at v4.13 24 kB view raw
1/* 2 * Macros for manipulating and testing page->flags 3 */ 4 5#ifndef PAGE_FLAGS_H 6#define PAGE_FLAGS_H 7 8#include <linux/types.h> 9#include <linux/bug.h> 10#include <linux/mmdebug.h> 11#ifndef __GENERATING_BOUNDS_H 12#include <linux/mm_types.h> 13#include <generated/bounds.h> 14#endif /* !__GENERATING_BOUNDS_H */ 15 16/* 17 * Various page->flags bits: 18 * 19 * PG_reserved is set for special pages, which can never be swapped out. Some 20 * of them might not even exist (eg empty_bad_page)... 21 * 22 * The PG_private bitflag is set on pagecache pages if they contain filesystem 23 * specific data (which is normally at page->private). It can be used by 24 * private allocations for its own usage. 25 * 26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 28 * is set before writeback starts and cleared when it finishes. 29 * 30 * PG_locked also pins a page in pagecache, and blocks truncation of the file 31 * while it is held. 32 * 33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 34 * to become unlocked. 35 * 36 * PG_uptodate tells whether the page's contents is valid. When a read 37 * completes, the page becomes uptodate, unless a disk I/O error happened. 38 * 39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 40 * file-backed pagecache (see mm/vmscan.c). 41 * 42 * PG_error is set to indicate that an I/O error occurred on this page. 43 * 44 * PG_arch_1 is an architecture specific page state bit. The generic code 45 * guarantees that this bit is cleared for a page when it first is entered into 46 * the page cache. 47 * 48 * PG_highmem pages are not permanently mapped into the kernel virtual address 49 * space, they need to be kmapped separately for doing IO on the pages. The 50 * struct page (these bits with information) are always mapped into kernel 51 * address space... 52 * 53 * PG_hwpoison indicates that a page got corrupted in hardware and contains 54 * data with incorrect ECC bits that triggered a machine check. Accessing is 55 * not safe since it may cause another machine check. Don't touch! 56 */ 57 58/* 59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 60 * locked- and dirty-page accounting. 61 * 62 * The page flags field is split into two parts, the main flags area 63 * which extends from the low bits upwards, and the fields area which 64 * extends from the high bits downwards. 65 * 66 * | FIELD | ... | FLAGS | 67 * N-1 ^ 0 68 * (NR_PAGEFLAGS) 69 * 70 * The fields area is reserved for fields mapping zone, node (for NUMA) and 71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 73 */ 74enum pageflags { 75 PG_locked, /* Page is locked. Don't touch. */ 76 PG_error, 77 PG_referenced, 78 PG_uptodate, 79 PG_dirty, 80 PG_lru, 81 PG_active, 82 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 83 PG_slab, 84 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 85 PG_arch_1, 86 PG_reserved, 87 PG_private, /* If pagecache, has fs-private data */ 88 PG_private_2, /* If pagecache, has fs aux data */ 89 PG_writeback, /* Page is under writeback */ 90 PG_head, /* A head page */ 91 PG_mappedtodisk, /* Has blocks allocated on-disk */ 92 PG_reclaim, /* To be reclaimed asap */ 93 PG_swapbacked, /* Page is backed by RAM/swap */ 94 PG_unevictable, /* Page is "unevictable" */ 95#ifdef CONFIG_MMU 96 PG_mlocked, /* Page is vma mlocked */ 97#endif 98#ifdef CONFIG_ARCH_USES_PG_UNCACHED 99 PG_uncached, /* Page has been mapped as uncached */ 100#endif 101#ifdef CONFIG_MEMORY_FAILURE 102 PG_hwpoison, /* hardware poisoned page. Don't touch */ 103#endif 104#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 105 PG_young, 106 PG_idle, 107#endif 108 __NR_PAGEFLAGS, 109 110 /* Filesystems */ 111 PG_checked = PG_owner_priv_1, 112 113 /* SwapBacked */ 114 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 115 116 /* Two page bits are conscripted by FS-Cache to maintain local caching 117 * state. These bits are set on pages belonging to the netfs's inodes 118 * when those inodes are being locally cached. 