at v4.13 21 kB view raw
1/* 2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 * (C) Linux Foundation 2008-2013 8 * Unified interface for all slab allocators 9 */ 10 11#ifndef _LINUX_SLAB_H 12#define _LINUX_SLAB_H 13 14#include <linux/gfp.h> 15#include <linux/types.h> 16#include <linux/workqueue.h> 17 18 19/* 20 * Flags to pass to kmem_cache_create(). 21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 22 */ 23#define SLAB_CONSISTENCY_CHECKS 0x00000100UL /* DEBUG: Perform (expensive) checks on alloc/free */ 24#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 27#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 28#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 29#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 30/* 31 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 32 * 33 * This delays freeing the SLAB page by a grace period, it does _NOT_ 34 * delay object freeing. This means that if you do kmem_cache_free() 35 * that memory location is free to be reused at any time. Thus it may 36 * be possible to see another object there in the same RCU grace period. 37 * 38 * This feature only ensures the memory location backing the object 39 * stays valid, the trick to using this is relying on an independent 40 * object validation pass. Something like: 41 * 42 * rcu_read_lock() 43 * again: 44 * obj = lockless_lookup(key); 45 * if (obj) { 46 * if (!try_get_ref(obj)) // might fail for free objects 47 * goto again; 48 * 49 * if (obj->key != key) { // not the object we expected 50 * put_ref(obj); 51 * goto again; 52 * } 53 * } 54 * rcu_read_unlock(); 55 * 56 * This is useful if we need to approach a kernel structure obliquely, 57 * from its address obtained without the usual locking. We can lock 58 * the structure to stabilize it and check it's still at the given address, 59 * only if we can be sure that the memory has not been meanwhile reused 60 * for some other kind of object (which our subsystem's lock might corrupt). 61 * 62 * rcu_read_lock before reading the address, then rcu_read_unlock after 63 * taking the spinlock within the structure expected at that address. 64 * 65 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 66 */ 67#define SLAB_TYPESAFE_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 68#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 69#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 70 71/* Flag to prevent checks on free */ 72#ifdef CONFIG_DEBUG_OBJECTS 73# define SLAB_DEBUG_OBJECTS 0x00400000UL 74#else 75# define SLAB_DEBUG_OBJECTS 0x00000000UL 76#endif 77 78#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 79 80/* Don't track use of uninitialized memory */ 81#ifdef CONFIG_KMEMCHECK 82# define SLAB_NOTRACK 0x01000000UL 83#else 84# define SLAB_NOTRACK 0x00000000UL 85#endif 86#ifdef CONFIG_FAILSLAB 87# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 88#else 89# define SLAB_FAILSLAB 0x00000000UL 90#endif 91#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 92# define SLAB_ACCOUNT 0x04000000UL /* Account to memcg */ 93#else 94# define SLAB_ACCOUNT 0x00000000UL 95#endif 96 97#ifdef CONFIG_KASAN 98#define SLAB_KASAN 0x08000000UL 99#else 100#define SLAB_KASAN 0x00000000UL 101#endif 102 103/* The following flags affect the page allocator grouping pages by mobility */ 104#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 105#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 106/* 107 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 108 * 109 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 110 * 111 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 112 * Both make kfree a no-op. 113 */ 114#define ZERO_SIZE_PTR ((void *)16) 115 116#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 117 (unsigned long)ZERO_SIZE_PTR) 118 119#include <linux/kmemleak.h> 120#include <linux/kasan.h> 121 122struct mem_cgroup; 123/* 124 * struct kmem_cache related prototypes 125 */ 126void __init kmem_cache_init(void); 127bool slab_is_available(void); 128 129struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 130 unsigned long, 131 void (*)(void *)); 132void kmem_cache_destroy(struct kmem_cache *); 133int kmem_cache_shrink(struct kmem_cache *); 134 135void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); 136void memcg_deactivate_kmem_caches(struct mem_cgroup *); 137void memcg_destroy_kmem_caches(struct mem_cgroup *); 138 139/* 140 * Please use this macro to create slab caches. Simply specify the 141 * name of the structure and maybe some flags that are listed above. 