at v4.13 115 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23#include <linux/rbtree.h> 24#include <linux/socket.h> 25 26#include <linux/atomic.h> 27#include <asm/types.h> 28#include <linux/spinlock.h> 29#include <linux/net.h> 30#include <linux/textsearch.h> 31#include <net/checksum.h> 32#include <linux/rcupdate.h> 33#include <linux/hrtimer.h> 34#include <linux/dma-mapping.h> 35#include <linux/netdev_features.h> 36#include <linux/sched.h> 37#include <linux/sched/clock.h> 38#include <net/flow_dissector.h> 39#include <linux/splice.h> 40#include <linux/in6.h> 41#include <linux/if_packet.h> 42#include <net/flow.h> 43 44/* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219/* Don't change this without changing skb_csum_unnecessary! */ 220#define CHECKSUM_NONE 0 221#define CHECKSUM_UNNECESSARY 1 222#define CHECKSUM_COMPLETE 2 223#define CHECKSUM_PARTIAL 3 224 225/* Maximum value in skb->csum_level */ 226#define SKB_MAX_CSUM_LEVEL 3 227 228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229#define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231#define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236/* return minimum truesize of one skb containing X bytes of data */ 237#define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241struct net_device; 242struct scatterlist; 243struct pipe_inode_info; 244struct iov_iter; 245struct napi_struct; 246 247#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 248struct nf_conntrack { 249 atomic_t use; 250}; 251#endif 252 253#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 254struct nf_bridge_info { 255 refcount_t use; 256 enum { 257 BRNF_PROTO_UNCHANGED, 258 BRNF_PROTO_8021Q, 259 BRNF_PROTO_PPPOE 260 } orig_proto:8; 261 u8 pkt_otherhost:1; 262 u8 in_prerouting:1; 263 u8 bridged_dnat:1; 264 __u16 frag_max_size; 265 struct net_device *physindev; 266 267 /* always valid & non-NULL from FORWARD on, for physdev match */ 268 struct net_device *physoutdev; 269 union { 270 /* prerouting: detect dnat in orig/reply direction */ 271 __be32 ipv4_daddr; 272 struct in6_addr ipv6_daddr; 273 274 /* after prerouting + nat detected: store original source 275 * mac since neigh resolution overwrites it, only used while 276 * skb is out in neigh layer. 277 */ 278 char neigh_header[8]; 279 }; 280}; 281#endif 282 283struct sk_buff_head { 284 /* These two members must be first. */ 285 struct sk_buff *next; 286 struct sk_buff *prev; 287 288 __u32 qlen; 289 spinlock_t lock; 290}; 291 292struct sk_buff; 293 294/* To allow 64K frame to be packed as single skb without frag_list we 295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 296 * buffers which do not start on a page boundary. 297 * 298 * Since GRO uses frags we allocate at least 16 regardless of page 299 * size. 300 */ 301#if (65536/PAGE_SIZE + 1) < 16 302#define MAX_SKB_FRAGS 16UL 303#else 304#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 305#endif 306extern int sysctl_max_skb_frags; 307 308/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 309 * segment using its current segmentation instead. 310 */ 311#define GSO_BY_FRAGS 0xFFFF 312 313typedef struct skb_frag_struct skb_frag_t; 314 315struct skb_frag_struct { 316 struct { 317 struct page *p; 318 } page; 319#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 320 __u32 page_offset; 321 __u32 size; 322#else 323 __u16 page_offset; 324 __u16 size; 325#endif 326}; 327 328static inline unsigned int skb_frag_size(const skb_frag_t *frag) 329{ 330 return frag->size; 331} 332 333static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 334{ 335 frag->size = size; 336} 337 338static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 339{ 340 frag->size += delta; 341} 342 343static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 344{ 345 frag->size -= delta; 346} 347 348#define HAVE_HW_TIME_STAMP 349 350/** 351 * struct skb_shared_hwtstamps - hardware time stamps 352 * @hwtstamp: hardware time stamp transformed into duration 353 * since arbitrary point in time 354 * 355 * Software time stamps generated by ktime_get_real() are stored in 356 * skb->tstamp. 357 * 358 * hwtstamps can only be compared against other hwtstamps from 359 * the same device. 360 * 361 * This structure is attached to packets as part of the 362 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 363 */ 364struct skb_shared_hwtstamps { 365 ktime_t hwtstamp; 366}; 367 368/* Definitions for tx_flags in struct skb_shared_info */ 369enum { 370 /* generate hardware time stamp */ 371 SKBTX_HW_TSTAMP = 1 << 0, 372 373 /* generate software time stamp when queueing packet to NIC */ 374 SKBTX_SW_TSTAMP = 1 << 1, 375 376 /* device driver is going to provide hardware time stamp */ 377 SKBTX_IN_PROGRESS = 1 << 2, 378 379 /* device driver supports TX zero-copy buffers */ 380 SKBTX_DEV_ZEROCOPY = 1 << 3, 381 382 /* generate wifi status information (where possible) */ 383 SKBTX_WIFI_STATUS = 1 << 4, 384 385 /* This indicates at least one fragment might be overwritten 386 * (as in vmsplice(), sendfile() ...) 387 * If we need to compute a TX checksum, we'll need to copy 388 * all frags to avoid possible bad checksum 389 */ 390 SKBTX_SHARED_FRAG = 1 << 5, 391 392 /* generate software time stamp when entering packet scheduling */ 393 SKBTX_SCHED_TSTAMP = 1 << 6, 394}; 395 396#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 397 SKBTX_SCHED_TSTAMP) 398#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 399 400/* 401 * The callback notifies userspace to release buffers when skb DMA is done in 402 * lower device, the skb last reference should be 0 when calling this. 403 * The zerocopy_success argument is true if zero copy transmit occurred, 404 * false on data copy or out of memory error caused by data copy attempt. 405 * The ctx field is used to track device context. 406 * The desc field is used to track userspace buffer index. 407 */ 408struct ubuf_info { 409 void (*callback)(struct ubuf_info *, bool zerocopy_success); 410 void *ctx; 411 unsigned long desc; 412}; 413 414/* This data is invariant across clones and lives at 415 * the end of the header data, ie. at skb->end. 416 */ 417struct skb_shared_info { 418 unsigned short _unused; 419 unsigned char nr_frags; 420 __u8 tx_flags; 421 unsigned short gso_size; 422 /* Warning: this field is not always filled in (UFO)! */ 423 unsigned short gso_segs; 424 struct sk_buff *frag_list; 425 struct skb_shared_hwtstamps hwtstamps; 426 unsigned int gso_type; 427 u32 tskey; 428 __be32 ip6_frag_id; 429 430 /* 431 * Warning : all fields before dataref are cleared in __alloc_skb() 432 */ 433 atomic_t dataref; 434 435 /* Intermediate layers must ensure that destructor_arg 436 * remains valid until skb destructor */ 437 void * destructor_arg; 438 439 /* must be last field, see pskb_expand_head() */ 440 skb_frag_t frags[MAX_SKB_FRAGS]; 441}; 442 443/* We divide dataref into two halves. The higher 16 bits hold references 444 * to the payload part of skb->data. The lower 16 bits hold references to 445 * the entire skb->data. A clone of a headerless skb holds the length of 446 * the header in skb->hdr_len. 447 * 448 * All users must obey the rule that the skb->data reference count must be 449 * greater than or equal to the payload reference count. 450 * 451 * Holding a reference to the payload part means that the user does not 452 * care about modifications to the header part of skb->data. 453 */ 454#define SKB_DATAREF_SHIFT 16 455#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 456 457 458enum { 459 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 460 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 461 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 462}; 463 464enum { 465 SKB_GSO_TCPV4 = 1 << 0, 466 SKB_GSO_UDP = 1 << 1, 467 468 /* This indicates the skb is from an untrusted source. */ 469 SKB_GSO_DODGY = 1 << 2, 470 471 /* This indicates the tcp segment has CWR set. */ 472 SKB_GSO_TCP_ECN = 1 << 3, 473 474 SKB_GSO_TCP_FIXEDID = 1 << 4, 475 476 SKB_GSO_TCPV6 = 1 << 5, 477 478 SKB_GSO_FCOE = 1 << 6, 479 480 SKB_GSO_GRE = 1 << 7, 481 482 SKB_GSO_GRE_CSUM = 1 << 8, 483 484 SKB_GSO_IPXIP4 = 1 << 9, 485 486 SKB_GSO_IPXIP6 = 1 << 10, 487 488 SKB_GSO_UDP_TUNNEL = 1 << 11, 489 490 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12, 491 492 SKB_GSO_PARTIAL = 1 << 13, 493 494 SKB_GSO_TUNNEL_REMCSUM = 1 << 14, 495 496 SKB_GSO_SCTP = 1 << 15, 497 498 SKB_GSO_ESP = 1 << 16, 499}; 500 501#if BITS_PER_LONG > 32 502#define NET_SKBUFF_DATA_USES_OFFSET 1 503#endif 504 505#ifdef NET_SKBUFF_DATA_USES_OFFSET 506typedef unsigned int sk_buff_data_t; 507#else 508typedef unsigned char *sk_buff_data_t; 509#endif 510 511/** 512 * struct sk_buff - socket buffer 513 * @next: Next buffer in list 514 * @prev: Previous buffer in list 515 * @tstamp: Time we arrived/left 516 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 517 * @sk: Socket we are owned by 518 * @dev: Device we arrived on/are leaving by 519 * @cb: Control buffer. Free for use by every layer. Put private vars here 520 * @_skb_refdst: destination entry (with norefcount bit) 521 * @sp: the security path, used for xfrm 522 * @len: Length of actual data 523 * @data_len: Data length 524 * @mac_len: Length of link layer header 525 * @hdr_len: writable header length of cloned skb 526 * @csum: Checksum (must include start/offset pair) 527 * @csum_start: Offset from skb->head where checksumming should start 528 * @csum_offset: Offset from csum_start where checksum should be stored 529 * @priority: Packet queueing priority 530 * @ignore_df: allow local fragmentation 531 * @cloned: Head may be cloned (check refcnt to be sure) 532 * @ip_summed: Driver fed us an IP checksum 533 * @nohdr: Payload reference only, must not modify header 534 * @pkt_type: Packet class 535 * @fclone: skbuff clone status 536 * @ipvs_property: skbuff is owned by ipvs 537 * @tc_skip_classify: do not classify packet. set by IFB device 538 * @tc_at_ingress: used within tc_classify to distinguish in/egress 539 * @tc_redirected: packet was redirected by a tc action 540 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 541 * @peeked: this packet has been seen already, so stats have been 542 * done for it, don't do them again 543 * @nf_trace: netfilter packet trace flag 544 * @protocol: Packet protocol from driver 545 * @destructor: Destruct function 546 * @_nfct: Associated connection, if any (with nfctinfo bits) 547 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 548 * @skb_iif: ifindex of device we arrived on 549 * @tc_index: Traffic control index 550 * @hash: the packet hash 551 * @queue_mapping: Queue mapping for multiqueue devices 552 * @xmit_more: More SKBs are pending for this queue 553 * @ndisc_nodetype: router type (from link layer) 554 * @ooo_okay: allow the mapping of a socket to a queue to be changed 555 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 556 * ports. 557 * @sw_hash: indicates hash was computed in software stack 558 * @wifi_acked_valid: wifi_acked was set 559 * @wifi_acked: whether frame was acked on wifi or not 560 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 561 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 562 * @dst_pending_confirm: need to confirm neighbour 563 * @napi_id: id of the NAPI struct this skb came from 564 * @secmark: security marking 565 * @mark: Generic packet mark 566 * @vlan_proto: vlan encapsulation protocol 567 * @vlan_tci: vlan tag control information 568 * @inner_protocol: Protocol (encapsulation) 569 * @inner_transport_header: Inner transport layer header (encapsulation) 570 * @inner_network_header: Network layer header (encapsulation) 571 * @inner_mac_header: Link layer header (encapsulation) 572 * @transport_header: Transport layer header 573 * @network_header: Network layer header 574 * @mac_header: Link layer header 575 * @tail: Tail pointer 576 * @end: End pointer 577 * @head: Head of buffer 578 * @data: Data head pointer 579 * @truesize: Buffer size 580 * @users: User count - see {datagram,tcp}.c 581 */ 582 583struct sk_buff { 584 union { 585 struct { 586 /* These two members must be first. */ 587 struct sk_buff *next; 588 struct sk_buff *prev; 589 590 union { 591 ktime_t tstamp; 592 u64 skb_mstamp; 593 }; 594 }; 595 struct rb_node rbnode; /* used in netem & tcp stack */ 596 }; 597 struct sock *sk; 598 599 union { 600 struct net_device *dev; 601 /* Some protocols might use this space to store information, 602 * while device pointer would be NULL. 603 * UDP receive path is one user. 604 */ 605 unsigned long dev_scratch; 606 }; 607 /* 608 * This is the control buffer. It is free to use for every 609 * layer. Please put your private variables there. If you 610 * want to keep them across layers you have to do a skb_clone() 611 * first. This is owned by whoever has the skb queued ATM. 612 */ 613 char cb[48] __aligned(8); 614 615 unsigned long _skb_refdst; 616 void (*destructor)(struct sk_buff *skb); 617#ifdef CONFIG_XFRM 618 struct sec_path *sp; 619#endif 620#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 621 unsigned long _nfct; 622#endif 623#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 624 struct nf_bridge_info *nf_bridge; 625#endif 626 unsigned int len, 627 data_len; 628 __u16 mac_len, 629 hdr_len; 630 631 /* Following fields are _not_ copied in __copy_skb_header() 632 * Note that queue_mapping is here mostly to fill a hole. 633 */ 634 kmemcheck_bitfield_begin(flags1); 635 __u16 queue_mapping; 636 637/* if you move cloned around you also must adapt those constants */ 638#ifdef __BIG_ENDIAN_BITFIELD 639#define CLONED_MASK (1 << 7) 640#else 641#define CLONED_MASK 1 642#endif 643#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 644 645 __u8 __cloned_offset[0]; 646 __u8 cloned:1, 647 nohdr:1, 648 fclone:2, 649 peeked:1, 650 head_frag:1, 651 xmit_more:1, 652 __unused:1; /* one bit hole */ 653 kmemcheck_bitfield_end(flags1); 654 655 /* fields enclosed in headers_start/headers_end are copied 656 * using a single memcpy() in __copy_skb_header() 657 */ 658 /* private: */ 659 __u32 headers_start[0]; 660 /* public: */ 661 662/* if you move pkt_type around you also must adapt those constants */ 663#ifdef __BIG_ENDIAN_BITFIELD 664#define PKT_TYPE_MAX (7 << 5) 