119 */ 120 PG_fscache = PG_private_2, /* page backed by cache */ 121 122 /* XEN */ 123 /* Pinned in Xen as a read-only pagetable page. */ 124 PG_pinned = PG_owner_priv_1, 125 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 126 PG_savepinned = PG_dirty, 127 /* Has a grant mapping of another (foreign) domain's page. */ 128 PG_foreign = PG_owner_priv_1, 129 130 /* SLOB */ 131 PG_slob_free = PG_private, 132 133 /* Compound pages. Stored in first tail page's flags */ 134 PG_double_map = PG_private_2, 135 136 /* non-lru isolated movable page */ 137 PG_isolated = PG_reclaim, 138}; 139 140#ifndef __GENERATING_BOUNDS_H 141 142struct page; /* forward declaration */ 143 144static inline struct page *compound_head(struct page *page) 145{ 146 unsigned long head = READ_ONCE(page->compound_head); 147 148 if (unlikely(head & 1)) 149 return (struct page *) (head - 1); 150 return page; 151} 152 153static __always_inline int PageTail(struct page *page) 154{ 155 return READ_ONCE(page->compound_head) & 1; 156} 157 158static __always_inline int PageCompound(struct page *page) 159{ 160 return test_bit(PG_head, &page->flags) || PageTail(page); 161} 162 163/* 164 * Page flags policies wrt compound pages 165 * 166 * PF_ANY: 167 * the page flag is relevant for small, head and tail pages. 168 * 169 * PF_HEAD: 170 * for compound page all operations related to the page flag applied to 171 * head page. 172 * 173 * PF_ONLY_HEAD: 174 * for compound page, callers only ever operate on the head page. 175 * 176 * PF_NO_TAIL: 177 * modifications of the page flag must be done on small or head pages, 178 * checks can be done on tail pages too. 179 * 180 * PF_NO_COMPOUND: 181 * the page flag is not relevant for compound pages. 182 */ 183#define PF_ANY(page, enforce) page 184#define PF_HEAD(page, enforce) compound_head(page) 185#define PF_ONLY_HEAD(page, enforce) ({ \ 186 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 187 page;}) 188#define PF_NO_TAIL(page, enforce) ({ \ 189 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 190 compound_head(page);}) 191#define PF_NO_COMPOUND(page, enforce) ({ \ 192 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 193 page;}) 194 195/* 196 * Macros to create function definitions for page flags 197 */ 198#define TESTPAGEFLAG(uname, lname, policy) \ 199static __always_inline int Page##uname(struct page *page) \ 200 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 201 202#define SETPAGEFLAG(uname, lname, policy) \ 203static __always_inline void SetPage##uname(struct page *page) \ 204 { set_bit(PG_##lname, &policy(page, 1)->flags); } 205 206#define CLEARPAGEFLAG(uname, lname, policy) \ 207static __always_inline void ClearPage##uname(struct page *page) \ 208 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 209 210#define __SETPAGEFLAG(uname, lname, policy) \ 211static __always_inline void __SetPage##uname(struct page *page) \ 212 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 213 214#define __CLEARPAGEFLAG(uname, lname, policy) \ 215static __always_inline void __ClearPage##uname(struct page *page) \ 216 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 217 218#define TESTSETFLAG(uname, lname, policy) \ 219static __always_inline int TestSetPage##uname(struct page *page) \ 220 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 221 222#define TESTCLEARFLAG(uname, lname, policy) \ 223static __always_inline int TestClearPage##uname(struct page *page) \ 224 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 225 226#define PAGEFLAG(uname, lname, policy) \ 227 TESTPAGEFLAG(uname, lname, policy) \ 228 SETPAGEFLAG(uname, lname, policy) \ 229 CLEARPAGEFLAG(uname, lname, policy) 230 231#define __PAGEFLAG(uname, lname, policy) \ 232 TESTPAGEFLAG(uname, lname, policy) \ 233 __SETPAGEFLAG(uname, lname, policy) \ 234 __CLEARPAGEFLAG(uname, lname, policy) 235 236#define TESTSCFLAG(uname, lname, policy) \ 237 TESTSETFLAG(uname, lname, policy) \ 238 TESTCLEARFLAG(uname, lname, policy) 239 240#define TESTPAGEFLAG_FALSE(uname) \ 241static inline int Page##uname(const struct page *page) { return 0; } 242 243#define SETPAGEFLAG_NOOP(uname) \ 244static inline void SetPage##uname(struct page *page) { } 245 246#define CLEARPAGEFLAG_NOOP(uname) \ 247static inline void ClearPage##uname(struct page *page) { } 248 249#define __CLEARPAGEFLAG_NOOP(uname) \ 250static inline void __ClearPage##uname(struct page *page) { } 251 252#define TESTSETFLAG_FALSE(uname) \ 