at v4.13 140 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/timer.h> 29#include <linux/bug.h> 30#include <linux/delay.h> 31#include <linux/atomic.h> 32#include <linux/prefetch.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/dmaengine.h> 39#include <linux/workqueue.h> 40#include <linux/dynamic_queue_limits.h> 41 42#include <linux/ethtool.h> 43#include <net/net_namespace.h> 44#ifdef CONFIG_DCB 45#include <net/dcbnl.h> 46#endif 47#include <net/netprio_cgroup.h> 48 49#include <linux/netdev_features.h> 50#include <linux/neighbour.h> 51#include <uapi/linux/netdevice.h> 52#include <uapi/linux/if_bonding.h> 53#include <uapi/linux/pkt_cls.h> 54#include <linux/hashtable.h> 55 56struct netpoll_info; 57struct device; 58struct phy_device; 59struct dsa_switch_tree; 60 61/* 802.11 specific */ 62struct wireless_dev; 63/* 802.15.4 specific */ 64struct wpan_dev; 65struct mpls_dev; 66/* UDP Tunnel offloads */ 67struct udp_tunnel_info; 68struct bpf_prog; 69 70void netdev_set_default_ethtool_ops(struct net_device *dev, 71 const struct ethtool_ops *ops); 72 73/* Backlog congestion levels */ 74#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 75#define NET_RX_DROP 1 /* packet dropped */ 76 77/* 78 * Transmit return codes: transmit return codes originate from three different 79 * namespaces: 80 * 81 * - qdisc return codes 82 * - driver transmit return codes 83 * - errno values 84 * 85 * Drivers are allowed to return any one of those in their hard_start_xmit() 86 * function. Real network devices commonly used with qdiscs should only return 87 * the driver transmit return codes though - when qdiscs are used, the actual 88 * transmission happens asynchronously, so the value is not propagated to 89 * higher layers. Virtual network devices transmit synchronously; in this case 90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 91 * others are propagated to higher layers. 92 */ 93 94/* qdisc ->enqueue() return codes. */ 95#define NET_XMIT_SUCCESS 0x00 96#define NET_XMIT_DROP 0x01 /* skb dropped */ 97#define NET_XMIT_CN 0x02 /* congestion notification */ 98#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 99 100/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 101 * indicates that the device will soon be dropping packets, or already drops 102 * some packets of the same priority; prompting us to send less aggressively. */ 103#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 104#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 105 106/* Driver transmit return codes */ 107#define NETDEV_TX_MASK 0xf0 108 109enum netdev_tx { 110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 111 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 113}; 114typedef enum netdev_tx netdev_tx_t; 115 116/* 117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 119 */ 120static inline bool dev_xmit_complete(int rc) 121{ 122 /* 123 * Positive cases with an skb consumed by a driver: 124 * - successful transmission (rc == NETDEV_TX_OK) 125 * - error while transmitting (rc < 0) 126 * - error while queueing to a different device (rc & NET_XMIT_MASK) 127 */ 128 if (likely(rc < NET_XMIT_MASK)) 129 return true; 130 131 return false; 132} 133 134/* 135 * Compute the worst-case header length according to the protocols 136 * used. 137 */ 138 139#if defined(CONFIG_HYPERV_NET) 140# define LL_MAX_HEADER 128 141#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 142# if defined(CONFIG_MAC80211_MESH) 143# define LL_MAX_HEADER 128 144# else 145# define LL_MAX_HEADER 96 146# endif 147#else 148# define LL_MAX_HEADER 32 149#endif 150 151#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 153#define MAX_HEADER LL_MAX_HEADER 154#else 155#define MAX_HEADER (LL_MAX_HEADER + 48) 156#endif 157 158/* 159 * Old network device statistics. Fields are native words 160 * (unsigned long) so they can be read and written atomically. 161 */ 162 163struct net_device_stats { 164 unsigned long rx_packets; 165 unsigned long tx_packets; 166 unsigned long rx_bytes; 167 unsigned long tx_bytes; 168 unsigned long rx_errors; 169 unsigned long tx_errors; 170 unsigned long rx_dropped; 171 unsigned long tx_dropped; 172 unsigned long multicast; 173 unsigned long collisions; 174 unsigned long rx_length_errors; 175 unsigned long rx_over_errors; 176 unsigned long rx_crc_errors; 177 unsigned long rx_frame_errors; 178 unsigned long rx_fifo_errors; 179 unsigned long rx_missed_errors; 180 unsigned long tx_aborted_errors; 181 unsigned long tx_carrier_errors; 182 unsigned long tx_fifo_errors; 183 unsigned long tx_heartbeat_errors; 184 unsigned long tx_window_errors; 185 unsigned long rx_compressed; 186 unsigned long tx_compressed; 187}; 188 189 190#include <linux/cache.h> 191#include <linux/skbuff.h> 192 193#ifdef CONFIG_RPS 194#include <linux/static_key.h> 195extern struct static_key rps_needed; 196extern struct static_key rfs_needed; 197#endif 198 199struct neighbour; 200struct neigh_parms; 201struct sk_buff; 202 203struct netdev_hw_addr { 204 struct list_head list; 205 unsigned char addr[MAX_ADDR_LEN]; 206 unsigned char type; 207#define NETDEV_HW_ADDR_T_LAN 1 208#define NETDEV_HW_ADDR_T_SAN 2 209#define NETDEV_HW_ADDR_T_SLAVE 3 210#define NETDEV_HW_ADDR_T_UNICAST 4 211#define NETDEV_HW_ADDR_T_MULTICAST 5 212 bool global_use; 213 int sync_cnt; 214 int refcount; 215 int synced; 216 struct rcu_head rcu_head; 217}; 218 219struct netdev_hw_addr_list { 220 struct list_head list; 221 int count; 222}; 223 224#define netdev_hw_addr_list_count(l) ((l)->count) 225#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 226#define netdev_hw_addr_list_for_each(ha, l) \ 227 list_for_each_entry(ha, &(l)->list, list) 228 229#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 230#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 231#define netdev_for_each_uc_addr(ha, dev) \ 232 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 233 234#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 235#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 236#define netdev_for_each_mc_addr(ha, dev) \ 237 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 238 239struct hh_cache { 240 unsigned int hh_len; 241 seqlock_t hh_lock; 242 243 /* cached hardware header; allow for machine alignment needs. */ 244#define HH_DATA_MOD 16 245#define HH_DATA_OFF(__len) \ 246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 247#define HH_DATA_ALIGN(__len) \ 248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 250}; 251 252/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 253 * Alternative is: 254 * dev->hard_header_len ? (dev->hard_header_len + 255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 256 * 257 * We could use other alignment values, but we must maintain the 258 * relationship HH alignment <= LL alignment. 259 */ 260#define LL_RESERVED_SPACE(dev) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 265struct header_ops { 266 int (*create) (struct sk_buff *skb, struct net_device *dev, 267 unsigned short type, const void *daddr, 268 const void *saddr, unsigned int len); 269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 271 void (*cache_update)(struct hh_cache *hh, 272 const struct net_device *dev, 273 const unsigned char *haddr); 274 bool (*validate)(const char *ll_header, unsigned int len); 275}; 276 277/* These flag bits are private to the generic network queueing 278 * layer; they may not be explicitly referenced by any other 279 * code. 280 */ 281 282enum netdev_state_t { 283 __LINK_STATE_START, 284 __LINK_STATE_PRESENT, 285 __LINK_STATE_NOCARRIER, 286 __LINK_STATE_LINKWATCH_PENDING, 287 __LINK_STATE_DORMANT, 288}; 289 290 291/* 292 * This structure holds boot-time configured netdevice settings. They 293 * are then used in the device probing. 294 */ 295struct netdev_boot_setup { 296 char name[IFNAMSIZ]; 297 struct ifmap map; 298}; 299#define NETDEV_BOOT_SETUP_MAX 8 300 301int __init netdev_boot_setup(char *str); 302 303/* 304 * Structure for NAPI scheduling similar to tasklet but with weighting 305 */ 306struct napi_struct { 307 /* The poll_list must only be managed by the entity which 308 * changes the state of the NAPI_STATE_SCHED bit. This means 309 * whoever atomically sets that bit can add this napi_struct 310 * to the per-CPU poll_list, and whoever clears that bit 311 * can remove from the list right before clearing the bit. 312 */ 313 struct list_head poll_list; 314 315 unsigned long state; 316 int weight; 317 unsigned int gro_count; 318 int (*poll)(struct napi_struct *, int); 319#ifdef CONFIG_NETPOLL 320 int poll_owner; 321#endif 322 struct net_device *dev; 323 struct sk_buff *gro_list; 324 struct sk_buff *skb; 325 struct hrtimer timer; 326 struct list_head dev_list; 327 struct hlist_node napi_hash_node; 328 unsigned int napi_id; 329}; 330 331enum { 332 NAPI_STATE_SCHED, /* Poll is scheduled */ 333 NAPI_STATE_MISSED, /* reschedule a napi */ 334 NAPI_STATE_DISABLE, /* Disable pending */ 335 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 336 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 337 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 338 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 339}; 340 341enum { 342 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 343 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 344 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 345 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 346 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 347 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 348 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 349}; 350 351enum gro_result { 352 GRO_MERGED, 353 GRO_MERGED_FREE, 354 GRO_HELD, 355 GRO_NORMAL, 356 GRO_DROP, 357 GRO_CONSUMED, 358}; 359typedef enum gro_result gro_result_t; 360 361/* 362 * enum rx_handler_result - Possible return values for rx_handlers. 363 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 364 * further. 365 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 366 * case skb->dev was changed by rx_handler. 367 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 368 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 369 * 370 * rx_handlers are functions called from inside __netif_receive_skb(), to do 371 * special processing of the skb, prior to delivery to protocol handlers. 372 * 373 * Currently, a net_device can only have a single rx_handler registered. Trying 374 * to register a second rx_handler will return -EBUSY. 375 * 376 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 377 * To unregister a rx_handler on a net_device, use 378 * netdev_rx_handler_unregister(). 