at v4.13 40 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18 19/* 20 * Kernel-internal data types and definitions: 21 */ 22 23#ifdef CONFIG_PERF_EVENTS 24# include <asm/perf_event.h> 25# include <asm/local64.h> 26#endif 27 28struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32}; 33 34#ifdef CONFIG_HAVE_HW_BREAKPOINT 35#include <asm/hw_breakpoint.h> 36#endif 37 38#include <linux/list.h> 39#include <linux/mutex.h> 40#include <linux/rculist.h> 41#include <linux/rcupdate.h> 42#include <linux/spinlock.h> 43#include <linux/hrtimer.h> 44#include <linux/fs.h> 45#include <linux/pid_namespace.h> 46#include <linux/workqueue.h> 47#include <linux/ftrace.h> 48#include <linux/cpu.h> 49#include <linux/irq_work.h> 50#include <linux/static_key.h> 51#include <linux/jump_label_ratelimit.h> 52#include <linux/atomic.h> 53#include <linux/sysfs.h> 54#include <linux/perf_regs.h> 55#include <linux/workqueue.h> 56#include <linux/cgroup.h> 57#include <asm/local.h> 58 59struct perf_callchain_entry { 60 __u64 nr; 61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 62}; 63 64struct perf_callchain_entry_ctx { 65 struct perf_callchain_entry *entry; 66 u32 max_stack; 67 u32 nr; 68 short contexts; 69 bool contexts_maxed; 70}; 71 72typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 73 unsigned long off, unsigned long len); 74 75struct perf_raw_frag { 76 union { 77 struct perf_raw_frag *next; 78 unsigned long pad; 79 }; 80 perf_copy_f copy; 81 void *data; 82 u32 size; 83} __packed; 84 85struct perf_raw_record { 86 struct perf_raw_frag frag; 87 u32 size; 88}; 89 90/* 91 * branch stack layout: 92 * nr: number of taken branches stored in entries[] 93 * 94 * Note that nr can vary from sample to sample 95 * branches (to, from) are stored from most recent 96 * to least recent, i.e., entries[0] contains the most 97 * recent branch. 98 */ 99struct perf_branch_stack { 100 __u64 nr; 101 struct perf_branch_entry entries[0]; 102}; 103 104struct task_struct; 105 106/* 107 * extra PMU register associated with an event 108 */ 109struct hw_perf_event_extra { 110 u64 config; /* register value */ 111 unsigned int reg; /* register address or index */ 112 int alloc; /* extra register already allocated */ 113 int idx; /* index in shared_regs->regs[] */ 114}; 115 116/** 117 * struct hw_perf_event - performance event hardware details: 118 */ 119struct hw_perf_event { 120#ifdef CONFIG_PERF_EVENTS 121 union { 122 struct { /* hardware */ 123 u64 config; 124 u64 last_tag; 125 unsigned long config_base; 126 unsigned long event_base; 127 int event_base_rdpmc; 128 int idx; 129 int last_cpu; 130 int flags; 131 132 struct hw_perf_event_extra extra_reg; 133 struct hw_perf_event_extra branch_reg; 134 }; 135 struct { /* software */ 136 struct hrtimer hrtimer; 137 }; 138 struct { /* tracepoint */ 139 /* for tp_event->class */ 140 struct list_head tp_list; 141 }; 142 struct { /* intel_cqm */ 143 int cqm_state; 144 u32 cqm_rmid; 145 int is_group_event; 146 struct list_head cqm_events_entry; 147 struct list_head cqm_groups_entry; 148 struct list_head cqm_group_entry; 149 }; 150 struct { /* itrace */ 151 int itrace_started; 152 }; 153 struct { /* amd_power */ 154 u64 pwr_acc; 155 u64 ptsc; 156 }; 157#ifdef CONFIG_HAVE_HW_BREAKPOINT 158 struct { /* breakpoint */ 159 /* 160 * Crufty hack to avoid the chicken and egg 161 * problem hw_breakpoint has with context 162 * creation and event initalization. 163 */ 164 struct arch_hw_breakpoint info; 165 struct list_head bp_list; 166 }; 167#endif 168 struct { /* amd_iommu */ 169 u8 iommu_bank; 170 u8 iommu_cntr; 171 u16 padding; 172 u64 conf; 173 u64 conf1; 174 }; 175 }; 176 /* 177 * If the event is a per task event, this will point to the task in 178 * question. See the comment in perf_event_alloc(). 179 */ 180 struct task_struct *target; 181 182 /* 183 * PMU would store hardware filter configuration 184 * here. 185 */ 186 void *addr_filters; 187 188 /* Last sync'ed generation of filters */ 189 unsigned long addr_filters_gen; 190 191/* 192 * hw_perf_event::state flags; used to track the PERF_EF_* state. 193 */ 194#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 195#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 196#define PERF_HES_ARCH 0x04 197 198 int state; 199 200 /* 201 * The last observed hardware counter value, updated with a 202 * local64_cmpxchg() such that pmu::read() can be called nested. 203 */ 204 local64_t prev_count; 205 206 /* 207 * The period to start the next sample with. 208 */ 209 u64 sample_period; 210 211 /* 212 * The period we started this sample with. 213 */ 214 u64 last_period; 215 216 /* 217 * However much is left of the current period; note that this is 218 * a full 64bit value and allows for generation of periods longer 219 * than hardware might allow. 220 */ 221 local64_t period_left; 222 223 /* 224 * State for throttling the event, see __perf_event_overflow() and 225 * perf_adjust_freq_unthr_context(). 226 */ 227 u64 interrupts_seq; 228 u64 interrupts; 229 230 /* 231 * State for freq target events, see __perf_event_overflow() and 232 * perf_adjust_freq_unthr_context(). 