at v4.13 19 kB view raw
1#ifndef _LINUX_PAGEMAP_H 2#define _LINUX_PAGEMAP_H 3 4/* 5 * Copyright 1995 Linus Torvalds 6 */ 7#include <linux/mm.h> 8#include <linux/fs.h> 9#include <linux/list.h> 10#include <linux/highmem.h> 11#include <linux/compiler.h> 12#include <linux/uaccess.h> 13#include <linux/gfp.h> 14#include <linux/bitops.h> 15#include <linux/hardirq.h> /* for in_interrupt() */ 16#include <linux/hugetlb_inline.h> 17 18/* 19 * Bits in mapping->flags. 20 */ 21enum mapping_flags { 22 AS_EIO = 0, /* IO error on async write */ 23 AS_ENOSPC = 1, /* ENOSPC on async write */ 24 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 25 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 26 AS_EXITING = 4, /* final truncate in progress */ 27 /* writeback related tags are not used */ 28 AS_NO_WRITEBACK_TAGS = 5, 29}; 30 31/** 32 * mapping_set_error - record a writeback error in the address_space 33 * @mapping - the mapping in which an error should be set 34 * @error - the error to set in the mapping 35 * 36 * When writeback fails in some way, we must record that error so that 37 * userspace can be informed when fsync and the like are called. We endeavor 38 * to report errors on any file that was open at the time of the error. Some 39 * internal callers also need to know when writeback errors have occurred. 40 * 41 * When a writeback error occurs, most filesystems will want to call 42 * mapping_set_error to record the error in the mapping so that it can be 43 * reported when the application calls fsync(2). 44 */ 45static inline void mapping_set_error(struct address_space *mapping, int error) 46{ 47 if (likely(!error)) 48 return; 49 50 /* Record in wb_err for checkers using errseq_t based tracking */ 51 filemap_set_wb_err(mapping, error); 52 53 /* Record it in flags for now, for legacy callers */ 54 if (error == -ENOSPC) 55 set_bit(AS_ENOSPC, &mapping->flags); 56 else 57 set_bit(AS_EIO, &mapping->flags); 58} 59 60static inline void mapping_set_unevictable(struct address_space *mapping) 61{ 62 set_bit(AS_UNEVICTABLE, &mapping->flags); 63} 64 65static inline void mapping_clear_unevictable(struct address_space *mapping) 66{ 67 clear_bit(AS_UNEVICTABLE, &mapping->flags); 68} 69 70static inline int mapping_unevictable(struct address_space *mapping) 71{ 72 if (mapping) 73 return test_bit(AS_UNEVICTABLE, &mapping->flags); 74 return !!mapping; 75} 76 77static inline void mapping_set_exiting(struct address_space *mapping) 78{ 79 set_bit(AS_EXITING, &mapping->flags); 80} 81 82static inline int mapping_exiting(struct address_space *mapping) 83{ 84 return test_bit(AS_EXITING, &mapping->flags); 85} 86 87static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 88{ 89 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 90} 91 92static inline int mapping_use_writeback_tags(struct address_space *mapping) 93{ 94 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 95} 96 97static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 98{ 99 return mapping->gfp_mask; 100} 101 102/* Restricts the given gfp_mask to what the mapping allows. */ 103static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 104 gfp_t gfp_mask) 105{ 106 return mapping_gfp_mask(mapping) & gfp_mask; 107} 108 109/* 110 * This is non-atomic. Only to be used before the mapping is activated. 111 * Probably needs a barrier... 112 */ 113static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 114{ 115 m->gfp_mask = mask; 116} 117 118void release_pages(struct page **pages, int nr, bool cold); 119 120/* 121 * speculatively take a reference to a page. 122 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 123 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 124 * 125 * This function must be called inside the same rcu_read_lock() section as has 126 * been used to lookup the page in the pagecache radix-tree (or page table): 127 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 128 * 129 * Unless an RCU grace period has passed, the count of all pages coming out 130 * of the allocator must be considered unstable. page_count may return higher 131 * than expected, and put_page must be able to do the right thing when the 132 * page has been finished with, no matter what it is subsequently allocated 133 * for (because put_page is what is used here to drop an invalid speculative 134 * reference). 135 * 136 * This is the interesting part of the lockless pagecache (and lockless 137 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 138 * has the following pattern: 139 * 1. find page in radix tree 140 * 2. conditionally increment refcount 141 * 3. check the page is still in pagecache (if no, goto 1) 142 * 143 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 144 * following (with tree_lock held for write): 145 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 146 * B. remove page from pagecache 147 * C. free the page 148 * 149 * There are 2 critical interleavings that matter: 150 * - 2 runs before A: in this case, A sees elevated refcount and bails out 151 * - A runs before 2: in this case, 2 sees zero refcount and retries; 152 * subsequently, B will complete and 1 will find no page, causing the 153 * lookup to return NULL. 154 * 155 * It is possible that between 1 and 2, the page is removed then the exact same 156 * page is inserted into the same position in pagecache. That's OK: the 157 * old find_get_page using tree_lock could equally have run before or after 158 * such a re-insertion, depending on order that locks are granted. 