc_portaddr_node; 184 }; 185 struct proto *skc_prot; 186 possible_net_t skc_net; 187 188#if IS_ENABLED(CONFIG_IPV6) 189 struct in6_addr skc_v6_daddr; 190 struct in6_addr skc_v6_rcv_saddr; 191#endif 192 193 atomic64_t skc_cookie; 194 195 /* following fields are padding to force 196 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 197 * assuming IPV6 is enabled. We use this padding differently 198 * for different kind of 'sockets' 199 */ 200 union { 201 unsigned long skc_flags; 202 struct sock *skc_listener; /* request_sock */ 203 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 204 }; 205 /* 206 * fields between dontcopy_begin/dontcopy_end 207 * are not copied in sock_copy() 208 */ 209 /* private: */ 210 int skc_dontcopy_begin[0]; 211 /* public: */ 212 union { 213 struct hlist_node skc_node; 214 struct hlist_nulls_node skc_nulls_node; 215 }; 216 int skc_tx_queue_mapping; 217 union { 218 int skc_incoming_cpu; 219 u32 skc_rcv_wnd; 220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 221 }; 222 223 refcount_t skc_refcnt; 224 /* private: */ 225 int skc_dontcopy_end[0]; 226 union { 227 u32 skc_rxhash; 228 u32 skc_window_clamp; 229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 230 }; 231 /* public: */ 232}; 233 234/** 235 * struct sock - network layer representation of sockets 236 * @__sk_common: shared layout with inet_timewait_sock 237 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 238 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 239 * @sk_lock: synchronizer 240 * @sk_kern_sock: True if sock is using kernel lock classes 241 * @sk_rcvbuf: size of receive buffer in bytes 242 * @sk_wq: sock wait queue and async head 243 * @sk_rx_dst: receive input route used by early demux 244 * @sk_dst_cache: destination cache 245 * @sk_dst_pending_confirm: need to confirm neighbour 246 * @sk_policy: flow policy 247 * @sk_receive_queue: incoming packets 248 * @sk_wmem_alloc: transmit queue bytes committed 249 * @sk_tsq_flags: TCP Small Queues flags 250 * @sk_write_queue: Packet sending queue 251 * @sk_omem_alloc: "o" is "option" or "other" 252 * @sk_wmem_queued: persistent queue size 253 * @sk_forward_alloc: space allocated forward 254 * @sk_napi_id: id of the last napi context to receive data for sk 255 * @sk_ll_usec: usecs to busypoll when there is no data 256 * @sk_allocation: allocation mode 257 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 258 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 259 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 260 * @sk_sndbuf: size of send buffer in bytes 261 * @__sk_flags_offset: empty field used to determine location of bitfield 262 * @sk_padding: unused element for alignment 263 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 264 * @sk_no_check_rx: allow zero checksum in RX packets 265 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 266 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 267 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 268 * @sk_gso_max_size: Maximum GSO segment size to build 269 * @sk_gso_max_segs: Maximum number of GSO segments 270 * @sk_lingertime: %SO_LINGER l_linger setting 271 * @sk_backlog: always used with the per-socket spinlock held 272 * @sk_callback_lock: used with the callbacks in the end of this struct 273 * @sk_error_queue: rarely used 274 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 275 * IPV6_ADDRFORM for instance) 276 * @sk_err: last error 277 * @sk_err_soft: errors that don't cause failure but are the cause of a 278 * persistent failure not just 'timed out' 279 * @sk_drops: raw/udp drops counter 280 * @sk_ack_backlog: current listen backlog 281 * @sk_max_ack_backlog: listen backlog set in listen() 282 * @sk_uid: user id of owner 283 * @sk_priority: %SO_PRIORITY setting 284 * @sk_type: socket type (%SOCK_STREAM, etc) 285 * @sk_protocol: which protocol this socket belongs in this network family 286 * @sk_peer_pid: &struct pid for this socket's peer 287 * @sk_peer_cred: %SO_PEERCRED setting 288 * @sk_rcvlowat: %SO_RCVLOWAT setting 289 * @sk_rcvtimeo: %SO_RCVTIMEO setting 290 * @sk_sndtimeo: %SO_SNDTIMEO setting 291 * @sk_txhash: computed flow hash for use on transmit 292 * @sk_filter: socket filtering instructions 293 * @sk_timer: sock cleanup timer 294 * @sk_stamp: time stamp of last packet received 295 * @sk_tsflags: SO_TIMESTAMPING socket options 296 * @sk_tskey: counter to disambiguate concurrent tstamp requests 297 * @sk_socket: Identd and reporting IO signals 298 * @sk_user_data: RPC layer private data 299 * @sk_frag: cached page frag 300 * @sk_peek_off: current peek_offset value 301 * @sk_send_head: front of stuff to transmit 302 * @sk_security: used by security modules 303 * @sk_mark: generic packet mark 304 * @sk_cgrp_data: cgroup data for this cgroup 305 * @sk_memcg: this socket's memory cgroup association 306 * @sk_write_pending: a write to stream socket waits to start 307 * @sk_state_change: callback to indicate change in the state of the sock 308 * @sk_data_ready: callback to indicate there is data to be processed 309 * @sk_write_space: callback to indicate there is bf sending space available 310 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 311 * @sk_backlog_rcv: callback to process the backlog 312 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 313 * @sk_reuseport_cb: reuseport group container 314 * @sk_rcu: used during RCU grace period 315 */ 316struct sock { 317 /* 318 * Now struct inet_timewait_sock also uses sock_common, so please just 319 * don't add nothing before this first member (__sk_common) --acme 320 */ 321 struct sock_common __sk_common; 322#define sk_node __sk_common.skc_node 323#define sk_nulls_node __sk_common.skc_nulls_node 324#define sk_refcnt __sk_common.skc_refcnt 325#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 326 327#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 328#define sk_dontcopy_end __sk_common.skc_dontcopy_end 329#define sk_hash __sk_common.skc_hash 330#define sk_portpair __sk_common.skc_portpair 331#define sk_num __sk_common.skc_num 332#define sk_dport __sk_common.skc_dport 333#define sk_addrpair __sk_common.skc_addrpair 334#define sk_daddr __sk_common.skc_daddr 335#define sk_rcv_saddr __sk_common.skc_rcv_saddr 336#define sk_family __sk_common.skc_family 337#define sk_state __sk_common.skc_state 338#define sk_reuse __sk_common.skc_reuse 339#define sk_reuseport __sk_common.skc_reuseport 340#define sk_ipv6only __sk_common.skc_ipv6only 341#define sk_net_refcnt __sk_common.skc_net_refcnt 342#define sk_bound_dev_if __sk_common.skc_bound_dev_if 343#define sk_bind_node __sk_common.skc_bind_node 344#define sk_prot __sk_common.skc_prot 345#define sk_net __sk_common.skc_net 346#define sk_v6_daddr __sk_common.skc_v6_daddr 347#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 348#define sk_cookie __sk_common.skc_cookie 349#define sk_incoming_cpu __sk_common.skc_incoming_cpu 350#define sk_flags __sk_common.skc_flags 351#define sk_rxhash __sk_common.skc_rxhash 352 353 socket_lock_t sk_lock; 354 atomic_t sk_drops; 355 int sk_rcvlowat; 356 struct sk_buff_head sk_error_queue; 357 struct sk_buff_head sk_receive_queue; 358 /* 359 * The backlog queue is special, it is always used with 360 * the per-socket spinlock held and requires low latency 361 * access. Therefore we special case it's implementation. 362 * Note : rmem_alloc is in this structure to fill a hole 363 * on 64bit arches, not because its logically part of 364 * backlog. 