233 */ 234 u64 freq_time_stamp; 235 u64 freq_count_stamp; 236#endif 237}; 238 239struct perf_event; 240 241/* 242 * Common implementation detail of pmu::{start,commit,cancel}_txn 243 */ 244#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 245#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 246 247/** 248 * pmu::capabilities flags 249 */ 250#define PERF_PMU_CAP_NO_INTERRUPT 0x01 251#define PERF_PMU_CAP_NO_NMI 0x02 252#define PERF_PMU_CAP_AUX_NO_SG 0x04 253#define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 254#define PERF_PMU_CAP_EXCLUSIVE 0x10 255#define PERF_PMU_CAP_ITRACE 0x20 256#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 257 258/** 259 * struct pmu - generic performance monitoring unit 260 */ 261struct pmu { 262 struct list_head entry; 263 264 struct module *module; 265 struct device *dev; 266 const struct attribute_group **attr_groups; 267 const char *name; 268 int type; 269 270 /* 271 * various common per-pmu feature flags 272 */ 273 int capabilities; 274 275 int * __percpu pmu_disable_count; 276 struct perf_cpu_context * __percpu pmu_cpu_context; 277 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 278 int task_ctx_nr; 279 int hrtimer_interval_ms; 280 281 /* number of address filters this PMU can do */ 282 unsigned int nr_addr_filters; 283 284 /* 285 * Fully disable/enable this PMU, can be used to protect from the PMI 286 * as well as for lazy/batch writing of the MSRs. 287 */ 288 void (*pmu_enable) (struct pmu *pmu); /* optional */ 289 void (*pmu_disable) (struct pmu *pmu); /* optional */ 290 291 /* 292 * Try and initialize the event for this PMU. 293 * 294 * Returns: 295 * -ENOENT -- @event is not for this PMU 296 * 297 * -ENODEV -- @event is for this PMU but PMU not present 298 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 299 * -EINVAL -- @event is for this PMU but @event is not valid 300 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 301 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 302 * 303 * 0 -- @event is for this PMU and valid 304 * 305 * Other error return values are allowed. 306 */ 307 int (*event_init) (struct perf_event *event); 308 309 /* 310 * Notification that the event was mapped or unmapped. Called 311 * in the context of the mapping task. 312 */ 313 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 314 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 315 316 /* 317 * Flags for ->add()/->del()/ ->start()/->stop(). There are 318 * matching hw_perf_event::state flags. 319 */ 320#define PERF_EF_START 0x01 /* start the counter when adding */ 321#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 322#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 323 324 /* 325 * Adds/Removes a counter to/from the PMU, can be done inside a 326 * transaction, see the ->*_txn() methods. 327 * 328 * The add/del callbacks will reserve all hardware resources required 329 * to service the event, this includes any counter constraint 330 * scheduling etc. 331 * 332 * Called with IRQs disabled and the PMU disabled on the CPU the event 333 * is on. 334 * 335 * ->add() called without PERF_EF_START should result in the same state 336 * as ->add() followed by ->stop(). 337 * 338 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 339 * ->stop() that must deal with already being stopped without 340 * PERF_EF_UPDATE. 341 */ 342 int (*add) (struct perf_event *event, int flags); 343 void (*del) (struct perf_event *event, int flags); 344 345 /* 346 * Starts/Stops a counter present on the PMU. 347 * 348 * The PMI handler should stop the counter when perf_event_overflow() 349 * returns !0. ->start() will be used to continue. 350 * 351 * Also used to change the sample period. 352 * 353 * Called with IRQs disabled and the PMU disabled on the CPU the event 354 * is on -- will be called from NMI context with the PMU generates 355 * NMIs. 356 * 357 * ->stop() with PERF_EF_UPDATE will read the counter and update 358 * period/count values like ->read() would. 359 * 360 * ->start() with PERF_EF_RELOAD will reprogram the the counter 361 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 362 */ 363 void (*start) (struct perf_event *event, int flags); 364 void (*stop) (struct perf_event *event, int flags); 365 366 /* 367 * Updates the counter value of the event. 368 * 369 * For sampling capable PMUs this will also update the software period 370 * hw_perf_event::period_left field. 371 */ 372 void (*read) (struct perf_event *event); 373 374 /* 375 * Group events scheduling is treated as a transaction, add 376 * group events as a whole and perform one schedulability test. 377 * If the test fails, roll back the whole group 378 * 379 * Start the transaction, after this ->add() doesn't need to 380 * do schedulability tests. 381 * 382 * Optional. 383 */ 384 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 385 /* 386 * If ->start_txn() disabled the ->add() schedulability test 387 * then ->commit_txn() is required to perform one. On success 388 * the transaction is closed. On error the transaction is kept 389 * open until ->cancel_txn() is called. 390 * 391 * Optional. 392 */ 393 int (*commit_txn) (struct pmu *pmu); 394 /* 395 * Will cancel the transaction, assumes ->del() is called 396 * for each successful ->add() during the transaction. 397 * 398 * Optional. 