159 * 160 * Lookups racing against pagecache insertion isn't a big problem: either 1 161 * will find the page or it will not. Likewise, the old find_get_page could run 162 * either before the insertion or afterwards, depending on timing. 163 */ 164static inline int page_cache_get_speculative(struct page *page) 165{ 166#ifdef CONFIG_TINY_RCU 167# ifdef CONFIG_PREEMPT_COUNT 168 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 169# endif 170 /* 171 * Preempt must be disabled here - we rely on rcu_read_lock doing 172 * this for us. 173 * 174 * Pagecache won't be truncated from interrupt context, so if we have 175 * found a page in the radix tree here, we have pinned its refcount by 176 * disabling preempt, and hence no need for the "speculative get" that 177 * SMP requires. 178 */ 179 VM_BUG_ON_PAGE(page_count(page) == 0, page); 180 page_ref_inc(page); 181 182#else 183 if (unlikely(!get_page_unless_zero(page))) { 184 /* 185 * Either the page has been freed, or will be freed. 186 * In either case, retry here and the caller should 187 * do the right thing (see comments above). 188 */ 189 return 0; 190 } 191#endif 192 VM_BUG_ON_PAGE(PageTail(page), page); 193 194 return 1; 195} 196 197/* 198 * Same as above, but add instead of inc (could just be merged) 199 */ 200static inline int page_cache_add_speculative(struct page *page, int count) 201{ 202 VM_BUG_ON(in_interrupt()); 203 204#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 205# ifdef CONFIG_PREEMPT_COUNT 206 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 207# endif 208 VM_BUG_ON_PAGE(page_count(page) == 0, page); 209 page_ref_add(page, count); 210 211#else 212 if (unlikely(!page_ref_add_unless(page, count, 0))) 213 return 0; 214#endif 215 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page); 216 217 return 1; 218} 219 220#ifdef CONFIG_NUMA 221extern struct page *__page_cache_alloc(gfp_t gfp); 222#else 223static inline struct page *__page_cache_alloc(gfp_t gfp) 224{ 225 return alloc_pages(gfp, 0); 226} 227#endif 228 229static inline struct page *page_cache_alloc(struct address_space *x) 230{ 231 return __page_cache_alloc(mapping_gfp_mask(x)); 232} 233 234static inline struct page *page_cache_alloc_cold(struct address_space *x) 235{ 236 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); 237} 238 239static inline gfp_t readahead_gfp_mask(struct address_space *x) 240{ 241 return mapping_gfp_mask(x) | 242 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN; 243} 244 245typedef int filler_t(void *, struct page *); 246 247pgoff_t page_cache_next_hole(struct address_space *mapping, 248 pgoff_t index, unsigned long max_scan); 249pgoff_t page_cache_prev_hole(struct address_space *mapping, 250 pgoff_t index, unsigned long max_scan); 251 252#define FGP_ACCESSED 0x00000001 253#define FGP_LOCK 0x00000002 254#define FGP_CREAT 0x00000004 255#define FGP_WRITE 0x00000008 256#define FGP_NOFS 0x00000010 257#define FGP_NOWAIT 0x00000020 258 259struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 260 int fgp_flags, gfp_t cache_gfp_mask); 261 262/** 263 * find_get_page - find and get a page reference 264 * @mapping: the address_space to search 265 * @offset: the page index 266 * 267 * Looks up the page cache slot at @mapping & @offset. If there is a 268 * page cache page, it is returned with an increased refcount. 269 * 270 * Otherwise, %NULL is returned. 271 */ 272static inline struct page *find_get_page(struct address_space *mapping, 273 pgoff_t offset) 274{ 275 return pagecache_get_page(mapping, offset, 0, 0); 276} 277 278static inline struct page *find_get_page_flags(struct address_space *mapping, 279 pgoff_t offset, int fgp_flags) 280{ 281 return pagecache_get_page(mapping, offset, fgp_flags, 0); 282} 283 284/** 285 * find_lock_page - locate, pin and lock a pagecache page 286 * @mapping: the address_space to search 287 * @offset: the page index 288 * 289 * Looks up the page cache slot at @mapping & @offset. If there is a 290 * page cache page, it is returned locked and with an increased 291 * refcount. 292 * 293 * Otherwise, %NULL is returned. 294 * 295 * find_lock_page() may sleep. 296 */ 297static inline struct page *find_lock_page(struct address_space *mapping, 298 pgoff_t offset) 299{ 300 return pagecache_get_page(mapping, offset, FGP_LOCK, 0); 301} 302 303/** 304 * find_or_create_page - locate or add a pagecache page 305 * @mapping: the page's address_space 306 * @index: the page's index into the mapping 307 * @gfp_mask: page allocation mode 308 * 309 * Looks up the page cache slot at @mapping & @offset. If there is a 310 * page cache page, it is returned locked and with an increased 311 * refcount. 