142 * 143 * The alignment of the struct determines object alignment. If you 144 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 145 * then the objects will be properly aligned in SMP configurations. 146 */ 147#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 148 sizeof(struct __struct), __alignof__(struct __struct),\ 149 (__flags), NULL) 150 151/* 152 * Common kmalloc functions provided by all allocators 153 */ 154void * __must_check __krealloc(const void *, size_t, gfp_t); 155void * __must_check krealloc(const void *, size_t, gfp_t); 156void kfree(const void *); 157void kzfree(const void *); 158size_t ksize(const void *); 159 160#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR 161const char *__check_heap_object(const void *ptr, unsigned long n, 162 struct page *page); 163#else 164static inline const char *__check_heap_object(const void *ptr, 165 unsigned long n, 166 struct page *page) 167{ 168 return NULL; 169} 170#endif 171 172/* 173 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 174 * alignment larger than the alignment of a 64-bit integer. 175 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 176 */ 177#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 178#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 179#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 180#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 181#else 182#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 183#endif 184 185/* 186 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 187 * Intended for arches that get misalignment faults even for 64 bit integer 188 * aligned buffers. 189 */ 190#ifndef ARCH_SLAB_MINALIGN 191#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 192#endif 193 194/* 195 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned 196 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN 197 * aligned pointers. 198 */ 199#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 200#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 201#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 202 203/* 204 * Kmalloc array related definitions 205 */ 206 207#ifdef CONFIG_SLAB 208/* 209 * The largest kmalloc size supported by the SLAB allocators is 210 * 32 megabyte (2^25) or the maximum allocatable page order if that is 211 * less than 32 MB. 212 * 213 * WARNING: Its not easy to increase this value since the allocators have 214 * to do various tricks to work around compiler limitations in order to 215 * ensure proper constant folding. 216 */ 217#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 218 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 219#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 220#ifndef KMALLOC_SHIFT_LOW 221#define KMALLOC_SHIFT_LOW 5 222#endif 223#endif 224 225#ifdef CONFIG_SLUB 226/* 227 * SLUB directly allocates requests fitting in to an order-1 page 228 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 229 */ 230#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 231#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 232#ifndef KMALLOC_SHIFT_LOW 233#define KMALLOC_SHIFT_LOW 3 234#endif 235#endif 236 237#ifdef CONFIG_SLOB 238/* 239 * SLOB passes all requests larger than one page to the page allocator. 240 * No kmalloc array is necessary since objects of different sizes can 241 * be allocated from the same page. 242 */ 243#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 244#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 245#ifndef KMALLOC_SHIFT_LOW 246#define KMALLOC_SHIFT_LOW 3 247#endif 248#endif 249 250/* Maximum allocatable size */ 251#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 252/* Maximum size for which we actually use a slab cache */ 253#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 254/* Maximum order allocatable via the slab allocagtor */ 255#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 256 257/* 258 * Kmalloc subsystem. 259 */ 260#ifndef KMALLOC_MIN_SIZE 261#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 262#endif 263 264/* 265 * This restriction comes from byte sized index implementation. 