399 */ 400 void (*cancel_txn) (struct pmu *pmu); 401 402 /* 403 * Will return the value for perf_event_mmap_page::index for this event, 404 * if no implementation is provided it will default to: event->hw.idx + 1. 405 */ 406 int (*event_idx) (struct perf_event *event); /*optional */ 407 408 /* 409 * context-switches callback 410 */ 411 void (*sched_task) (struct perf_event_context *ctx, 412 bool sched_in); 413 /* 414 * PMU specific data size 415 */ 416 size_t task_ctx_size; 417 418 419 /* 420 * Return the count value for a counter. 421 */ 422 u64 (*count) (struct perf_event *event); /*optional*/ 423 424 /* 425 * Set up pmu-private data structures for an AUX area 426 */ 427 void *(*setup_aux) (int cpu, void **pages, 428 int nr_pages, bool overwrite); 429 /* optional */ 430 431 /* 432 * Free pmu-private AUX data structures 433 */ 434 void (*free_aux) (void *aux); /* optional */ 435 436 /* 437 * Validate address range filters: make sure the HW supports the 438 * requested configuration and number of filters; return 0 if the 439 * supplied filters are valid, -errno otherwise. 440 * 441 * Runs in the context of the ioctl()ing process and is not serialized 442 * with the rest of the PMU callbacks. 443 */ 444 int (*addr_filters_validate) (struct list_head *filters); 445 /* optional */ 446 447 /* 448 * Synchronize address range filter configuration: 449 * translate hw-agnostic filters into hardware configuration in 450 * event::hw::addr_filters. 451 * 452 * Runs as a part of filter sync sequence that is done in ->start() 453 * callback by calling perf_event_addr_filters_sync(). 454 * 455 * May (and should) traverse event::addr_filters::list, for which its 456 * caller provides necessary serialization. 457 */ 458 void (*addr_filters_sync) (struct perf_event *event); 459 /* optional */ 460 461 /* 462 * Filter events for PMU-specific reasons. 463 */ 464 int (*filter_match) (struct perf_event *event); /* optional */ 465}; 466 467/** 468 * struct perf_addr_filter - address range filter definition 469 * @entry: event's filter list linkage 470 * @inode: object file's inode for file-based filters 471 * @offset: filter range offset 472 * @size: filter range size 473 * @range: 1: range, 0: address 474 * @filter: 1: filter/start, 0: stop 475 * 476 * This is a hardware-agnostic filter configuration as specified by the user. 477 */ 478struct perf_addr_filter { 479 struct list_head entry; 480 struct inode *inode; 481 unsigned long offset; 482 unsigned long size; 483 unsigned int range : 1, 484 filter : 1; 485}; 486 487/** 488 * struct perf_addr_filters_head - container for address range filters 489 * @list: list of filters for this event 490 * @lock: spinlock that serializes accesses to the @list and event's 491 * (and its children's) filter generations. 492 * @nr_file_filters: number of file-based filters 493 * 494 * A child event will use parent's @list (and therefore @lock), so they are 495 * bundled together; see perf_event_addr_filters(). 496 */ 497struct perf_addr_filters_head { 498 struct list_head list; 499 raw_spinlock_t lock; 500 unsigned int nr_file_filters; 501}; 502 503/** 504 * enum perf_event_active_state - the states of a event 505 */ 506enum perf_event_active_state { 507 PERF_EVENT_STATE_DEAD = -4, 508 PERF_EVENT_STATE_EXIT = -3, 509 PERF_EVENT_STATE_ERROR = -2, 510 PERF_EVENT_STATE_OFF = -1, 511 PERF_EVENT_STATE_INACTIVE = 0, 512 PERF_EVENT_STATE_ACTIVE = 1, 513}; 514 515struct file; 516struct perf_sample_data; 517 518typedef void (*perf_overflow_handler_t)(struct perf_event *, 519 struct perf_sample_data *, 520 struct pt_regs *regs); 521 522/* 523 * Event capabilities. For event_caps and groups caps. 524 * 525 * PERF_EV_CAP_SOFTWARE: Is a software event. 526 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 527 * from any CPU in the package where it is active. 528 */ 529#define PERF_EV_CAP_SOFTWARE BIT(0) 530#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 531 532#define SWEVENT_HLIST_BITS 8 533#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 534 535struct swevent_hlist { 536 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 537 struct rcu_head rcu_head; 538}; 539 540#define PERF_ATTACH_CONTEXT 0x01 541#define PERF_ATTACH_GROUP 0x02 542#define PERF_ATTACH_TASK 0x04 543#define PERF_ATTACH_TASK_DATA 0x08 544 545struct perf_cgroup; 546struct ring_buffer; 547 548struct pmu_event_list { 549 raw_spinlock_t lock; 550 struct list_head list; 551}; 552 553/** 554 * struct perf_event - performance event kernel representation: 555 */ 556struct perf_event { 557#ifdef CONFIG_PERF_EVENTS 558 /* 559 * entry onto perf_event_context::event_list; 560 * modifications require ctx->lock 561 * RCU safe iterations. 562 */ 563 struct list_head event_entry; 564 565 /* 566 * XXX: group_entry and sibling_list should be mutually exclusive; 567 * either you're a sibling on a group, or you're the group leader. 568 * Rework the code to always use the same list element. 569 * 570 * Locked for modification by both ctx->mutex and ctx->lock; holding 571 * either sufficies for read. 572 */ 573 struct list_head group_entry; 574 struct list_head sibling_list; 575 576 /* 577 * We need storage to track the entries in perf_pmu_migrate_context; we 578 * cannot use the event_entry because of RCU and we want to keep the 579 * group in tact which avoids us using the other two entries. 