312 * 313 * If the page is not present, a new page is allocated using @gfp_mask 314 * and added to the page cache and the VM's LRU list. The page is 315 * returned locked and with an increased refcount. 316 * 317 * On memory exhaustion, %NULL is returned. 318 * 319 * find_or_create_page() may sleep, even if @gfp_flags specifies an 320 * atomic allocation! 321 */ 322static inline struct page *find_or_create_page(struct address_space *mapping, 323 pgoff_t offset, gfp_t gfp_mask) 324{ 325 return pagecache_get_page(mapping, offset, 326 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 327 gfp_mask); 328} 329 330/** 331 * grab_cache_page_nowait - returns locked page at given index in given cache 332 * @mapping: target address_space 333 * @index: the page index 334 * 335 * Same as grab_cache_page(), but do not wait if the page is unavailable. 336 * This is intended for speculative data generators, where the data can 337 * be regenerated if the page couldn't be grabbed. This routine should 338 * be safe to call while holding the lock for another page. 339 * 340 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 341 * and deadlock against the caller's locked page. 342 */ 343static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 344 pgoff_t index) 345{ 346 return pagecache_get_page(mapping, index, 347 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 348 mapping_gfp_mask(mapping)); 349} 350 351struct page *find_get_entry(struct address_space *mapping, pgoff_t offset); 352struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset); 353unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 354 unsigned int nr_entries, struct page **entries, 355 pgoff_t *indices); 356unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 357 unsigned int nr_pages, struct page **pages); 358unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 359 unsigned int nr_pages, struct page **pages); 360unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 361 int tag, unsigned int nr_pages, struct page **pages); 362unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 363 int tag, unsigned int nr_entries, 364 struct page **entries, pgoff_t *indices); 365 366struct page *grab_cache_page_write_begin(struct address_space *mapping, 367 pgoff_t index, unsigned flags); 368 369/* 370 * Returns locked page at given index in given cache, creating it if needed. 371 */ 372static inline struct page *grab_cache_page(struct address_space *mapping, 373 pgoff_t index) 374{ 375 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 376} 377 378extern struct page * read_cache_page(struct address_space *mapping, 379 pgoff_t index, filler_t *filler, void *data); 380extern struct page * read_cache_page_gfp(struct address_space *mapping, 381 pgoff_t index, gfp_t gfp_mask); 382extern int read_cache_pages(struct address_space *mapping, 383 struct list_head *pages, filler_t *filler, void *data); 384 385static inline struct page *read_mapping_page(struct address_space *mapping, 386 pgoff_t index, void *data) 387{ 388 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 389 return read_cache_page(mapping, index, filler, data); 390} 391 392/* 393 * Get index of the page with in radix-tree 394 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 395 */ 396static inline pgoff_t page_to_index(struct page *page) 397{ 398 pgoff_t pgoff; 399 400 if (likely(!PageTransTail(page))) 401 return page->index; 402 403 /* 404 * We don't initialize ->index for tail pages: calculate based on 405 * head page 406 */ 407 pgoff = compound_head(page)->index; 408 pgoff += page - compound_head(page); 409 return pgoff; 410} 411 412/* 413 * Get the offset in PAGE_SIZE. 414 * (TODO: hugepage should have ->index in PAGE_SIZE) 415 */ 416static inline pgoff_t page_to_pgoff(struct page *page) 417{ 418 if (unlikely(PageHeadHuge(page))) 419 return page->index << compound_order(page); 420 421 return page_to_index(page); 422} 423 424/* 425 * Return byte-offset into filesystem object for page. 426 */ 427static inline loff_t page_offset(struct page *page) 428{ 429 return ((loff_t)page->index) << PAGE_SHIFT; 430} 431 432static inline loff_t page_file_offset(struct page *page) 433{ 434 return ((loff_t)page_index(page)) << PAGE_SHIFT; 435} 436 437extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 438 unsigned long address); 439 440static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 441 unsigned long address) 442{ 443 pgoff_t pgoff; 444 if (unlikely(is_vm_hugetlb_page(vma))) 445 return linear_hugepage_index(vma, address); 446 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 447 pgoff += vma->vm_pgoff; 448 return pgoff; 449} 450 451extern void __lock_page(struct page *page); 452extern int __lock_page_killable(struct page *page); 453extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 454 unsigned int flags); 455extern void unlock_page(struct page *page); 456 457static inline int trylock_page(struct page *page) 458{ 459 page = compound_head(page); 460 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 461} 462 463/* 464 * lock_page may only be called if we have the page's inode pinned. 