266 * Page size is normally 2^12 bytes and, in this case, if we want to use 267 * byte sized index which can represent 2^8 entries, the size of the object 268 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 269 * If minimum size of kmalloc is less than 16, we use it as minimum object 270 * size and give up to use byte sized index. 271 */ 272#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 273 (KMALLOC_MIN_SIZE) : 16) 274 275#ifndef CONFIG_SLOB 276extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 277#ifdef CONFIG_ZONE_DMA 278extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 279#endif 280 281/* 282 * Figure out which kmalloc slab an allocation of a certain size 283 * belongs to. 284 * 0 = zero alloc 285 * 1 = 65 .. 96 bytes 286 * 2 = 129 .. 192 bytes 287 * n = 2^(n-1)+1 .. 2^n 288 */ 289static __always_inline int kmalloc_index(size_t size) 290{ 291 if (!size) 292 return 0; 293 294 if (size <= KMALLOC_MIN_SIZE) 295 return KMALLOC_SHIFT_LOW; 296 297 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 298 return 1; 299 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 300 return 2; 301 if (size <= 8) return 3; 302 if (size <= 16) return 4; 303 if (size <= 32) return 5; 304 if (size <= 64) return 6; 305 if (size <= 128) return 7; 306 if (size <= 256) return 8; 307 if (size <= 512) return 9; 308 if (size <= 1024) return 10; 309 if (size <= 2 * 1024) return 11; 310 if (size <= 4 * 1024) return 12; 311 if (size <= 8 * 1024) return 13; 312 if (size <= 16 * 1024) return 14; 313 if (size <= 32 * 1024) return 15; 314 if (size <= 64 * 1024) return 16; 315 if (size <= 128 * 1024) return 17; 316 if (size <= 256 * 1024) return 18; 317 if (size <= 512 * 1024) return 19; 318 if (size <= 1024 * 1024) return 20; 319 if (size <= 2 * 1024 * 1024) return 21; 320 if (size <= 4 * 1024 * 1024) return 22; 321 if (size <= 8 * 1024 * 1024) return 23; 322 if (size <= 16 * 1024 * 1024) return 24; 323 if (size <= 32 * 1024 * 1024) return 25; 324 if (size <= 64 * 1024 * 1024) return 26; 325 BUG(); 326 327 /* Will never be reached. Needed because the compiler may complain */ 328 return -1; 329} 330#endif /* !CONFIG_SLOB */ 331 332void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; 333void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; 334void kmem_cache_free(struct kmem_cache *, void *); 335 336/* 337 * Bulk allocation and freeing operations. These are accelerated in an 338 * allocator specific way to avoid taking locks repeatedly or building 339 * metadata structures unnecessarily. 340 * 341 * Note that interrupts must be enabled when calling these functions. 342 */ 343void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 344int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 345 346/* 347 * Caller must not use kfree_bulk() on memory not originally allocated 348 * by kmalloc(), because the SLOB allocator cannot handle this. 349 */ 350static __always_inline void kfree_bulk(size_t size, void **p) 351{ 352 kmem_cache_free_bulk(NULL, size, p); 353} 354 355#ifdef CONFIG_NUMA 356void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; 357void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; 358#else 359static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 360{ 361 return __kmalloc(size, flags); 362} 363 364static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 365{ 366 return kmem_cache_alloc(s, flags); 367} 368#endif 369 370#ifdef CONFIG_TRACING 371extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; 372 373#ifdef CONFIG_NUMA 374extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 375 gfp_t gfpflags, 376 int node, size_t size) __assume_slab_alignment __malloc; 377#else 378static __always_inline void * 379kmem_cache_alloc_node_trace(struct kmem_cache *s, 380 gfp_t gfpflags, 381 int node, size_t size) 382{ 383 return kmem_cache_alloc_trace(s, gfpflags, size); 384} 385#endif /* CONFIG_NUMA */ 386 387#else /* CONFIG_TRACING */ 388static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 389 gfp_t flags, size_t size) 390{ 391 void *ret = kmem_cache_alloc(s, flags); 392 393 kasan_kmalloc(s, ret, size, flags); 394 return ret; 395} 396 397static __always_inline void * 398kmem_cache_alloc_node_trace(struct kmem_cache *s, 399 gfp_t gfpflags, 400 int node, size_t size) 401{ 402 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 403 404 kasan_kmalloc(s, ret, size, gfpflags); 405 return ret; 406} 407#endif /* CONFIG_TRACING */ 408 409extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 410 411#ifdef CONFIG_TRACING 412extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 413#else 414static __always_inline void * 415kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 416{ 417 return kmalloc_order(size, flags, order); 418} 419#endif 420 421static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 422{ 423 unsigned int order = get_order(size); 424 return kmalloc_order_trace(size, flags, order); 425} 426 427/** 428 * kmalloc - allocate memory 429 * @size: how many bytes of memory are required. 