365 */ 366 struct { 367 atomic_t rmem_alloc; 368 int len; 369 struct sk_buff *head; 370 struct sk_buff *tail; 371 } sk_backlog; 372#define sk_rmem_alloc sk_backlog.rmem_alloc 373 374 int sk_forward_alloc; 375#ifdef CONFIG_NET_RX_BUSY_POLL 376 unsigned int sk_ll_usec; 377 /* ===== mostly read cache line ===== */ 378 unsigned int sk_napi_id; 379#endif 380 int sk_rcvbuf; 381 382 struct sk_filter __rcu *sk_filter; 383 union { 384 struct socket_wq __rcu *sk_wq; 385 struct socket_wq *sk_wq_raw; 386 }; 387#ifdef CONFIG_XFRM 388 struct xfrm_policy __rcu *sk_policy[2]; 389#endif 390 struct dst_entry *sk_rx_dst; 391 struct dst_entry __rcu *sk_dst_cache; 392 atomic_t sk_omem_alloc; 393 int sk_sndbuf; 394 395 /* ===== cache line for TX ===== */ 396 int sk_wmem_queued; 397 refcount_t sk_wmem_alloc; 398 unsigned long sk_tsq_flags; 399 struct sk_buff *sk_send_head; 400 struct sk_buff_head sk_write_queue; 401 __s32 sk_peek_off; 402 int sk_write_pending; 403 __u32 sk_dst_pending_confirm; 404 u32 sk_pacing_status; /* see enum sk_pacing */ 405 long sk_sndtimeo; 406 struct timer_list sk_timer; 407 __u32 sk_priority; 408 __u32 sk_mark; 409 u32 sk_pacing_rate; /* bytes per second */ 410 u32 sk_max_pacing_rate; 411 struct page_frag sk_frag; 412 netdev_features_t sk_route_caps; 413 netdev_features_t sk_route_nocaps; 414 int sk_gso_type; 415 unsigned int sk_gso_max_size; 416 gfp_t sk_allocation; 417 __u32 sk_txhash; 418 419 /* 420 * Because of non atomicity rules, all 421 * changes are protected by socket lock. 422 */ 423 unsigned int __sk_flags_offset[0]; 424#ifdef __BIG_ENDIAN_BITFIELD 425#define SK_FL_PROTO_SHIFT 16 426#define SK_FL_PROTO_MASK 0x00ff0000 427 428#define SK_FL_TYPE_SHIFT 0 429#define SK_FL_TYPE_MASK 0x0000ffff 430#else 431#define SK_FL_PROTO_SHIFT 8 432#define SK_FL_PROTO_MASK 0x0000ff00 433 434#define SK_FL_TYPE_SHIFT 16 435#define SK_FL_TYPE_MASK 0xffff0000 436#endif 437 438 kmemcheck_bitfield_begin(flags); 439 unsigned int sk_padding : 1, 440 sk_kern_sock : 1, 441 sk_no_check_tx : 1, 442 sk_no_check_rx : 1, 443 sk_userlocks : 4, 444 sk_protocol : 8, 445 sk_type : 16; 446#define SK_PROTOCOL_MAX U8_MAX 447 kmemcheck_bitfield_end(flags); 448 449 u16 sk_gso_max_segs; 450 unsigned long sk_lingertime; 451 struct proto *sk_prot_creator; 452 rwlock_t sk_callback_lock; 453 int sk_err, 454 sk_err_soft; 455 u32 sk_ack_backlog; 456 u32 sk_max_ack_backlog; 457 kuid_t sk_uid; 458 struct pid *sk_peer_pid; 459 const struct cred *sk_peer_cred; 460 long sk_rcvtimeo; 461 ktime_t sk_stamp; 462 u16 sk_tsflags; 463 u8 sk_shutdown; 464 u32 sk_tskey; 465 struct socket *sk_socket; 466 void *sk_user_data; 467#ifdef CONFIG_SECURITY 468 void *sk_security; 469#endif 470 struct sock_cgroup_data sk_cgrp_data; 471 struct mem_cgroup *sk_memcg; 472 void (*sk_state_change)(struct sock *sk); 473 void (*sk_data_ready)(struct sock *sk); 474 void (*sk_write_space)(struct sock *sk); 475 void (*sk_error_report)(struct sock *sk); 476 int (*sk_backlog_rcv)(struct sock *sk, 477 struct sk_buff *skb); 478 void (*sk_destruct)(struct sock *sk); 479 struct sock_reuseport __rcu *sk_reuseport_cb; 480 struct rcu_head sk_rcu; 481}; 482 483enum sk_pacing { 484 SK_PACING_NONE = 0, 485 SK_PACING_NEEDED = 1, 486 SK_PACING_FQ = 2, 487}; 488 489#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 490 491#define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 492#define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 493 494/* 495 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 496 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 497 * on a socket means that the socket will reuse everybody else's port 498 * without looking at the other's sk_reuse value. 499 */ 500 501#define SK_NO_REUSE 0 502#define SK_CAN_REUSE 1 503#define SK_FORCE_REUSE 2 504 505int sk_set_peek_off(struct sock *sk, int val); 506 507static inline int sk_peek_offset(struct sock *sk, int flags) 508{ 509 if (unlikely(flags & MSG_PEEK)) { 510 return READ_ONCE(sk->sk_peek_off); 511 } 512 513 return 0; 514} 515 516static inline void sk_peek_offset_bwd(struct sock *sk, int val) 517{ 518 s32 off = READ_ONCE(sk->sk_peek_off); 519 520 if (unlikely(off >= 0)) { 521 off = max_t(s32, off - val, 0); 522 WRITE_ONCE(sk->sk_peek_off, off); 523 } 524} 525 526static inline void sk_peek_offset_fwd(struct sock *sk, int val) 527{ 528 sk_peek_offset_bwd(sk, -val); 529} 530 531/* 532 * Hashed lists helper routines 533 */ 534static inline struct sock *sk_entry(const struct hlist_node *node) 535{ 536 return hlist_entry(node, struct sock, sk_node); 537} 538 539static inline struct sock *__sk_head(const struct hlist_head *head) 540{ 541 return hlist_entry(head->first, struct sock, sk_node); 542} 543 544static inline struct sock *sk_head(const struct hlist_head *head) 545{ 546 return hlist_empty(head) ? NULL : __sk_head(head); 547} 548 549static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 550{ 551 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 552} 553 554static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 555{ 556 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 557} 558 559static inline struct sock *sk_next(const struct sock *sk) 560{ 561 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 562} 563 564static inline struct sock *sk_nulls_next(const struct sock *sk) 565{ 566 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 567 hlist_nulls_entry(sk->sk_nulls_node.next, 568 struct sock, sk_nulls_node) : 569 NULL; 570} 571 572static inline bool sk_unhashed(const struct sock *sk) 573{ 574 return hlist_unhashed(&sk->sk_node); 575} 576 577static inline bool sk_hashed(const struct sock *sk) 578{ 579 return !sk_unhashed(sk); 580} 581 582static inline void sk_node_init(struct hlist_node *node) 583{ 584 node->pprev = NULL; 585} 586 587static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 588{ 589 node->pprev = NULL; 590} 591 592static inline void __sk_del_node(struct sock *sk) 593{ 594 __hlist_del(&sk->sk_node); 595} 596 597/* NB: equivalent to hlist_del_init_rcu */ 598static inline bool __sk_del_node_init(struct sock *sk) 599{ 600 if (sk_hashed(sk)) { 601 __sk_del_node(sk); 602 sk_node_init(&sk->sk_node); 603 return true; 604 } 605 return false; 606} 607 608/* Grab socket reference count. This operation is valid only 609 when sk is ALREADY grabbed f.e. it is found in hash table 610 or a list and the lookup is made under lock preventing hash table 611 modifications. 612 */ 613 614static __always_inline void sock_hold(struct sock *sk) 615{ 616 refcount_inc(&sk->sk_refcnt); 617} 618 619/* Ungrab socket in the context, which assumes that socket refcnt 620 cannot hit zero, f.e. it is true in context of any socketcall. 621 */ 622static __always_inline void __sock_put(struct sock *sk) 623{ 624 refcount_dec(&sk->sk_refcnt); 625} 626 627static inline bool sk_del_node_init(struct sock *sk) 628{ 629 bool rc = __sk_del_node_init(sk); 630 631 if (rc) { 632 /* paranoid for a while -acme */ 633 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 634 __sock_put(sk); 635 } 636 return rc; 637} 638#define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 639 640static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 641{ 642 if (sk_hashed(sk)) { 643 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 644 return true; 645 } 646 return false; 647} 648 649static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 650{ 651 bool rc = __sk_nulls_del_node_init_rcu(sk); 652 653 if (rc) { 654 /* paranoid for a while -acme */ 655 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 656 __sock_put(sk); 657 } 658 return rc; 659} 660 661static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 662{ 663 hlist_add_head(&sk->sk_node, list); 664} 665 666static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 667{ 668 sock_hold(sk); 669 __sk_add_node(sk, list); 670} 671 672static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 673{ 674 sock_hold(sk); 675 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 676 sk->sk_family == AF_INET6) 677 hlist_add_tail_rcu(&sk->sk_node, list); 678 else 679 hlist_add_head_rcu(&sk->sk_node, list); 680} 681 682static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 683{ 684 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 685 sk->sk_family == AF_INET6) 686 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 687 else 688 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 689} 690 691static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 692{ 693 sock_hold(sk); 694 __sk_nulls_add_node_rcu(sk, list); 695} 696 697static inline void __sk_del_bind_node(struct sock *sk) 698{ 699 __hlist_del(&sk->sk_bind_node); 700} 701 702static inline void sk_add_bind_node(struct sock *sk, 703 struct hlist_head *list) 704{ 705 hlist_add_head(&sk->sk_bind_node, list); 706} 707 708#define sk_for_each(__sk, list) \ 709 hlist_for_each_entry(__sk, list, sk_node) 710#define sk_for_each_rcu(__sk, list) \ 711 hlist_for_each_entry_rcu(__sk, list, sk_node) 712#define sk_nulls_for_each(__sk, node, list) \ 713 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 714#define sk_nulls_for_each_rcu(__sk, node, list) \ 715 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 716#define sk_for_each_from(__sk) \ 717 hlist_for_each_entry_from(__sk, sk_node) 718#define sk_nulls_for_each_from(__sk, node) \ 719 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 720 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 721#define sk_for_each_safe(__sk, tmp, list) \ 722 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 723#define sk_for_each_bound(__sk, list) \ 724 hlist_for_each_entry(__sk, list, sk_bind_node) 725 726/** 727 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 728 * @tpos: the type * to use as a loop cursor. 