665#else 666#define PKT_TYPE_MAX 7 667#endif 668#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 669 670 __u8 __pkt_type_offset[0]; 671 __u8 pkt_type:3; 672 __u8 pfmemalloc:1; 673 __u8 ignore_df:1; 674 675 __u8 nf_trace:1; 676 __u8 ip_summed:2; 677 __u8 ooo_okay:1; 678 __u8 l4_hash:1; 679 __u8 sw_hash:1; 680 __u8 wifi_acked_valid:1; 681 __u8 wifi_acked:1; 682 683 __u8 no_fcs:1; 684 /* Indicates the inner headers are valid in the skbuff. */ 685 __u8 encapsulation:1; 686 __u8 encap_hdr_csum:1; 687 __u8 csum_valid:1; 688 __u8 csum_complete_sw:1; 689 __u8 csum_level:2; 690 __u8 csum_not_inet:1; 691 692 __u8 dst_pending_confirm:1; 693#ifdef CONFIG_IPV6_NDISC_NODETYPE 694 __u8 ndisc_nodetype:2; 695#endif 696 __u8 ipvs_property:1; 697 __u8 inner_protocol_type:1; 698 __u8 remcsum_offload:1; 699#ifdef CONFIG_NET_SWITCHDEV 700 __u8 offload_fwd_mark:1; 701#endif 702#ifdef CONFIG_NET_CLS_ACT 703 __u8 tc_skip_classify:1; 704 __u8 tc_at_ingress:1; 705 __u8 tc_redirected:1; 706 __u8 tc_from_ingress:1; 707#endif 708 709#ifdef CONFIG_NET_SCHED 710 __u16 tc_index; /* traffic control index */ 711#endif 712 713 union { 714 __wsum csum; 715 struct { 716 __u16 csum_start; 717 __u16 csum_offset; 718 }; 719 }; 720 __u32 priority; 721 int skb_iif; 722 __u32 hash; 723 __be16 vlan_proto; 724 __u16 vlan_tci; 725#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 726 union { 727 unsigned int napi_id; 728 unsigned int sender_cpu; 729 }; 730#endif 731#ifdef CONFIG_NETWORK_SECMARK 732 __u32 secmark; 733#endif 734 735 union { 736 __u32 mark; 737 __u32 reserved_tailroom; 738 }; 739 740 union { 741 __be16 inner_protocol; 742 __u8 inner_ipproto; 743 }; 744 745 __u16 inner_transport_header; 746 __u16 inner_network_header; 747 __u16 inner_mac_header; 748 749 __be16 protocol; 750 __u16 transport_header; 751 __u16 network_header; 752 __u16 mac_header; 753 754 /* private: */ 755 __u32 headers_end[0]; 756 /* public: */ 757 758 /* These elements must be at the end, see alloc_skb() for details. */ 759 sk_buff_data_t tail; 760 sk_buff_data_t end; 761 unsigned char *head, 762 *data; 763 unsigned int truesize; 764 refcount_t users; 765}; 766 767#ifdef __KERNEL__ 768/* 769 * Handling routines are only of interest to the kernel 770 */ 771#include <linux/slab.h> 772 773 774#define SKB_ALLOC_FCLONE 0x01 775#define SKB_ALLOC_RX 0x02 776#define SKB_ALLOC_NAPI 0x04 777 778/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 779static inline bool skb_pfmemalloc(const struct sk_buff *skb) 780{ 781 return unlikely(skb->pfmemalloc); 782} 783 784/* 785 * skb might have a dst pointer attached, refcounted or not. 786 * _skb_refdst low order bit is set if refcount was _not_ taken 787 */ 788#define SKB_DST_NOREF 1UL 789#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 790 791#define SKB_NFCT_PTRMASK ~(7UL) 792/** 793 * skb_dst - returns skb dst_entry 794 * @skb: buffer 795 * 796 * Returns skb dst_entry, regardless of reference taken or not. 797 */ 798static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 799{ 800 /* If refdst was not refcounted, check we still are in a 801 * rcu_read_lock section 802 */ 803 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 804 !rcu_read_lock_held() && 805 !rcu_read_lock_bh_held()); 806 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 807} 808 809/** 810 * skb_dst_set - sets skb dst 811 * @skb: buffer 812 * @dst: dst entry 813 * 814 * Sets skb dst, assuming a reference was taken on dst and should 815 * be released by skb_dst_drop() 816 */ 817static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 818{ 819 skb->_skb_refdst = (unsigned long)dst; 820} 821 822/** 823 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 824 * @skb: buffer 825 * @dst: dst entry 826 * 827 * Sets skb dst, assuming a reference was not taken on dst. 828 * If dst entry is cached, we do not take reference and dst_release 829 * will be avoided by refdst_drop. If dst entry is not cached, we take 830 * reference, so that last dst_release can destroy the dst immediately. 831 */ 832static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 833{ 834 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 835 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 836} 837 838/** 839 * skb_dst_is_noref - Test if skb dst isn't refcounted 840 * @skb: buffer 841 */ 842static inline bool skb_dst_is_noref(const struct sk_buff *skb) 843{ 844 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 845} 846 847static inline struct rtable *skb_rtable(const struct sk_buff *skb) 848{ 849 return (struct rtable *)skb_dst(skb); 850} 851 852/* For mangling skb->pkt_type from user space side from applications 853 * such as nft, tc, etc, we only allow a conservative subset of 854 * possible pkt_types to be set. 855*/ 856static inline bool skb_pkt_type_ok(u32 ptype) 857{ 858 return ptype <= PACKET_OTHERHOST; 859} 860 861static inline unsigned int skb_napi_id(const struct sk_buff *skb) 862{ 863#ifdef CONFIG_NET_RX_BUSY_POLL 864 return skb->napi_id; 865#else 866 return 0; 867#endif 868} 869 870/* decrement the reference count and return true if we can free the skb */ 871static inline bool skb_unref(struct sk_buff *skb) 872{ 873 if (unlikely(!skb)) 874 return false; 875 if (likely(refcount_read(&skb->users) == 1)) 876 smp_rmb(); 877 else if (likely(!refcount_dec_and_test(&skb->users))) 878 return false; 879 880 return true; 881} 882 883void skb_release_head_state(struct sk_buff *skb); 884void kfree_skb(struct sk_buff *skb); 885void kfree_skb_list(struct sk_buff *segs); 886void skb_tx_error(struct sk_buff *skb); 887void consume_skb(struct sk_buff *skb); 888void consume_stateless_skb(struct sk_buff *skb); 889void __kfree_skb(struct sk_buff *skb); 890extern struct kmem_cache *skbuff_head_cache; 891 892void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 893bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 894 bool *fragstolen, int *delta_truesize); 895 896struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 897 int node); 898struct sk_buff *__build_skb(void *data, unsigned int frag_size); 899struct sk_buff *build_skb(void *data, unsigned int frag_size); 900static inline struct sk_buff *alloc_skb(unsigned int size, 901 gfp_t priority) 902{ 903 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 904} 905 906struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 907 unsigned long data_len, 908 int max_page_order, 909 int *errcode, 910 gfp_t gfp_mask); 911 912/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 913struct sk_buff_fclones { 914 struct sk_buff skb1; 915 916 struct sk_buff skb2; 917 918 refcount_t fclone_ref; 919}; 920 921/** 922 * skb_fclone_busy - check if fclone is busy 923 * @sk: socket 924 * @skb: buffer 925 * 926 * Returns true if skb is a fast clone, and its clone is not freed. 927 * Some drivers call skb_orphan() in their ndo_start_xmit(), 928 * so we also check that this didnt happen. 929 */ 930static inline bool skb_fclone_busy(const struct sock *sk, 931 const struct sk_buff *skb) 932{ 933 const struct sk_buff_fclones *fclones; 934 935 fclones = container_of(skb, struct sk_buff_fclones, skb1); 936 937 return skb->fclone == SKB_FCLONE_ORIG && 938 refcount_read(&fclones->fclone_ref) > 1 && 939 fclones->skb2.sk == sk; 940} 941 942static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 943 gfp_t priority) 944{ 945 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 946} 947 948struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 949static inline struct sk_buff *alloc_skb_head(gfp_t priority) 950{ 951 return __alloc_skb_head(priority, -1); 952} 953 954struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 955int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 956struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 957struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 958struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 959 gfp_t gfp_mask, bool fclone); 960static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 961 gfp_t gfp_mask) 962{ 963 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 964} 965 966int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 967struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 968 unsigned int headroom); 969struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 970 int newtailroom, gfp_t priority); 971int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 972 int offset, int len); 973int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 974 int offset, int len); 975int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 976int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 977 978/** 979 * skb_pad - zero pad the tail of an skb 980 * @skb: buffer to pad 981 * @pad: space to pad 982 * 983 * Ensure that a buffer is followed by a padding area that is zero 984 * filled. Used by network drivers which may DMA or transfer data 985 * beyond the buffer end onto the wire. 986 * 987 * May return error in out of memory cases. The skb is freed on error. 988 */ 989static inline int skb_pad(struct sk_buff *skb, int pad) 990{ 991 return __skb_pad(skb, pad, true); 992} 993#define dev_kfree_skb(a) consume_skb(a) 994 995int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 996 int getfrag(void *from, char *to, int offset, 997 int len, int odd, struct sk_buff *skb), 998 void *from, int length); 999 1000int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1001 int offset, size_t size); 1002 1003struct skb_seq_state { 1004 __u32 lower_offset; 1005 __u32 upper_offset; 1006 __u32 frag_idx; 1007 __u32 stepped_offset; 1008 struct sk_buff *root_skb; 1009 struct sk_buff *cur_skb; 1010 __u8 *frag_data; 1011}; 1012 1013void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1014 unsigned int to, struct skb_seq_state *st); 1015unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1016 struct skb_seq_state *st); 1017void skb_abort_seq_read(struct skb_seq_state *st); 1018 1019unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1020 unsigned int to, struct ts_config *config); 1021 1022/* 1023 * Packet hash types specify the type of hash in skb_set_hash. 1024 * 1025 * Hash types refer to the protocol layer addresses which are used to 1026 * construct a packet's hash. The hashes are used to differentiate or identify 1027 * flows of the protocol layer for the hash type. Hash types are either 1028 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1029 * 1030 * Properties of hashes: 1031 * 1032 * 1) Two packets in different flows have different hash values 1033 * 2) Two packets in the same flow should have the same hash value 1034 * 1035 * A hash at a higher layer is considered to be more specific. A driver should 1036 * set the most specific hash possible. 1037 * 1038 * A driver cannot indicate a more specific hash than the layer at which a hash 1039 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1040 * 1041 * A driver may indicate a hash level which is less specific than the 1042 * actual layer the hash was computed on. For instance, a hash computed 1043 * at L4 may be considered an L3 hash. This should only be done if the 1044 * driver can't unambiguously determine that the HW computed the hash at 1045 * the higher layer. Note that the "should" in the second property above 1046 * permits this. 1047 */ 1048enum pkt_hash_types { 1049 PKT_HASH_TYPE_NONE, /* Undefined type */ 1050 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1051 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1052 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1053}; 1054 1055static inline void skb_clear_hash(struct sk_buff *skb) 1056{ 1057 skb->hash = 0; 1058 skb->sw_hash = 0; 1059 skb->l4_hash = 0; 1060} 1061 1062static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1063{ 1064 if (!skb->l4_hash) 1065 skb_clear_hash(skb); 1066} 1067 1068static inline void 1069__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1070{ 1071 skb->l4_hash = is_l4; 1072 skb->sw_hash = is_sw; 1073 skb->hash = hash; 1074} 1075 1076static inline void 1077skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1078{ 1079 /* Used by drivers to set hash from HW */ 1080 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1081} 1082 1083static inline void 1084__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1085{ 1086 __skb_set_hash(skb, hash, true, is_l4); 1087} 1088 1089void __skb_get_hash(struct sk_buff *skb); 1090u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1091u32 skb_get_poff(const struct sk_buff *skb); 1092u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1093 const struct flow_keys *keys, int hlen); 1094__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1095 void *data, int hlen_proto); 1096 1097static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1098 int thoff, u8 ip_proto) 1099{ 1100 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1101} 1102 1103void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1104 const struct flow_dissector_key *key, 1105 unsigned int key_count); 1106 1107bool __skb_flow_dissect(const struct sk_buff *skb, 1108 struct flow_dissector *flow_dissector, 1109 void *target_container, 1110 void *data, __be16 proto, int nhoff, int hlen, 1111 unsigned int flags); 1112 1113static inline bool skb_flow_dissect(const struct sk_buff *skb, 1114 struct flow_dissector *flow_dissector, 1115 void *target_container, unsigned int flags) 1116{ 1117 return __skb_flow_dissect(skb, flow_dissector, target_container, 1118 NULL, 0, 0, 0, flags); 1119} 1120 1121static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1122 struct flow_keys *flow, 1123 unsigned int flags) 1124{ 1125 memset(flow, 0, sizeof(*flow)); 1126 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1127 NULL, 0, 0, 0, flags); 1128} 1129 1130static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, 1131 void *data, __be16 proto, 1132 int nhoff, int hlen, 1133 unsigned int flags) 1134{ 1135 memset(flow, 0, sizeof(*flow)); 1136 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, 1137 data, proto, nhoff, hlen, flags); 1138} 1139 1140static inline __u32 skb_get_hash(struct sk_buff *skb) 1141{ 1142 if (!skb->l4_hash && !skb->sw_hash) 1143 __skb_get_hash(skb); 1144 1145 return skb->hash; 1146} 1147 1148__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6); 1149 1150static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1151{ 1152 if (!skb->l4_hash && !skb->sw_hash) { 1153 struct flow_keys keys; 1154 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1155 1156 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1157 } 1158 1159 return skb->hash; 1160} 1161 1162__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl); 1163 1164static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4) 1165{ 1166 if (!skb->l4_hash && !skb->sw_hash) { 1167 struct flow_keys keys; 1168 __u32 hash = __get_hash_from_flowi4(fl4, &keys); 1169 1170 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1171 } 1172 1173 return skb->hash; 1174} 1175 1176__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1177 1178static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1179{ 1180 return skb->hash; 1181} 1182 1183static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1184{ 1185 to->hash = from->hash; 1186 to->sw_hash = from->sw_hash; 1187 to->l4_hash = from->l4_hash; 1188}; 1189 1190#ifdef NET_SKBUFF_DATA_USES_OFFSET 1191static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1192{ 1193 return skb->head + skb->end; 1194} 1195 1196static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1197{ 1198 return skb->end; 1199} 1200#else 1201static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1202{ 1203 return skb->end; 1204} 1205 1206static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1207{ 1208 return skb->end - skb->head; 1209} 1210#endif 1211 1212/* Internal */ 1213#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1214 1215static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1216{ 1217 return &skb_shinfo(skb)->hwtstamps; 1218} 1219 1220/** 1221 * skb_queue_empty - check if a queue is empty 1222 * @list: queue head 1223 * 1224 * Returns true if the queue is empty, false otherwise. 