430 * @flags: the type of memory to allocate. 431 * 432 * kmalloc is the normal method of allocating memory 433 * for objects smaller than page size in the kernel. 434 * 435 * The @flags argument may be one of: 436 * 437 * %GFP_USER - Allocate memory on behalf of user. May sleep. 438 * 439 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 440 * 441 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 442 * For example, use this inside interrupt handlers. 443 * 444 * %GFP_HIGHUSER - Allocate pages from high memory. 445 * 446 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 447 * 448 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 449 * 450 * %GFP_NOWAIT - Allocation will not sleep. 451 * 452 * %__GFP_THISNODE - Allocate node-local memory only. 453 * 454 * %GFP_DMA - Allocation suitable for DMA. 455 * Should only be used for kmalloc() caches. Otherwise, use a 456 * slab created with SLAB_DMA. 457 * 458 * Also it is possible to set different flags by OR'ing 459 * in one or more of the following additional @flags: 460 * 461 * %__GFP_COLD - Request cache-cold pages instead of 462 * trying to return cache-warm pages. 463 * 464 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 465 * 466 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 467 * (think twice before using). 468 * 469 * %__GFP_NORETRY - If memory is not immediately available, 470 * then give up at once. 471 * 472 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 473 * 474 * %__GFP_RETRY_MAYFAIL - Try really hard to succeed the allocation but fail 475 * eventually. 476 * 477 * There are other flags available as well, but these are not intended 478 * for general use, and so are not documented here. For a full list of 479 * potential flags, always refer to linux/gfp.h. 480 */ 481static __always_inline void *kmalloc(size_t size, gfp_t flags) 482{ 483 if (__builtin_constant_p(size)) { 484 if (size > KMALLOC_MAX_CACHE_SIZE) 485 return kmalloc_large(size, flags); 486#ifndef CONFIG_SLOB 487 if (!(flags & GFP_DMA)) { 488 int index = kmalloc_index(size); 489 490 if (!index) 491 return ZERO_SIZE_PTR; 492 493 return kmem_cache_alloc_trace(kmalloc_caches[index], 494 flags, size); 495 } 496#endif 497 } 498 return __kmalloc(size, flags); 499} 500 501/* 502 * Determine size used for the nth kmalloc cache. 503 * return size or 0 if a kmalloc cache for that 504 * size does not exist 505 */ 506static __always_inline int kmalloc_size(int n) 507{ 508#ifndef CONFIG_SLOB 509 if (n > 2) 510 return 1 << n; 511 512 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 513 return 96; 514 515 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 516 return 192; 517#endif 518 return 0; 519} 520 521static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 522{ 523#ifndef CONFIG_SLOB 524 if (__builtin_constant_p(size) && 525 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 526 int i = kmalloc_index(size); 527 528 if (!i) 529 return ZERO_SIZE_PTR; 530 531 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 532 flags, node, size); 533 } 534#endif 535 return __kmalloc_node(size, flags, node); 536} 537 538struct memcg_cache_array { 539 struct rcu_head rcu; 540 struct kmem_cache *entries[0]; 541}; 542 543/* 544 * This is the main placeholder for memcg-related information in kmem caches. 545 * Both the root cache and the child caches will have it. For the root cache, 546 * this will hold a dynamically allocated array large enough to hold 547 * information about the currently limited memcgs in the system. To allow the 548 * array to be accessed without taking any locks, on relocation we free the old 549 * version only after a grace period. 550 * 551 * Root and child caches hold different metadata. 