580 */ 581 struct list_head migrate_entry; 582 583 struct hlist_node hlist_entry; 584 struct list_head active_entry; 585 int nr_siblings; 586 587 /* Not serialized. Only written during event initialization. */ 588 int event_caps; 589 /* The cumulative AND of all event_caps for events in this group. */ 590 int group_caps; 591 592 struct perf_event *group_leader; 593 struct pmu *pmu; 594 void *pmu_private; 595 596 enum perf_event_active_state state; 597 unsigned int attach_state; 598 local64_t count; 599 atomic64_t child_count; 600 601 /* 602 * These are the total time in nanoseconds that the event 603 * has been enabled (i.e. eligible to run, and the task has 604 * been scheduled in, if this is a per-task event) 605 * and running (scheduled onto the CPU), respectively. 606 * 607 * They are computed from tstamp_enabled, tstamp_running and 608 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 609 */ 610 u64 total_time_enabled; 611 u64 total_time_running; 612 613 /* 614 * These are timestamps used for computing total_time_enabled 615 * and total_time_running when the event is in INACTIVE or 616 * ACTIVE state, measured in nanoseconds from an arbitrary point 617 * in time. 618 * tstamp_enabled: the notional time when the event was enabled 619 * tstamp_running: the notional time when the event was scheduled on 620 * tstamp_stopped: in INACTIVE state, the notional time when the 621 * event was scheduled off. 622 */ 623 u64 tstamp_enabled; 624 u64 tstamp_running; 625 u64 tstamp_stopped; 626 627 /* 628 * timestamp shadows the actual context timing but it can 629 * be safely used in NMI interrupt context. It reflects the 630 * context time as it was when the event was last scheduled in. 631 * 632 * ctx_time already accounts for ctx->timestamp. Therefore to 633 * compute ctx_time for a sample, simply add perf_clock(). 634 */ 635 u64 shadow_ctx_time; 636 637 struct perf_event_attr attr; 638 u16 header_size; 639 u16 id_header_size; 640 u16 read_size; 641 struct hw_perf_event hw; 642 643 struct perf_event_context *ctx; 644 atomic_long_t refcount; 645 646 /* 647 * These accumulate total time (in nanoseconds) that children 648 * events have been enabled and running, respectively. 649 */ 650 atomic64_t child_total_time_enabled; 651 atomic64_t child_total_time_running; 652 653 /* 654 * Protect attach/detach and child_list: 655 */ 656 struct mutex child_mutex; 657 struct list_head child_list; 658 struct perf_event *parent; 659 660 int oncpu; 661 int cpu; 662 663 struct list_head owner_entry; 664 struct task_struct *owner; 665 666 /* mmap bits */ 667 struct mutex mmap_mutex; 668 atomic_t mmap_count; 669 670 struct ring_buffer *rb; 671 struct list_head rb_entry; 672 unsigned long rcu_batches; 673 int rcu_pending; 674 675 /* poll related */ 676 wait_queue_head_t waitq; 677 struct fasync_struct *fasync; 678 679 /* delayed work for NMIs and such */ 680 int pending_wakeup; 681 int pending_kill; 682 int pending_disable; 683 struct irq_work pending; 684 685 atomic_t event_limit; 686 687 /* address range filters */ 688 struct perf_addr_filters_head addr_filters; 689 /* vma address array for file-based filders */ 690 unsigned long *addr_filters_offs; 691 unsigned long addr_filters_gen; 692 693 void (*destroy)(struct perf_event *); 694 struct rcu_head rcu_head; 695 696 struct pid_namespace *ns; 697 u64 id; 698 699 u64 (*clock)(void); 700 perf_overflow_handler_t overflow_handler; 701 void *overflow_handler_context; 702#ifdef CONFIG_BPF_SYSCALL 703 perf_overflow_handler_t orig_overflow_handler; 704 struct bpf_prog *prog; 705#endif 706 707#ifdef CONFIG_EVENT_TRACING 708 struct trace_event_call *tp_event; 709 struct event_filter *filter; 710#ifdef CONFIG_FUNCTION_TRACER 711 struct ftrace_ops ftrace_ops; 712#endif 713#endif 714 715#ifdef CONFIG_CGROUP_PERF 716 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 717 int cgrp_defer_enabled; 718#endif 719 720 struct list_head sb_list; 721#endif /* CONFIG_PERF_EVENTS */ 722}; 723 724/** 725 * struct perf_event_context - event context structure 726 * 727 * Used as a container for task events and CPU events as well: 728 */ 729struct perf_event_context { 730 struct pmu *pmu; 731 /* 732 * Protect the states of the events in the list, 733 * nr_active, and the list: 734 */ 735 raw_spinlock_t lock; 736 /* 737 * Protect the list of events. Locking either mutex or lock 738 * is sufficient to ensure the list doesn't change; to change 739 * the list you need to lock both the mutex and the spinlock. 740 */ 741 struct mutex mutex; 742 743 struct list_head active_ctx_list; 744 struct list_head pinned_groups; 745 struct list_head flexible_groups; 746 struct list_head event_list; 747 int nr_events; 748 int nr_active; 749 int is_active; 750 int nr_stat; 751 int nr_freq; 752 int rotate_disable; 753 atomic_t refcount; 754 struct task_struct *task; 755 756 /* 757 * Context clock, runs when context enabled. 758 */ 759 u64 time; 760 u64 timestamp; 761 762 /* 763 * These fields let us detect when two contexts have both 764 * been cloned (inherited) from a common ancestor. 