1225 */ 1226static inline int skb_queue_empty(const struct sk_buff_head *list) 1227{ 1228 return list->next == (const struct sk_buff *) list; 1229} 1230 1231/** 1232 * skb_queue_is_last - check if skb is the last entry in the queue 1233 * @list: queue head 1234 * @skb: buffer 1235 * 1236 * Returns true if @skb is the last buffer on the list. 1237 */ 1238static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1239 const struct sk_buff *skb) 1240{ 1241 return skb->next == (const struct sk_buff *) list; 1242} 1243 1244/** 1245 * skb_queue_is_first - check if skb is the first entry in the queue 1246 * @list: queue head 1247 * @skb: buffer 1248 * 1249 * Returns true if @skb is the first buffer on the list. 1250 */ 1251static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1252 const struct sk_buff *skb) 1253{ 1254 return skb->prev == (const struct sk_buff *) list; 1255} 1256 1257/** 1258 * skb_queue_next - return the next packet in the queue 1259 * @list: queue head 1260 * @skb: current buffer 1261 * 1262 * Return the next packet in @list after @skb. It is only valid to 1263 * call this if skb_queue_is_last() evaluates to false. 1264 */ 1265static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1266 const struct sk_buff *skb) 1267{ 1268 /* This BUG_ON may seem severe, but if we just return then we 1269 * are going to dereference garbage. 1270 */ 1271 BUG_ON(skb_queue_is_last(list, skb)); 1272 return skb->next; 1273} 1274 1275/** 1276 * skb_queue_prev - return the prev packet in the queue 1277 * @list: queue head 1278 * @skb: current buffer 1279 * 1280 * Return the prev packet in @list before @skb. It is only valid to 1281 * call this if skb_queue_is_first() evaluates to false. 1282 */ 1283static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1284 const struct sk_buff *skb) 1285{ 1286 /* This BUG_ON may seem severe, but if we just return then we 1287 * are going to dereference garbage. 1288 */ 1289 BUG_ON(skb_queue_is_first(list, skb)); 1290 return skb->prev; 1291} 1292 1293/** 1294 * skb_get - reference buffer 1295 * @skb: buffer to reference 1296 * 1297 * Makes another reference to a socket buffer and returns a pointer 1298 * to the buffer. 1299 */ 1300static inline struct sk_buff *skb_get(struct sk_buff *skb) 1301{ 1302 refcount_inc(&skb->users); 1303 return skb; 1304} 1305 1306/* 1307 * If users == 1, we are the only owner and are can avoid redundant 1308 * atomic change. 1309 */ 1310 1311/** 1312 * skb_cloned - is the buffer a clone 1313 * @skb: buffer to check 1314 * 1315 * Returns true if the buffer was generated with skb_clone() and is 1316 * one of multiple shared copies of the buffer. Cloned buffers are 1317 * shared data so must not be written to under normal circumstances. 1318 */ 1319static inline int skb_cloned(const struct sk_buff *skb) 1320{ 1321 return skb->cloned && 1322 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1323} 1324 1325static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1326{ 1327 might_sleep_if(gfpflags_allow_blocking(pri)); 1328 1329 if (skb_cloned(skb)) 1330 return pskb_expand_head(skb, 0, 0, pri); 1331 1332 return 0; 1333} 1334 1335/** 1336 * skb_header_cloned - is the header a clone 1337 * @skb: buffer to check 1338 * 1339 * Returns true if modifying the header part of the buffer requires 1340 * the data to be copied. 1341 */ 1342static inline int skb_header_cloned(const struct sk_buff *skb) 1343{ 1344 int dataref; 1345 1346 if (!skb->cloned) 1347 return 0; 1348 1349 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1350 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1351 return dataref != 1; 1352} 1353 1354static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1355{ 1356 might_sleep_if(gfpflags_allow_blocking(pri)); 1357 1358 if (skb_header_cloned(skb)) 1359 return pskb_expand_head(skb, 0, 0, pri); 1360 1361 return 0; 1362} 1363 1364/** 1365 * skb_header_release - release reference to header 1366 * @skb: buffer to operate on 1367 * 1368 * Drop a reference to the header part of the buffer. This is done 1369 * by acquiring a payload reference. You must not read from the header 1370 * part of skb->data after this. 1371 * Note : Check if you can use __skb_header_release() instead. 1372 */ 1373static inline void skb_header_release(struct sk_buff *skb) 1374{ 1375 BUG_ON(skb->nohdr); 1376 skb->nohdr = 1; 1377 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1378} 1379 1380/** 1381 * __skb_header_release - release reference to header 1382 * @skb: buffer to operate on 1383 * 1384 * Variant of skb_header_release() assuming skb is private to caller. 1385 * We can avoid one atomic operation. 1386 */ 1387static inline void __skb_header_release(struct sk_buff *skb) 1388{ 1389 skb->nohdr = 1; 1390 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1391} 1392 1393 1394/** 1395 * skb_shared - is the buffer shared 1396 * @skb: buffer to check 1397 * 1398 * Returns true if more than one person has a reference to this 1399 * buffer. 1400 */ 1401static inline int skb_shared(const struct sk_buff *skb) 1402{ 1403 return refcount_read(&skb->users) != 1; 1404} 1405 1406/** 1407 * skb_share_check - check if buffer is shared and if so clone it 1408 * @skb: buffer to check 1409 * @pri: priority for memory allocation 1410 * 1411 * If the buffer is shared the buffer is cloned and the old copy 1412 * drops a reference. A new clone with a single reference is returned. 1413 * If the buffer is not shared the original buffer is returned. When 1414 * being called from interrupt status or with spinlocks held pri must 1415 * be GFP_ATOMIC. 1416 * 1417 * NULL is returned on a memory allocation failure. 1418 */ 1419static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1420{ 1421 might_sleep_if(gfpflags_allow_blocking(pri)); 1422 if (skb_shared(skb)) { 1423 struct sk_buff *nskb = skb_clone(skb, pri); 1424 1425 if (likely(nskb)) 1426 consume_skb(skb); 1427 else 1428 kfree_skb(skb); 1429 skb = nskb; 1430 } 1431 return skb; 1432} 1433 1434/* 1435 * Copy shared buffers into a new sk_buff. We effectively do COW on 1436 * packets to handle cases where we have a local reader and forward 1437 * and a couple of other messy ones. The normal one is tcpdumping 1438 * a packet thats being forwarded. 1439 */ 1440 1441/** 1442 * skb_unshare - make a copy of a shared buffer 1443 * @skb: buffer to check 1444 * @pri: priority for memory allocation 1445 * 1446 * If the socket buffer is a clone then this function creates a new 1447 * copy of the data, drops a reference count on the old copy and returns 1448 * the new copy with the reference count at 1. If the buffer is not a clone 1449 * the original buffer is returned. When called with a spinlock held or 1450 * from interrupt state @pri must be %GFP_ATOMIC 1451 * 1452 * %NULL is returned on a memory allocation failure. 1453 */ 1454static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1455 gfp_t pri) 1456{ 1457 might_sleep_if(gfpflags_allow_blocking(pri)); 1458 if (skb_cloned(skb)) { 1459 struct sk_buff *nskb = skb_copy(skb, pri); 1460 1461 /* Free our shared copy */ 1462 if (likely(nskb)) 1463 consume_skb(skb); 1464 else 1465 kfree_skb(skb); 1466 skb = nskb; 1467 } 1468 return skb; 1469} 1470 1471/** 1472 * skb_peek - peek at the head of an &sk_buff_head 1473 * @list_: list to peek at 1474 * 1475 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1476 * be careful with this one. A peek leaves the buffer on the 1477 * list and someone else may run off with it. You must hold 1478 * the appropriate locks or have a private queue to do this. 1479 * 1480 * Returns %NULL for an empty list or a pointer to the head element. 1481 * The reference count is not incremented and the reference is therefore 1482 * volatile. Use with caution. 1483 */ 1484static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1485{ 1486 struct sk_buff *skb = list_->next; 1487 1488 if (skb == (struct sk_buff *)list_) 1489 skb = NULL; 1490 return skb; 1491} 1492 1493/** 1494 * skb_peek_next - peek skb following the given one from a queue 1495 * @skb: skb to start from 1496 * @list_: list to peek at 1497 * 1498 * Returns %NULL when the end of the list is met or a pointer to the 1499 * next element. The reference count is not incremented and the 1500 * reference is therefore volatile. Use with caution. 1501 */ 1502static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1503 const struct sk_buff_head *list_) 1504{ 1505 struct sk_buff *next = skb->next; 1506 1507 if (next == (struct sk_buff *)list_) 1508 next = NULL; 1509 return next; 1510} 1511 1512/** 1513 * skb_peek_tail - peek at the tail of an &sk_buff_head 1514 * @list_: list to peek at 1515 * 1516 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1517 * be careful with this one. A peek leaves the buffer on the 1518 * list and someone else may run off with it. You must hold 1519 * the appropriate locks or have a private queue to do this. 1520 * 1521 * Returns %NULL for an empty list or a pointer to the tail element. 1522 * The reference count is not incremented and the reference is therefore 1523 * volatile. Use with caution. 1524 */ 1525static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1526{ 1527 struct sk_buff *skb = list_->prev; 1528 1529 if (skb == (struct sk_buff *)list_) 1530 skb = NULL; 1531 return skb; 1532 1533} 1534 1535/** 1536 * skb_queue_len - get queue length 1537 * @list_: list to measure 1538 * 1539 * Return the length of an &sk_buff queue. 1540 */ 1541static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1542{ 1543 return list_->qlen; 1544} 1545 1546/** 1547 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1548 * @list: queue to initialize 1549 * 1550 * This initializes only the list and queue length aspects of 1551 * an sk_buff_head object. This allows to initialize the list 1552 * aspects of an sk_buff_head without reinitializing things like 1553 * the spinlock. It can also be used for on-stack sk_buff_head 1554 * objects where the spinlock is known to not be used. 1555 */ 1556static inline void __skb_queue_head_init(struct sk_buff_head *list) 1557{ 1558 list->prev = list->next = (struct sk_buff *)list; 1559 list->qlen = 0; 1560} 1561 1562/* 1563 * This function creates a split out lock class for each invocation; 1564 * this is needed for now since a whole lot of users of the skb-queue 1565 * infrastructure in drivers have different locking usage (in hardirq) 1566 * than the networking core (in softirq only). In the long run either the 1567 * network layer or drivers should need annotation to consolidate the 1568 * main types of usage into 3 classes. 1569 */ 1570static inline void skb_queue_head_init(struct sk_buff_head *list) 1571{ 1572 spin_lock_init(&list->lock); 1573 __skb_queue_head_init(list); 1574} 1575 1576static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1577 struct lock_class_key *class) 1578{ 1579 skb_queue_head_init(list); 1580 lockdep_set_class(&list->lock, class); 1581} 1582 1583/* 1584 * Insert an sk_buff on a list. 1585 * 1586 * The "__skb_xxxx()" functions are the non-atomic ones that 1587 * can only be called with interrupts disabled. 1588 */ 1589void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1590 struct sk_buff_head *list); 1591static inline void __skb_insert(struct sk_buff *newsk, 1592 struct sk_buff *prev, struct sk_buff *next, 1593 struct sk_buff_head *list) 1594{ 1595 newsk->next = next; 1596 newsk->prev = prev; 1597 next->prev = prev->next = newsk; 1598 list->qlen++; 1599} 1600 1601static inline void __skb_queue_splice(const struct sk_buff_head *list, 1602 struct sk_buff *prev, 1603 struct sk_buff *next) 1604{ 1605 struct sk_buff *first = list->next; 1606 struct sk_buff *last = list->prev; 1607 1608 first->prev = prev; 1609 prev->next = first; 1610 1611 last->next = next; 1612 next->prev = last; 1613} 1614 1615/** 1616 * skb_queue_splice - join two skb lists, this is designed for stacks 1617 * @list: the new list to add 1618 * @head: the place to add it in the first list 1619 */ 1620static inline void skb_queue_splice(const struct sk_buff_head *list, 1621 struct sk_buff_head *head) 1622{ 1623 if (!skb_queue_empty(list)) { 1624 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1625 head->qlen += list->qlen; 1626 } 1627} 1628 1629/** 1630 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1631 * @list: the new list to add 1632 * @head: the place to add it in the first list 1633 * 1634 * The list at @list is reinitialised 1635 */ 1636static inline void skb_queue_splice_init(struct sk_buff_head *list, 1637 struct sk_buff_head *head) 1638{ 1639 if (!skb_queue_empty(list)) { 1640 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1641 head->qlen += list->qlen; 1642 __skb_queue_head_init(list); 1643 } 1644} 1645 1646/** 1647 * skb_queue_splice_tail - join two skb lists, each list being a queue 1648 * @list: the new list to add 1649 * @head: the place to add it in the first list 1650 */ 1651static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1652 struct sk_buff_head *head) 1653{ 1654 if (!skb_queue_empty(list)) { 1655 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1656 head->qlen += list->qlen; 1657 } 1658} 1659 1660/** 1661 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1662 * @list: the new list to add 1663 * @head: the place to add it in the first list 1664 * 1665 * Each of the lists is a queue. 