729 * @pos: the &struct hlist_node to use as a loop cursor. 730 * @head: the head for your list. 731 * @offset: offset of hlist_node within the struct. 732 * 733 */ 734#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 735 for (pos = rcu_dereference((head)->first); \ 736 pos != NULL && \ 737 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 738 pos = rcu_dereference(pos->next)) 739 740static inline struct user_namespace *sk_user_ns(struct sock *sk) 741{ 742 /* Careful only use this in a context where these parameters 743 * can not change and must all be valid, such as recvmsg from 744 * userspace. 745 */ 746 return sk->sk_socket->file->f_cred->user_ns; 747} 748 749/* Sock flags */ 750enum sock_flags { 751 SOCK_DEAD, 752 SOCK_DONE, 753 SOCK_URGINLINE, 754 SOCK_KEEPOPEN, 755 SOCK_LINGER, 756 SOCK_DESTROY, 757 SOCK_BROADCAST, 758 SOCK_TIMESTAMP, 759 SOCK_ZAPPED, 760 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 761 SOCK_DBG, /* %SO_DEBUG setting */ 762 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 763 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 764 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 765 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 766 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 767 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 768 SOCK_FASYNC, /* fasync() active */ 769 SOCK_RXQ_OVFL, 770 SOCK_ZEROCOPY, /* buffers from userspace */ 771 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 772 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 773 * Will use last 4 bytes of packet sent from 774 * user-space instead. 775 */ 776 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 777 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 778 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 779}; 780 781#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 782 783static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 784{ 785 nsk->sk_flags = osk->sk_flags; 786} 787 788static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 789{ 790 __set_bit(flag, &sk->sk_flags); 791} 792 793static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 794{ 795 __clear_bit(flag, &sk->sk_flags); 796} 797 798static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 799{ 800 return test_bit(flag, &sk->sk_flags); 801} 802 803#ifdef CONFIG_NET 804extern struct static_key memalloc_socks; 805static inline int sk_memalloc_socks(void) 806{ 807 return static_key_false(&memalloc_socks); 808} 809#else 810 811static inline int sk_memalloc_socks(void) 812{ 813 return 0; 814} 815 816#endif 817 818static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 819{ 820 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 821} 822 823static inline void sk_acceptq_removed(struct sock *sk) 824{ 825 sk->sk_ack_backlog--; 826} 827 828static inline void sk_acceptq_added(struct sock *sk) 829{ 830 sk->sk_ack_backlog++; 831} 832 833static inline bool sk_acceptq_is_full(const struct sock *sk) 834{ 835 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 836} 837 838/* 839 * Compute minimal free write space needed to queue new packets. 840 */ 841static inline int sk_stream_min_wspace(const struct sock *sk) 842{ 843 return sk->sk_wmem_queued >> 1; 844} 845 846static inline int sk_stream_wspace(const struct sock *sk) 847{ 848 return sk->sk_sndbuf - sk->sk_wmem_queued; 849} 850 851void sk_stream_write_space(struct sock *sk); 852 853/* OOB backlog add */ 854static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 855{ 856 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 857 skb_dst_force_safe(skb); 858 859 if (!sk->sk_backlog.tail) 860 sk->sk_backlog.head = skb; 861 else 862 sk->sk_backlog.tail->next = skb; 863 864 sk->sk_backlog.tail = skb; 865 skb->next = NULL; 866} 867 868/* 869 * Take into account size of receive queue and backlog queue 870 * Do not take into account this skb truesize, 871 * to allow even a single big packet to come. 872 */ 873static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 874{ 875 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 876 877 return qsize > limit; 878} 879 880/* The per-socket spinlock must be held here. */ 881static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 882 unsigned int limit) 883{ 884 if (sk_rcvqueues_full(sk, limit)) 885 return -ENOBUFS; 886 887 /* 888 * If the skb was allocated from pfmemalloc reserves, only 889 * allow SOCK_MEMALLOC sockets to use it as this socket is 890 * helping free memory 891 */ 892 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 893 return -ENOMEM; 894 895 __sk_add_backlog(sk, skb); 896 sk->sk_backlog.len += skb->truesize; 897 return 0; 898} 899 900int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 901 902static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 903{ 904 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 905 return __sk_backlog_rcv(sk, skb); 906 907 return sk->sk_backlog_rcv(sk, skb); 908} 909 910static inline void sk_incoming_cpu_update(struct sock *sk) 911{ 912 int cpu = raw_smp_processor_id(); 913 914 if (unlikely(sk->sk_incoming_cpu != cpu)) 915 sk->sk_incoming_cpu = cpu; 916} 917 918static inline void sock_rps_record_flow_hash(__u32 hash) 919{ 920#ifdef CONFIG_RPS 921 struct rps_sock_flow_table *sock_flow_table; 922 923 rcu_read_lock(); 924 sock_flow_table = rcu_dereference(rps_sock_flow_table); 925 rps_record_sock_flow(sock_flow_table, hash); 926 rcu_read_unlock(); 927#endif 928} 929 930static inline void sock_rps_record_flow(const struct sock *sk) 931{ 932#ifdef CONFIG_RPS 933 if (static_key_false(&rfs_needed)) { 934 /* Reading sk->sk_rxhash might incur an expensive cache line 935 * miss. 936 * 937 * TCP_ESTABLISHED does cover almost all states where RFS 938 * might be useful, and is cheaper [1] than testing : 939 * IPv4: inet_sk(sk)->inet_daddr 940 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 941 * OR an additional socket flag 942 * [1] : sk_state and sk_prot are in the same cache line. 943 */ 944 if (sk->sk_state == TCP_ESTABLISHED) 945 sock_rps_record_flow_hash(sk->sk_rxhash); 946 } 947#endif 948} 949 950static inline void sock_rps_save_rxhash(struct sock *sk, 951 const struct sk_buff *skb) 952{ 953#ifdef CONFIG_RPS 954 if (unlikely(sk->sk_rxhash != skb->hash)) 955 sk->sk_rxhash = skb->hash; 956#endif 957} 958 959static inline void sock_rps_reset_rxhash(struct sock *sk) 960{ 961#ifdef CONFIG_RPS 962 sk->sk_rxhash = 0; 963#endif 964} 965 966#define sk_wait_event(__sk, __timeo, __condition, __wait) \ 967 ({ int __rc; \ 968 release_sock(__sk); \ 969 __rc = __condition; \ 970 if (!__rc) { \ 971 *(__timeo) = wait_woken(__wait, \ 972 TASK_INTERRUPTIBLE, \ 973 *(__timeo)); \ 974 } \ 975 sched_annotate_sleep(); \ 976 lock_sock(__sk); \ 977 __rc = __condition; \ 978 __rc; \ 979 }) 980 981int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 982int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 983void sk_stream_wait_close(struct sock *sk, long timeo_p); 984int sk_stream_error(struct sock *sk, int flags, int err); 985void sk_stream_kill_queues(struct sock *sk); 986void sk_set_memalloc(struct sock *sk); 987void sk_clear_memalloc(struct sock *sk); 988 989void __sk_flush_backlog(struct sock *sk); 990 991static inline bool sk_flush_backlog(struct sock *sk) 992{ 993 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 994 __sk_flush_backlog(sk); 995 return true; 996 } 997 return false; 998} 999 1000int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1001 1002struct request_sock_ops; 1003struct timewait_sock_ops; 1004struct inet_hashinfo; 1005struct raw_hashinfo; 1006struct smc_hashinfo; 1007struct module; 1008 1009/* 1010 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1011 * un-modified. Special care is taken when initializing object to zero. 1012 */ 1013static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1014{ 1015 if (offsetof(struct sock, sk_node.next) != 0) 1016 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1017 memset(&sk->sk_node.pprev, 0, 1018 size - offsetof(struct sock, sk_node.pprev)); 1019} 1020 1021/* Networking protocol blocks we attach to sockets. 