379 * 380 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 381 * do with the skb. 382 * 383 * If the rx_handler consumed the skb in some way, it should return 384 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 385 * the skb to be delivered in some other way. 386 * 387 * If the rx_handler changed skb->dev, to divert the skb to another 388 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 389 * new device will be called if it exists. 390 * 391 * If the rx_handler decides the skb should be ignored, it should return 392 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 393 * are registered on exact device (ptype->dev == skb->dev). 394 * 395 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 396 * delivered, it should return RX_HANDLER_PASS. 397 * 398 * A device without a registered rx_handler will behave as if rx_handler 399 * returned RX_HANDLER_PASS. 400 */ 401 402enum rx_handler_result { 403 RX_HANDLER_CONSUMED, 404 RX_HANDLER_ANOTHER, 405 RX_HANDLER_EXACT, 406 RX_HANDLER_PASS, 407}; 408typedef enum rx_handler_result rx_handler_result_t; 409typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 410 411void __napi_schedule(struct napi_struct *n); 412void __napi_schedule_irqoff(struct napi_struct *n); 413 414static inline bool napi_disable_pending(struct napi_struct *n) 415{ 416 return test_bit(NAPI_STATE_DISABLE, &n->state); 417} 418 419bool napi_schedule_prep(struct napi_struct *n); 420 421/** 422 * napi_schedule - schedule NAPI poll 423 * @n: NAPI context 424 * 425 * Schedule NAPI poll routine to be called if it is not already 426 * running. 427 */ 428static inline void napi_schedule(struct napi_struct *n) 429{ 430 if (napi_schedule_prep(n)) 431 __napi_schedule(n); 432} 433 434/** 435 * napi_schedule_irqoff - schedule NAPI poll 436 * @n: NAPI context 437 * 438 * Variant of napi_schedule(), assuming hard irqs are masked. 439 */ 440static inline void napi_schedule_irqoff(struct napi_struct *n) 441{ 442 if (napi_schedule_prep(n)) 443 __napi_schedule_irqoff(n); 444} 445 446/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 447static inline bool napi_reschedule(struct napi_struct *napi) 448{ 449 if (napi_schedule_prep(napi)) { 450 __napi_schedule(napi); 451 return true; 452 } 453 return false; 454} 455 456bool napi_complete_done(struct napi_struct *n, int work_done); 457/** 458 * napi_complete - NAPI processing complete 459 * @n: NAPI context 460 * 461 * Mark NAPI processing as complete. 462 * Consider using napi_complete_done() instead. 463 * Return false if device should avoid rearming interrupts. 464 */ 465static inline bool napi_complete(struct napi_struct *n) 466{ 467 return napi_complete_done(n, 0); 468} 469 470/** 471 * napi_hash_del - remove a NAPI from global table 472 * @napi: NAPI context 473 * 474 * Warning: caller must observe RCU grace period 475 * before freeing memory containing @napi, if 476 * this function returns true. 477 * Note: core networking stack automatically calls it 478 * from netif_napi_del(). 479 * Drivers might want to call this helper to combine all 480 * the needed RCU grace periods into a single one. 481 */ 482bool napi_hash_del(struct napi_struct *napi); 483 484/** 485 * napi_disable - prevent NAPI from scheduling 486 * @n: NAPI context 487 * 488 * Stop NAPI from being scheduled on this context. 489 * Waits till any outstanding processing completes. 490 */ 491void napi_disable(struct napi_struct *n); 492 493/** 494 * napi_enable - enable NAPI scheduling 495 * @n: NAPI context 496 * 497 * Resume NAPI from being scheduled on this context. 498 * Must be paired with napi_disable. 499 */ 500static inline void napi_enable(struct napi_struct *n) 501{ 502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 503 smp_mb__before_atomic(); 504 clear_bit(NAPI_STATE_SCHED, &n->state); 505 clear_bit(NAPI_STATE_NPSVC, &n->state); 506} 507 508/** 509 * napi_synchronize - wait until NAPI is not running 510 * @n: NAPI context 511 * 512 * Wait until NAPI is done being scheduled on this context. 513 * Waits till any outstanding processing completes but 514 * does not disable future activations. 515 */ 516static inline void napi_synchronize(const struct napi_struct *n) 517{ 518 if (IS_ENABLED(CONFIG_SMP)) 519 while (test_bit(NAPI_STATE_SCHED, &n->state)) 520 msleep(1); 521 else 522 barrier(); 523} 524 525enum netdev_queue_state_t { 526 __QUEUE_STATE_DRV_XOFF, 527 __QUEUE_STATE_STACK_XOFF, 528 __QUEUE_STATE_FROZEN, 529}; 530 531#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 532#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 533#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 534 535#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 536#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 537 QUEUE_STATE_FROZEN) 538#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 539 QUEUE_STATE_FROZEN) 540 541/* 542 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 543 * netif_tx_* functions below are used to manipulate this flag. The 544 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 545 * queue independently. The netif_xmit_*stopped functions below are called 546 * to check if the queue has been stopped by the driver or stack (either 547 * of the XOFF bits are set in the state). Drivers should not need to call 548 * netif_xmit*stopped functions, they should only be using netif_tx_*. 549 */ 550 551struct netdev_queue { 552/* 553 * read-mostly part 554 */ 555 struct net_device *dev; 556 struct Qdisc __rcu *qdisc; 557 struct Qdisc *qdisc_sleeping; 558#ifdef CONFIG_SYSFS 559 struct kobject kobj; 560#endif 561#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 562 int numa_node; 563#endif 564 unsigned long tx_maxrate; 565 /* 566 * Number of TX timeouts for this queue 567 * (/sys/class/net/DEV/Q/trans_timeout) 568 */ 569 unsigned long trans_timeout; 570/* 571 * write-mostly part 572 */ 573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 574 int xmit_lock_owner; 575 /* 576 * Time (in jiffies) of last Tx 577 */ 578 unsigned long trans_start; 579 580 unsigned long state; 581 582#ifdef CONFIG_BQL 583 struct dql dql; 584#endif 585} ____cacheline_aligned_in_smp; 586 587static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 588{ 589#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 590 return q->numa_node; 591#else 592 return NUMA_NO_NODE; 593#endif 594} 595 596static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 597{ 598#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 599 q->numa_node = node; 600#endif 601} 602 603#ifdef CONFIG_RPS 604/* 605 * This structure holds an RPS map which can be of variable length. The 606 * map is an array of CPUs. 607 */ 608struct rps_map { 609 unsigned int len; 610 struct rcu_head rcu; 611 u16 cpus[0]; 612}; 613#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 614 615/* 616 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 617 * tail pointer for that CPU's input queue at the time of last enqueue, and 618 * a hardware filter index. 619 */ 620struct rps_dev_flow { 621 u16 cpu; 622 u16 filter; 623 unsigned int last_qtail; 624}; 625#define RPS_NO_FILTER 0xffff 626 627/* 628 * The rps_dev_flow_table structure contains a table of flow mappings. 629 */ 630struct rps_dev_flow_table { 631 unsigned int mask; 632 struct rcu_head rcu; 633 struct rps_dev_flow flows[0]; 634}; 635#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 636 ((_num) * sizeof(struct rps_dev_flow))) 637 638/* 639 * The rps_sock_flow_table contains mappings of flows to the last CPU 640 * on which they were processed by the application (set in recvmsg). 641 * Each entry is a 32bit value. Upper part is the high-order bits 642 * of flow hash, lower part is CPU number. 643 * rps_cpu_mask is used to partition the space, depending on number of 644 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 645 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 646 * meaning we use 32-6=26 bits for the hash. 647 */ 648struct rps_sock_flow_table { 649 u32 mask; 650 651 u32 ents[0] ____cacheline_aligned_in_smp; 652}; 653#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 654 655#define RPS_NO_CPU 0xffff 656 657extern u32 rps_cpu_mask; 658extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 659 660static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 661 u32 hash) 662{ 663 if (table && hash) { 664 unsigned int index = hash & table->mask; 665 u32 val = hash & ~rps_cpu_mask; 666 667 /* We only give a hint, preemption can change CPU under us */ 668 val |= raw_smp_processor_id(); 669 670 if (table->ents[index] != val) 671 table->ents[index] = val; 672 } 673} 674 675#ifdef CONFIG_RFS_ACCEL 676bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 677 u16 filter_id); 678#endif 679#endif /* CONFIG_RPS */ 680 681/* This structure contains an instance of an RX queue. */ 682struct netdev_rx_queue { 683#ifdef CONFIG_RPS 684 struct rps_map __rcu *rps_map; 685 struct rps_dev_flow_table __rcu *rps_flow_table; 686#endif 687 struct kobject kobj; 688 struct net_device *dev; 689} ____cacheline_aligned_in_smp; 690 691/* 692 * RX queue sysfs structures and functions. 693 */ 694struct rx_queue_attribute { 695 struct attribute attr; 696 ssize_t (*show)(struct netdev_rx_queue *queue, 697 struct rx_queue_attribute *attr, char *buf); 698 ssize_t (*store)(struct netdev_rx_queue *queue, 699 struct rx_queue_attribute *attr, const char *buf, size_t len); 700}; 701 702#ifdef CONFIG_XPS 703/* 704 * This structure holds an XPS map which can be of variable length. The 705 * map is an array of queues. 706 */ 707struct xps_map { 708 unsigned int len; 709 unsigned int alloc_len; 710 struct rcu_head rcu; 711 u16 queues[0]; 712}; 713#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 714#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 715 - sizeof(struct xps_map)) / sizeof(u16)) 716 717/* 718 * This structure holds all XPS maps for device. Maps are indexed by CPU. 719 */ 720struct xps_dev_maps { 721 struct rcu_head rcu; 722 struct xps_map __rcu *cpu_map[0]; 723}; 724#define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 725 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 726#endif /* CONFIG_XPS */ 727 728#define TC_MAX_QUEUE 16 729#define TC_BITMASK 15 730/* HW offloaded queuing disciplines txq count and offset maps */ 731struct netdev_tc_txq { 732 u16 count; 733 u16 offset; 734}; 735 736#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 737/* 738 * This structure is to hold information about the device 739 * configured to run FCoE protocol stack. 