1666 * The list at @list is reinitialised 1667 */ 1668static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1669 struct sk_buff_head *head) 1670{ 1671 if (!skb_queue_empty(list)) { 1672 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1673 head->qlen += list->qlen; 1674 __skb_queue_head_init(list); 1675 } 1676} 1677 1678/** 1679 * __skb_queue_after - queue a buffer at the list head 1680 * @list: list to use 1681 * @prev: place after this buffer 1682 * @newsk: buffer to queue 1683 * 1684 * Queue a buffer int the middle of a list. This function takes no locks 1685 * and you must therefore hold required locks before calling it. 1686 * 1687 * A buffer cannot be placed on two lists at the same time. 1688 */ 1689static inline void __skb_queue_after(struct sk_buff_head *list, 1690 struct sk_buff *prev, 1691 struct sk_buff *newsk) 1692{ 1693 __skb_insert(newsk, prev, prev->next, list); 1694} 1695 1696void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1697 struct sk_buff_head *list); 1698 1699static inline void __skb_queue_before(struct sk_buff_head *list, 1700 struct sk_buff *next, 1701 struct sk_buff *newsk) 1702{ 1703 __skb_insert(newsk, next->prev, next, list); 1704} 1705 1706/** 1707 * __skb_queue_head - queue a buffer at the list head 1708 * @list: list to use 1709 * @newsk: buffer to queue 1710 * 1711 * Queue a buffer at the start of a list. This function takes no locks 1712 * and you must therefore hold required locks before calling it. 1713 * 1714 * A buffer cannot be placed on two lists at the same time. 1715 */ 1716void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1717static inline void __skb_queue_head(struct sk_buff_head *list, 1718 struct sk_buff *newsk) 1719{ 1720 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1721} 1722 1723/** 1724 * __skb_queue_tail - queue a buffer at the list tail 1725 * @list: list to use 1726 * @newsk: buffer to queue 1727 * 1728 * Queue a buffer at the end of a list. This function takes no locks 1729 * and you must therefore hold required locks before calling it. 1730 * 1731 * A buffer cannot be placed on two lists at the same time. 1732 */ 1733void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1734static inline void __skb_queue_tail(struct sk_buff_head *list, 1735 struct sk_buff *newsk) 1736{ 1737 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1738} 1739 1740/* 1741 * remove sk_buff from list. _Must_ be called atomically, and with 1742 * the list known.. 1743 */ 1744void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1745static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1746{ 1747 struct sk_buff *next, *prev; 1748 1749 list->qlen--; 1750 next = skb->next; 1751 prev = skb->prev; 1752 skb->next = skb->prev = NULL; 1753 next->prev = prev; 1754 prev->next = next; 1755} 1756 1757/** 1758 * __skb_dequeue - remove from the head of the queue 1759 * @list: list to dequeue from 1760 * 1761 * Remove the head of the list. This function does not take any locks 1762 * so must be used with appropriate locks held only. The head item is 1763 * returned or %NULL if the list is empty. 1764 */ 1765struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1766static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1767{ 1768 struct sk_buff *skb = skb_peek(list); 1769 if (skb) 1770 __skb_unlink(skb, list); 1771 return skb; 1772} 1773 1774/** 1775 * __skb_dequeue_tail - remove from the tail of the queue 1776 * @list: list to dequeue from 1777 * 1778 * Remove the tail of the list. This function does not take any locks 1779 * so must be used with appropriate locks held only. The tail item is 1780 * returned or %NULL if the list is empty. 1781 */ 1782struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1783static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1784{ 1785 struct sk_buff *skb = skb_peek_tail(list); 1786 if (skb) 1787 __skb_unlink(skb, list); 1788 return skb; 1789} 1790 1791 1792static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1793{ 1794 return skb->data_len; 1795} 1796 1797static inline unsigned int skb_headlen(const struct sk_buff *skb) 1798{ 1799 return skb->len - skb->data_len; 1800} 1801 1802static inline unsigned int skb_pagelen(const struct sk_buff *skb) 1803{ 1804 unsigned int i, len = 0; 1805 1806 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 1807 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1808 return len + skb_headlen(skb); 1809} 1810 1811/** 1812 * __skb_fill_page_desc - initialise a paged fragment in an skb 1813 * @skb: buffer containing fragment to be initialised 1814 * @i: paged fragment index to initialise 1815 * @page: the page to use for this fragment 1816 * @off: the offset to the data with @page 1817 * @size: the length of the data 1818 * 1819 * Initialises the @i'th fragment of @skb to point to &size bytes at 1820 * offset @off within @page. 1821 * 1822 * Does not take any additional reference on the fragment. 1823 */ 1824static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1825 struct page *page, int off, int size) 1826{ 1827 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1828 1829 /* 1830 * Propagate page pfmemalloc to the skb if we can. The problem is 1831 * that not all callers have unique ownership of the page but rely 1832 * on page_is_pfmemalloc doing the right thing(tm). 1833 */ 1834 frag->page.p = page; 1835 frag->page_offset = off; 1836 skb_frag_size_set(frag, size); 1837 1838 page = compound_head(page); 1839 if (page_is_pfmemalloc(page)) 1840 skb->pfmemalloc = true; 1841} 1842 1843/** 1844 * skb_fill_page_desc - initialise a paged fragment in an skb 1845 * @skb: buffer containing fragment to be initialised 1846 * @i: paged fragment index to initialise 1847 * @page: the page to use for this fragment 1848 * @off: the offset to the data with @page 1849 * @size: the length of the data 1850 * 1851 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1852 * @skb to point to @size bytes at offset @off within @page. In 1853 * addition updates @skb such that @i is the last fragment. 1854 * 1855 * Does not take any additional reference on the fragment. 1856 */ 1857static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1858 struct page *page, int off, int size) 1859{ 1860 __skb_fill_page_desc(skb, i, page, off, size); 1861 skb_shinfo(skb)->nr_frags = i + 1; 1862} 1863 1864void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1865 int size, unsigned int truesize); 1866 1867void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1868 unsigned int truesize); 1869 1870#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1871#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1872#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1873 1874#ifdef NET_SKBUFF_DATA_USES_OFFSET 1875static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1876{ 1877 return skb->head + skb->tail; 1878} 1879 1880static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1881{ 1882 skb->tail = skb->data - skb->head; 1883} 1884 1885static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1886{ 1887 skb_reset_tail_pointer(skb); 1888 skb->tail += offset; 1889} 1890 1891#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1892static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1893{ 1894 return skb->tail; 1895} 1896 1897static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1898{ 1899 skb->tail = skb->data; 1900} 1901 1902static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1903{ 1904 skb->tail = skb->data + offset; 1905} 1906 1907#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1908 1909/* 1910 * Add data to an sk_buff 1911 */ 1912void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1913void *skb_put(struct sk_buff *skb, unsigned int len); 1914static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 1915{ 1916 void *tmp = skb_tail_pointer(skb); 1917 SKB_LINEAR_ASSERT(skb); 1918 skb->tail += len; 1919 skb->len += len; 1920 return tmp; 1921} 1922 1923static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 1924{ 1925 void *tmp = __skb_put(skb, len); 1926 1927 memset(tmp, 0, len); 1928 return tmp; 1929} 1930 1931static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 1932 unsigned int len) 1933{ 1934 void *tmp = __skb_put(skb, len); 1935 1936 memcpy(tmp, data, len); 1937 return tmp; 1938} 1939 1940static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 1941{ 1942 *(u8 *)__skb_put(skb, 1) = val; 1943} 1944 1945static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 1946{ 1947 void *tmp = skb_put(skb, len); 1948 1949 memset(tmp, 0, len); 1950 1951 return tmp; 1952} 1953 1954static inline void *skb_put_data(struct sk_buff *skb, const void *data, 1955 unsigned int len) 1956{ 1957 void *tmp = skb_put(skb, len); 1958 1959 memcpy(tmp, data, len); 1960 1961 return tmp; 1962} 1963 1964static inline void skb_put_u8(struct sk_buff *skb, u8 val) 1965{ 1966 *(u8 *)skb_put(skb, 1) = val; 1967} 1968 1969void *skb_push(struct sk_buff *skb, unsigned int len); 1970static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 1971{ 1972 skb->data -= len; 1973 skb->len += len; 1974 return skb->data; 1975} 1976 1977void *skb_pull(struct sk_buff *skb, unsigned int len); 1978static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 1979{ 1980 skb->len -= len; 1981 BUG_ON(skb->len < skb->data_len); 1982 return skb->data += len; 1983} 1984 1985static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1986{ 1987 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1988} 1989 1990void *__pskb_pull_tail(struct sk_buff *skb, int delta); 1991 1992static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 1993{ 1994 if (len > skb_headlen(skb) && 1995 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1996 return NULL; 1997 skb->len -= len; 1998 return skb->data += len; 1999} 2000 2001static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2002{ 2003 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2004} 2005 2006static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 2007{ 2008 if (likely(len <= skb_headlen(skb))) 2009 return 1; 2010 if (unlikely(len > skb->len)) 2011 return 0; 2012 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2013} 2014 2015void skb_condense(struct sk_buff *skb); 2016 2017/** 2018 * skb_headroom - bytes at buffer head 2019 * @skb: buffer to check 2020 * 2021 * Return the number of bytes of free space at the head of an &sk_buff. 2022 */ 2023static inline unsigned int skb_headroom(const struct sk_buff *skb) 2024{ 2025 return skb->data - skb->head; 2026} 2027 2028/** 2029 * skb_tailroom - bytes at buffer end 2030 * @skb: buffer to check 2031 * 2032 * Return the number of bytes of free space at the tail of an sk_buff 2033 */ 2034static inline int skb_tailroom(const struct sk_buff *skb) 2035{ 2036 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2037} 2038 2039/** 2040 * skb_availroom - bytes at buffer end 2041 * @skb: buffer to check 2042 * 2043 * Return the number of bytes of free space at the tail of an sk_buff 2044 * allocated by sk_stream_alloc() 2045 */ 2046static inline int skb_availroom(const struct sk_buff *skb) 2047{ 2048 if (skb_is_nonlinear(skb)) 2049 return 0; 2050 2051 return skb->end - skb->tail - skb->reserved_tailroom; 2052} 2053 2054/** 2055 * skb_reserve - adjust headroom 2056 * @skb: buffer to alter 2057 * @len: bytes to move 2058 * 2059 * Increase the headroom of an empty &sk_buff by reducing the tail 2060 * room. This is only allowed for an empty buffer. 2061 */ 2062static inline void skb_reserve(struct sk_buff *skb, int len) 2063{ 2064 skb->data += len; 2065 skb->tail += len; 2066} 2067 2068/** 2069 * skb_tailroom_reserve - adjust reserved_tailroom 2070 * @skb: buffer to alter 2071 * @mtu: maximum amount of headlen permitted 2072 * @needed_tailroom: minimum amount of reserved_tailroom 2073 * 2074 * Set reserved_tailroom so that headlen can be as large as possible but 2075 * not larger than mtu and tailroom cannot be smaller than 2076 * needed_tailroom. 2077 * The required headroom should already have been reserved before using 2078 * this function. 