765 */ 766 struct perf_event_context *parent_ctx; 767 u64 parent_gen; 768 u64 generation; 769 int pin_count; 770#ifdef CONFIG_CGROUP_PERF 771 int nr_cgroups; /* cgroup evts */ 772#endif 773 void *task_ctx_data; /* pmu specific data */ 774 struct rcu_head rcu_head; 775}; 776 777/* 778 * Number of contexts where an event can trigger: 779 * task, softirq, hardirq, nmi. 780 */ 781#define PERF_NR_CONTEXTS 4 782 783/** 784 * struct perf_event_cpu_context - per cpu event context structure 785 */ 786struct perf_cpu_context { 787 struct perf_event_context ctx; 788 struct perf_event_context *task_ctx; 789 int active_oncpu; 790 int exclusive; 791 792 raw_spinlock_t hrtimer_lock; 793 struct hrtimer hrtimer; 794 ktime_t hrtimer_interval; 795 unsigned int hrtimer_active; 796 797#ifdef CONFIG_CGROUP_PERF 798 struct perf_cgroup *cgrp; 799 struct list_head cgrp_cpuctx_entry; 800#endif 801 802 struct list_head sched_cb_entry; 803 int sched_cb_usage; 804 805 int online; 806}; 807 808struct perf_output_handle { 809 struct perf_event *event; 810 struct ring_buffer *rb; 811 unsigned long wakeup; 812 unsigned long size; 813 u64 aux_flags; 814 union { 815 void *addr; 816 unsigned long head; 817 }; 818 int page; 819}; 820 821struct bpf_perf_event_data_kern { 822 struct pt_regs *regs; 823 struct perf_sample_data *data; 824}; 825 826#ifdef CONFIG_CGROUP_PERF 827 828/* 829 * perf_cgroup_info keeps track of time_enabled for a cgroup. 830 * This is a per-cpu dynamically allocated data structure. 831 */ 832struct perf_cgroup_info { 833 u64 time; 834 u64 timestamp; 835}; 836 837struct perf_cgroup { 838 struct cgroup_subsys_state css; 839 struct perf_cgroup_info __percpu *info; 840}; 841 842/* 843 * Must ensure cgroup is pinned (css_get) before calling 844 * this function. In other words, we cannot call this function 845 * if there is no cgroup event for the current CPU context. 846 */ 847static inline struct perf_cgroup * 848perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 849{ 850 return container_of(task_css_check(task, perf_event_cgrp_id, 851 ctx ? lockdep_is_held(&ctx->lock) 852 : true), 853 struct perf_cgroup, css); 854} 855#endif /* CONFIG_CGROUP_PERF */ 856 857#ifdef CONFIG_PERF_EVENTS 858 859extern void *perf_aux_output_begin(struct perf_output_handle *handle, 860 struct perf_event *event); 861extern void perf_aux_output_end(struct perf_output_handle *handle, 862 unsigned long size); 863extern int perf_aux_output_skip(struct perf_output_handle *handle, 864 unsigned long size); 865extern void *perf_get_aux(struct perf_output_handle *handle); 866extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 867 868extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 869extern void perf_pmu_unregister(struct pmu *pmu); 870 871extern int perf_num_counters(void); 872extern const char *perf_pmu_name(void); 873extern void __perf_event_task_sched_in(struct task_struct *prev, 874 struct task_struct *task); 875extern void __perf_event_task_sched_out(struct task_struct *prev, 876 struct task_struct *next); 877extern int perf_event_init_task(struct task_struct *child); 878extern void perf_event_exit_task(struct task_struct *child); 879extern void perf_event_free_task(struct task_struct *task); 880extern void perf_event_delayed_put(struct task_struct *task); 881extern struct file *perf_event_get(unsigned int fd); 882extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 883extern void perf_event_print_debug(void); 884extern void perf_pmu_disable(struct pmu *pmu); 885extern void perf_pmu_enable(struct pmu *pmu); 886extern void perf_sched_cb_dec(struct pmu *pmu); 887extern void perf_sched_cb_inc(struct pmu *pmu); 888extern int perf_event_task_disable(void); 889extern int perf_event_task_enable(void); 890extern int perf_event_refresh(struct perf_event *event, int refresh); 891extern void perf_event_update_userpage(struct perf_event *event); 892extern int perf_event_release_kernel(struct perf_event *event); 893extern struct perf_event * 894perf_event_create_kernel_counter(struct perf_event_attr *attr, 895 int cpu, 896 struct task_struct *task, 897 perf_overflow_handler_t callback, 898 void *context); 899extern void perf_pmu_migrate_context(struct pmu *pmu, 900 int src_cpu, int dst_cpu); 901int perf_event_read_local(struct perf_event *event, u64 *value); 902extern u64 perf_event_read_value(struct perf_event *event, 903 u64 *enabled, u64 *running); 904 905 906struct perf_sample_data { 907 /* 908 * Fields set by perf_sample_data_init(), group so as to 909 * minimize the cachelines touched. 910 */ 911 u64 addr; 912 struct perf_raw_record *raw; 913 struct perf_branch_stack *br_stack; 914 u64 period; 915 u64 weight; 916 u64 txn; 917 union perf_mem_data_src data_src; 918 919 /* 920 * The other fields, optionally {set,used} by 921 * perf_{prepare,output}_sample(). 922 */ 923 u64 type; 924 u64 ip; 925 struct { 926 u32 pid; 927 u32 tid; 928 } tid_entry; 929 u64 time; 930 u64 id; 931 u64 stream_id; 932 struct { 933 u32 cpu; 934 u32 reserved; 935 } cpu_entry; 936 struct perf_callchain_entry *callchain; 937 938 /* 939 * regs_user may point to task_pt_regs or to regs_user_copy, depending 940 * on arch details. 