253static inline int TestSetPage##uname(struct page *page) { return 0; } 254 255#define TESTCLEARFLAG_FALSE(uname) \ 256static inline int TestClearPage##uname(struct page *page) { return 0; } 257 258#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 259 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 260 261#define TESTSCFLAG_FALSE(uname) \ 262 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 263 264__PAGEFLAG(Locked, locked, PF_NO_TAIL) 265PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 266PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) 267PAGEFLAG(Referenced, referenced, PF_HEAD) 268 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 269 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 270PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 271 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 272PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 273PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 274 TESTCLEARFLAG(Active, active, PF_HEAD) 275__PAGEFLAG(Slab, slab, PF_NO_TAIL) 276__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 277PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 278 279/* Xen */ 280PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 281 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 282PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 283PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 284 285PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 286 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 287PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 288 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 289 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 290 291/* 292 * Private page markings that may be used by the filesystem that owns the page 293 * for its own purposes. 294 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 295 */ 296PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 297 __CLEARPAGEFLAG(Private, private, PF_ANY) 298PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 299PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 300 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 301 302/* 303 * Only test-and-set exist for PG_writeback. The unconditional operators are 304 * risky: they bypass page accounting. 305 */ 306TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND) 307 TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND) 308PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 309 310/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 311PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 312 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 313PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 314 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 315 316#ifdef CONFIG_HIGHMEM 317/* 318 * Must use a macro here due to header dependency issues. page_zone() is not 319 * available at this point. 320 */ 321#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 322#else 323PAGEFLAG_FALSE(HighMem) 324#endif 325 326#ifdef CONFIG_SWAP 327static __always_inline int PageSwapCache(struct page *page) 328{ 329#ifdef CONFIG_THP_SWAP 330 page = compound_head(page); 331#endif 332 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); 333 334} 335SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 336CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 337#else 338PAGEFLAG_FALSE(SwapCache) 339#endif 340 341PAGEFLAG(Unevictable, unevictable, PF_HEAD) 342 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 343 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 344 345#ifdef CONFIG_MMU 346PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 347 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 348 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 349#else 350PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 351 TESTSCFLAG_FALSE(Mlocked) 352#endif 353 354#ifdef CONFIG_ARCH_USES_PG_UNCACHED 355PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 356#else 357PAGEFLAG_FALSE(Uncached) 358#endif 359 360#ifdef CONFIG_MEMORY_FAILURE 361PAGEFLAG(HWPoison, hwpoison, PF_ANY) 362TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 363#define __PG_HWPOISON (1UL << PG_hwpoison) 364#else 365PAGEFLAG_FALSE(HWPoison) 366#define __PG_HWPOISON 0 367#endif 368 369#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 370TESTPAGEFLAG(Young, young, PF_ANY) 371SETPAGEFLAG(Young, young, PF_ANY) 372TESTCLEARFLAG(Young, young, PF_ANY) 373PAGEFLAG(Idle, idle, PF_ANY) 374#endif 375 376/* 377 * On an anonymous page mapped into a user virtual memory area, 378 * page->mapping points to its anon_vma, not to a struct address_space; 379 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 380 * 381 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 382 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 383 * bit; and then page->mapping points, not to an anon_vma, but to a private 384 * structure which KSM associates with that merged page. See ksm.h. 385 * 386 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 387 * page and then page->mapping points a struct address_space. 388 * 389 * Please note that, confusingly, "page_mapping" refers to the inode 390 * address_space which maps the page from disk; whereas "page_mapped" 391 * refers to user virtual address space into which the page is mapped. 392 */ 393#define PAGE_MAPPING_ANON 0x1 394#define PAGE_MAPPING_MOVABLE 0x2 395#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 396#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 397 398static __always_inline int PageMappingFlags(struct page *page) 399{ 400 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 401} 402 403static __always_inline int PageAnon(struct page *page) 404{ 405 page = compound_head(page); 406 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 407} 408 409static __always_inline int __PageMovable(struct page *page) 410{ 411 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 412 PAGE_MAPPING_MOVABLE; 413} 414 415#ifdef CONFIG_KSM 416/* 417 * A KSM page is one of those write-protected "shared pages" or "merged pages" 418 * which KSM maps into multiple mms, wherever identical anonymous page content 419 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 420 * anon_vma, but to that page's node of the stable tree. 421 */ 422static __always_inline int PageKsm(struct page *page) 423{ 424 page = compound_head(page); 425 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 426 PAGE_MAPPING_KSM; 427} 428#else 429TESTPAGEFLAG_FALSE(Ksm) 430#endif 431 432u64 stable_page_flags(struct page *page); 433 434static inline int PageUptodate(struct page *page) 435{ 436 int ret; 437 page = compound_head(page); 438 ret = test_bit(PG_uptodate, &(page)->flags); 439 /* 440 * Must ensure that the data we read out of the page is loaded 441 * _after_ we've loaded page->flags to check for PageUptodate. 442 * We can skip the barrier if the page is not uptodate, because 443 * we wouldn't be reading anything from it. 444 * 445 * See SetPageUptodate() for the other side of the story. 446 */ 447 if (ret) 448 smp_rmb(); 449 450 return ret; 451} 452 453static __always_inline void __SetPageUptodate(struct page *page) 454{ 455 VM_BUG_ON_PAGE(PageTail(page), page); 456 smp_wmb(); 457 __set_bit(PG_uptodate, &page->flags); 458} 459 460static __always_inline void SetPageUptodate(struct page *page) 461{ 462 VM_BUG_ON_PAGE(PageTail(page), page); 463 /* 464 * Memory barrier must be issued before setting the PG_uptodate bit, 465 * so that all previous stores issued in order to bring the page 466 * uptodate are actually visible before PageUptodate becomes true. 467 */ 468 smp_wmb(); 469 set_bit(PG_uptodate, &page->flags); 470} 471 472CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 473 474int test_clear_page_writeback(struct page *page); 475int __test_set_page_writeback(struct page *page, bool keep_write); 476 477#define test_set_page_writeback(page) \ 478 __test_set_page_writeback(page, false) 479#define test_set_page_writeback_keepwrite(page) \ 480 __test_set_page_writeback(page, true) 481 482static inline void set_page_writeback(struct page *page) 483{ 484 test_set_page_writeback(page); 485} 486 487static inline void set_page_writeback_keepwrite(struct page *page) 488{ 489 test_set_page_writeback_keepwrite(page); 490} 491 492__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 493 494static __always_inline