1022 * socket layer -> transport layer interface 1023 */ 1024struct proto { 1025 void (*close)(struct sock *sk, 1026 long timeout); 1027 int (*connect)(struct sock *sk, 1028 struct sockaddr *uaddr, 1029 int addr_len); 1030 int (*disconnect)(struct sock *sk, int flags); 1031 1032 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1033 bool kern); 1034 1035 int (*ioctl)(struct sock *sk, int cmd, 1036 unsigned long arg); 1037 int (*init)(struct sock *sk); 1038 void (*destroy)(struct sock *sk); 1039 void (*shutdown)(struct sock *sk, int how); 1040 int (*setsockopt)(struct sock *sk, int level, 1041 int optname, char __user *optval, 1042 unsigned int optlen); 1043 int (*getsockopt)(struct sock *sk, int level, 1044 int optname, char __user *optval, 1045 int __user *option); 1046 void (*keepalive)(struct sock *sk, int valbool); 1047#ifdef CONFIG_COMPAT 1048 int (*compat_setsockopt)(struct sock *sk, 1049 int level, 1050 int optname, char __user *optval, 1051 unsigned int optlen); 1052 int (*compat_getsockopt)(struct sock *sk, 1053 int level, 1054 int optname, char __user *optval, 1055 int __user *option); 1056 int (*compat_ioctl)(struct sock *sk, 1057 unsigned int cmd, unsigned long arg); 1058#endif 1059 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1060 size_t len); 1061 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1062 size_t len, int noblock, int flags, 1063 int *addr_len); 1064 int (*sendpage)(struct sock *sk, struct page *page, 1065 int offset, size_t size, int flags); 1066 int (*bind)(struct sock *sk, 1067 struct sockaddr *uaddr, int addr_len); 1068 1069 int (*backlog_rcv) (struct sock *sk, 1070 struct sk_buff *skb); 1071 1072 void (*release_cb)(struct sock *sk); 1073 1074 /* Keeping track of sk's, looking them up, and port selection methods. */ 1075 int (*hash)(struct sock *sk); 1076 void (*unhash)(struct sock *sk); 1077 void (*rehash)(struct sock *sk); 1078 int (*get_port)(struct sock *sk, unsigned short snum); 1079 1080 /* Keeping track of sockets in use */ 1081#ifdef CONFIG_PROC_FS 1082 unsigned int inuse_idx; 1083#endif 1084 1085 bool (*stream_memory_free)(const struct sock *sk); 1086 /* Memory pressure */ 1087 void (*enter_memory_pressure)(struct sock *sk); 1088 void (*leave_memory_pressure)(struct sock *sk); 1089 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1090 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1091 /* 1092 * Pressure flag: try to collapse. 1093 * Technical note: it is used by multiple contexts non atomically. 1094 * All the __sk_mem_schedule() is of this nature: accounting 1095 * is strict, actions are advisory and have some latency. 1096 */ 1097 unsigned long *memory_pressure; 1098 long *sysctl_mem; 1099 int *sysctl_wmem; 1100 int *sysctl_rmem; 1101 int max_header; 1102 bool no_autobind; 1103 1104 struct kmem_cache *slab; 1105 unsigned int obj_size; 1106 int slab_flags; 1107 1108 struct percpu_counter *orphan_count; 1109 1110 struct request_sock_ops *rsk_prot; 1111 struct timewait_sock_ops *twsk_prot; 1112 1113 union { 1114 struct inet_hashinfo *hashinfo; 1115 struct udp_table *udp_table; 1116 struct raw_hashinfo *raw_hash; 1117 struct smc_hashinfo *smc_hash; 1118 } h; 1119 1120 struct module *owner; 1121 1122 char name[32]; 1123 1124 struct list_head node; 1125#ifdef SOCK_REFCNT_DEBUG 1126 atomic_t socks; 1127#endif 1128 int (*diag_destroy)(struct sock *sk, int err); 1129} __randomize_layout; 1130 1131int proto_register(struct proto *prot, int alloc_slab); 1132void proto_unregister(struct proto *prot); 1133 1134#ifdef SOCK_REFCNT_DEBUG 1135static inline void sk_refcnt_debug_inc(struct sock *sk) 1136{ 1137 atomic_inc(&sk->sk_prot->socks); 1138} 1139 1140static inline void sk_refcnt_debug_dec(struct sock *sk) 1141{ 1142 atomic_dec(&sk->sk_prot->socks); 1143 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1144 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1145} 1146 1147static inline void sk_refcnt_debug_release(const struct sock *sk) 1148{ 1149 if (refcount_read(&sk->sk_refcnt) != 1) 1150 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1151 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1152} 1153#else /* SOCK_REFCNT_DEBUG */ 1154#define sk_refcnt_debug_inc(sk) do { } while (0) 1155#define sk_refcnt_debug_dec(sk) do { } while (0) 1156#define sk_refcnt_debug_release(sk) do { } while (0) 1157#endif /* SOCK_REFCNT_DEBUG */ 1158 1159static inline bool sk_stream_memory_free(const struct sock *sk) 1160{ 1161 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1162 return false; 1163 1164 return sk->sk_prot->stream_memory_free ? 1165 sk->sk_prot->stream_memory_free(sk) : true; 1166} 1167 1168static inline bool sk_stream_is_writeable(const struct sock *sk) 1169{ 1170 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1171 sk_stream_memory_free(sk); 1172} 1173 1174static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1175 struct cgroup *ancestor) 1176{ 1177#ifdef CONFIG_SOCK_CGROUP_DATA 1178 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1179 ancestor); 1180#else 1181 return -ENOTSUPP; 1182#endif 1183} 1184 1185static inline bool sk_has_memory_pressure(const struct sock *sk) 1186{ 1187 return sk->sk_prot->memory_pressure != NULL; 1188} 1189 1190static inline bool sk_under_memory_pressure(const struct sock *sk) 1191{ 1192 if (!sk->sk_prot->memory_pressure) 1193 return false; 1194 1195 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1196 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1197 return true; 1198 1199 return !!*sk->sk_prot->memory_pressure; 1200} 1201 1202static inline long 1203sk_memory_allocated(const struct sock *sk) 1204{ 1205 return atomic_long_read(sk->sk_prot->memory_allocated); 1206} 1207 1208static inline long 1209sk_memory_allocated_add(struct sock *sk, int amt) 1210{ 1211 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1212} 1213 1214static inline void 1215sk_memory_allocated_sub(struct sock *sk, int amt) 1216{ 1217 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1218} 1219 1220static inline void sk_sockets_allocated_dec(struct sock *sk) 1221{ 1222 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1223} 1224 1225static inline void sk_sockets_allocated_inc(struct sock *sk) 1226{ 1227 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1228} 1229 1230static inline int 1231sk_sockets_allocated_read_positive(struct sock *sk) 1232{ 1233 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1234} 1235 1236static inline int 1237proto_sockets_allocated_sum_positive(struct proto *prot) 1238{ 1239 return percpu_counter_sum_positive(prot->sockets_allocated); 1240} 1241 1242static inline long 1243proto_memory_allocated(struct proto *prot) 1244{ 1245 return atomic_long_read(prot->memory_allocated); 1246} 1247 1248static inline bool 1249proto_memory_pressure(struct proto *prot) 1250{ 1251 if (!prot->memory_pressure) 1252 return false; 1253 return !!*prot->memory_pressure; 1254} 1255 1256 1257#ifdef CONFIG_PROC_FS 1258/* Called with local bh disabled */ 1259void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1260int sock_prot_inuse_get(struct net *net, struct proto *proto); 1261#else 1262static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1263 int inc) 1264{ 1265} 1266#endif 1267 1268 1269/* With per-bucket locks this operation is not-atomic, so that 1270 * this version is not worse. 