740 */ 741struct netdev_fcoe_hbainfo { 742 char manufacturer[64]; 743 char serial_number[64]; 744 char hardware_version[64]; 745 char driver_version[64]; 746 char optionrom_version[64]; 747 char firmware_version[64]; 748 char model[256]; 749 char model_description[256]; 750}; 751#endif 752 753#define MAX_PHYS_ITEM_ID_LEN 32 754 755/* This structure holds a unique identifier to identify some 756 * physical item (port for example) used by a netdevice. 757 */ 758struct netdev_phys_item_id { 759 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 760 unsigned char id_len; 761}; 762 763static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 764 struct netdev_phys_item_id *b) 765{ 766 return a->id_len == b->id_len && 767 memcmp(a->id, b->id, a->id_len) == 0; 768} 769 770typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 771 struct sk_buff *skb); 772 773/* These structures hold the attributes of qdisc and classifiers 774 * that are being passed to the netdevice through the setup_tc op. 775 */ 776enum { 777 TC_SETUP_MQPRIO, 778 TC_SETUP_CLSU32, 779 TC_SETUP_CLSFLOWER, 780 TC_SETUP_MATCHALL, 781 TC_SETUP_CLSBPF, 782}; 783 784struct tc_cls_u32_offload; 785 786struct tc_to_netdev { 787 unsigned int type; 788 union { 789 struct tc_cls_u32_offload *cls_u32; 790 struct tc_cls_flower_offload *cls_flower; 791 struct tc_cls_matchall_offload *cls_mall; 792 struct tc_cls_bpf_offload *cls_bpf; 793 struct tc_mqprio_qopt *mqprio; 794 }; 795 bool egress_dev; 796}; 797 798/* These structures hold the attributes of xdp state that are being passed 799 * to the netdevice through the xdp op. 800 */ 801enum xdp_netdev_command { 802 /* Set or clear a bpf program used in the earliest stages of packet 803 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 804 * is responsible for calling bpf_prog_put on any old progs that are 805 * stored. In case of error, the callee need not release the new prog 806 * reference, but on success it takes ownership and must bpf_prog_put 807 * when it is no longer used. 808 */ 809 XDP_SETUP_PROG, 810 XDP_SETUP_PROG_HW, 811 /* Check if a bpf program is set on the device. The callee should 812 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true" 813 * is equivalent to XDP_ATTACHED_DRV. 814 */ 815 XDP_QUERY_PROG, 816}; 817 818struct netlink_ext_ack; 819 820struct netdev_xdp { 821 enum xdp_netdev_command command; 822 union { 823 /* XDP_SETUP_PROG */ 824 struct { 825 u32 flags; 826 struct bpf_prog *prog; 827 struct netlink_ext_ack *extack; 828 }; 829 /* XDP_QUERY_PROG */ 830 struct { 831 u8 prog_attached; 832 u32 prog_id; 833 }; 834 }; 835}; 836 837#ifdef CONFIG_XFRM_OFFLOAD 838struct xfrmdev_ops { 839 int (*xdo_dev_state_add) (struct xfrm_state *x); 840 void (*xdo_dev_state_delete) (struct xfrm_state *x); 841 void (*xdo_dev_state_free) (struct xfrm_state *x); 842 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 843 struct xfrm_state *x); 844}; 845#endif 846 847/* 848 * This structure defines the management hooks for network devices. 849 * The following hooks can be defined; unless noted otherwise, they are 850 * optional and can be filled with a null pointer. 851 * 852 * int (*ndo_init)(struct net_device *dev); 853 * This function is called once when a network device is registered. 854 * The network device can use this for any late stage initialization 855 * or semantic validation. It can fail with an error code which will 856 * be propagated back to register_netdev. 857 * 858 * void (*ndo_uninit)(struct net_device *dev); 859 * This function is called when device is unregistered or when registration 860 * fails. It is not called if init fails. 861 * 862 * int (*ndo_open)(struct net_device *dev); 863 * This function is called when a network device transitions to the up 864 * state. 865 * 866 * int (*ndo_stop)(struct net_device *dev); 867 * This function is called when a network device transitions to the down 868 * state. 869 * 870 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 871 * struct net_device *dev); 872 * Called when a packet needs to be transmitted. 873 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 874 * the queue before that can happen; it's for obsolete devices and weird 875 * corner cases, but the stack really does a non-trivial amount 876 * of useless work if you return NETDEV_TX_BUSY. 877 * Required; cannot be NULL. 878 * 879 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 880 * struct net_device *dev 881 * netdev_features_t features); 882 * Called by core transmit path to determine if device is capable of 883 * performing offload operations on a given packet. This is to give 884 * the device an opportunity to implement any restrictions that cannot 885 * be otherwise expressed by feature flags. The check is called with 886 * the set of features that the stack has calculated and it returns 887 * those the driver believes to be appropriate. 888 * 889 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 890 * void *accel_priv, select_queue_fallback_t fallback); 891 * Called to decide which queue to use when device supports multiple 892 * transmit queues. 893 * 894 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 895 * This function is called to allow device receiver to make 896 * changes to configuration when multicast or promiscuous is enabled. 897 * 898 * void (*ndo_set_rx_mode)(struct net_device *dev); 899 * This function is called device changes address list filtering. 900 * If driver handles unicast address filtering, it should set 901 * IFF_UNICAST_FLT in its priv_flags. 902 * 903 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 904 * This function is called when the Media Access Control address 905 * needs to be changed. If this interface is not defined, the 906 * MAC address can not be changed. 907 * 908 * int (*ndo_validate_addr)(struct net_device *dev); 909 * Test if Media Access Control address is valid for the device. 910 * 911 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 912 * Called when a user requests an ioctl which can't be handled by 913 * the generic interface code. If not defined ioctls return 914 * not supported error code. 915 * 916 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 917 * Used to set network devices bus interface parameters. This interface 918 * is retained for legacy reasons; new devices should use the bus 919 * interface (PCI) for low level management. 920 * 921 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 922 * Called when a user wants to change the Maximum Transfer Unit 923 * of a device. 924 * 925 * void (*ndo_tx_timeout)(struct net_device *dev); 926 * Callback used when the transmitter has not made any progress 927 * for dev->watchdog ticks. 928 * 929 * void (*ndo_get_stats64)(struct net_device *dev, 930 * struct rtnl_link_stats64 *storage); 931 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 932 * Called when a user wants to get the network device usage 933 * statistics. Drivers must do one of the following: 934 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 935 * rtnl_link_stats64 structure passed by the caller. 936 * 2. Define @ndo_get_stats to update a net_device_stats structure 937 * (which should normally be dev->stats) and return a pointer to 938 * it. The structure may be changed asynchronously only if each 939 * field is written atomically. 940 * 3. Update dev->stats asynchronously and atomically, and define 941 * neither operation. 942 * 943 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 944 * Return true if this device supports offload stats of this attr_id. 945 * 946 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 947 * void *attr_data) 948 * Get statistics for offload operations by attr_id. Write it into the 949 * attr_data pointer. 950 * 951 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 952 * If device supports VLAN filtering this function is called when a 953 * VLAN id is registered. 954 * 955 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 956 * If device supports VLAN filtering this function is called when a 957 * VLAN id is unregistered. 958 * 959 * void (*ndo_poll_controller)(struct net_device *dev); 960 * 961 * SR-IOV management functions. 962 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 963 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 964 * u8 qos, __be16 proto); 965 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 966 * int max_tx_rate); 967 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 968 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 969 * int (*ndo_get_vf_config)(struct net_device *dev, 970 * int vf, struct ifla_vf_info *ivf); 971 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 972 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 973 * struct nlattr *port[]); 974 * 975 * Enable or disable the VF ability to query its RSS Redirection Table and 976 * Hash Key. This is needed since on some devices VF share this information 977 * with PF and querying it may introduce a theoretical security risk. 978 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 979 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 980 * int (*ndo_setup_tc)(struct net_device *dev, u32 handle, u32 chain_index, 981 * __be16 protocol, struct tc_to_netdev *tc); 982 * Called to setup any 'tc' scheduler, classifier or action on @dev. 983 * This is always called from the stack with the rtnl lock held and netif 984 * tx queues stopped. This allows the netdevice to perform queue 985 * management safely. 986 * 987 * Fiber Channel over Ethernet (FCoE) offload functions. 988 * int (*ndo_fcoe_enable)(struct net_device *dev); 989 * Called when the FCoE protocol stack wants to start using LLD for FCoE 990 * so the underlying device can perform whatever needed configuration or 991 * initialization to support acceleration of FCoE traffic. 992 * 993 * int (*ndo_fcoe_disable)(struct net_device *dev); 994 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 995 * so the underlying device can perform whatever needed clean-ups to 996 * stop supporting acceleration of FCoE traffic. 997 * 998 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 999 * struct scatterlist *sgl, unsigned int sgc); 1000 * Called when the FCoE Initiator wants to initialize an I/O that 1001 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1002 * perform necessary setup and returns 1 to indicate the device is set up 1003 * successfully to perform DDP on this I/O, otherwise this returns 0. 