void set_compound_head(struct page *page, struct page *head) 495{ 496 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 497} 498 499static __always_inline void clear_compound_head(struct page *page) 500{ 501 WRITE_ONCE(page->compound_head, 0); 502} 503 504#ifdef CONFIG_TRANSPARENT_HUGEPAGE 505static inline void ClearPageCompound(struct page *page) 506{ 507 BUG_ON(!PageHead(page)); 508 ClearPageHead(page); 509} 510#endif 511 512#define PG_head_mask ((1UL << PG_head)) 513 514#ifdef CONFIG_HUGETLB_PAGE 515int PageHuge(struct page *page); 516int PageHeadHuge(struct page *page); 517bool page_huge_active(struct page *page); 518#else 519TESTPAGEFLAG_FALSE(Huge) 520TESTPAGEFLAG_FALSE(HeadHuge) 521 522static inline bool page_huge_active(struct page *page) 523{ 524 return 0; 525} 526#endif 527 528 529#ifdef CONFIG_TRANSPARENT_HUGEPAGE 530/* 531 * PageHuge() only returns true for hugetlbfs pages, but not for 532 * normal or transparent huge pages. 533 * 534 * PageTransHuge() returns true for both transparent huge and 535 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 536 * called only in the core VM paths where hugetlbfs pages can't exist. 537 */ 538static inline int PageTransHuge(struct page *page) 539{ 540 VM_BUG_ON_PAGE(PageTail(page), page); 541 return PageHead(page); 542} 543 544/* 545 * PageTransCompound returns true for both transparent huge pages 546 * and hugetlbfs pages, so it should only be called when it's known 547 * that hugetlbfs pages aren't involved. 548 */ 549static inline int PageTransCompound(struct page *page) 550{ 551 return PageCompound(page); 552} 553 554/* 555 * PageTransCompoundMap is the same as PageTransCompound, but it also 556 * guarantees the primary MMU has the entire compound page mapped 557 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 558 * can also map the entire compound page. This allows the secondary 559 * MMUs to call get_user_pages() only once for each compound page and 560 * to immediately map the entire compound page with a single secondary 561 * MMU fault. If there will be a pmd split later, the secondary MMUs 562 * will get an update through the MMU notifier invalidation through 563 * split_huge_pmd(). 564 * 565 * Unlike PageTransCompound, this is safe to be called only while 566 * split_huge_pmd() cannot run from under us, like if protected by the 567 * MMU notifier, otherwise it may result in page->_mapcount < 0 false 568 * positives. 569 */ 570static inline int PageTransCompoundMap(struct page *page) 571{ 572 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0; 573} 574 575/* 576 * PageTransTail returns true for both transparent huge pages 577 * and hugetlbfs pages, so it should only be called when it's known 578 * that hugetlbfs pages aren't involved. 579 */ 580static inline int PageTransTail(struct page *page) 581{ 582 return PageTail(page); 583} 584 585/* 586 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 587 * as PMDs. 588 * 589 * This is required for optimization of rmap operations for THP: we can postpone 590 * per small page mapcount accounting (and its overhead from atomic operations) 591 * until the first PMD split. 592 * 593 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 594 * by one. This reference will go away with last compound_mapcount. 595 * 596 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 597 */ 598static inline int PageDoubleMap(struct page *page) 599{ 600 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 601} 602 603static inline void SetPageDoubleMap(struct page *page) 604{ 605 VM_BUG_ON_PAGE(!PageHead(page), page); 606 set_bit(PG_double_map, &page[1].flags); 607} 608 609static inline void ClearPageDoubleMap(struct page *page) 610{ 611 VM_BUG_ON_PAGE(!PageHead(page), page); 612 clear_bit(PG_double_map, &page[1].flags); 613} 614static inline int TestSetPageDoubleMap(struct page *page) 615{ 616 VM_BUG_ON_PAGE(!PageHead(page), page); 617 return test_and_set_bit(PG_double_map, &page[1].flags); 618} 619 620static inline int TestClearPageDoubleMap(struct page *page) 621{ 622 VM_BUG_ON_PAGE(!PageHead(page), page); 623 return test_and_clear_bit(PG_double_map, &page[1].flags); 624} 625 626#else 627TESTPAGEFLAG_FALSE(TransHuge) 628TESTPAGEFLAG_FALSE(TransCompound) 