941 */ 942 struct perf_regs regs_user; 943 struct pt_regs regs_user_copy; 944 945 struct perf_regs regs_intr; 946 u64 stack_user_size; 947} ____cacheline_aligned; 948 949/* default value for data source */ 950#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 951 PERF_MEM_S(LVL, NA) |\ 952 PERF_MEM_S(SNOOP, NA) |\ 953 PERF_MEM_S(LOCK, NA) |\ 954 PERF_MEM_S(TLB, NA)) 955 956static inline void perf_sample_data_init(struct perf_sample_data *data, 957 u64 addr, u64 period) 958{ 959 /* remaining struct members initialized in perf_prepare_sample() */ 960 data->addr = addr; 961 data->raw = NULL; 962 data->br_stack = NULL; 963 data->period = period; 964 data->weight = 0; 965 data->data_src.val = PERF_MEM_NA; 966 data->txn = 0; 967} 968 969extern void perf_output_sample(struct perf_output_handle *handle, 970 struct perf_event_header *header, 971 struct perf_sample_data *data, 972 struct perf_event *event); 973extern void perf_prepare_sample(struct perf_event_header *header, 974 struct perf_sample_data *data, 975 struct perf_event *event, 976 struct pt_regs *regs); 977 978extern int perf_event_overflow(struct perf_event *event, 979 struct perf_sample_data *data, 980 struct pt_regs *regs); 981 982extern void perf_event_output_forward(struct perf_event *event, 983 struct perf_sample_data *data, 984 struct pt_regs *regs); 985extern void perf_event_output_backward(struct perf_event *event, 986 struct perf_sample_data *data, 987 struct pt_regs *regs); 988extern void perf_event_output(struct perf_event *event, 989 struct perf_sample_data *data, 990 struct pt_regs *regs); 991 992static inline bool 993is_default_overflow_handler(struct perf_event *event) 994{ 995 if (likely(event->overflow_handler == perf_event_output_forward)) 996 return true; 997 if (unlikely(event->overflow_handler == perf_event_output_backward)) 998 return true; 999 return false; 1000} 1001 1002extern void 1003perf_event_header__init_id(struct perf_event_header *header, 1004 struct perf_sample_data *data, 1005 struct perf_event *event); 1006extern void 1007perf_event__output_id_sample(struct perf_event *event, 1008 struct perf_output_handle *handle, 1009 struct perf_sample_data *sample); 1010 1011extern void 1012perf_log_lost_samples(struct perf_event *event, u64 lost); 1013 1014static inline bool is_sampling_event(struct perf_event *event) 1015{ 1016 return event->attr.sample_period != 0; 1017} 1018 1019/* 1020 * Return 1 for a software event, 0 for a hardware event 1021 */ 1022static inline int is_software_event(struct perf_event *event) 1023{ 1024 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1025} 1026 1027extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1028 1029extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1030extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1031 1032#ifndef perf_arch_fetch_caller_regs 1033static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1034#endif 1035 1036/* 1037 * Take a snapshot of the regs. Skip ip and frame pointer to 1038 * the nth caller. We only need a few of the regs: 1039 * - ip for PERF_SAMPLE_IP 1040 * - cs for user_mode() tests 1041 * - bp for callchains 1042 * - eflags, for future purposes, just in case 1043 */ 1044static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1045{ 1046 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1047} 1048 1049static __always_inline void 1050perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1051{ 1052 if (static_key_false(&perf_swevent_enabled[event_id])) 1053 __perf_sw_event(event_id, nr, regs, addr); 1054} 1055 1056DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1057 1058/* 1059 * 'Special' version for the scheduler, it hard assumes no recursion, 1060 * which is guaranteed by us not actually scheduling inside other swevents 1061 * because those disable preemption. 1062 */ 1063static __always_inline void 1064perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1065{ 1066 if (static_key_false(&perf_swevent_enabled[event_id])) { 1067 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1068 1069 perf_fetch_caller_regs(regs); 1070 ___perf_sw_event(event_id, nr, regs, addr); 1071 } 1072} 1073 1074extern struct static_key_false perf_sched_events; 1075 1076static __always_inline bool 1077perf_sw_migrate_enabled(void) 1078{ 1079 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1080 return true; 1081 return false; 1082} 1083 1084static inline void perf_event_task_migrate(struct task_struct *task) 1085{ 1086 if (perf_sw_migrate_enabled()) 1087 task->sched_migrated = 1; 1088} 1089 1090static inline void perf_event_task_sched_in(struct task_struct *prev, 1091 struct task_struct *task) 1092{ 1093 if (static_branch_unlikely(&perf_sched_events)) 1094 __perf_event_task_sched_in(prev, task); 1095 1096 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1097 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1098 1099 perf_fetch_caller_regs(regs); 1100 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1101 task->sched_migrated = 0; 1102 } 1103} 1104 1105static inline void perf_event_task_sched_out(struct task_struct *prev, 1106 struct task_struct *next) 1107{ 1108 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1109 1110 if (static_branch_unlikely(&perf_sched_events)) 1111 __perf_event_task_sched_out(prev, next); 1112} 1113 1114static inline u64 __perf_event_count(struct perf_event *event) 1115{ 1116 return local64_read(&event->count) + atomic64_read(&event->child_count); 