1271 */ 1272static inline int __sk_prot_rehash(struct sock *sk) 1273{ 1274 sk->sk_prot->unhash(sk); 1275 return sk->sk_prot->hash(sk); 1276} 1277 1278/* About 10 seconds */ 1279#define SOCK_DESTROY_TIME (10*HZ) 1280 1281/* Sockets 0-1023 can't be bound to unless you are superuser */ 1282#define PROT_SOCK 1024 1283 1284#define SHUTDOWN_MASK 3 1285#define RCV_SHUTDOWN 1 1286#define SEND_SHUTDOWN 2 1287 1288#define SOCK_SNDBUF_LOCK 1 1289#define SOCK_RCVBUF_LOCK 2 1290#define SOCK_BINDADDR_LOCK 4 1291#define SOCK_BINDPORT_LOCK 8 1292 1293struct socket_alloc { 1294 struct socket socket; 1295 struct inode vfs_inode; 1296}; 1297 1298static inline struct socket *SOCKET_I(struct inode *inode) 1299{ 1300 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1301} 1302 1303static inline struct inode *SOCK_INODE(struct socket *socket) 1304{ 1305 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1306} 1307 1308/* 1309 * Functions for memory accounting 1310 */ 1311int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1312int __sk_mem_schedule(struct sock *sk, int size, int kind); 1313void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1314void __sk_mem_reclaim(struct sock *sk, int amount); 1315 1316/* We used to have PAGE_SIZE here, but systems with 64KB pages 1317 * do not necessarily have 16x time more memory than 4KB ones. 1318 */ 1319#define SK_MEM_QUANTUM 4096 1320#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1321#define SK_MEM_SEND 0 1322#define SK_MEM_RECV 1 1323 1324/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1325static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1326{ 1327 long val = sk->sk_prot->sysctl_mem[index]; 1328 1329#if PAGE_SIZE > SK_MEM_QUANTUM 1330 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1331#elif PAGE_SIZE < SK_MEM_QUANTUM 1332 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1333#endif 1334 return val; 1335} 1336 1337static inline int sk_mem_pages(int amt) 1338{ 1339 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1340} 1341 1342static inline bool sk_has_account(struct sock *sk) 1343{ 1344 /* return true if protocol supports memory accounting */ 1345 return !!sk->sk_prot->memory_allocated; 1346} 1347 1348static inline bool sk_wmem_schedule(struct sock *sk, int size) 1349{ 1350 if (!sk_has_account(sk)) 1351 return true; 1352 return size <= sk->sk_forward_alloc || 1353 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1354} 1355 1356static inline bool 1357sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1358{ 1359 if (!sk_has_account(sk)) 1360 return true; 1361 return size<= sk->sk_forward_alloc || 1362 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1363 skb_pfmemalloc(skb); 1364} 1365 1366static inline void sk_mem_reclaim(struct sock *sk) 1367{ 1368 if (!sk_has_account(sk)) 1369 return; 1370 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1371 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1372} 1373 1374static inline void sk_mem_reclaim_partial(struct sock *sk) 1375{ 1376 if (!sk_has_account(sk)) 1377 return; 1378 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1379 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1380} 1381 1382static inline void sk_mem_charge(struct sock *sk, int size) 1383{ 1384 if (!sk_has_account(sk)) 1385 return; 1386 sk->sk_forward_alloc -= size; 1387} 1388 1389static inline void sk_mem_uncharge(struct sock *sk, int size) 1390{ 1391 if (!sk_has_account(sk)) 1392 return; 1393 sk->sk_forward_alloc += size; 1394 1395 /* Avoid a possible overflow. 1396 * TCP send queues can make this happen, if sk_mem_reclaim() 1397 * is not called and more than 2 GBytes are released at once. 1398 * 1399 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1400 * no need to hold that much forward allocation anyway. 1401 */ 1402 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1403 __sk_mem_reclaim(sk, 1 << 20); 1404} 1405 1406static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1407{ 1408 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1409 sk->sk_wmem_queued -= skb->truesize; 1410 sk_mem_uncharge(sk, skb->truesize); 1411 __kfree_skb(skb); 1412} 1413 1414static inline void sock_release_ownership(struct sock *sk) 1415{ 1416 if (sk->sk_lock.owned) { 1417 sk->sk_lock.owned = 0; 1418 1419 /* The sk_lock has mutex_unlock() semantics: */ 1420 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 1421 } 1422} 1423 1424/* 1425 * Macro so as to not evaluate some arguments when 1426 * lockdep is not enabled. 1427 * 1428 * Mark both the sk_lock and the sk_lock.slock as a 1429 * per-address-family lock class. 1430 */ 1431#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1432do { \ 1433 sk->sk_lock.owned = 0; \ 1434 init_waitqueue_head(&sk->sk_lock.wq); \ 1435 spin_lock_init(&(sk)->sk_lock.slock); \ 1436 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1437 sizeof((sk)->sk_lock)); \ 1438 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1439 (skey), (sname)); \ 1440 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1441} while (0) 1442 1443#ifdef CONFIG_LOCKDEP 1444static inline bool lockdep_sock_is_held(const struct sock *csk) 1445{ 1446 struct sock *sk = (struct sock *)csk; 1447 1448 return lockdep_is_held(&sk->sk_lock) || 1449 lockdep_is_held(&sk->sk_lock.slock); 1450} 1451#endif 1452 1453void lock_sock_nested(struct sock *sk, int subclass); 1454 1455static inline void lock_sock(struct sock *sk) 1456{ 1457 lock_sock_nested(sk, 0); 1458} 1459 1460void release_sock(struct sock *sk); 1461 1462/* BH context may only use the following locking interface. */ 1463#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1464#define bh_lock_sock_nested(__sk) \ 1465 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1466 SINGLE_DEPTH_NESTING) 1467#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1468 1469bool lock_sock_fast(struct sock *sk); 1470/** 1471 * unlock_sock_fast - complement of lock_sock_fast 1472 * @sk: socket 1473 * @slow: slow mode 1474 * 1475 * fast unlock socket for user context. 1476 * If slow mode is on, we call regular release_sock() 1477 */ 1478static inline void unlock_sock_fast(struct sock *sk, bool slow) 1479{ 1480 if (slow) 1481 release_sock(sk); 1482 else 1483 spin_unlock_bh(&sk->sk_lock.slock); 1484} 1485 1486/* Used by processes to "lock" a socket state, so that 1487 * interrupts and bottom half handlers won't change it 1488 * from under us. It essentially blocks any incoming 1489 * packets, so that we won't get any new data or any 1490 * packets that change the state of the socket. 1491 * 1492 * While locked, BH processing will add new packets to 1493 * the backlog queue. This queue is processed by the 1494 * owner of the socket lock right before it is released. 1495 * 1496 * Since ~2.3.5 it is also exclusive sleep lock serializing 1497 * accesses from user process context. 1498 */ 1499 1500static inline void sock_owned_by_me(const struct sock *sk) 1501{ 1502#ifdef CONFIG_LOCKDEP 1503 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1504#endif 1505} 1506 1507static inline bool sock_owned_by_user(const struct sock *sk) 1508{ 1509 sock_owned_by_me(sk); 1510 return sk->sk_lock.owned; 1511} 1512 1513/* no reclassification while locks are held */ 1514static inline bool sock_allow_reclassification(const struct sock *csk) 1515{ 1516 struct sock *sk = (struct sock *)csk; 1517 1518 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1519} 1520 1521struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1522 struct proto *prot, int kern); 1523void sk_free(struct sock *sk); 1524void sk_destruct(struct sock *sk); 1525struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1526void sk_free_unlock_clone(struct sock *sk); 1527 1528struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1529 gfp_t priority); 1530void __sock_wfree(struct sk_buff *skb); 1531void sock_wfree(struct sk_buff *skb); 1532void skb_orphan_partial(struct sk_buff *skb); 1533void sock_rfree(struct sk_buff *skb); 1534void sock_efree(struct sk_buff *skb); 1535#ifdef CONFIG_INET 1536void sock_edemux(struct sk_buff *skb); 1537#else 1538#define sock_edemux sock_efree 1539#endif 1540 1541int sock_setsockopt(struct socket *sock, int level, int op, 1542 char __user *optval, unsigned int optlen); 1543 1544int sock_getsockopt(struct socket *sock, int level, int op, 1545 char __user *optval, int __user *optlen); 1546struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1547 int noblock, int *errcode); 1548struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1549 unsigned long data_len, int noblock, 1550 int *errcode, int max_page_order); 1551void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1552void sock_kfree_s(struct sock *sk, void *mem, int size); 1553void sock_kzfree_s(struct sock *sk, void *mem, int size); 1554void sk_send_sigurg(struct sock *sk); 1555 1556struct sockcm_cookie { 1557 u32 mark; 1558 u16 tsflags; 1559}; 1560 1561int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1562 struct sockcm_cookie *sockc); 1563int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1564 struct sockcm_cookie *sockc); 1565 1566/* 1567 * Functions to fill in entries in struct proto_ops when a protocol 1568 * does not implement a particular function. 