629TESTPAGEFLAG_FALSE(TransCompoundMap) 630TESTPAGEFLAG_FALSE(TransTail) 631PAGEFLAG_FALSE(DoubleMap) 632 TESTSETFLAG_FALSE(DoubleMap) 633 TESTCLEARFLAG_FALSE(DoubleMap) 634#endif 635 636/* 637 * For pages that are never mapped to userspace, page->mapcount may be 638 * used for storing extra information about page type. Any value used 639 * for this purpose must be <= -2, but it's better start not too close 640 * to -2 so that an underflow of the page_mapcount() won't be mistaken 641 * for a special page. 642 */ 643#define PAGE_MAPCOUNT_OPS(uname, lname) \ 644static __always_inline int Page##uname(struct page *page) \ 645{ \ 646 return atomic_read(&page->_mapcount) == \ 647 PAGE_##lname##_MAPCOUNT_VALUE; \ 648} \ 649static __always_inline void __SetPage##uname(struct page *page) \ 650{ \ 651 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); \ 652 atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE); \ 653} \ 654static __always_inline void __ClearPage##uname(struct page *page) \ 655{ \ 656 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 657 atomic_set(&page->_mapcount, -1); \ 658} 659 660/* 661 * PageBuddy() indicate that the page is free and in the buddy system 662 * (see mm/page_alloc.c). 663 */ 664#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 665PAGE_MAPCOUNT_OPS(Buddy, BUDDY) 666 667/* 668 * PageBalloon() is set on pages that are on the balloon page list 669 * (see mm/balloon_compaction.c). 670 */ 671#define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 672PAGE_MAPCOUNT_OPS(Balloon, BALLOON) 673 674/* 675 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on 676 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. 677 */ 678#define PAGE_KMEMCG_MAPCOUNT_VALUE (-512) 679PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG) 680 681extern bool is_free_buddy_page(struct page *page); 682 683__PAGEFLAG(Isolated, isolated, PF_ANY); 684 685/* 686 * If network-based swap is enabled, sl*b must keep track of whether pages 687 * were allocated from pfmemalloc reserves. 688 */ 689static inline int PageSlabPfmemalloc(struct page *page) 690{ 691 VM_BUG_ON_PAGE(!PageSlab(page), page); 692 return PageActive(page); 693} 694 695static inline void SetPageSlabPfmemalloc(struct page *page) 696{ 697 VM_BUG_ON_PAGE(!PageSlab(page), page); 698 SetPageActive(page); 699} 700 701static inline void __ClearPageSlabPfmemalloc(struct page *page) 702{ 703 VM_BUG_ON_PAGE(!PageSlab(page), page); 704 __ClearPageActive(page); 705} 706 707static inline void ClearPageSlabPfmemalloc(struct page *page) 708{ 709 VM_BUG_ON_PAGE(!PageSlab(page), page); 710 ClearPageActive(page); 711} 712 713#ifdef CONFIG_MMU 714#define __PG_MLOCKED (1UL << PG_mlocked) 715#else 716#define __PG_MLOCKED 0 717#endif 718 719/* 720 * Flags checked when a page is freed. Pages being freed should not have 721 * these flags set. It they are, there is a problem. 722 */ 723#define PAGE_FLAGS_CHECK_AT_FREE \ 724 (1UL << PG_lru | 1UL << PG_locked | \ 725 1UL << PG_private | 1UL << PG_private_2 | \ 726 1UL << PG_writeback | 1UL << PG_reserved | \ 727 1UL << PG_slab | 1UL << PG_active | \ 728 1UL << PG_unevictable | __PG_MLOCKED) 729 730/* 731 * Flags checked when a page is prepped for return by the page allocator. 732 * Pages being prepped should not have these flags set. It they are set, 733 * there has been a kernel bug or struct page corruption. 734 * 735 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 736 * alloc-free cycle to prevent from reusing the page. 737 */ 738#define PAGE_FLAGS_CHECK_AT_PREP \ 739 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 740 741#define PAGE_FLAGS_PRIVATE \ 742 (1UL << PG_private | 1UL << PG_private_2) 743/** 744 * page_has_private - Determine if page has private stuff 745 * @page: The page to be checked 746 * 747 * Determine if a page has private stuff, indicating that release routines 748 * should be invoked upon it. 749 */ 750static inline int page_has_private(struct page *page) 751{ 752 return !!(page->flags & PAGE_FLAGS_PRIVATE); 753} 754 755#undef PF_ANY 756#undef PF_HEAD 757#undef PF_ONLY_HEAD 758#undef PF_NO_TAIL 759#undef PF_NO_COMPOUND 760#endif /* !__GENERATING_BOUNDS_H */ 761 762#endif /* PAGE_FLAGS_H */