1117} 1118 1119extern void perf_event_mmap(struct vm_area_struct *vma); 1120extern struct perf_guest_info_callbacks *perf_guest_cbs; 1121extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1122extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1123 1124extern void perf_event_exec(void); 1125extern void perf_event_comm(struct task_struct *tsk, bool exec); 1126extern void perf_event_namespaces(struct task_struct *tsk); 1127extern void perf_event_fork(struct task_struct *tsk); 1128 1129/* Callchains */ 1130DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1131 1132extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1133extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1134extern struct perf_callchain_entry * 1135get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1136 u32 max_stack, bool crosstask, bool add_mark); 1137extern int get_callchain_buffers(int max_stack); 1138extern void put_callchain_buffers(void); 1139 1140extern int sysctl_perf_event_max_stack; 1141extern int sysctl_perf_event_max_contexts_per_stack; 1142 1143static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1144{ 1145 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1146 struct perf_callchain_entry *entry = ctx->entry; 1147 entry->ip[entry->nr++] = ip; 1148 ++ctx->contexts; 1149 return 0; 1150 } else { 1151 ctx->contexts_maxed = true; 1152 return -1; /* no more room, stop walking the stack */ 1153 } 1154} 1155 1156static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1157{ 1158 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1159 struct perf_callchain_entry *entry = ctx->entry; 1160 entry->ip[entry->nr++] = ip; 1161 ++ctx->nr; 1162 return 0; 1163 } else { 1164 return -1; /* no more room, stop walking the stack */ 1165 } 1166} 1167 1168extern int sysctl_perf_event_paranoid; 1169extern int sysctl_perf_event_mlock; 1170extern int sysctl_perf_event_sample_rate; 1171extern int sysctl_perf_cpu_time_max_percent; 1172 1173extern void perf_sample_event_took(u64 sample_len_ns); 1174 1175extern int perf_proc_update_handler(struct ctl_table *table, int write, 1176 void __user *buffer, size_t *lenp, 1177 loff_t *ppos); 1178extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1179 void __user *buffer, size_t *lenp, 1180 loff_t *ppos); 1181 1182int perf_event_max_stack_handler(struct ctl_table *table, int write, 1183 void __user *buffer, size_t *lenp, loff_t *ppos); 1184 1185static inline bool perf_paranoid_tracepoint_raw(void) 1186{ 1187 return sysctl_perf_event_paranoid > -1; 1188} 1189 1190static inline bool perf_paranoid_cpu(void) 1191{ 1192 return sysctl_perf_event_paranoid > 0; 1193} 1194 1195static inline bool perf_paranoid_kernel(void) 1196{ 1197 return sysctl_perf_event_paranoid > 1; 1198} 1199 1200extern void perf_event_init(void); 1201extern void perf_tp_event(u16 event_type, u64 count, void *record, 1202 int entry_size, struct pt_regs *regs, 1203 struct hlist_head *head, int rctx, 1204 struct task_struct *task, struct perf_event *event); 1205extern void perf_bp_event(struct perf_event *event, void *data); 1206 1207#ifndef perf_misc_flags 1208# define perf_misc_flags(regs) \ 1209 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1210# define perf_instruction_pointer(regs) instruction_pointer(regs) 1211#endif 1212 1213static inline bool has_branch_stack(struct perf_event *event) 1214{ 1215 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1216} 1217 1218static inline bool needs_branch_stack(struct perf_event *event) 1219{ 1220 return event->attr.branch_sample_type != 0; 1221} 1222 1223static inline bool has_aux(struct perf_event *event) 1224{ 1225 return event->pmu->setup_aux; 1226} 1227 1228static inline bool is_write_backward(struct perf_event *event) 1229{ 1230 return !!event->attr.write_backward; 1231} 1232 1233static inline bool has_addr_filter(struct perf_event *event) 1234{ 1235 return event->pmu->nr_addr_filters; 1236} 1237 1238/* 1239 * An inherited event uses parent's filters 1240 */ 1241static inline struct perf_addr_filters_head * 1242perf_event_addr_filters(struct perf_event *event) 1243{ 1244 struct perf_addr_filters_head *ifh = &event->addr_filters; 1245 1246 if (event->parent) 1247 ifh = &event->parent->addr_filters; 1248 1249 return ifh; 1250} 1251 1252extern void perf_event_addr_filters_sync(struct perf_event *event); 1253 1254extern int perf_output_begin(struct perf_output_handle *handle, 1255 struct perf_event *event, unsigned int size); 1256extern int perf_output_begin_forward(struct perf_output_handle *handle, 1257 struct perf_event *event, 1258 unsigned int size); 1259extern int perf_output_begin_backward(struct perf_output_handle *handle, 1260 struct perf_event *event, 1261 unsigned int size); 1262 1263extern void perf_output_end(struct perf_output_handle *handle); 1264extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1265 const void *buf, unsigned int len); 1266extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1267 unsigned int len); 1268extern int perf_swevent_get_recursion_context(void); 1269extern void perf_swevent_put_recursion_context(int rctx); 1270extern u64 perf_swevent_set_period(struct perf_event *event); 1271extern void perf_event_enable(struct