1569 */ 1570int sock_no_bind(struct socket *, struct sockaddr *, int); 1571int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1572int sock_no_socketpair(struct socket *, struct socket *); 1573int sock_no_accept(struct socket *, struct socket *, int, bool); 1574int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1575unsigned int sock_no_poll(struct file *, struct socket *, 1576 struct poll_table_struct *); 1577int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1578int sock_no_listen(struct socket *, int); 1579int sock_no_shutdown(struct socket *, int); 1580int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1581int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1582int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1583int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1584int sock_no_mmap(struct file *file, struct socket *sock, 1585 struct vm_area_struct *vma); 1586ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1587 size_t size, int flags); 1588 1589/* 1590 * Functions to fill in entries in struct proto_ops when a protocol 1591 * uses the inet style. 1592 */ 1593int sock_common_getsockopt(struct socket *sock, int level, int optname, 1594 char __user *optval, int __user *optlen); 1595int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1596 int flags); 1597int sock_common_setsockopt(struct socket *sock, int level, int optname, 1598 char __user *optval, unsigned int optlen); 1599int compat_sock_common_getsockopt(struct socket *sock, int level, 1600 int optname, char __user *optval, int __user *optlen); 1601int compat_sock_common_setsockopt(struct socket *sock, int level, 1602 int optname, char __user *optval, unsigned int optlen); 1603 1604void sk_common_release(struct sock *sk); 1605 1606/* 1607 * Default socket callbacks and setup code 1608 */ 1609 1610/* Initialise core socket variables */ 1611void sock_init_data(struct socket *sock, struct sock *sk); 1612 1613/* 1614 * Socket reference counting postulates. 1615 * 1616 * * Each user of socket SHOULD hold a reference count. 1617 * * Each access point to socket (an hash table bucket, reference from a list, 1618 * running timer, skb in flight MUST hold a reference count. 1619 * * When reference count hits 0, it means it will never increase back. 1620 * * When reference count hits 0, it means that no references from 1621 * outside exist to this socket and current process on current CPU 1622 * is last user and may/should destroy this socket. 1623 * * sk_free is called from any context: process, BH, IRQ. When 1624 * it is called, socket has no references from outside -> sk_free 1625 * may release descendant resources allocated by the socket, but 1626 * to the time when it is called, socket is NOT referenced by any 1627 * hash tables, lists etc. 1628 * * Packets, delivered from outside (from network or from another process) 1629 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1630 * when they sit in queue. Otherwise, packets will leak to hole, when 1631 * socket is looked up by one cpu and unhasing is made by another CPU. 1632 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1633 * (leak to backlog). Packet socket does all the processing inside 1634 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1635 * use separate SMP lock, so that they are prone too. 1636 */ 1637 1638/* Ungrab socket and destroy it, if it was the last reference. */ 1639static inline void sock_put(struct sock *sk) 1640{ 1641 if (refcount_dec_and_test(&sk->sk_refcnt)) 1642 sk_free(sk); 1643} 1644/* Generic version of sock_put(), dealing with all sockets 1645 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1646 */ 1647void sock_gen_put(struct sock *sk); 1648 1649int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1650 unsigned int trim_cap, bool refcounted); 1651static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1652 const int nested) 1653{ 1654 return __sk_receive_skb(sk, skb, nested, 1, true); 1655} 1656 1657static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1658{ 1659 sk->sk_tx_queue_mapping = tx_queue; 1660} 1661 1662static inline void sk_tx_queue_clear(struct sock *sk) 1663{ 1664 sk->sk_tx_queue_mapping = -1; 1665} 1666 1667static inline int sk_tx_queue_get(const struct sock *sk) 1668{ 1669 return sk ? sk->sk_tx_queue_mapping : -1; 1670} 1671 1672static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1673{ 1674 sk_tx_queue_clear(sk); 1675 sk->sk_socket = sock; 1676} 1677 1678static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1679{ 1680 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1681 return &rcu_dereference_raw(sk->sk_wq)->wait; 1682} 1683/* Detach socket from process context. 1684 * Announce socket dead, detach it from wait queue and inode. 1685 * Note that parent inode held reference count on this struct sock, 1686 * we do not release it in this function, because protocol 1687 * probably wants some additional cleanups or even continuing 1688 * to work with this socket (TCP). 1689 */ 1690static inline void sock_orphan(struct sock *sk) 1691{ 1692 write_lock_bh(&sk->sk_callback_lock); 1693 sock_set_flag(sk, SOCK_DEAD); 1694 sk_set_socket(sk, NULL); 1695 sk->sk_wq = NULL; 1696 write_unlock_bh(&sk->sk_callback_lock); 1697} 1698 1699static inline void sock_graft(struct sock *sk, struct socket *parent) 1700{ 1701 WARN_ON(parent->sk); 1702 write_lock_bh(&sk->sk_callback_lock); 1703 sk->sk_wq = parent->wq; 1704 parent->sk = sk; 1705 sk_set_socket(sk, parent); 1706 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1707 security_sock_graft(sk, parent); 1708 write_unlock_bh(&sk->sk_callback_lock); 1709} 1710 1711kuid_t sock_i_uid(struct sock *sk); 1712unsigned long sock_i_ino(struct sock *sk); 1713 1714static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1715{ 1716 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1717} 1718 1719static inline u32 net_tx_rndhash(void) 1720{ 1721 u32 v = prandom_u32(); 1722 1723 return v ?: 1; 1724} 1725 1726static inline void sk_set_txhash(struct sock *sk) 1727{ 1728 sk->sk_txhash = net_tx_rndhash(); 1729} 1730 1731static inline void sk_rethink_txhash(struct sock *sk) 1732{ 1733 if (sk->sk_txhash) 1734 sk_set_txhash(sk); 1735} 1736 1737static inline struct dst_entry * 1738__sk_dst_get(struct sock *sk) 1739{ 1740 return rcu_dereference_check(sk->sk_dst_cache, 1741 lockdep_sock_is_held(sk)); 1742} 1743 1744static inline struct dst_entry * 1745sk_dst_get(struct sock *sk) 1746{ 1747 struct dst_entry *dst; 1748 1749 rcu_read_lock(); 1750 dst = rcu_dereference(sk->sk_dst_cache); 1751 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1752 dst = NULL; 1753 rcu_read_unlock(); 1754 return dst; 1755} 1756 1757static inline void dst_negative_advice(struct sock *sk) 1758{ 1759 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1760 1761 sk_rethink_txhash(sk); 1762 1763 if (dst && dst->ops->negative_advice) { 1764 ndst = dst->ops->negative_advice(dst); 1765 1766 if (ndst != dst) { 1767 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1768 sk_tx_queue_clear(sk); 1769 sk->sk_dst_pending_confirm = 0; 1770 } 1771 } 1772} 1773 1774static inline void 1775__sk_dst_set(struct sock *sk, struct dst_entry *dst) 1776{ 1777 struct dst_entry *old_dst; 1778 1779 sk_tx_queue_clear(sk); 1780 sk->sk_dst_pending_confirm = 0; 1781 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 1782 lockdep_sock_is_held(sk)); 1783 rcu_assign_pointer(sk->sk_dst_cache, dst); 1784 dst_release(old_dst); 1785} 1786 1787static inline void 1788sk_dst_set(struct sock *sk, struct dst_entry *dst) 1789{ 1790 struct dst_entry *old_dst; 1791 1792 sk_tx_queue_clear(sk); 1793 sk->sk_dst_pending_confirm = 0; 1794 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1795 dst_release(old_dst); 1796} 1797 1798static inline void 1799__sk_dst_reset(struct