1004 * 1005 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1006 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1007 * indicated by the FC exchange id 'xid', so the underlying device can 1008 * clean up and reuse resources for later DDP requests. 1009 * 1010 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1011 * struct scatterlist *sgl, unsigned int sgc); 1012 * Called when the FCoE Target wants to initialize an I/O that 1013 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1014 * perform necessary setup and returns 1 to indicate the device is set up 1015 * successfully to perform DDP on this I/O, otherwise this returns 0. 1016 * 1017 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1018 * struct netdev_fcoe_hbainfo *hbainfo); 1019 * Called when the FCoE Protocol stack wants information on the underlying 1020 * device. This information is utilized by the FCoE protocol stack to 1021 * register attributes with Fiber Channel management service as per the 1022 * FC-GS Fabric Device Management Information(FDMI) specification. 1023 * 1024 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1025 * Called when the underlying device wants to override default World Wide 1026 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1027 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1028 * protocol stack to use. 1029 * 1030 * RFS acceleration. 1031 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1032 * u16 rxq_index, u32 flow_id); 1033 * Set hardware filter for RFS. rxq_index is the target queue index; 1034 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1035 * Return the filter ID on success, or a negative error code. 1036 * 1037 * Slave management functions (for bridge, bonding, etc). 1038 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1039 * Called to make another netdev an underling. 1040 * 1041 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1042 * Called to release previously enslaved netdev. 1043 * 1044 * Feature/offload setting functions. 1045 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1046 * netdev_features_t features); 1047 * Adjusts the requested feature flags according to device-specific 1048 * constraints, and returns the resulting flags. Must not modify 1049 * the device state. 1050 * 1051 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1052 * Called to update device configuration to new features. Passed 1053 * feature set might be less than what was returned by ndo_fix_features()). 1054 * Must return >0 or -errno if it changed dev->features itself. 1055 * 1056 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1057 * struct net_device *dev, 1058 * const unsigned char *addr, u16 vid, u16 flags) 1059 * Adds an FDB entry to dev for addr. 1060 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1061 * struct net_device *dev, 1062 * const unsigned char *addr, u16 vid) 1063 * Deletes the FDB entry from dev coresponding to addr. 1064 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1065 * struct net_device *dev, struct net_device *filter_dev, 1066 * int *idx) 1067 * Used to add FDB entries to dump requests. Implementers should add 1068 * entries to skb and update idx with the number of entries. 1069 * 1070 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1071 * u16 flags) 1072 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1073 * struct net_device *dev, u32 filter_mask, 1074 * int nlflags) 1075 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1076 * u16 flags); 1077 * 1078 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1079 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1080 * which do not represent real hardware may define this to allow their 1081 * userspace components to manage their virtual carrier state. Devices 1082 * that determine carrier state from physical hardware properties (eg 1083 * network cables) or protocol-dependent mechanisms (eg 1084 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1085 * 1086 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1087 * struct netdev_phys_item_id *ppid); 1088 * Called to get ID of physical port of this device. If driver does 1089 * not implement this, it is assumed that the hw is not able to have 1090 * multiple net devices on single physical port. 1091 * 1092 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1093 * struct udp_tunnel_info *ti); 1094 * Called by UDP tunnel to notify a driver about the UDP port and socket 1095 * address family that a UDP tunnel is listnening to. It is called only 1096 * when a new port starts listening. The operation is protected by the 1097 * RTNL. 1098 * 1099 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1100 * struct udp_tunnel_info *ti); 1101 * Called by UDP tunnel to notify the driver about a UDP port and socket 1102 * address family that the UDP tunnel is not listening to anymore. The 1103 * operation is protected by the RTNL. 1104 * 1105 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1106 * struct net_device *dev) 1107 * Called by upper layer devices to accelerate switching or other 1108 * station functionality into hardware. 'pdev is the lowerdev 1109 * to use for the offload and 'dev' is the net device that will 1110 * back the offload. Returns a pointer to the private structure 1111 * the upper layer will maintain. 1112 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1113 * Called by upper layer device to delete the station created 1114 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1115 * the station and priv is the structure returned by the add 1116 * operation. 1117 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1118 * int queue_index, u32 maxrate); 1119 * Called when a user wants to set a max-rate limitation of specific 1120 * TX queue. 1121 * int (*ndo_get_iflink)(const struct net_device *dev); 1122 * Called to get the iflink value of this device. 1123 * void (*ndo_change_proto_down)(struct net_device *dev, 1124 * bool proto_down); 1125 * This function is used to pass protocol port error state information 1126 * to the switch driver. The switch driver can react to the proto_down 1127 * by doing a phys down on the associated switch port. 1128 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1129 * This function is used to get egress tunnel information for given skb. 1130 * This is useful for retrieving outer tunnel header parameters while 1131 * sampling packet. 1132 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1133 * This function is used to specify the headroom that the skb must 1134 * consider when allocation skb during packet reception. Setting 1135 * appropriate rx headroom value allows avoiding skb head copy on 1136 * forward. Setting a negative value resets the rx headroom to the 1137 * default value. 1138 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp); 1139 * This function is used to set or query state related to XDP on the 1140 * netdevice. See definition of enum xdp_netdev_command for details. 1141 * 1142 */ 1143struct net_device_ops { 1144 int (*ndo_init)(struct net_device *dev); 1145 void (*ndo_uninit)(struct net_device *dev); 1146 int (*ndo_open)(struct net_device *dev); 1147 int (*ndo_stop)(struct net_device *dev); 1148 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1149 struct net_device *dev); 1150 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1151 struct net_device *dev, 1152 netdev_features_t features); 1153 u16 (*ndo_select_queue)(struct net_device *dev, 1154 struct sk_buff *skb, 1155 void *accel_priv, 1156 select_queue_fallback_t fallback); 1157 void (*ndo_change_rx_flags)(struct net_device *dev, 1158 int flags); 1159 void (*ndo_set_rx_mode)(struct net_device *dev); 1160 int (*ndo_set_mac_address)(struct net_device *dev, 1161 void *addr); 1162 int (*ndo_validate_addr)(struct net_device *dev); 1163 int (*ndo_do_ioctl)(struct net_device *dev, 1164 struct ifreq *ifr, int cmd); 1165 int (*ndo_set_config)(struct net_device *dev, 1166 struct ifmap *map); 1167 int (*ndo_change_mtu)(struct net_device *dev, 1168 int new_mtu); 1169 int (*ndo_neigh_setup)(struct net_device *dev, 1170 struct neigh_parms *); 1171 void (*ndo_tx_timeout) (struct net_device *dev); 1172 1173 void (*ndo_get_stats64)(struct net_device *dev, 1174 struct rtnl_link_stats64 *storage); 1175 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1176 int (*ndo_get_offload_stats)(int attr_id, 1177 const struct net_device *dev, 1178 void *attr_data); 1179 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1180 1181 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1182 __be16 proto, u16 vid); 1183 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1184 __be16 proto, u16 vid); 1185#ifdef CONFIG_NET_POLL_CONTROLLER 1186 void (*ndo_poll_controller)(struct net_device *dev); 1187 int (*ndo_netpoll_setup)(struct net_device *dev, 1188 struct netpoll_info *info); 1189 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1190#endif 1191 int (*ndo_set_vf_mac)(struct net_device *dev, 1192 int queue, u8 *mac); 1193 int (*ndo_set_vf_vlan)(struct net_device *dev, 1194 int queue, u16 vlan, 1195 u8 qos, __be16 proto); 1196 int (*ndo_set_vf_rate)(struct net_device *dev, 1197 int vf, int min_tx_rate, 1198 int max_tx_rate); 1199 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1200 int vf, bool setting); 1201 int (*ndo_set_vf_trust)(struct net_device *dev, 1202 int vf, bool setting); 1203 int (*ndo_get_vf_config)(struct net_device *dev, 1204 int vf, 1205 struct ifla_vf_info *ivf); 1206 int (*ndo_set_vf_link_state)(struct net_device *dev, 1207 int vf, int link_state); 1208 int (*ndo_get_vf_stats)(struct net_device *dev, 1209 int vf, 1210 struct ifla_vf_stats 1211 *vf_stats); 1212 int (*ndo_set_vf_port)(struct net_device *dev, 1213 int vf, 1214 struct nlattr *port[]); 1215 int (*ndo_get_vf_port)(struct net_device *dev, 1216 int vf, struct sk_buff *skb); 1217 int (*ndo_set_vf_guid)(struct net_device *dev, 1218 int vf, u64 guid, 1219 int guid_type); 1220 int (*ndo_set_vf_rss_query_en)( 1221 struct net_device *dev, 1222 int vf, bool setting); 1223 int (*ndo_setup_tc)(struct net_device *dev, 1224 u32 handle, u32 chain_index, 1225 __be16 protocol, 1226 struct tc_to_netdev *tc); 1227#if IS_ENABLED(CONFIG_FCOE) 1228 int (*ndo_fcoe_enable)(struct net_device *dev); 1229 int (*ndo_fcoe_disable)(struct net_device *dev); 1230 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1231 u16 xid, 1232 struct scatterlist *sgl, 1233 unsigned int sgc); 1234 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1235 u16 xid); 1236 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1237 u16 xid, 1238 struct scatterlist *sgl, 1239 unsigned int sgc); 1240 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1241 struct netdev_fcoe_hbainfo *hbainfo); 1242#endif 1243 1244#if IS_ENABLED(CONFIG_LIBFCOE) 1245#define NETDEV_FCOE_WWNN 0 1246#define NETDEV_FCOE_WWPN 1 1247 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1248 u64 *wwn, int type); 1249#endif 1250 1251#ifdef CONFIG_RFS_ACCEL 1252 int (*ndo_rx_flow_steer)(struct net_device *dev, 1253 const struct sk_buff *skb, 1254 u16 rxq_index, 1255 u32 flow_id); 1256#endif 1257 int (*ndo_add_slave)(struct net_device *dev, 1258 struct net_device *slave_dev); 1259 int (*ndo_del_slave)(struct net_device *dev, 1260 struct net_device *slave_dev); 1261 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1262 netdev_features_t features); 1263 int (*ndo_set_features)(struct net_device *dev, 1264 netdev_features_t features); 1265 int (*ndo_neigh_construct)(struct net_device *dev, 1266 struct neighbour *n); 1267 void (*ndo_neigh_destroy)(struct net_device *dev, 1268 struct neighbour *n); 1269 1270 int (*ndo_fdb_add)(struct ndmsg *ndm, 1271 struct nlattr *tb[], 1272 struct net_device *dev, 1273 const unsigned char *addr, 1274 u16 vid, 1275 u16 flags); 1276 int (*ndo_fdb_del)(struct ndmsg *ndm, 1277 struct nlattr *tb[], 1278 struct net_device *dev, 1279 const unsigned char *addr, 1280 u16 vid); 1281 int (*ndo_fdb_dump)(struct sk_buff *skb, 1282 struct netlink_callback *cb, 1283 struct net_device *dev, 1284 struct net_device *filter_dev, 1285 int *idx); 1286 1287 int (*ndo_bridge_setlink)(struct net_device *dev, 1288 struct nlmsghdr *nlh, 1289 u16 flags); 1290 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1291 u32 pid, u32 seq, 1292 struct net_device *dev, 1293 u32 filter_mask, 1294 int nlflags); 1295 int (*ndo_bridge_dellink)(struct net_device *dev, 1296 struct nlmsghdr *nlh, 1297 u16 flags); 1298 int (*ndo_change_carrier)(struct net_device *dev, 1299 bool new_carrier); 1300 int (*ndo_get_phys_port_id)(struct net_device *dev, 1301 struct netdev_phys_item_id *ppid); 1302 int (*ndo_get_phys_port_name)(struct net_device *dev, 1303 char *name, size_t len); 1304 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1305 struct udp_tunnel_info *ti); 1306 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1307 struct udp_tunnel_info *ti); 1308 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1309 struct net_device *dev); 1310 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1311 void *priv); 1312 1313 int (*ndo_get_lock_subclass)(struct net_device *dev); 1314 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1315 int queue_index, 1316 u32 maxrate); 1317 int (*ndo_get_iflink)(const struct net_device *dev); 1318 int (*ndo_change_proto_down)(struct net_device *dev, 1319 bool proto_down); 1320 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1321 struct sk_buff *skb); 1322 void (*ndo_set_rx_headroom)(struct net_device *dev, 1323 int needed_headroom); 1324 int (*ndo_xdp)(struct net_device *dev, 1325 struct netdev_xdp *xdp); 1326}; 1327 1328/** 1329 * enum net_device_priv_flags - &struct net_device priv_flags 1330 * 1331 * These are the &struct net_device, they are only set internally 1332 * by drivers and used in the kernel. These flags are invisible to 1333 * userspace; this means that the order of these flags can change 1334 * during any kernel release. 1335 * 1336 * You should have a pretty good reason to be extending these flags. 1337 * 1338 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1339 * @IFF_EBRIDGE: Ethernet bridging device 1340 * @IFF_BONDING: bonding master or slave 1341 * @IFF_ISATAP: ISATAP interface (RFC4214) 1342 * @IFF_WAN_HDLC: WAN HDLC device 1343 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1344 * release skb->dst 1345 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1346 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1347 * @IFF_MACVLAN_PORT: device used as macvlan port 1348 * @IFF_BRIDGE_PORT: device used as bridge port 1349 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1350 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1351 * @IFF_UNICAST_FLT: Supports unicast filtering 1352 * @IFF_TEAM_PORT: device used as team port 1353 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1354 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1355 * change when it's running 1356 * @IFF_MACVLAN: Macvlan device 1357 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1358 * underlying stacked devices 1359 * @IFF_IPVLAN_MASTER: IPvlan master device 1360 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1361 * @IFF_L3MDEV_MASTER: device is an L3 master device 1362 * @IFF_NO_QUEUE: device can run without qdisc attached 1363 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1364 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1365 * @IFF_TEAM: device is a team device 1366 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1367 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1368 * entity (i.e. the master device for bridged veth) 1369 * @IFF_MACSEC: device is a MACsec device 1370 */ 1371enum netdev_priv_flags { 1372 IFF_802_1Q_VLAN = 1<<0, 1373 IFF_EBRIDGE = 1<<1, 1374 IFF_BONDING = 1<<2, 1375 IFF_ISATAP = 1<<3, 1376 IFF_WAN_HDLC = 1<<4, 1377 IFF_XMIT_DST_RELEASE = 1<<5, 1378 IFF_DONT_BRIDGE = 1<<6, 1379 IFF_DISABLE_NETPOLL = 1<<7, 1380 IFF_MACVLAN_PORT = 1<<8, 1381 IFF_BRIDGE_PORT = 1<<9, 1382 IFF_OVS_DATAPATH = 1<<10, 1383 IFF_TX_SKB_SHARING = 1<<11, 1384 IFF_UNICAST_FLT = 1<<12, 1385 IFF_TEAM_PORT = 1<<13, 1386 IFF_SUPP_NOFCS = 1<<14, 1387 IFF_LIVE_ADDR_CHANGE = 1<<15, 1388 IFF_MACVLAN = 1<<16, 1389 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1390 IFF_IPVLAN_MASTER = 1<<18, 1391 IFF_IPVLAN_SLAVE = 1<<19, 1392 IFF_L3MDEV_MASTER = 1<<20, 1393 IFF_NO_QUEUE = 1<<21, 1394 IFF_OPENVSWITCH = 1<<22, 1395 IFF_L3MDEV_SLAVE = 1<<23, 1396 IFF_TEAM = 1<<24, 1397 IFF_RXFH_CONFIGURED = 1<<25, 1398 IFF_PHONY_HEADROOM = 1<<26, 1399 IFF_MACSEC = 1<<27, 1400}; 1401 1402#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1403#define IFF_EBRIDGE IFF_EBRIDGE 1404#define IFF_BONDING IFF_BONDING 1405#define IFF_ISATAP IFF_ISATAP 1406#define IFF_WAN_HDLC IFF_WAN_HDLC 1407#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1408#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1409#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1410#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1411#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1412#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1413#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1414#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1415#define IFF_TEAM_PORT IFF_TEAM_PORT 1416#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1417#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1418#define IFF_MACVLAN IFF_MACVLAN 1419#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1420#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1421#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1422#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1423#define IFF_NO_QUEUE IFF_NO_QUEUE 1424#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1425#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1426#define IFF_TEAM IFF_TEAM 1427#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1428#define IFF_MACSEC IFF_MACSEC 1429 1430/** 1431 * struct net_device - The DEVICE structure. 1432 * 1433 * Actually, this whole structure is a big mistake. It mixes I/O 1434 * data with strictly "high-level" data, and it has to know about 1435 * almost every data structure used in the INET module. 1436 * 1437 * @name: This is the first field of the "visible" part of this structure 1438 * (i.e. as seen by users in the "Space.c" file). It is the name 1439 * of the interface. 1440 * 1441 * @name_hlist: Device name hash chain, please keep it close to name[] 1442 * @ifalias: SNMP alias 1443 * @mem_end: Shared memory end 1444 * @mem_start: Shared memory start 1445 * @base_addr: Device I/O address 1446 * @irq: Device IRQ number 1447 * 1448 * @carrier_changes: Stats to monitor carrier on<->off transitions 1449 * 1450 * @state: Generic network queuing layer state, see netdev_state_t 1451 * @dev_list: The global list of network devices 1452 * @napi_list: List entry used for polling NAPI devices 1453 * @unreg_list: List entry when we are unregistering the 1454 * device; see the function unregister_netdev 1455 * @close_list: List entry used when we are closing the device 1456 * @ptype_all: Device-specific packet handlers for all protocols 1457 * @ptype_specific: Device-specific, protocol-specific packet handlers 1458 * 1459 * @adj_list: Directly linked devices, like slaves for bonding 1460 * @features: Currently active device features 1461 * @hw_features: User-changeable features 1462 * 1463 * @wanted_features: User-requested features 1464 * @vlan_features: Mask of features inheritable by VLAN devices 1465 * 1466 * @hw_enc_features: Mask of features inherited by encapsulating devices 1467 * This field indicates what encapsulation 1468 * offloads the hardware is capable of doing, 1469 * and drivers will need to set them appropriately. 1470 * 1471 * @mpls_features: Mask of features inheritable by MPLS 1472 * 1473 * @ifindex: interface index 1474 * @group: The group the device belongs to 1475 * 1476 * @stats: Statistics struct, which was left as a legacy, use 1477 * rtnl_link_stats64 instead 1478 * 1479 * @rx_dropped: Dropped packets by core network, 1480 * do not use this in drivers 1481 * @tx_dropped: Dropped packets by core network, 1482 * do not use this in drivers 1483 * @rx_nohandler: nohandler dropped packets by core network on 1484 * inactive devices, do not use this in drivers 1485 * 1486 * @wireless_handlers: List of functions to handle Wireless Extensions, 1487 * instead of ioctl, 1488 * see <net/iw_handler.h> for details. 1489 * @wireless_data: Instance data managed by the core of wireless extensions 1490 * 1491 * @netdev_ops: Includes several pointers to callbacks, 1492 * if one wants to override the ndo_*() functions 1493 * @ethtool_ops: Management operations 1494 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1495 * discovery handling. Necessary for e.g. 6LoWPAN. 1496 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1497 * of Layer 2 headers. 1498 * 1499 * @flags: Interface flags (a la BSD) 1500 * @priv_flags: Like 'flags' but invisible to userspace, 1501 * see if.h for the definitions 1502 * @gflags: Global flags ( kept as legacy ) 1503 * @padded: How much padding added by alloc_netdev() 1504 * @operstate: RFC2863 operstate 1505 * @link_mode: Mapping policy to operstate 1506 * @if_port: Selectable AUI, TP, ... 