465 */ 466static inline void lock_page(struct page *page) 467{ 468 might_sleep(); 469 if (!trylock_page(page)) 470 __lock_page(page); 471} 472 473/* 474 * lock_page_killable is like lock_page but can be interrupted by fatal 475 * signals. It returns 0 if it locked the page and -EINTR if it was 476 * killed while waiting. 477 */ 478static inline int lock_page_killable(struct page *page) 479{ 480 might_sleep(); 481 if (!trylock_page(page)) 482 return __lock_page_killable(page); 483 return 0; 484} 485 486/* 487 * lock_page_or_retry - Lock the page, unless this would block and the 488 * caller indicated that it can handle a retry. 489 * 490 * Return value and mmap_sem implications depend on flags; see 491 * __lock_page_or_retry(). 492 */ 493static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 494 unsigned int flags) 495{ 496 might_sleep(); 497 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 498} 499 500/* 501 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., 502 * and should not be used directly. 503 */ 504extern void wait_on_page_bit(struct page *page, int bit_nr); 505extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 506 507/* 508 * Wait for a page to be unlocked. 509 * 510 * This must be called with the caller "holding" the page, 511 * ie with increased "page->count" so that the page won't 512 * go away during the wait.. 513 */ 514static inline void wait_on_page_locked(struct page *page) 515{ 516 if (PageLocked(page)) 517 wait_on_page_bit(compound_head(page), PG_locked); 518} 519 520static inline int wait_on_page_locked_killable(struct page *page) 521{ 522 if (!PageLocked(page)) 523 return 0; 524 return wait_on_page_bit_killable(compound_head(page), PG_locked); 525} 526 527/* 528 * Wait for a page to complete writeback 529 */ 530static inline void wait_on_page_writeback(struct page *page) 531{ 532 if (PageWriteback(page)) 533 wait_on_page_bit(page, PG_writeback); 534} 535 536extern void end_page_writeback(struct page *page); 537void wait_for_stable_page(struct page *page); 538 539void page_endio(struct page *page, bool is_write, int err); 540 541/* 542 * Add an arbitrary waiter to a page's wait queue 543 */ 544extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); 545 546/* 547 * Fault everything in given userspace address range in. 548 */ 549static inline int fault_in_pages_writeable(char __user *uaddr, int size) 550{ 551 char __user *end = uaddr + size - 1; 552 553 if (unlikely(size == 0)) 554 return 0; 555 556 if (unlikely(uaddr > end)) 557 return -EFAULT; 558 /* 559 * Writing zeroes into userspace here is OK, because we know that if 560 * the zero gets there, we'll be overwriting it. 561 */ 562 do { 563 if (unlikely(__put_user(0, uaddr) != 0)) 564 return -EFAULT; 565 uaddr += PAGE_SIZE; 566 } while (uaddr <= end); 567 568 /* Check whether the range spilled into the next page. */ 569 if (((unsigned long)uaddr & PAGE_MASK) == 570 ((unsigned long)end & PAGE_MASK)) 571 return __put_user(0, end); 572 573 return 0; 574} 575 576static inline int fault_in_pages_readable(const char __user *uaddr, int size) 577{ 578 volatile char c; 579 const char __user *end = uaddr + size - 1; 580 581 if (unlikely(size == 0)) 582 return 0; 583 584 if (unlikely(uaddr > end)) 585 return -EFAULT; 586 587 do { 588 if (unlikely(__get_user(c, uaddr) != 0)) 589 return -EFAULT; 590 uaddr += PAGE_SIZE; 591 } while (uaddr <= end); 592 593 /* Check whether the range spilled into the next page. */ 594 if (((unsigned long)uaddr & PAGE_MASK) == 595 ((unsigned long)end & PAGE_MASK)) { 596 return __get_user(c, end); 597 } 598 599 (void)c; 600 return 0; 601} 602 603int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 604 pgoff_t index, gfp_t gfp_mask); 605int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 606 pgoff_t index, gfp_t gfp_mask); 607extern void delete_from_page_cache(struct page *page); 608extern void __delete_from_page_cache(struct page *page, void *shadow); 609int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 610 611/* 612 * Like add_to_page_cache_locked, but used to add newly allocated pages: 613 * the page is new, so we can just run __SetPageLocked() against it. 614 */ 615static inline int add_to_page_cache(struct page *page, 616 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 617{ 618 int error; 619 620 __SetPageLocked(page); 621 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 622 if (unlikely(error)) 623 __ClearPageLocked(page); 624 return error; 625} 626 627static inline unsigned long dir_pages(struct inode *inode) 628{ 629 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 630 PAGE_SHIFT; 631} 632 633#endif /* _LINUX_PAGEMAP_H */