sock *sk) 1800{ 1801 __sk_dst_set(sk, NULL); 1802} 1803 1804static inline void 1805sk_dst_reset(struct sock *sk) 1806{ 1807 sk_dst_set(sk, NULL); 1808} 1809 1810struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1811 1812struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1813 1814static inline void sk_dst_confirm(struct sock *sk) 1815{ 1816 if (!sk->sk_dst_pending_confirm) 1817 sk->sk_dst_pending_confirm = 1; 1818} 1819 1820static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 1821{ 1822 if (skb_get_dst_pending_confirm(skb)) { 1823 struct sock *sk = skb->sk; 1824 unsigned long now = jiffies; 1825 1826 /* avoid dirtying neighbour */ 1827 if (n->confirmed != now) 1828 n->confirmed = now; 1829 if (sk && sk->sk_dst_pending_confirm) 1830 sk->sk_dst_pending_confirm = 0; 1831 } 1832} 1833 1834bool sk_mc_loop(struct sock *sk); 1835 1836static inline bool sk_can_gso(const struct sock *sk) 1837{ 1838 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1839} 1840 1841void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1842 1843static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1844{ 1845 sk->sk_route_nocaps |= flags; 1846 sk->sk_route_caps &= ~flags; 1847} 1848 1849static inline bool sk_check_csum_caps(struct sock *sk) 1850{ 1851 return (sk->sk_route_caps & NETIF_F_HW_CSUM) || 1852 (sk->sk_family == PF_INET && 1853 (sk->sk_route_caps & NETIF_F_IP_CSUM)) || 1854 (sk->sk_family == PF_INET6 && 1855 (sk->sk_route_caps & NETIF_F_IPV6_CSUM)); 1856} 1857 1858static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1859 struct iov_iter *from, char *to, 1860 int copy, int offset) 1861{ 1862 if (skb->ip_summed == CHECKSUM_NONE) { 1863 __wsum csum = 0; 1864 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 1865 return -EFAULT; 1866 skb->csum = csum_block_add(skb->csum, csum, offset); 1867 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1868 if (!copy_from_iter_full_nocache(to, copy, from)) 1869 return -EFAULT; 1870 } else if (!copy_from_iter_full(to, copy, from)) 1871 return -EFAULT; 1872 1873 return 0; 1874} 1875 1876static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1877 struct iov_iter *from, int copy) 1878{ 1879 int err, offset = skb->len; 1880 1881 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1882 copy, offset); 1883 if (err) 1884 __skb_trim(skb, offset); 1885 1886 return err; 1887} 1888 1889static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 1890 struct sk_buff *skb, 1891 struct page *page, 1892 int off, int copy) 1893{ 1894 int err; 1895 1896 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1897 copy, skb->len); 1898 if (err) 1899 return err; 1900 1901 skb->len += copy; 1902 skb->data_len += copy; 1903 skb->truesize += copy; 1904 sk->sk_wmem_queued += copy; 1905 sk_mem_charge(sk, copy); 1906 return 0; 1907} 1908 1909/** 1910 * sk_wmem_alloc_get - returns write allocations 1911 * @sk: socket 1912 * 1913 * Returns sk_wmem_alloc minus initial offset of one 1914 */ 1915static inline int sk_wmem_alloc_get(const struct sock *sk) 1916{ 1917 return refcount_read(&sk->sk_wmem_alloc) - 1; 1918} 1919 1920/** 1921 * sk_rmem_alloc_get - returns read allocations 1922 * @sk: socket 1923 * 1924 * Returns sk_rmem_alloc 1925 */ 1926static inline int sk_rmem_alloc_get(const struct sock *sk) 1927{ 1928 return atomic_read(&sk->sk_rmem_alloc); 1929} 1930 1931/** 1932 * sk_has_allocations - check if allocations are outstanding 1933 * @sk: socket 1934 * 1935 * Returns true if socket has write or read allocations 1936 */ 1937static inline bool sk_has_allocations(const struct sock *sk) 1938{ 1939 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1940} 1941 1942/** 1943 * skwq_has_sleeper - check if there are any waiting processes 1944 * @wq: struct socket_wq 1945 * 1946 * Returns true if socket_wq has waiting processes 1947 * 1948 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 1949 * barrier call. They were added due to the race found within the tcp code. 1950 * 1951 * Consider following tcp code paths:: 1952 * 1953 * CPU1 CPU2 1954 * sys_select receive packet 1955 * ... ... 1956 * __add_wait_queue update tp->rcv_nxt 1957 * ... ... 1958 * tp->rcv_nxt check sock_def_readable 1959 * ... { 1960 * schedule rcu_read_lock(); 1961 * wq = rcu_dereference(sk->sk_wq); 1962 * if (wq && waitqueue_active(&wq->wait)) 1963 * wake_up_interruptible(&wq->wait) 1964 * ... 1965 * } 1966 * 1967 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1968 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1969 * could then endup calling schedule and sleep forever if there are no more 1970 * data on the socket. 1971 * 1972 */ 1973static inline bool skwq_has_sleeper(struct socket_wq *wq) 1974{ 1975 return wq && wq_has_sleeper(&wq->wait); 1976} 1977 1978/** 1979 * sock_poll_wait - place memory barrier behind the poll_wait call. 1980 * @filp: file 1981 * @wait_address: socket wait queue 1982 * @p: poll_table 1983 * 1984 * See the comments in the wq_has_sleeper function. 1985 */ 1986static inline void sock_poll_wait(struct file *filp, 1987 wait_queue_head_t *wait_address, poll_table *p) 1988{ 1989 if (!poll_does_not_wait(p) && wait_address) { 1990 poll_wait(filp, wait_address, p); 1991 /* We need to be sure we are in sync with the 1992 * socket flags modification. 1993 * 1994 * This memory barrier is paired in the wq_has_sleeper. 1995 */ 1996 smp_mb(); 1997 } 1998} 1999 2000static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2001{ 2002 if (sk->sk_txhash) { 2003 skb->l4_hash = 1; 2004 skb->hash = sk->sk_txhash; 2005 } 2006} 2007 2008void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2009 2010/* 2011 * Queue a received datagram if it will fit. Stream and sequenced 2012 * protocols can't normally use this as they need to fit buffers in 2013 * and play with them. 2014 * 2015 * Inlined as it's very short and called for pretty much every 2016 * packet ever received. 2017 */ 2018static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2019{ 2020 skb_orphan(skb); 2021 skb->sk = sk; 2022 skb->destructor = sock_rfree; 2023 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2024 sk_mem_charge(sk, skb->truesize); 2025} 2026 2027void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2028 unsigned long expires); 2029 2030void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2031 2032int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2033 struct sk_buff *skb, unsigned int flags, 2034 void (*destructor)(struct sock *sk, 2035 struct sk_buff *skb)); 2036int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2037int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2038 2039int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2040struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2041 2042/* 2043 * Recover an error report and clear atomically 2044 */ 2045 2046static inline int sock_error(struct sock *sk) 2047{ 2048 int err; 2049 if (likely(!sk->sk_err)) 2050 return 0; 2051 err = xchg(&sk->sk_err, 0); 2052 return -err; 2053} 2054 2055static inline unsigned long sock_wspace(struct sock *sk) 2056{ 2057 int amt = 0; 2058 2059 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2060 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2061 if (amt < 0) 2062 amt = 0; 2063 } 2064 return amt; 2065} 2066 2067/* Note: 2068 * We use sk->sk_wq_raw, from contexts knowing this 2069 * pointer is not NULL and cannot disappear/change. 2070 */ 2071static inline void sk_set_bit(int nr, struct sock *sk) 2072{ 2073 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2074 !sock_flag(sk, SOCK_FASYNC)) 2075 return; 2076 2077 set_bit(nr, &sk->sk_wq_raw->flags); 2078} 2079 2080static inline void sk_clear_bit(int nr, struct sock *sk) 2081{ 2082 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2083 !sock_flag(sk, SOCK_FASYNC)) 2084 return; 2085 2086 clear_bit(nr, &sk->sk_wq_raw->flags); 2087} 2088 2089static inline void sk_wake_async(const struct sock *sk, int how, int band) 2090{ 2091 if (sock_flag(sk, SOCK_FASYNC)) { 2092 rcu_read_lock(); 2093 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2094 rcu_read_unlock(); 2095 } 2096} 2097 2098/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2099 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2100 * Note: for send buffers, TCP works better if we can build two skbs at 2101 * minimum. 