2079 */ 2080static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2081 unsigned int needed_tailroom) 2082{ 2083 SKB_LINEAR_ASSERT(skb); 2084 if (mtu < skb_tailroom(skb) - needed_tailroom) 2085 /* use at most mtu */ 2086 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2087 else 2088 /* use up to all available space */ 2089 skb->reserved_tailroom = needed_tailroom; 2090} 2091 2092#define ENCAP_TYPE_ETHER 0 2093#define ENCAP_TYPE_IPPROTO 1 2094 2095static inline void skb_set_inner_protocol(struct sk_buff *skb, 2096 __be16 protocol) 2097{ 2098 skb->inner_protocol = protocol; 2099 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2100} 2101 2102static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2103 __u8 ipproto) 2104{ 2105 skb->inner_ipproto = ipproto; 2106 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2107} 2108 2109static inline void skb_reset_inner_headers(struct sk_buff *skb) 2110{ 2111 skb->inner_mac_header = skb->mac_header; 2112 skb->inner_network_header = skb->network_header; 2113 skb->inner_transport_header = skb->transport_header; 2114} 2115 2116static inline void skb_reset_mac_len(struct sk_buff *skb) 2117{ 2118 skb->mac_len = skb->network_header - skb->mac_header; 2119} 2120 2121static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2122 *skb) 2123{ 2124 return skb->head + skb->inner_transport_header; 2125} 2126 2127static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2128{ 2129 return skb_inner_transport_header(skb) - skb->data; 2130} 2131 2132static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2133{ 2134 skb->inner_transport_header = skb->data - skb->head; 2135} 2136 2137static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2138 const int offset) 2139{ 2140 skb_reset_inner_transport_header(skb); 2141 skb->inner_transport_header += offset; 2142} 2143 2144static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2145{ 2146 return skb->head + skb->inner_network_header; 2147} 2148 2149static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2150{ 2151 skb->inner_network_header = skb->data - skb->head; 2152} 2153 2154static inline void skb_set_inner_network_header(struct sk_buff *skb, 2155 const int offset) 2156{ 2157 skb_reset_inner_network_header(skb); 2158 skb->inner_network_header += offset; 2159} 2160 2161static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2162{ 2163 return skb->head + skb->inner_mac_header; 2164} 2165 2166static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2167{ 2168 skb->inner_mac_header = skb->data - skb->head; 2169} 2170 2171static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2172 const int offset) 2173{ 2174 skb_reset_inner_mac_header(skb); 2175 skb->inner_mac_header += offset; 2176} 2177static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2178{ 2179 return skb->transport_header != (typeof(skb->transport_header))~0U; 2180} 2181 2182static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2183{ 2184 return skb->head + skb->transport_header; 2185} 2186 2187static inline void skb_reset_transport_header(struct sk_buff *skb) 2188{ 2189 skb->transport_header = skb->data - skb->head; 2190} 2191 2192static inline void skb_set_transport_header(struct sk_buff *skb, 2193 const int offset) 2194{ 2195 skb_reset_transport_header(skb); 2196 skb->transport_header += offset; 2197} 2198 2199static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2200{ 2201 return skb->head + skb->network_header; 2202} 2203 2204static inline void skb_reset_network_header(struct sk_buff *skb) 2205{ 2206 skb->network_header = skb->data - skb->head; 2207} 2208 2209static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2210{ 2211 skb_reset_network_header(skb); 2212 skb->network_header += offset; 2213} 2214 2215static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2216{ 2217 return skb->head + skb->mac_header; 2218} 2219 2220static inline int skb_mac_offset(const struct sk_buff *skb) 2221{ 2222 return skb_mac_header(skb) - skb->data; 2223} 2224 2225static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2226{ 2227 return skb->network_header - skb->mac_header; 2228} 2229 2230static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2231{ 2232 return skb->mac_header != (typeof(skb->mac_header))~0U; 2233} 2234 2235static inline void skb_reset_mac_header(struct sk_buff *skb) 2236{ 2237 skb->mac_header = skb->data - skb->head; 2238} 2239 2240static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2241{ 2242 skb_reset_mac_header(skb); 2243 skb->mac_header += offset; 2244} 2245 2246static inline void skb_pop_mac_header(struct sk_buff *skb) 2247{ 2248 skb->mac_header = skb->network_header; 2249} 2250 2251static inline void skb_probe_transport_header(struct sk_buff *skb, 2252 const int offset_hint) 2253{ 2254 struct flow_keys keys; 2255 2256 if (skb_transport_header_was_set(skb)) 2257 return; 2258 else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) 2259 skb_set_transport_header(skb, keys.control.thoff); 2260 else 2261 skb_set_transport_header(skb, offset_hint); 2262} 2263 2264static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2265{ 2266 if (skb_mac_header_was_set(skb)) { 2267 const unsigned char *old_mac = skb_mac_header(skb); 2268 2269 skb_set_mac_header(skb, -skb->mac_len); 2270 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2271 } 2272} 2273 2274static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2275{ 2276 return skb->csum_start - skb_headroom(skb); 2277} 2278 2279static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2280{ 2281 return skb->head + skb->csum_start; 2282} 2283 2284static inline int skb_transport_offset(const struct sk_buff *skb) 2285{ 2286 return skb_transport_header(skb) - skb->data; 2287} 2288 2289static inline u32 skb_network_header_len(const struct sk_buff *skb) 2290{ 2291 return skb->transport_header - skb->network_header; 2292} 2293 2294static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2295{ 2296 return skb->inner_transport_header - skb->inner_network_header; 2297} 2298 2299static inline int skb_network_offset(const struct sk_buff *skb) 2300{ 2301 return skb_network_header(skb) - skb->data; 2302} 2303 2304static inline int skb_inner_network_offset(const struct sk_buff *skb) 2305{ 2306 return skb_inner_network_header(skb) - skb->data; 2307} 2308 2309static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2310{ 2311 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2312} 2313 2314/* 2315 * CPUs often take a performance hit when accessing unaligned memory 2316 * locations. The actual performance hit varies, it can be small if the 2317 * hardware handles it or large if we have to take an exception and fix it 2318 * in software. 2319 * 2320 * Since an ethernet header is 14 bytes network drivers often end up with 2321 * the IP header at an unaligned offset. The IP header can be aligned by 2322 * shifting the start of the packet by 2 bytes. Drivers should do this 2323 * with: 2324 * 2325 * skb_reserve(skb, NET_IP_ALIGN); 2326 * 2327 * The downside to this alignment of the IP header is that the DMA is now 2328 * unaligned. On some architectures the cost of an unaligned DMA is high 2329 * and this cost outweighs the gains made by aligning the IP header. 2330 * 2331 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2332 * to be overridden. 2333 */ 2334#ifndef NET_IP_ALIGN 2335#define NET_IP_ALIGN 2 2336#endif 2337 2338/* 2339 * The networking layer reserves some headroom in skb data (via 2340 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2341 * the header has to grow. In the default case, if the header has to grow 2342 * 32 bytes or less we avoid the reallocation. 2343 * 2344 * Unfortunately this headroom changes the DMA alignment of the resulting 2345 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2346 * on some architectures. An architecture can override this value, 2347 * perhaps setting it to a cacheline in size (since that will maintain 2348 * cacheline alignment of the DMA). It must be a power of 2. 2349 * 2350 * Various parts of the networking layer expect at least 32 bytes of 2351 * headroom, you should not reduce this. 2352 * 2353 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2354 * to reduce average number of cache lines per packet. 2355 * get_rps_cpus() for example only access one 64 bytes aligned block : 2356 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2357 */ 2358#ifndef NET_SKB_PAD 2359#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2360#endif 2361 2362int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2363 2364static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2365{ 2366 if (unlikely(skb_is_nonlinear(skb))) { 2367 WARN_ON(1); 2368 return; 2369 } 2370 skb->len = len; 2371 skb_set_tail_pointer(skb, len); 2372} 2373 2374static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2375{ 2376 __skb_set_length(skb, len); 2377} 2378 2379void skb_trim(struct sk_buff *skb, unsigned int len); 2380 2381static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2382{ 2383 if (skb->data_len) 2384 return ___pskb_trim(skb, len); 2385 __skb_trim(skb, len); 2386 return 0; 2387} 2388 2389static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2390{ 2391 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2392} 2393 2394/** 2395 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2396 * @skb: buffer to alter 2397 * @len: new length 2398 * 2399 * This is identical to pskb_trim except that the caller knows that 2400 * the skb is not cloned so we should never get an error due to out- 2401 * of-memory. 2402 */ 2403static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2404{ 2405 int err = pskb_trim(skb, len); 2406 BUG_ON(err); 2407} 2408 2409static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2410{ 2411 unsigned int diff = len - skb->len; 2412 2413 if (skb_tailroom(skb) < diff) { 2414 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2415 GFP_ATOMIC); 2416 if (ret) 2417 return ret; 2418 } 2419 __skb_set_length(skb, len); 2420 return 0; 2421} 2422 2423/** 2424 * skb_orphan - orphan a buffer 2425 * @skb: buffer to orphan 2426 * 2427 * If a buffer currently has an owner then we call the owner's 2428 * destructor function and make the @skb unowned. The buffer continues 2429 * to exist but is no longer charged to its former owner. 2430 */ 2431static inline void skb_orphan(struct sk_buff *skb) 2432{ 2433 if (skb->destructor) { 2434 skb->destructor(skb); 2435 skb->destructor = NULL; 2436 skb->sk = NULL; 2437 } else { 2438 BUG_ON(skb->sk); 2439 } 2440} 2441 2442/** 2443 * skb_orphan_frags - orphan the frags contained in a buffer 2444 * @skb: buffer to orphan frags from 2445 * @gfp_mask: allocation mask for replacement pages 2446 * 2447 * For each frag in the SKB which needs a destructor (i.e. has an 2448 * owner) create a copy of that frag and release the original 2449 * page by calling the destructor. 2450 */ 2451static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2452{ 2453 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2454 return 0; 2455 return skb_copy_ubufs(skb, gfp_mask); 2456} 2457 2458/** 2459 * __skb_queue_purge - empty a list 2460 * @list: list to empty 2461 * 2462 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2463 * the list and one reference dropped. This function does not take the 2464 * list lock and the caller must hold the relevant locks to use it. 2465 */ 2466void skb_queue_purge(struct sk_buff_head *list); 2467static inline void __skb_queue_purge(struct sk_buff_head *list) 2468{ 2469 struct sk_buff *skb; 2470 while ((skb = __skb_dequeue(list)) != NULL) 2471 kfree_skb(skb); 2472} 2473 2474void skb_rbtree_purge(struct rb_root *root); 2475 2476void *netdev_alloc_frag(unsigned int fragsz); 2477 2478struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2479 gfp_t gfp_mask); 2480 2481/** 2482 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2483 * @dev: network device to receive on 2484 * @length: length to allocate 2485 * 2486 * Allocate a new &sk_buff and assign it a usage count of one. The 2487 * buffer has unspecified headroom built in. Users should allocate 2488 * the headroom they think they need without accounting for the 2489 * built in space. The built in space is used for optimisations. 2490 * 2491 * %NULL is returned if there is no free memory. Although this function 2492 * allocates memory it can be called from an interrupt. 2493 */ 2494static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2495 unsigned int length) 2496{ 2497 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2498} 2499 2500/* legacy helper around __netdev_alloc_skb() */ 2501static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2502 gfp_t gfp_mask) 2503{ 2504 return __netdev_alloc_skb(NULL, length, gfp_mask); 2505} 2506 2507/* legacy helper around netdev_alloc_skb() */ 2508static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2509{ 2510 return netdev_alloc_skb(NULL, length); 2511} 2512 2513 2514static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2515 unsigned int length, gfp_t gfp) 2516{ 2517 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2518 2519 if (NET_IP_ALIGN && skb) 2520 skb_reserve(skb, NET_IP_ALIGN); 2521 return skb; 2522} 2523 2524static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2525 unsigned int length) 2526{ 2527 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2528} 2529 2530static inline void skb_free_frag(void *addr) 2531{ 2532 page_frag_free(addr); 2533} 2534 2535void *napi_alloc_frag(unsigned int fragsz); 2536struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2537 unsigned int length, gfp_t gfp_mask); 2538static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2539 unsigned int length) 2540{ 2541 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2542} 2543void napi_consume_skb(struct sk_buff *skb, int budget); 2544 2545void __kfree_skb_flush(void); 2546void __kfree_skb_defer(struct sk_buff *skb); 2547 2548/** 2549 * __dev_alloc_pages - allocate page for network Rx 2550 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2551 * @order: size of the allocation 2552 * 2553 * Allocate a new page. 2554 * 2555 * %NULL is returned if there is no free memory. 2556*/ 2557static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2558 unsigned int order) 2559{ 2560 /* This piece of code contains several assumptions. 2561 * 1. This is for device Rx, therefor a cold page is preferred. 2562 * 2. The expectation is the user wants a compound page. 2563 * 3. If requesting a order 0 page it will not be compound 2564 * due to the check to see if order has a value in prep_new_page 2565 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2566 * code in gfp_to_alloc_flags that should be enforcing this. 2567 */ 2568 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2569 2570 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2571} 2572 2573static inline struct page *dev_alloc_pages(unsigned int order) 2574{ 2575 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2576} 2577 2578/** 2579 * __dev_alloc_page - allocate a page for network Rx 2580 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2581 * 2582 * Allocate a new page. 2583 * 2584 * %NULL is returned if there is no free memory. 