1507 * @dma: DMA channel 1508 * @mtu: Interface MTU value 1509 * @min_mtu: Interface Minimum MTU value 1510 * @max_mtu: Interface Maximum MTU value 1511 * @type: Interface hardware type 1512 * @hard_header_len: Maximum hardware header length. 1513 * @min_header_len: Minimum hardware header length 1514 * 1515 * @needed_headroom: Extra headroom the hardware may need, but not in all 1516 * cases can this be guaranteed 1517 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1518 * cases can this be guaranteed. Some cases also use 1519 * LL_MAX_HEADER instead to allocate the skb 1520 * 1521 * interface address info: 1522 * 1523 * @perm_addr: Permanent hw address 1524 * @addr_assign_type: Hw address assignment type 1525 * @addr_len: Hardware address length 1526 * @neigh_priv_len: Used in neigh_alloc() 1527 * @dev_id: Used to differentiate devices that share 1528 * the same link layer address 1529 * @dev_port: Used to differentiate devices that share 1530 * the same function 1531 * @addr_list_lock: XXX: need comments on this one 1532 * @uc_promisc: Counter that indicates promiscuous mode 1533 * has been enabled due to the need to listen to 1534 * additional unicast addresses in a device that 1535 * does not implement ndo_set_rx_mode() 1536 * @uc: unicast mac addresses 1537 * @mc: multicast mac addresses 1538 * @dev_addrs: list of device hw addresses 1539 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1540 * @promiscuity: Number of times the NIC is told to work in 1541 * promiscuous mode; if it becomes 0 the NIC will 1542 * exit promiscuous mode 1543 * @allmulti: Counter, enables or disables allmulticast mode 1544 * 1545 * @vlan_info: VLAN info 1546 * @dsa_ptr: dsa specific data 1547 * @tipc_ptr: TIPC specific data 1548 * @atalk_ptr: AppleTalk link 1549 * @ip_ptr: IPv4 specific data 1550 * @dn_ptr: DECnet specific data 1551 * @ip6_ptr: IPv6 specific data 1552 * @ax25_ptr: AX.25 specific data 1553 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1554 * 1555 * @dev_addr: Hw address (before bcast, 1556 * because most packets are unicast) 1557 * 1558 * @_rx: Array of RX queues 1559 * @num_rx_queues: Number of RX queues 1560 * allocated at register_netdev() time 1561 * @real_num_rx_queues: Number of RX queues currently active in device 1562 * 1563 * @rx_handler: handler for received packets 1564 * @rx_handler_data: XXX: need comments on this one 1565 * @ingress_queue: XXX: need comments on this one 1566 * @broadcast: hw bcast address 1567 * 1568 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1569 * indexed by RX queue number. Assigned by driver. 1570 * This must only be set if the ndo_rx_flow_steer 1571 * operation is defined 1572 * @index_hlist: Device index hash chain 1573 * 1574 * @_tx: Array of TX queues 1575 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1576 * @real_num_tx_queues: Number of TX queues currently active in device 1577 * @qdisc: Root qdisc from userspace point of view 1578 * @tx_queue_len: Max frames per queue allowed 1579 * @tx_global_lock: XXX: need comments on this one 1580 * 1581 * @xps_maps: XXX: need comments on this one 1582 * 1583 * @watchdog_timeo: Represents the timeout that is used by 1584 * the watchdog (see dev_watchdog()) 1585 * @watchdog_timer: List of timers 1586 * 1587 * @pcpu_refcnt: Number of references to this device 1588 * @todo_list: Delayed register/unregister 1589 * @link_watch_list: XXX: need comments on this one 1590 * 1591 * @reg_state: Register/unregister state machine 1592 * @dismantle: Device is going to be freed 1593 * @rtnl_link_state: This enum represents the phases of creating 1594 * a new link 1595 * 1596 * @needs_free_netdev: Should unregister perform free_netdev? 1597 * @priv_destructor: Called from unregister 1598 * @npinfo: XXX: need comments on this one 1599 * @nd_net: Network namespace this network device is inside 1600 * 1601 * @ml_priv: Mid-layer private 1602 * @lstats: Loopback statistics 1603 * @tstats: Tunnel statistics 1604 * @dstats: Dummy statistics 1605 * @vstats: Virtual ethernet statistics 1606 * 1607 * @garp_port: GARP 1608 * @mrp_port: MRP 1609 * 1610 * @dev: Class/net/name entry 1611 * @sysfs_groups: Space for optional device, statistics and wireless 1612 * sysfs groups 1613 * 1614 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1615 * @rtnl_link_ops: Rtnl_link_ops 1616 * 1617 * @gso_max_size: Maximum size of generic segmentation offload 1618 * @gso_max_segs: Maximum number of segments that can be passed to the 1619 * NIC for GSO 1620 * 1621 * @dcbnl_ops: Data Center Bridging netlink ops 1622 * @num_tc: Number of traffic classes in the net device 1623 * @tc_to_txq: XXX: need comments on this one 1624 * @prio_tc_map: XXX: need comments on this one 1625 * 1626 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1627 * 1628 * @priomap: XXX: need comments on this one 1629 * @phydev: Physical device may attach itself 1630 * for hardware timestamping 1631 * 1632 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1633 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1634 * 1635 * @proto_down: protocol port state information can be sent to the 1636 * switch driver and used to set the phys state of the 1637 * switch port. 1638 * 1639 * FIXME: cleanup struct net_device such that network protocol info 1640 * moves out. 1641 */ 1642 1643struct net_device { 1644 char name[IFNAMSIZ]; 1645 struct hlist_node name_hlist; 1646 char *ifalias; 1647 /* 1648 * I/O specific fields 1649 * FIXME: Merge these and struct ifmap into one 1650 */ 1651 unsigned long mem_end; 1652 unsigned long mem_start; 1653 unsigned long base_addr; 1654 int irq; 1655 1656 atomic_t carrier_changes; 1657 1658 /* 1659 * Some hardware also needs these fields (state,dev_list, 1660 * napi_list,unreg_list,close_list) but they are not 1661 * part of the usual set specified in Space.c. 1662 */ 1663 1664 unsigned long state; 1665 1666 struct list_head dev_list; 1667 struct list_head napi_list; 1668 struct list_head unreg_list; 1669 struct list_head close_list; 1670 struct list_head ptype_all; 1671 struct list_head ptype_specific; 1672 1673 struct { 1674 struct list_head upper; 1675 struct list_head lower; 1676 } adj_list; 1677 1678 netdev_features_t features; 1679 netdev_features_t hw_features; 1680 netdev_features_t wanted_features; 1681 netdev_features_t vlan_features; 1682 netdev_features_t hw_enc_features; 1683 netdev_features_t mpls_features; 1684 netdev_features_t gso_partial_features; 1685 1686 int ifindex; 1687 int group; 1688 1689 struct net_device_stats stats; 1690 1691 atomic_long_t rx_dropped; 1692 atomic_long_t tx_dropped; 1693 atomic_long_t rx_nohandler; 1694 1695#ifdef CONFIG_WIRELESS_EXT 1696 const struct iw_handler_def *wireless_handlers; 1697 struct iw_public_data *wireless_data; 1698#endif 1699 const struct net_device_ops *netdev_ops; 1700 const struct ethtool_ops *ethtool_ops; 1701#ifdef CONFIG_NET_SWITCHDEV 1702 const struct switchdev_ops *switchdev_ops; 1703#endif 1704#ifdef CONFIG_NET_L3_MASTER_DEV 1705 const struct l3mdev_ops *l3mdev_ops; 1706#endif 1707#if IS_ENABLED(CONFIG_IPV6) 1708 const struct ndisc_ops *ndisc_ops; 1709#endif 1710 1711#ifdef CONFIG_XFRM 1712 const struct xfrmdev_ops *xfrmdev_ops; 1713#endif 1714 1715 const struct header_ops *header_ops; 1716 1717 unsigned int flags; 1718 unsigned int priv_flags; 1719 1720 unsigned short gflags; 1721 unsigned short padded; 1722 1723 unsigned char operstate; 1724 unsigned char link_mode; 1725 1726 unsigned char if_port; 1727 unsigned char dma; 1728 1729 unsigned int mtu; 1730 unsigned int min_mtu; 1731 unsigned int max_mtu; 1732 unsigned short type; 1733 unsigned short hard_header_len; 1734 unsigned char min_header_len; 1735 1736 unsigned short needed_headroom; 1737 unsigned short needed_tailroom; 1738 1739 /* Interface address info. */ 1740 unsigned char perm_addr[MAX_ADDR_LEN]; 1741 unsigned char addr_assign_type; 1742 unsigned char addr_len; 1743 unsigned short neigh_priv_len; 1744 unsigned short dev_id; 1745 unsigned short dev_port; 1746 spinlock_t addr_list_lock; 1747 unsigned char name_assign_type; 1748 bool uc_promisc; 1749 struct netdev_hw_addr_list uc; 1750 struct netdev_hw_addr_list mc; 1751 struct netdev_hw_addr_list dev_addrs; 1752 1753#ifdef CONFIG_SYSFS 1754 struct kset *queues_kset; 1755#endif 1756 unsigned int promiscuity; 1757 unsigned int allmulti; 1758 1759 1760 /* Protocol-specific pointers */ 1761 1762#if IS_ENABLED(CONFIG_VLAN_8021Q) 1763 struct vlan_info __rcu *vlan_info; 1764#endif 1765#if IS_ENABLED(CONFIG_NET_DSA) 1766 struct dsa_switch_tree *dsa_ptr; 1767#endif 1768#if IS_ENABLED(CONFIG_TIPC) 1769 struct tipc_bearer __rcu *tipc_ptr; 1770#endif 1771 void *atalk_ptr; 1772 struct in_device __rcu *ip_ptr; 1773 struct dn_dev __rcu *dn_ptr; 1774 struct inet6_dev __rcu *ip6_ptr; 1775 void *ax25_ptr; 1776 struct wireless_dev *ieee80211_ptr; 1777 struct wpan_dev *ieee802154_ptr; 1778#if IS_ENABLED(CONFIG_MPLS_ROUTING) 1779 struct mpls_dev __rcu *mpls_ptr; 1780#endif 1781 1782/* 1783 * Cache lines mostly used on receive path (including eth_type_trans()) 1784 */ 1785 /* Interface address info used in eth_type_trans() */ 1786 unsigned char *dev_addr; 1787 1788#ifdef CONFIG_SYSFS 1789 struct netdev_rx_queue *_rx; 1790 1791 unsigned int num_rx_queues; 1792 unsigned int real_num_rx_queues; 1793#endif 1794 1795 struct bpf_prog __rcu *xdp_prog; 1796 unsigned long gro_flush_timeout; 1797 rx_handler_func_t __rcu *rx_handler; 1798 void __rcu *rx_handler_data; 1799 1800#ifdef CONFIG_NET_CLS_ACT 1801 struct tcf_proto __rcu *ingress_cl_list; 1802#endif 1803 struct netdev_queue __rcu *ingress_queue; 1804#ifdef CONFIG_NETFILTER_INGRESS 1805 struct nf_hook_entry __rcu *nf_hooks_ingress; 1806#endif 1807 1808 unsigned char broadcast[MAX_ADDR_LEN]; 1809#ifdef CONFIG_RFS_ACCEL 1810 struct cpu_rmap *rx_cpu_rmap; 1811#endif 1812 struct hlist_node index_hlist; 1813 1814/* 1815 * Cache lines mostly used on transmit path 1816 */ 1817 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1818 unsigned int num_tx_queues; 1819 unsigned int real_num_tx_queues; 1820 struct Qdisc *qdisc; 1821#ifdef CONFIG_NET_SCHED 1822 DECLARE_HASHTABLE (qdisc_hash, 4); 1823#endif 1824 unsigned int tx_queue_len; 1825 spinlock_t tx_global_lock; 1826 int watchdog_timeo; 1827 1828#ifdef CONFIG_XPS 1829 struct xps_dev_maps __rcu *xps_maps; 1830#endif 1831#ifdef CONFIG_NET_CLS_ACT 1832 struct tcf_proto __rcu *egress_cl_list; 1833#endif 