2102 */ 2103#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2104 2105#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2106#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2107 2108static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2109{ 2110 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2111 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2112 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2113 } 2114} 2115 2116struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2117 bool force_schedule); 2118 2119/** 2120 * sk_page_frag - return an appropriate page_frag 2121 * @sk: socket 2122 * 2123 * If socket allocation mode allows current thread to sleep, it means its 2124 * safe to use the per task page_frag instead of the per socket one. 2125 */ 2126static inline struct page_frag *sk_page_frag(struct sock *sk) 2127{ 2128 if (gfpflags_allow_blocking(sk->sk_allocation)) 2129 return &current->task_frag; 2130 2131 return &sk->sk_frag; 2132} 2133 2134bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2135 2136/* 2137 * Default write policy as shown to user space via poll/select/SIGIO 2138 */ 2139static inline bool sock_writeable(const struct sock *sk) 2140{ 2141 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2142} 2143 2144static inline gfp_t gfp_any(void) 2145{ 2146 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2147} 2148 2149static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2150{ 2151 return noblock ? 0 : sk->sk_rcvtimeo; 2152} 2153 2154static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2155{ 2156 return noblock ? 0 : sk->sk_sndtimeo; 2157} 2158 2159static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2160{ 2161 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2162} 2163 2164/* Alas, with timeout socket operations are not restartable. 2165 * Compare this to poll(). 2166 */ 2167static inline int sock_intr_errno(long timeo) 2168{ 2169 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2170} 2171 2172struct sock_skb_cb { 2173 u32 dropcount; 2174}; 2175 2176/* Store sock_skb_cb at the end of skb->cb[] so protocol families 2177 * using skb->cb[] would keep using it directly and utilize its 2178 * alignement guarantee. 2179 */ 2180#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \ 2181 sizeof(struct sock_skb_cb))) 2182 2183#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2184 SOCK_SKB_CB_OFFSET)) 2185 2186#define sock_skb_cb_check_size(size) \ 2187 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2188 2189static inline void 2190sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2191{ 2192 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2193 atomic_read(&sk->sk_drops) : 0; 2194} 2195 2196static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2197{ 2198 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2199 2200 atomic_add(segs, &sk->sk_drops); 2201} 2202 2203void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2204 struct sk_buff *skb); 2205void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2206 struct sk_buff *skb); 2207 2208static inline void 2209sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2210{ 2211 ktime_t kt = skb->tstamp; 2212 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2213 2214 /* 2215 * generate control messages if 2216 * - receive time stamping in software requested 2217 * - software time stamp available and wanted 2218 * - hardware time stamps available and wanted 2219 */ 2220 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2221 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2222 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2223 (hwtstamps->hwtstamp && 2224 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2225 __sock_recv_timestamp(msg, sk, skb); 2226 else 2227 sk->sk_stamp = kt; 2228 2229 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2230 __sock_recv_wifi_status(msg, sk, skb); 2231} 2232 2233void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2234 struct sk_buff *skb); 2235 2236#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2237static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2238 struct sk_buff *skb) 2239{ 2240#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2241 (1UL << SOCK_RCVTSTAMP)) 2242#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2243 SOF_TIMESTAMPING_RAW_HARDWARE) 2244 2245 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2246 __sock_recv_ts_and_drops(msg, sk, skb); 2247 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2248 sk->sk_stamp = skb->tstamp; 2249 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2250 sk->sk_stamp = 0; 2251} 2252 2253void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2254 2255/** 2256 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2257 * @sk: socket sending this packet 2258 * @tsflags: timestamping flags to use 2259 * @tx_flags: completed with instructions for time stamping 2260 * 2261 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2262 */ 2263static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags, 2264 __u8 *tx_flags) 2265{ 2266 if (unlikely(tsflags)) 2267 __sock_tx_timestamp(tsflags, tx_flags); 2268 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2269 *tx_flags |= SKBTX_WIFI_STATUS; 2270} 2271 2272/** 2273 * sk_eat_skb - Release a skb if it is no longer needed 2274 * @sk: socket to eat this skb from 2275 * @skb: socket buffer to eat 2276 * 2277 * This routine must be called with interrupts disabled or with the socket 2278 * locked so that the sk_buff queue operation is ok. 2279*/ 2280static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2281{ 2282 __skb_unlink(skb, &sk->sk_receive_queue); 2283 __kfree_skb(skb); 2284} 2285 2286static inline 2287struct net *sock_net(const struct sock *sk) 2288{ 2289 return read_pnet(&sk->sk_net); 2290} 2291 2292static inline 2293void sock_net_set(struct sock *sk, struct net *net) 2294{ 2295 write_pnet(&sk->sk_net, net); 2296} 2297 2298static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2299{ 2300 if (skb->sk) { 2301 struct sock *sk = skb->sk; 2302 2303 skb->destructor = NULL; 2304 skb->sk = NULL; 2305 return sk; 2306 } 2307 return NULL; 2308} 2309 2310/* This helper checks if a socket is a full socket, 2311 * ie _not_ a timewait or request socket. 2312 */ 2313static inline bool sk_fullsock(const struct sock *sk) 2314{ 2315 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2316} 2317 2318/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2319 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2320 */ 2321static inline bool sk_listener(const struct sock *sk) 2322{ 2323 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2324} 2325 2326/** 2327 * sk_state_load - read sk->sk_state for lockless contexts 2328 * @sk: socket pointer 2329 * 2330 * Paired with sk_state_store(). Used in places we do not hold socket lock : 2331 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ... 2332 */ 2333static inline int sk_state_load(const struct sock *sk) 2334{ 2335 return smp_load_acquire(&sk->sk_state); 2336} 2337 2338/** 2339 * sk_state_store - update sk->sk_state 2340 * @sk: socket pointer 2341 * @newstate: new state 2342 * 2343 * Paired with sk_state_load(). Should be used in contexts where 2344 * state change might impact lockless readers. 2345 */ 2346static inline void sk_state_store(struct sock *sk, int newstate) 2347{ 2348 smp_store_release(&sk->sk_state, newstate); 2349} 2350 2351void sock_enable_timestamp(struct sock *sk, int flag); 2352int sock_get_timestamp(struct sock *, struct timeval __user *); 2353int sock_get_timestampns(struct sock *, struct timespec __user *); 2354int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2355 int type); 2356 2357bool sk_ns_capable(const struct sock *sk, 2358 struct user_namespace *user_ns, int cap); 2359bool sk_capable(const struct sock *sk, int cap); 2360bool sk_net_capable(const struct sock *sk, int cap); 2361 2362void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2363 2364extern __u32 sysctl_wmem_max; 2365extern __u32 sysctl_rmem_max; 2366 2367extern int sysctl_tstamp_allow_data; 2368extern int sysctl_optmem_max; 2369 2370extern __u32 sysctl_wmem_default; 2371extern __u32 sysctl_rmem_default; 2372 2373#endif /* _SOCK_H */