2585 */ 2586static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2587{ 2588 return __dev_alloc_pages(gfp_mask, 0); 2589} 2590 2591static inline struct page *dev_alloc_page(void) 2592{ 2593 return dev_alloc_pages(0); 2594} 2595 2596/** 2597 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2598 * @page: The page that was allocated from skb_alloc_page 2599 * @skb: The skb that may need pfmemalloc set 2600 */ 2601static inline void skb_propagate_pfmemalloc(struct page *page, 2602 struct sk_buff *skb) 2603{ 2604 if (page_is_pfmemalloc(page)) 2605 skb->pfmemalloc = true; 2606} 2607 2608/** 2609 * skb_frag_page - retrieve the page referred to by a paged fragment 2610 * @frag: the paged fragment 2611 * 2612 * Returns the &struct page associated with @frag. 2613 */ 2614static inline struct page *skb_frag_page(const skb_frag_t *frag) 2615{ 2616 return frag->page.p; 2617} 2618 2619/** 2620 * __skb_frag_ref - take an addition reference on a paged fragment. 2621 * @frag: the paged fragment 2622 * 2623 * Takes an additional reference on the paged fragment @frag. 2624 */ 2625static inline void __skb_frag_ref(skb_frag_t *frag) 2626{ 2627 get_page(skb_frag_page(frag)); 2628} 2629 2630/** 2631 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2632 * @skb: the buffer 2633 * @f: the fragment offset. 2634 * 2635 * Takes an additional reference on the @f'th paged fragment of @skb. 2636 */ 2637static inline void skb_frag_ref(struct sk_buff *skb, int f) 2638{ 2639 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2640} 2641 2642/** 2643 * __skb_frag_unref - release a reference on a paged fragment. 2644 * @frag: the paged fragment 2645 * 2646 * Releases a reference on the paged fragment @frag. 2647 */ 2648static inline void __skb_frag_unref(skb_frag_t *frag) 2649{ 2650 put_page(skb_frag_page(frag)); 2651} 2652 2653/** 2654 * skb_frag_unref - release a reference on a paged fragment of an skb. 2655 * @skb: the buffer 2656 * @f: the fragment offset 2657 * 2658 * Releases a reference on the @f'th paged fragment of @skb. 2659 */ 2660static inline void skb_frag_unref(struct sk_buff *skb, int f) 2661{ 2662 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2663} 2664 2665/** 2666 * skb_frag_address - gets the address of the data contained in a paged fragment 2667 * @frag: the paged fragment buffer 2668 * 2669 * Returns the address of the data within @frag. The page must already 2670 * be mapped. 2671 */ 2672static inline void *skb_frag_address(const skb_frag_t *frag) 2673{ 2674 return page_address(skb_frag_page(frag)) + frag->page_offset; 2675} 2676 2677/** 2678 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2679 * @frag: the paged fragment buffer 2680 * 2681 * Returns the address of the data within @frag. Checks that the page 2682 * is mapped and returns %NULL otherwise. 2683 */ 2684static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2685{ 2686 void *ptr = page_address(skb_frag_page(frag)); 2687 if (unlikely(!ptr)) 2688 return NULL; 2689 2690 return ptr + frag->page_offset; 2691} 2692 2693/** 2694 * __skb_frag_set_page - sets the page contained in a paged fragment 2695 * @frag: the paged fragment 2696 * @page: the page to set 2697 * 2698 * Sets the fragment @frag to contain @page. 2699 */ 2700static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2701{ 2702 frag->page.p = page; 2703} 2704 2705/** 2706 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2707 * @skb: the buffer 2708 * @f: the fragment offset 2709 * @page: the page to set 2710 * 2711 * Sets the @f'th fragment of @skb to contain @page. 2712 */ 2713static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2714 struct page *page) 2715{ 2716 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2717} 2718 2719bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2720 2721/** 2722 * skb_frag_dma_map - maps a paged fragment via the DMA API 2723 * @dev: the device to map the fragment to 2724 * @frag: the paged fragment to map 2725 * @offset: the offset within the fragment (starting at the 2726 * fragment's own offset) 2727 * @size: the number of bytes to map 2728 * @dir: the direction of the mapping (``PCI_DMA_*``) 2729 * 2730 * Maps the page associated with @frag to @device. 2731 */ 2732static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2733 const skb_frag_t *frag, 2734 size_t offset, size_t size, 2735 enum dma_data_direction dir) 2736{ 2737 return dma_map_page(dev, skb_frag_page(frag), 2738 frag->page_offset + offset, size, dir); 2739} 2740 2741static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2742 gfp_t gfp_mask) 2743{ 2744 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2745} 2746 2747 2748static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2749 gfp_t gfp_mask) 2750{ 2751 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2752} 2753 2754 2755/** 2756 * skb_clone_writable - is the header of a clone writable 2757 * @skb: buffer to check 2758 * @len: length up to which to write 2759 * 2760 * Returns true if modifying the header part of the cloned buffer 2761 * does not requires the data to be copied. 2762 */ 2763static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2764{ 2765 return !skb_header_cloned(skb) && 2766 skb_headroom(skb) + len <= skb->hdr_len; 2767} 2768 2769static inline int skb_try_make_writable(struct sk_buff *skb, 2770 unsigned int write_len) 2771{ 2772 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2773 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2774} 2775 2776static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2777 int cloned) 2778{ 2779 int delta = 0; 2780 2781 if (headroom > skb_headroom(skb)) 2782 delta = headroom - skb_headroom(skb); 2783 2784 if (delta || cloned) 2785 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2786 GFP_ATOMIC); 2787 return 0; 2788} 2789 2790/** 2791 * skb_cow - copy header of skb when it is required 2792 * @skb: buffer to cow 2793 * @headroom: needed headroom 2794 * 2795 * If the skb passed lacks sufficient headroom or its data part 2796 * is shared, data is reallocated. If reallocation fails, an error 2797 * is returned and original skb is not changed. 2798 * 2799 * The result is skb with writable area skb->head...skb->tail 2800 * and at least @headroom of space at head. 2801 */ 2802static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2803{ 2804 return __skb_cow(skb, headroom, skb_cloned(skb)); 2805} 2806 2807/** 2808 * skb_cow_head - skb_cow but only making the head writable 2809 * @skb: buffer to cow 2810 * @headroom: needed headroom 2811 * 2812 * This function is identical to skb_cow except that we replace the 2813 * skb_cloned check by skb_header_cloned. It should be used when 2814 * you only need to push on some header and do not need to modify 2815 * the data. 2816 */ 2817static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2818{ 2819 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2820} 2821 2822/** 2823 * skb_padto - pad an skbuff up to a minimal size 2824 * @skb: buffer to pad 2825 * @len: minimal length 2826 * 2827 * Pads up a buffer to ensure the trailing bytes exist and are 2828 * blanked. If the buffer already contains sufficient data it 2829 * is untouched. Otherwise it is extended. Returns zero on 2830 * success. The skb is freed on error. 2831 */ 2832static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2833{ 2834 unsigned int size = skb->len; 2835 if (likely(size >= len)) 2836 return 0; 2837 return skb_pad(skb, len - size); 2838} 2839 2840/** 2841 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2842 * @skb: buffer to pad 2843 * @len: minimal length 2844 * @free_on_error: free buffer on error 2845 * 2846 * Pads up a buffer to ensure the trailing bytes exist and are 2847 * blanked. If the buffer already contains sufficient data it 2848 * is untouched. Otherwise it is extended. Returns zero on 2849 * success. The skb is freed on error if @free_on_error is true. 2850 */ 2851static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 2852 bool free_on_error) 2853{ 2854 unsigned int size = skb->len; 2855 2856 if (unlikely(size < len)) { 2857 len -= size; 2858 if (__skb_pad(skb, len, free_on_error)) 2859 return -ENOMEM; 2860 __skb_put(skb, len); 2861 } 2862 return 0; 2863} 2864 2865/** 2866 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2867 * @skb: buffer to pad 2868 * @len: minimal length 2869 * 2870 * Pads up a buffer to ensure the trailing bytes exist and are 2871 * blanked. If the buffer already contains sufficient data it 2872 * is untouched. Otherwise it is extended. Returns zero on 2873 * success. The skb is freed on error. 2874 */ 2875static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2876{ 2877 return __skb_put_padto(skb, len, true); 2878} 2879 2880static inline int skb_add_data(struct sk_buff *skb, 2881 struct iov_iter *from, int copy) 2882{ 2883 const int off = skb->len; 2884 2885 if (skb->ip_summed == CHECKSUM_NONE) { 2886 __wsum csum = 0; 2887 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 2888 &csum, from)) { 2889 skb->csum = csum_block_add(skb->csum, csum, off); 2890 return 0; 2891 } 2892 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 2893 return 0; 2894 2895 __skb_trim(skb, off); 2896 return -EFAULT; 2897} 2898 2899static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2900 const struct page *page, int off) 2901{ 2902 if (i) { 2903 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2904 2905 return page == skb_frag_page(frag) && 2906 off == frag->page_offset + skb_frag_size(frag); 2907 } 2908 return false; 2909} 2910 2911static inline int __skb_linearize(struct sk_buff *skb) 2912{ 2913 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2914} 2915 2916/** 2917 * skb_linearize - convert paged skb to linear one 2918 * @skb: buffer to linarize 2919 * 2920 * If there is no free memory -ENOMEM is returned, otherwise zero 2921 * is returned and the old skb data released. 2922 */ 2923static inline int skb_linearize(struct sk_buff *skb) 2924{ 2925 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2926} 2927 2928/** 2929 * skb_has_shared_frag - can any frag be overwritten 2930 * @skb: buffer to test 2931 * 2932 * Return true if the skb has at least one frag that might be modified 2933 * by an external entity (as in vmsplice()/sendfile()) 2934 */ 2935static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2936{ 2937 return skb_is_nonlinear(skb) && 2938 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2939} 2940 2941/** 2942 * skb_linearize_cow - make sure skb is linear and writable 2943 * @skb: buffer to process 2944 * 2945 * If there is no free memory -ENOMEM is returned, otherwise zero 2946 * is returned and the old skb data released. 2947 */ 2948static inline int skb_linearize_cow(struct sk_buff *skb) 2949{ 2950 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2951 __skb_linearize(skb) : 0; 2952} 2953 2954static __always_inline void 2955__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2956 unsigned int off) 2957{ 2958 if (skb->ip_summed == CHECKSUM_COMPLETE) 2959 skb->csum = csum_block_sub(skb->csum, 2960 csum_partial(start, len, 0), off); 2961 else if (skb->ip_summed == CHECKSUM_PARTIAL && 2962 skb_checksum_start_offset(skb) < 0) 2963 skb->ip_summed = CHECKSUM_NONE; 2964} 2965 2966/** 2967 * skb_postpull_rcsum - update checksum for received skb after pull 2968 * @skb: buffer to update 2969 * @start: start of data before pull 2970 * @len: length of data pulled 2971 * 2972 * After doing a pull on a received packet, you need to call this to 2973 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2974 * CHECKSUM_NONE so that it can be recomputed from scratch. 2975 */ 2976static inline void skb_postpull_rcsum(struct sk_buff *skb, 2977 const void *start, unsigned int len) 2978{ 2979 __skb_postpull_rcsum(skb, start, len, 0); 2980} 2981 2982static __always_inline void 2983__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2984 unsigned int off) 2985{ 2986 if (skb->ip_summed == CHECKSUM_COMPLETE) 2987 skb->csum = csum_block_add(skb->csum, 2988 csum_partial(start, len, 0), off); 2989} 2990 2991/** 2992 * skb_postpush_rcsum - update checksum for received skb after push 2993 * @skb: buffer to update 2994 * @start: start of data after push 2995 * @len: length of data pushed 2996 * 2997 * After doing a push on a received packet, you need to call this to 2998 * update the CHECKSUM_COMPLETE checksum. 2999 */ 3000static inline void skb_postpush_rcsum(struct sk_buff *skb, 3001 const void *start, unsigned int len) 3002{ 3003 __skb_postpush_rcsum(skb, start, len, 0); 3004} 3005 3006void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3007 3008/** 3009 * skb_push_rcsum - push skb and update receive checksum 3010 * @skb: buffer to update 3011 * @len: length of data pulled 3012 * 3013 * This function performs an skb_push on the packet and updates 3014 * the CHECKSUM_COMPLETE checksum. It should be used on 3015 * receive path processing instead of skb_push unless you know 3016 * that the checksum difference is zero (e.g., a valid IP header) 3017 * or you are setting ip_summed to CHECKSUM_NONE. 3018 */ 3019static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3020{ 3021 skb_push(skb, len); 3022 skb_postpush_rcsum(skb, skb->data, len); 3023 return skb->data; 3024} 3025 3026/** 3027 * pskb_trim_rcsum - trim received skb and update checksum 3028 * @skb: buffer to trim 3029 * @len: new length 3030 * 3031 * This is exactly the same as pskb_trim except that it ensures the 3032 * checksum of received packets are still valid after the operation. 