1834 1835 /* These may be needed for future network-power-down code. */ 1836 struct timer_list watchdog_timer; 1837 1838 int __percpu *pcpu_refcnt; 1839 struct list_head todo_list; 1840 1841 struct list_head link_watch_list; 1842 1843 enum { NETREG_UNINITIALIZED=0, 1844 NETREG_REGISTERED, /* completed register_netdevice */ 1845 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1846 NETREG_UNREGISTERED, /* completed unregister todo */ 1847 NETREG_RELEASED, /* called free_netdev */ 1848 NETREG_DUMMY, /* dummy device for NAPI poll */ 1849 } reg_state:8; 1850 1851 bool dismantle; 1852 1853 enum { 1854 RTNL_LINK_INITIALIZED, 1855 RTNL_LINK_INITIALIZING, 1856 } rtnl_link_state:16; 1857 1858 bool needs_free_netdev; 1859 void (*priv_destructor)(struct net_device *dev); 1860 1861#ifdef CONFIG_NETPOLL 1862 struct netpoll_info __rcu *npinfo; 1863#endif 1864 1865 possible_net_t nd_net; 1866 1867 /* mid-layer private */ 1868 union { 1869 void *ml_priv; 1870 struct pcpu_lstats __percpu *lstats; 1871 struct pcpu_sw_netstats __percpu *tstats; 1872 struct pcpu_dstats __percpu *dstats; 1873 struct pcpu_vstats __percpu *vstats; 1874 }; 1875 1876#if IS_ENABLED(CONFIG_GARP) 1877 struct garp_port __rcu *garp_port; 1878#endif 1879#if IS_ENABLED(CONFIG_MRP) 1880 struct mrp_port __rcu *mrp_port; 1881#endif 1882 1883 struct device dev; 1884 const struct attribute_group *sysfs_groups[4]; 1885 const struct attribute_group *sysfs_rx_queue_group; 1886 1887 const struct rtnl_link_ops *rtnl_link_ops; 1888 1889 /* for setting kernel sock attribute on TCP connection setup */ 1890#define GSO_MAX_SIZE 65536 1891 unsigned int gso_max_size; 1892#define GSO_MAX_SEGS 65535 1893 u16 gso_max_segs; 1894 1895#ifdef CONFIG_DCB 1896 const struct dcbnl_rtnl_ops *dcbnl_ops; 1897#endif 1898 u8 num_tc; 1899 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1900 u8 prio_tc_map[TC_BITMASK + 1]; 1901 1902#if IS_ENABLED(CONFIG_FCOE) 1903 unsigned int fcoe_ddp_xid; 1904#endif 1905#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1906 struct netprio_map __rcu *priomap; 1907#endif 1908 struct phy_device *phydev; 1909 struct lock_class_key *qdisc_tx_busylock; 1910 struct lock_class_key *qdisc_running_key; 1911 bool proto_down; 1912}; 1913#define to_net_dev(d) container_of(d, struct net_device, dev) 1914 1915static inline bool netif_elide_gro(const struct net_device *dev) 1916{ 1917 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 1918 return true; 1919 return false; 1920} 1921 1922#define NETDEV_ALIGN 32 1923 1924static inline 1925int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1926{ 1927 return dev->prio_tc_map[prio & TC_BITMASK]; 1928} 1929 1930static inline 1931int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1932{ 1933 if (tc >= dev->num_tc) 1934 return -EINVAL; 1935 1936 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1937 return 0; 1938} 1939 1940int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1941void netdev_reset_tc(struct net_device *dev); 1942int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1943int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1944 1945static inline 1946int netdev_get_num_tc(struct net_device *dev) 1947{ 1948 return dev->num_tc; 1949} 1950 1951static inline 1952struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1953 unsigned int index) 1954{ 1955 return &dev->_tx[index]; 1956} 1957 1958static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1959 const struct sk_buff *skb) 1960{ 1961 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1962} 1963 1964static inline void netdev_for_each_tx_queue(struct net_device *dev, 1965 void (*f)(struct net_device *, 1966 struct netdev_queue *, 1967 void *), 1968 void *arg) 1969{ 1970 unsigned int i; 1971 1972 for (i = 0; i < dev->num_tx_queues; i++) 1973 f(dev, &dev->_tx[i], arg); 1974} 1975 1976#define netdev_lockdep_set_classes(dev) \ 1977{ \ 1978 static struct lock_class_key qdisc_tx_busylock_key; \ 1979 static struct lock_class_key qdisc_running_key; \ 1980 static struct lock_class_key qdisc_xmit_lock_key; \ 1981 static struct lock_class_key dev_addr_list_lock_key; \ 1982 unsigned int i; \ 1983 \ 1984 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1985 (dev)->qdisc_running_key = &qdisc_running_key; \ 1986 lockdep_set_class(&(dev)->addr_list_lock, \ 1987 &dev_addr_list_lock_key); \ 1988 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1989 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1990 &qdisc_xmit_lock_key); \ 1991} 1992 1993struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1994 struct sk_buff *skb, 1995 void *accel_priv); 1996 1997/* returns the headroom that the master device needs to take in account 1998 * when forwarding to this dev 1999 */ 2000static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2001{ 2002 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2003} 2004 2005static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2006{ 2007 if (dev->netdev_ops->ndo_set_rx_headroom) 2008 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2009} 2010 2011/* set the device rx headroom to the dev's default */ 2012static inline void netdev_reset_rx_headroom(struct net_device *dev) 2013{ 2014 netdev_set_rx_headroom(dev, -1); 2015} 2016 2017/* 2018 * Net namespace inlines 2019 */ 2020static inline 2021struct net *dev_net(const struct net_device *dev) 2022{ 2023 return read_pnet(&dev->nd_net); 2024} 2025 2026static inline 2027void dev_net_set(struct net_device *dev, struct net *net) 2028{ 2029 write_pnet(&dev->nd_net, net); 2030} 2031 2032/** 2033 * netdev_priv - access network device private data 2034 * @dev: network device 2035 * 2036 * Get network device private data 2037 */ 2038static inline void *netdev_priv(const struct net_device *dev) 2039{ 2040 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2041} 2042 2043/* Set the sysfs physical device reference for the network logical device 2044 * if set prior to registration will cause a symlink during initialization. 2045 */ 2046#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2047 2048/* Set the sysfs device type for the network logical device to allow 2049 * fine-grained identification of different network device types. For 2050 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2051 */ 2052#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2053 2054/* Default NAPI poll() weight 2055 * Device drivers are strongly advised to not use bigger value 2056 */ 2057#define NAPI_POLL_WEIGHT 64 2058 2059/** 2060 * netif_napi_add - initialize a NAPI context 2061 * @dev: network device 2062 * @napi: NAPI context 2063 * @poll: polling function 2064 * @weight: default weight 2065 * 2066 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2067 * *any* of the other NAPI-related functions. 2068 */ 2069void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2070 int (*poll)(struct napi_struct *, int), int weight); 2071 2072/** 2073 * netif_tx_napi_add - initialize a NAPI context 2074 * @dev: network device 2075 * @napi: NAPI context 2076 * @poll: polling function 2077 * @weight: default weight 2078 * 2079 * This variant of netif_napi_add() should be used from drivers using NAPI 2080 * to exclusively poll a TX queue. 2081 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2082 */ 2083static inline void netif_tx_napi_add(struct net_device *dev, 2084 struct napi_struct *napi, 2085 int (*poll)(struct napi_struct *, int), 2086 int weight) 2087{ 2088 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2089 netif_napi_add(dev, napi, poll, weight); 2090} 2091 2092/** 2093 * netif_napi_del - remove a NAPI context 2094 * @napi: NAPI context 2095 * 2096 * netif_napi_del() removes a NAPI context from the network device NAPI list 2097 */ 2098void netif_napi_del(struct napi_struct *napi); 2099 2100struct napi_gro_cb { 2101 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2102 void *frag0; 2103 2104 /* Length of frag0. */ 2105 unsigned int frag0_len; 2106 2107 /* This indicates where we are processing relative to skb->data. */ 2108 int data_offset; 2109 2110 /* This is non-zero if the packet cannot be merged with the new skb. */ 2111 u16 flush; 2112 2113 /* Save the IP ID here and check when we get to the transport layer */ 2114 u16 flush_id; 2115 2116 /* Number of segments aggregated. */ 2117 u16 count; 2118 2119 /* Start offset for remote checksum offload */ 2120 u16 gro_remcsum_start; 2121 2122 /* jiffies when first packet was created/queued */ 2123 unsigned long age; 2124 2125 /* Used in ipv6_gro_receive() and foo-over-udp */ 2126 u16 proto; 2127 2128 /* This is non-zero if the packet may be of the same flow. */ 2129 u8 same_flow:1; 2130 2131 /* Used in tunnel GRO receive */ 2132 u8 encap_mark:1; 2133 2134 /* GRO checksum is valid */ 2135 u8 csum_valid:1; 2136 2137 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2138 u8 csum_cnt:3; 2139 2140 /* Free the skb? */ 2141 u8 free:2; 2142#define NAPI_GRO_FREE 1 2143#define NAPI_GRO_FREE_STOLEN_HEAD 2 2144 2145 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2146 u8 is_ipv6:1; 2147 2148 /* Used in GRE, set in fou/gue_gro_receive */ 2149 u8 is_fou:1; 2150 2151 /* Used to determine if flush_id can be ignored */ 2152 u8 is_atomic:1; 2153 2154 /* Number of gro_receive callbacks this packet already went through */ 2155 u8 recursion_counter:4; 2156 2157 /* 1 bit hole */ 2158 2159 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2160 __wsum csum; 2161 2162 /* used in skb_gro_receive() slow path */ 2163 struct sk_buff *last; 2164}; 2165 2166#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2167 2168#define GRO_RECURSION_LIMIT 15 2169static inline int gro_recursion_inc_test(struct sk_buff *skb) 2170{ 2171 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2172} 2173 2174typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2175static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2176 struct sk_buff **head, 2177 struct sk_buff *skb) 2178{ 2179 if (unlikely(gro_recursion_inc_test(skb))) { 2180 NAPI_GRO_CB(skb)->flush |= 1; 2181 return NULL; 2182 } 2183 2184 return cb(head, skb); 2185} 2186 2187typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2188 struct sk_buff *); 2189static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2190 struct sock *sk, 2191 struct sk_buff **head, 2192 struct sk_buff *skb) 2193{ 2194 if (unlikely(gro_recursion_inc_test(skb))) { 2195 NAPI_GRO_CB(skb)->flush |= 1; 2196 return NULL; 2197 } 2198 2199 return cb(sk, head, skb); 2200} 2201 2202struct packet_type { 2203 __be16 type; /* This is really