perf_event *event); 1272extern void perf_event_disable(struct perf_event *event); 1273extern void perf_event_disable_local(struct perf_event *event); 1274extern void perf_event_disable_inatomic(struct perf_event *event); 1275extern void perf_event_task_tick(void); 1276extern int perf_event_account_interrupt(struct perf_event *event); 1277#else /* !CONFIG_PERF_EVENTS: */ 1278static inline void * 1279perf_aux_output_begin(struct perf_output_handle *handle, 1280 struct perf_event *event) { return NULL; } 1281static inline void 1282perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1283 { } 1284static inline int 1285perf_aux_output_skip(struct perf_output_handle *handle, 1286 unsigned long size) { return -EINVAL; } 1287static inline void * 1288perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1289static inline void 1290perf_event_task_migrate(struct task_struct *task) { } 1291static inline void 1292perf_event_task_sched_in(struct task_struct *prev, 1293 struct task_struct *task) { } 1294static inline void 1295perf_event_task_sched_out(struct task_struct *prev, 1296 struct task_struct *next) { } 1297static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1298static inline void perf_event_exit_task(struct task_struct *child) { } 1299static inline void perf_event_free_task(struct task_struct *task) { } 1300static inline void perf_event_delayed_put(struct task_struct *task) { } 1301static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1302static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1303{ 1304 return ERR_PTR(-EINVAL); 1305} 1306static inline int perf_event_read_local(struct perf_event *event, u64 *value) 1307{ 1308 return -EINVAL; 1309} 1310static inline void perf_event_print_debug(void) { } 1311static inline int perf_event_task_disable(void) { return -EINVAL; } 1312static inline int perf_event_task_enable(void) { return -EINVAL; } 1313static inline int perf_event_refresh(struct perf_event *event, int refresh) 1314{ 1315 return -EINVAL; 1316} 1317 1318static inline void 1319perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1320static inline void 1321perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1322static inline void 1323perf_bp_event(struct perf_event *event, void *data) { } 1324 1325static inline int perf_register_guest_info_callbacks 1326(struct perf_guest_info_callbacks *callbacks) { return 0; } 1327static inline int perf_unregister_guest_info_callbacks 1328(struct perf_guest_info_callbacks *callbacks) { return 0; } 1329 1330static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1331static inline void perf_event_exec(void) { } 1332static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1333static inline void perf_event_namespaces(struct task_struct *tsk) { } 1334static inline void perf_event_fork(struct task_struct *tsk) { } 1335static inline void perf_event_init(void) { } 1336static inline int perf_swevent_get_recursion_context(void) { return -1; } 1337static inline void perf_swevent_put_recursion_context(int rctx) { } 1338static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1339static inline void perf_event_enable(struct perf_event *event) { } 1340static inline void perf_event_disable(struct perf_event *event) { } 1341static inline int __perf_event_disable(void *info) { return -1; } 1342static inline void perf_event_task_tick(void) { } 1343static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1344#endif 1345 1346#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1347extern void perf_restore_debug_store(void); 1348#else 1349static inline void perf_restore_debug_store(void) { } 1350#endif 1351 1352static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1353{ 1354 return frag->pad < sizeof(u64); 1355} 1356 1357#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1358 1359struct perf_pmu_events_attr { 1360 struct device_attribute attr; 1361 u64 id; 1362 const char *event_str; 1363}; 1364 1365struct perf_pmu_events_ht_attr { 1366 struct device_attribute attr; 1367 u64 id; 1368 const char *event_str_ht; 1369 const char *event_str_noht; 1370}; 1371 1372ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1373 char *page); 1374 1375#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1376static struct perf_pmu_events_attr _var = { \ 1377 .attr = __ATTR(_name, 0444, _show, NULL), \ 1378 .id = _id, \ 1379}; 1380 1381#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1382static struct perf_pmu_events_attr _var = { \ 1383 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1384 .id = 0, \ 1385 .event_str = _str, \ 1386}; 1387 1388#define PMU_FORMAT_ATTR(_name, _format) \ 1389static ssize_t \ 1390_name##_show(struct device *dev, \ 1391 struct device_attribute *attr, \ 1392 char *page) \ 1393{ \ 1394 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1395 return sprintf(page, _format "\n"); \ 1396} \ 1397 \ 1398static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1399 1400/* Performance counter hotplug functions */ 1401#ifdef CONFIG_PERF_EVENTS 1402int perf_event_init_cpu(unsigned int cpu); 1403int perf_event_exit_cpu(unsigned int cpu); 1404#else 1405#define perf_event_init_cpu NULL 1406#define perf_event_exit_cpu NULL 1407#endif 1408 1409#endif /* _LINUX_PERF_EVENT_H */