3033 */ 3034 3035static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3036{ 3037 if (likely(len >= skb->len)) 3038 return 0; 3039 if (skb->ip_summed == CHECKSUM_COMPLETE) 3040 skb->ip_summed = CHECKSUM_NONE; 3041 return __pskb_trim(skb, len); 3042} 3043 3044static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3045{ 3046 if (skb->ip_summed == CHECKSUM_COMPLETE) 3047 skb->ip_summed = CHECKSUM_NONE; 3048 __skb_trim(skb, len); 3049 return 0; 3050} 3051 3052static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3053{ 3054 if (skb->ip_summed == CHECKSUM_COMPLETE) 3055 skb->ip_summed = CHECKSUM_NONE; 3056 return __skb_grow(skb, len); 3057} 3058 3059#define skb_queue_walk(queue, skb) \ 3060 for (skb = (queue)->next; \ 3061 skb != (struct sk_buff *)(queue); \ 3062 skb = skb->next) 3063 3064#define skb_queue_walk_safe(queue, skb, tmp) \ 3065 for (skb = (queue)->next, tmp = skb->next; \ 3066 skb != (struct sk_buff *)(queue); \ 3067 skb = tmp, tmp = skb->next) 3068 3069#define skb_queue_walk_from(queue, skb) \ 3070 for (; skb != (struct sk_buff *)(queue); \ 3071 skb = skb->next) 3072 3073#define skb_queue_walk_from_safe(queue, skb, tmp) \ 3074 for (tmp = skb->next; \ 3075 skb != (struct sk_buff *)(queue); \ 3076 skb = tmp, tmp = skb->next) 3077 3078#define skb_queue_reverse_walk(queue, skb) \ 3079 for (skb = (queue)->prev; \ 3080 skb != (struct sk_buff *)(queue); \ 3081 skb = skb->prev) 3082 3083#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3084 for (skb = (queue)->prev, tmp = skb->prev; \ 3085 skb != (struct sk_buff *)(queue); \ 3086 skb = tmp, tmp = skb->prev) 3087 3088#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3089 for (tmp = skb->prev; \ 3090 skb != (struct sk_buff *)(queue); \ 3091 skb = tmp, tmp = skb->prev) 3092 3093static inline bool skb_has_frag_list(const struct sk_buff *skb) 3094{ 3095 return skb_shinfo(skb)->frag_list != NULL; 3096} 3097 3098static inline void skb_frag_list_init(struct sk_buff *skb) 3099{ 3100 skb_shinfo(skb)->frag_list = NULL; 3101} 3102 3103#define skb_walk_frags(skb, iter) \ 3104 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3105 3106 3107int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3108 const struct sk_buff *skb); 3109struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3110 struct sk_buff_head *queue, 3111 unsigned int flags, 3112 void (*destructor)(struct sock *sk, 3113 struct sk_buff *skb), 3114 int *peeked, int *off, int *err, 3115 struct sk_buff **last); 3116struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3117 void (*destructor)(struct sock *sk, 3118 struct sk_buff *skb), 3119 int *peeked, int *off, int *err, 3120 struct sk_buff **last); 3121struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3122 void (*destructor)(struct sock *sk, 3123 struct sk_buff *skb), 3124 int *peeked, int *off, int *err); 3125struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3126 int *err); 3127unsigned int datagram_poll(struct file *file, struct socket *sock, 3128 struct poll_table_struct *wait); 3129int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3130 struct iov_iter *to, int size); 3131static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3132 struct msghdr *msg, int size) 3133{ 3134 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3135} 3136int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3137 struct msghdr *msg); 3138int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3139 struct iov_iter *from, int len); 3140int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3141void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3142void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3143static inline void skb_free_datagram_locked(struct sock *sk, 3144 struct sk_buff *skb) 3145{ 3146 __skb_free_datagram_locked(sk, skb, 0); 3147} 3148int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3149int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3150int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3151__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3152 int len, __wsum csum); 3153int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3154 struct pipe_inode_info *pipe, unsigned int len, 3155 unsigned int flags); 3156void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3157unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3158int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3159 int len, int hlen); 3160void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3161int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3162void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3163unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 3164bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu); 3165struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3166struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3167int skb_ensure_writable(struct sk_buff *skb, int write_len); 3168int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3169int skb_vlan_pop(struct sk_buff *skb); 3170int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3171struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3172 gfp_t gfp); 3173 3174static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3175{ 3176 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3177} 3178 3179static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3180{ 3181 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3182} 3183 3184struct skb_checksum_ops { 3185 __wsum (*update)(const void *mem, int len, __wsum wsum); 3186 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3187}; 3188 3189extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3190 3191__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3192 __wsum csum, const struct skb_checksum_ops *ops); 3193__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3194 __wsum csum); 3195 3196static inline void * __must_check 3197__skb_header_pointer(const struct sk_buff *skb, int offset, 3198 int len, void *data, int hlen, void *buffer) 3199{ 3200 if (hlen - offset >= len) 3201 return data + offset; 3202 3203 if (!skb || 3204 skb_copy_bits(skb, offset, buffer, len) < 0) 3205 return NULL; 3206 3207 return buffer; 3208} 3209 3210static inline void * __must_check 3211skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3212{ 3213 return __skb_header_pointer(skb, offset, len, skb->data, 3214 skb_headlen(skb), buffer); 3215} 3216 3217/** 3218 * skb_needs_linearize - check if we need to linearize a given skb 3219 * depending on the given device features. 3220 * @skb: socket buffer to check 3221 * @features: net device features 3222 * 3223 * Returns true if either: 3224 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3225 * 2. skb is fragmented and the device does not support SG. 3226 */ 3227static inline bool skb_needs_linearize(struct sk_buff *skb, 3228 netdev_features_t features) 3229{ 3230 return skb_is_nonlinear(skb) && 3231 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3232 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3233} 3234 3235static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3236 void *to, 3237 const unsigned int len) 3238{ 3239 memcpy(to, skb->data, len); 3240} 3241 3242static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3243 const int offset, void *to, 3244 const unsigned int len) 3245{ 3246 memcpy(to, skb->data + offset, len); 3247} 3248 3249static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3250 const void *from, 3251 const unsigned int len) 3252{ 3253 memcpy(skb->data, from, len); 3254} 3255 3256static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3257 const int offset, 3258 const void *from, 3259 const unsigned int len) 3260{ 3261 memcpy(skb->data + offset, from, len); 3262} 3263 3264void skb_init(void); 3265 3266static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3267{ 3268 return skb->tstamp; 3269} 3270 3271/** 3272 * skb_get_timestamp - get timestamp from a skb 3273 * @skb: skb to get stamp from 3274 * @stamp: pointer to struct timeval to store stamp in 3275 * 3276 * Timestamps are stored in the skb as offsets to a base timestamp. 3277 * This function converts the offset back to a struct timeval and stores 3278 * it in stamp. 3279 */ 3280static inline void skb_get_timestamp(const struct sk_buff *skb, 3281 struct timeval *stamp) 3282{ 3283 *stamp = ktime_to_timeval(skb->tstamp); 3284} 3285 3286static inline void skb_get_timestampns(const struct sk_buff *skb, 3287 struct timespec *stamp) 3288{ 3289 *stamp = ktime_to_timespec(skb->tstamp); 3290} 3291 3292static inline void __net_timestamp(struct sk_buff *skb) 3293{ 3294 skb->tstamp = ktime_get_real(); 3295} 3296 3297static inline ktime_t net_timedelta(ktime_t t) 3298{ 3299 return ktime_sub(ktime_get_real(), t); 3300} 3301 3302static inline ktime_t net_invalid_timestamp(void) 3303{ 3304 return 0; 3305} 3306 3307struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3308 3309#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3310 3311void skb_clone_tx_timestamp(struct sk_buff *skb); 3312bool skb_defer_rx_timestamp(struct sk_buff *skb); 3313 3314#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3315 3316static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3317{ 3318} 3319 3320static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3321{ 3322 return false; 3323} 3324 3325#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3326 3327/** 3328 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3329 * 3330 * PHY drivers may accept clones of transmitted packets for 3331 * timestamping via their phy_driver.txtstamp method. These drivers 3332 * must call this function to return the skb back to the stack with a 3333 * timestamp. 3334 * 3335 * @skb: clone of the the original outgoing packet 3336 * @hwtstamps: hardware time stamps 3337 * 3338 */ 3339void skb_complete_tx_timestamp(struct sk_buff *skb, 3340 struct skb_shared_hwtstamps *hwtstamps); 3341 3342void __skb_tstamp_tx(struct sk_buff *orig_skb, 3343 struct skb_shared_hwtstamps *hwtstamps, 3344 struct sock *sk, int tstype); 3345 3346/** 3347 * skb_tstamp_tx - queue clone of skb with send time stamps 3348 * @orig_skb: the original outgoing packet 3349 * @hwtstamps: hardware time stamps, may be NULL if not available 3350 * 3351 * If the skb has a socket associated, then this function clones the 3352 * skb (thus sharing the actual data and optional structures), stores 3353 * the optional hardware time stamping information (if non NULL) or 3354 * generates a software time stamp (otherwise), then queues the clone 3355 * to the error queue of the socket. Errors are silently ignored. 3356 */ 3357void skb_tstamp_tx(struct sk_buff *orig_skb, 3358 struct skb_shared_hwtstamps *hwtstamps); 3359 3360/** 3361 * skb_tx_timestamp() - Driver hook for transmit timestamping 3362 * 3363 * Ethernet MAC Drivers should call this function in their hard_xmit() 3364 * function immediately before giving the sk_buff to the MAC hardware. 3365 * 3366 * Specifically, one should make absolutely sure that this function is 3367 * called before TX completion of this packet can trigger. Otherwise 3368 * the packet could potentially already be freed. 3369 * 3370 * @skb: A socket buffer. 3371 */ 3372static inline void skb_tx_timestamp(struct sk_buff *skb) 3373{ 3374 skb_clone_tx_timestamp(skb); 3375 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3376 skb_tstamp_tx(skb, NULL); 3377} 3378 3379/** 3380 * skb_complete_wifi_ack - deliver skb with wifi status 3381 * 3382 * @skb: the original outgoing packet 3383 * @acked: ack status 3384 * 3385 */ 3386void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3387 3388__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3389__sum16 __skb_checksum_complete(struct sk_buff *skb); 3390 3391static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3392{ 3393 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3394 skb->csum_valid || 3395 (skb->ip_summed == CHECKSUM_PARTIAL && 3396 skb_checksum_start_offset(skb) >= 0)); 3397} 3398 3399/** 3400 * skb_checksum_complete - Calculate checksum of an entire packet 3401 * @skb: packet to process 3402 * 3403 * This function calculates the checksum over the entire packet plus 3404 * the value of skb->csum. The latter can be used to supply the 3405 * checksum of a pseudo header as used by TCP/UDP. It returns the 3406 * checksum. 3407 * 3408 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3409 * this function can be used to verify that checksum on received 3410 * packets. In that case the function should return zero if the 3411 * checksum is correct. In particular, this function will return zero 3412 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3413 * hardware has already verified the correctness of the checksum. 3414 */ 3415static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3416{ 3417 return skb_csum_unnecessary(skb) ? 3418 0 : __skb_checksum_complete(skb); 3419} 3420 3421static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3422{ 3423 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3424 if (skb->csum_level == 0) 3425 skb->ip_summed = CHECKSUM_NONE; 3426 else 3427 skb->csum_level--; 3428 } 3429} 3430 3431static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3432{ 3433 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3434 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3435 skb->csum_level++; 3436 } else if (skb->ip_summed == CHECKSUM_NONE) { 3437 skb->ip_summed = CHECKSUM_UNNECESSARY; 3438 skb->csum_level = 0; 3439 } 3440} 3441 3442/* Check if we need to perform checksum complete validation. 3443 * 3444 * Returns true if checksum complete is needed, false otherwise 3445 * (either checksum is unnecessary or zero checksum is allowed). 3446 */ 3447static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3448 bool zero_okay, 3449 __sum16 check) 3450{ 3451 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3452 skb->csum_valid = 1; 3453 __skb_decr_checksum_unnecessary(skb); 3454 return false; 3455 } 3456 3457 return true; 3458} 3459 3460/* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3461 * in checksum_init. 3462 */ 3463#define CHECKSUM_BREAK 76 3464 3465/* Unset checksum-complete 3466 * 3467 * Unset checksum complete can be done when packet is being modified 3468 * (uncompressed for instance) and checksum-complete value is 3469 * invalidated. 3470 */ 3471static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3472{ 3473 if (skb->ip_summed == CHECKSUM_COMPLETE) 3474 skb->ip_summed = CHECKSUM_NONE; 3475} 3476 3477/* Validate (init) checksum based on checksum complete. 