552 * 553 * @root_cache: Common to root and child caches. NULL for root, pointer to 554 * the root cache for children. 555 * 556 * The following fields are specific to root caches. 557 * 558 * @memcg_caches: kmemcg ID indexed table of child caches. This table is 559 * used to index child cachces during allocation and cleared 560 * early during shutdown. 561 * 562 * @root_caches_node: List node for slab_root_caches list. 563 * 564 * @children: List of all child caches. While the child caches are also 565 * reachable through @memcg_caches, a child cache remains on 566 * this list until it is actually destroyed. 567 * 568 * The following fields are specific to child caches. 569 * 570 * @memcg: Pointer to the memcg this cache belongs to. 571 * 572 * @children_node: List node for @root_cache->children list. 573 * 574 * @kmem_caches_node: List node for @memcg->kmem_caches list. 575 */ 576struct memcg_cache_params { 577 struct kmem_cache *root_cache; 578 union { 579 struct { 580 struct memcg_cache_array __rcu *memcg_caches; 581 struct list_head __root_caches_node; 582 struct list_head children; 583 }; 584 struct { 585 struct mem_cgroup *memcg; 586 struct list_head children_node; 587 struct list_head kmem_caches_node; 588 589 void (*deact_fn)(struct kmem_cache *); 590 union { 591 struct rcu_head deact_rcu_head; 592 struct work_struct deact_work; 593 }; 594 }; 595 }; 596}; 597 598int memcg_update_all_caches(int num_memcgs); 599 600/** 601 * kmalloc_array - allocate memory for an array. 602 * @n: number of elements. 603 * @size: element size. 604 * @flags: the type of memory to allocate (see kmalloc). 605 */ 606static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 607{ 608 if (size != 0 && n > SIZE_MAX / size) 609 return NULL; 610 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 611 return kmalloc(n * size, flags); 612 return __kmalloc(n * size, flags); 613} 614 615/** 616 * kcalloc - allocate memory for an array. The memory is set to zero. 617 * @n: number of elements. 618 * @size: element size. 619 * @flags: the type of memory to allocate (see kmalloc). 620 */ 621static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 622{ 623 return kmalloc_array(n, size, flags | __GFP_ZERO); 624} 625 626/* 627 * kmalloc_track_caller is a special version of kmalloc that records the 628 * calling function of the routine calling it for slab leak tracking instead 629 * of just the calling function (confusing, eh?). 630 * It's useful when the call to kmalloc comes from a widely-used standard 631 * allocator where we care about the real place the memory allocation 632 * request comes from. 633 */ 634extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 635#define kmalloc_track_caller(size, flags) \ 636 __kmalloc_track_caller(size, flags, _RET_IP_) 637 638#ifdef CONFIG_NUMA 639extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 640#define kmalloc_node_track_caller(size, flags, node) \ 641 __kmalloc_node_track_caller(size, flags, node, \ 642 _RET_IP_) 643 644#else /* CONFIG_NUMA */ 645 646#define kmalloc_node_track_caller(size, flags, node) \ 647 kmalloc_track_caller(size, flags) 648 649#endif /* CONFIG_NUMA */ 650 651/* 652 * Shortcuts 653 */ 654static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 655{ 656 return kmem_cache_alloc(k, flags | __GFP_ZERO); 657} 658 659/** 660 * kzalloc - allocate memory. The memory is set to zero. 661 * @size: how many bytes of memory are required. 662 * @flags: the type of memory to allocate (see kmalloc). 663 */ 664static inline void *kzalloc(size_t size, gfp_t flags) 665{ 666 return kmalloc(size, flags | __GFP_ZERO); 667} 668 669/** 670 * kzalloc_node - allocate zeroed memory from a particular memory node. 671 * @size: how many bytes of memory are required. 672 * @flags: the type of memory to allocate (see kmalloc). 673 * @node: memory node from which to allocate 674 */ 675static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 676{ 677 return kmalloc_node(size, flags | __GFP_ZERO, node); 678} 679 680unsigned int kmem_cache_size(struct kmem_cache *s); 681void __init kmem_cache_init_late(void); 682 683#if defined(CONFIG_SMP) && defined(CONFIG_SLAB) 684int slab_prepare_cpu(unsigned int cpu); 685int slab_dead_cpu(unsigned int cpu); 686#else 687#define slab_prepare_cpu NULL 688#define slab_dead_cpu NULL 689#endif 690 691#endif /* _LINUX_SLAB_H */