3478 * 3479 * Return values: 3480 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3481 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3482 * checksum is stored in skb->csum for use in __skb_checksum_complete 3483 * non-zero: value of invalid checksum 3484 * 3485 */ 3486static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3487 bool complete, 3488 __wsum psum) 3489{ 3490 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3491 if (!csum_fold(csum_add(psum, skb->csum))) { 3492 skb->csum_valid = 1; 3493 return 0; 3494 } 3495 } 3496 3497 skb->csum = psum; 3498 3499 if (complete || skb->len <= CHECKSUM_BREAK) { 3500 __sum16 csum; 3501 3502 csum = __skb_checksum_complete(skb); 3503 skb->csum_valid = !csum; 3504 return csum; 3505 } 3506 3507 return 0; 3508} 3509 3510static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3511{ 3512 return 0; 3513} 3514 3515/* Perform checksum validate (init). Note that this is a macro since we only 3516 * want to calculate the pseudo header which is an input function if necessary. 3517 * First we try to validate without any computation (checksum unnecessary) and 3518 * then calculate based on checksum complete calling the function to compute 3519 * pseudo header. 3520 * 3521 * Return values: 3522 * 0: checksum is validated or try to in skb_checksum_complete 3523 * non-zero: value of invalid checksum 3524 */ 3525#define __skb_checksum_validate(skb, proto, complete, \ 3526 zero_okay, check, compute_pseudo) \ 3527({ \ 3528 __sum16 __ret = 0; \ 3529 skb->csum_valid = 0; \ 3530 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3531 __ret = __skb_checksum_validate_complete(skb, \ 3532 complete, compute_pseudo(skb, proto)); \ 3533 __ret; \ 3534}) 3535 3536#define skb_checksum_init(skb, proto, compute_pseudo) \ 3537 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3538 3539#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3540 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3541 3542#define skb_checksum_validate(skb, proto, compute_pseudo) \ 3543 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3544 3545#define skb_checksum_validate_zero_check(skb, proto, check, \ 3546 compute_pseudo) \ 3547 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3548 3549#define skb_checksum_simple_validate(skb) \ 3550 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3551 3552static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3553{ 3554 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3555} 3556 3557static inline void __skb_checksum_convert(struct sk_buff *skb, 3558 __sum16 check, __wsum pseudo) 3559{ 3560 skb->csum = ~pseudo; 3561 skb->ip_summed = CHECKSUM_COMPLETE; 3562} 3563 3564#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3565do { \ 3566 if (__skb_checksum_convert_check(skb)) \ 3567 __skb_checksum_convert(skb, check, \ 3568 compute_pseudo(skb, proto)); \ 3569} while (0) 3570 3571static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3572 u16 start, u16 offset) 3573{ 3574 skb->ip_summed = CHECKSUM_PARTIAL; 3575 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3576 skb->csum_offset = offset - start; 3577} 3578 3579/* Update skbuf and packet to reflect the remote checksum offload operation. 3580 * When called, ptr indicates the starting point for skb->csum when 3581 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3582 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3583 */ 3584static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3585 int start, int offset, bool nopartial) 3586{ 3587 __wsum delta; 3588 3589 if (!nopartial) { 3590 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3591 return; 3592 } 3593 3594 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3595 __skb_checksum_complete(skb); 3596 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3597 } 3598 3599 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3600 3601 /* Adjust skb->csum since we changed the packet */ 3602 skb->csum = csum_add(skb->csum, delta); 3603} 3604 3605static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3606{ 3607#if IS_ENABLED(CONFIG_NF_CONNTRACK) 3608 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3609#else 3610 return NULL; 3611#endif 3612} 3613 3614#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3615void nf_conntrack_destroy(struct nf_conntrack *nfct); 3616static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3617{ 3618 if (nfct && atomic_dec_and_test(&nfct->use)) 3619 nf_conntrack_destroy(nfct); 3620} 3621static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3622{ 3623 if (nfct) 3624 atomic_inc(&nfct->use); 3625} 3626#endif 3627#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3628static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3629{ 3630 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use)) 3631 kfree(nf_bridge); 3632} 3633static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3634{ 3635 if (nf_bridge) 3636 refcount_inc(&nf_bridge->use); 3637} 3638#endif /* CONFIG_BRIDGE_NETFILTER */ 3639static inline void nf_reset(struct sk_buff *skb) 3640{ 3641#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3642 nf_conntrack_put(skb_nfct(skb)); 3643 skb->_nfct = 0; 3644#endif 3645#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3646 nf_bridge_put(skb->nf_bridge); 3647 skb->nf_bridge = NULL; 3648#endif 3649} 3650 3651static inline void nf_reset_trace(struct sk_buff *skb) 3652{ 3653#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3654 skb->nf_trace = 0; 3655#endif 3656} 3657 3658/* Note: This doesn't put any conntrack and bridge info in dst. */ 3659static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3660 bool copy) 3661{ 3662#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3663 dst->_nfct = src->_nfct; 3664 nf_conntrack_get(skb_nfct(src)); 3665#endif 3666#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3667 dst->nf_bridge = src->nf_bridge; 3668 nf_bridge_get(src->nf_bridge); 3669#endif 3670#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3671 if (copy) 3672 dst->nf_trace = src->nf_trace; 3673#endif 3674} 3675 3676static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3677{ 3678#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3679 nf_conntrack_put(skb_nfct(dst)); 3680#endif 3681#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3682 nf_bridge_put(dst->nf_bridge); 3683#endif 3684 __nf_copy(dst, src, true); 3685} 3686 3687#ifdef CONFIG_NETWORK_SECMARK 3688static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3689{ 3690 to->secmark = from->secmark; 3691} 3692 3693static inline void skb_init_secmark(struct sk_buff *skb) 3694{ 3695 skb->secmark = 0; 3696} 3697#else 3698static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3699{ } 3700 3701static inline void skb_init_secmark(struct sk_buff *skb) 3702{ } 3703#endif 3704 3705static inline bool skb_irq_freeable(const struct sk_buff *skb) 3706{ 3707 return !skb->destructor && 3708#if IS_ENABLED(CONFIG_XFRM) 3709 !skb->sp && 3710#endif 3711 !skb_nfct(skb) && 3712 !skb->_skb_refdst && 3713 !skb_has_frag_list(skb); 3714} 3715 3716static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3717{ 3718 skb->queue_mapping = queue_mapping; 3719} 3720 3721static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3722{ 3723 return skb->queue_mapping; 3724} 3725 3726static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3727{ 3728 to->queue_mapping = from->queue_mapping; 3729} 3730 3731static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3732{ 3733 skb->queue_mapping = rx_queue + 1; 3734} 3735 3736static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3737{ 3738 return skb->queue_mapping - 1; 3739} 3740 3741static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3742{ 3743 return skb->queue_mapping != 0; 3744} 3745 3746static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 3747{ 3748 skb->dst_pending_confirm = val; 3749} 3750 3751static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 3752{ 3753 return skb->dst_pending_confirm != 0; 3754} 3755 3756static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3757{ 3758#ifdef CONFIG_XFRM 3759 return skb->sp; 3760#else 3761 return NULL; 3762#endif 3763} 3764 3765/* Keeps track of mac header offset relative to skb->head. 3766 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3767 * For non-tunnel skb it points to skb_mac_header() and for 3768 * tunnel skb it points to outer mac header. 3769 * Keeps track of level of encapsulation of network headers. 3770 */ 3771struct skb_gso_cb { 3772 union { 3773 int mac_offset; 3774 int data_offset; 3775 }; 3776 int encap_level; 3777 __wsum csum; 3778 __u16 csum_start; 3779}; 3780#define SKB_SGO_CB_OFFSET 32 3781#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3782 3783static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3784{ 3785 return (skb_mac_header(inner_skb) - inner_skb->head) - 3786 SKB_GSO_CB(inner_skb)->mac_offset; 3787} 3788 3789static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3790{ 3791 int new_headroom, headroom; 3792 int ret; 3793 3794 headroom = skb_headroom(skb); 3795 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3796 if (ret) 3797 return ret; 3798 3799 new_headroom = skb_headroom(skb); 3800 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3801 return 0; 3802} 3803 3804static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 3805{ 3806 /* Do not update partial checksums if remote checksum is enabled. */ 3807 if (skb->remcsum_offload) 3808 return; 3809 3810 SKB_GSO_CB(skb)->csum = res; 3811 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 3812} 3813 3814/* Compute the checksum for a gso segment. First compute the checksum value 3815 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3816 * then add in skb->csum (checksum from csum_start to end of packet). 3817 * skb->csum and csum_start are then updated to reflect the checksum of the 3818 * resultant packet starting from the transport header-- the resultant checksum 3819 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3820 * header. 3821 */ 3822static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3823{ 3824 unsigned char *csum_start = skb_transport_header(skb); 3825 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 3826 __wsum partial = SKB_GSO_CB(skb)->csum; 3827 3828 SKB_GSO_CB(skb)->csum = res; 3829 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 3830 3831 return csum_fold(csum_partial(csum_start, plen, partial)); 3832} 3833 3834static inline bool skb_is_gso(const struct sk_buff *skb) 3835{ 3836 return skb_shinfo(skb)->gso_size; 3837} 3838 3839/* Note: Should be called only if skb_is_gso(skb) is true */ 3840static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3841{ 3842 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3843} 3844 3845static inline void skb_gso_reset(struct sk_buff *skb) 3846{ 3847 skb_shinfo(skb)->gso_size = 0; 3848 skb_shinfo(skb)->gso_segs = 0; 3849 skb_shinfo(skb)->gso_type = 0; 3850} 3851 3852void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3853 3854static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3855{ 3856 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3857 * wanted then gso_type will be set. */ 3858 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3859 3860 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3861 unlikely(shinfo->gso_type == 0)) { 3862 __skb_warn_lro_forwarding(skb); 3863 return true; 3864 } 3865 return false; 3866} 3867 3868static inline void skb_forward_csum(struct sk_buff *skb) 3869{ 3870 /* Unfortunately we don't support this one. Any brave souls? */ 3871 if (skb->ip_summed == CHECKSUM_COMPLETE) 3872 skb->ip_summed = CHECKSUM_NONE; 3873} 3874 3875/** 3876 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3877 * @skb: skb to check 3878 * 3879 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3880 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3881 * use this helper, to document places where we make this assertion. 3882 */ 3883static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3884{ 3885#ifdef DEBUG 3886 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3887#endif 3888} 3889 3890bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3891 3892int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3893struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 3894 unsigned int transport_len, 3895 __sum16(*skb_chkf)(struct sk_buff *skb)); 3896 3897/** 3898 * skb_head_is_locked - Determine if the skb->head is locked down 3899 * @skb: skb to check 3900 * 3901 * The head on skbs build around a head frag can be removed if they are 3902 * not cloned. This function returns true if the skb head is locked down 3903 * due to either being allocated via kmalloc, or by being a clone with 3904 * multiple references to the head. 3905 */ 3906static inline bool skb_head_is_locked(const struct sk_buff *skb) 3907{ 3908 return !skb->head_frag || skb_cloned(skb); 3909} 3910 3911/** 3912 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3913 * 3914 * @skb: GSO skb 3915 * 3916 * skb_gso_network_seglen is used to determine the real size of the 3917 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3918 * 3919 * The MAC/L2 header is not accounted for. 3920 */ 3921static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3922{ 3923 unsigned int hdr_len = skb_transport_header(skb) - 3924 skb_network_header(skb); 3925 return hdr_len + skb_gso_transport_seglen(skb); 3926} 3927 3928/* Local Checksum Offload. 3929 * Compute outer checksum based on the assumption that the 3930 * inner checksum will be offloaded later. 3931 * See Documentation/networking/checksum-offloads.txt for 3932 * explanation of how this works. 3933 * Fill in outer checksum adjustment (e.g. with sum of outer 3934 * pseudo-header) before calling. 3935 * Also ensure that inner checksum is in linear data area. 3936 */ 3937static inline __wsum lco_csum(struct sk_buff *skb) 3938{ 3939 unsigned char *csum_start = skb_checksum_start(skb); 3940 unsigned char *l4_hdr = skb_transport_header(skb); 3941 __wsum partial; 3942 3943 /* Start with complement of inner checksum adjustment */ 3944 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 3945 skb->csum_offset)); 3946 3947 /* Add in checksum of our headers (incl. outer checksum 3948 * adjustment filled in by caller) and return result. 3949 */ 3950 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 3951} 3952 3953#endif /* __KERNEL__ */ 3954#endif /* _LINUX_SKBUFF_H */