htons(ether_type). */ 2204 struct net_device *dev; /* NULL is wildcarded here */ 2205 int (*func) (struct sk_buff *, 2206 struct net_device *, 2207 struct packet_type *, 2208 struct net_device *); 2209 bool (*id_match)(struct packet_type *ptype, 2210 struct sock *sk); 2211 void *af_packet_priv; 2212 struct list_head list; 2213}; 2214 2215struct offload_callbacks { 2216 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2217 netdev_features_t features); 2218 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2219 struct sk_buff *skb); 2220 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2221}; 2222 2223struct packet_offload { 2224 __be16 type; /* This is really htons(ether_type). */ 2225 u16 priority; 2226 struct offload_callbacks callbacks; 2227 struct list_head list; 2228}; 2229 2230/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2231struct pcpu_sw_netstats { 2232 u64 rx_packets; 2233 u64 rx_bytes; 2234 u64 tx_packets; 2235 u64 tx_bytes; 2236 struct u64_stats_sync syncp; 2237}; 2238 2239#define __netdev_alloc_pcpu_stats(type, gfp) \ 2240({ \ 2241 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2242 if (pcpu_stats) { \ 2243 int __cpu; \ 2244 for_each_possible_cpu(__cpu) { \ 2245 typeof(type) *stat; \ 2246 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2247 u64_stats_init(&stat->syncp); \ 2248 } \ 2249 } \ 2250 pcpu_stats; \ 2251}) 2252 2253#define netdev_alloc_pcpu_stats(type) \ 2254 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2255 2256enum netdev_lag_tx_type { 2257 NETDEV_LAG_TX_TYPE_UNKNOWN, 2258 NETDEV_LAG_TX_TYPE_RANDOM, 2259 NETDEV_LAG_TX_TYPE_BROADCAST, 2260 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2261 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2262 NETDEV_LAG_TX_TYPE_HASH, 2263}; 2264 2265struct netdev_lag_upper_info { 2266 enum netdev_lag_tx_type tx_type; 2267}; 2268 2269struct netdev_lag_lower_state_info { 2270 u8 link_up : 1, 2271 tx_enabled : 1; 2272}; 2273 2274#include <linux/notifier.h> 2275 2276/* netdevice notifier chain. Please remember to update the rtnetlink 2277 * notification exclusion list in rtnetlink_event() when adding new 2278 * types. 2279 */ 2280#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2281#define NETDEV_DOWN 0x0002 2282#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2283 detected a hardware crash and restarted 2284 - we can use this eg to kick tcp sessions 2285 once done */ 2286#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2287#define NETDEV_REGISTER 0x0005 2288#define NETDEV_UNREGISTER 0x0006 2289#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2290#define NETDEV_CHANGEADDR 0x0008 2291#define NETDEV_GOING_DOWN 0x0009 2292#define NETDEV_CHANGENAME 0x000A 2293#define NETDEV_FEAT_CHANGE 0x000B 2294#define NETDEV_BONDING_FAILOVER 0x000C 2295#define NETDEV_PRE_UP 0x000D 2296#define NETDEV_PRE_TYPE_CHANGE 0x000E 2297#define NETDEV_POST_TYPE_CHANGE 0x000F 2298#define NETDEV_POST_INIT 0x0010 2299#define NETDEV_UNREGISTER_FINAL 0x0011 2300#define NETDEV_RELEASE 0x0012 2301#define NETDEV_NOTIFY_PEERS 0x0013 2302#define NETDEV_JOIN 0x0014 2303#define NETDEV_CHANGEUPPER 0x0015 2304#define NETDEV_RESEND_IGMP 0x0016 2305#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2306#define NETDEV_CHANGEINFODATA 0x0018 2307#define NETDEV_BONDING_INFO 0x0019 2308#define NETDEV_PRECHANGEUPPER 0x001A 2309#define NETDEV_CHANGELOWERSTATE 0x001B 2310#define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2311#define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2312 2313int register_netdevice_notifier(struct notifier_block *nb); 2314int unregister_netdevice_notifier(struct notifier_block *nb); 2315 2316struct netdev_notifier_info { 2317 struct net_device *dev; 2318}; 2319 2320struct netdev_notifier_change_info { 2321 struct netdev_notifier_info info; /* must be first */ 2322 unsigned int flags_changed; 2323}; 2324 2325struct netdev_notifier_changeupper_info { 2326 struct netdev_notifier_info info; /* must be first */ 2327 struct net_device *upper_dev; /* new upper dev */ 2328 bool master; /* is upper dev master */ 2329 bool linking; /* is the notification for link or unlink */ 2330 void *upper_info; /* upper dev info */ 2331}; 2332 2333struct netdev_notifier_changelowerstate_info { 2334 struct netdev_notifier_info info; /* must be first */ 2335 void *lower_state_info; /* is lower dev state */ 2336}; 2337 2338static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2339 struct net_device *dev) 2340{ 2341 info->dev = dev; 2342} 2343 2344static inline struct net_device * 2345netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2346{ 2347 return info->dev; 2348} 2349 2350int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2351 2352 2353extern rwlock_t dev_base_lock; /* Device list lock */ 2354 2355#define for_each_netdev(net, d) \ 2356 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2357#define for_each_netdev_reverse(net, d) \ 2358 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2359#define for_each_netdev_rcu(net, d) \ 2360 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2361#define for_each_netdev_safe(net, d, n) \ 2362 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2363#define for_each_netdev_continue(net, d) \ 2364 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2365#define for_each_netdev_continue_rcu(net, d) \ 2366 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2367#define for_each_netdev_in_bond_rcu(bond, slave) \ 2368 for_each_netdev_rcu(&init_net, slave) \ 2369 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2370#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2371 2372static inline struct net_device *next_net_device(struct net_device *dev) 2373{ 2374 struct list_head *lh; 2375 struct net *net; 2376 2377 net = dev_net(dev); 2378 lh = dev->dev_list.next; 2379 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2380} 2381 2382static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2383{ 2384 struct list_head *lh; 2385 struct net *net; 2386 2387 net = dev_net(dev); 2388 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2389 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2390} 2391 2392static inline struct net_device *first_net_device(struct net *net) 2393{ 2394 return list_empty(&net->dev_base_head) ? NULL : 2395 net_device_entry(net->dev_base_head.next); 2396} 2397 2398static inline struct net_device *first_net_device_rcu(struct net *net) 2399{ 2400 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2401 2402 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2403} 2404 2405int netdev_boot_setup_check(struct net_device *dev); 2406unsigned long netdev_boot_base(const char *prefix, int unit); 2407struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2408 const char *hwaddr); 2409struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2410struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2411void dev_add_pack(struct packet_type *pt); 2412void dev_remove_pack(struct packet_type *pt); 2413void __dev_remove_pack(struct packet_type *pt); 2414void dev_add_offload(struct packet_offload *po); 2415void dev_remove_offload(struct packet_offload *po); 2416 2417int dev_get_iflink(const struct net_device *dev); 2418int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2419struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2420 unsigned short mask); 2421struct net_device *dev_get_by_name(struct net *net, const char *name); 2422struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2423struct net_device *__dev_get_by_name(struct net *net, const char *name); 2424int dev_alloc_name(struct net_device *dev, const char *name); 2425int dev_open(struct net_device *dev); 2426int dev_close(struct net_device *dev); 2427int dev_close_many(struct list_head *head, bool unlink); 2428void dev_disable_lro(struct net_device *dev); 2429int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2430int dev_queue_xmit(struct sk_buff *skb); 2431int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2432int register_netdevice(struct net_device *dev); 2433void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2434void unregister_netdevice_many(struct list_head *head); 2435static inline void unregister_netdevice(struct net_device *dev) 2436{ 2437 unregister_netdevice_queue(dev, NULL); 2438} 2439 2440int netdev_refcnt_read(const struct net_device *dev); 2441void free_netdev(struct net_device *dev); 2442void netdev_freemem(struct net_device *dev); 2443void synchronize_net(void); 2444int init_dummy_netdev(struct net_device *dev); 2445 2446DECLARE_PER_CPU(int, xmit_recursion); 2447#define XMIT_RECURSION_LIMIT 10 2448 2449static inline int dev_recursion_level(void) 2450{ 2451 return this_cpu_read(xmit_recursion); 2452} 2453 2454struct net_device *dev_get_by_index(struct net *net, int ifindex); 2455struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2456struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2457struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2458int netdev_get_name(struct net *net, char *name, int ifindex); 2459int dev_restart(struct net_device *dev); 2460int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2461 2462static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2463{ 2464 return NAPI_GRO_CB(skb)->data_offset; 2465} 2466 2467static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2468{ 2469 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2470} 2471 2472static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2473{ 2474 NAPI_GRO_CB(skb)->data_offset += len; 2475} 2476 2477static inline void *skb_gro_header_fast(struct sk_buff *skb, 2478 unsigned int offset) 2479{ 2480 return NAPI_GRO_CB(skb)->frag0 + offset; 2481} 2482 2483static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2484{ 2485 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2486} 2487 2488static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2489{ 2490 NAPI_GRO_CB(skb)->frag0 = NULL; 2491 NAPI_GRO_CB(skb)->frag0_len = 0; 2492} 2493 2494static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2495 unsigned int offset) 2496{ 2497 if (!pskb_may_pull(skb, hlen)) 2498 return NULL; 2499 2500 skb_gro_frag0_invalidate(skb); 2501 return skb->data + offset; 2502} 2503 2504static inline void *skb_gro_network_header(struct sk_buff *skb) 2505{ 2506 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2507 skb_network_offset(skb); 2508} 2509 2510static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2511 const void *start, unsigned int len) 2512{ 2513 if (NAPI_GRO_CB(skb)->csum_valid) 2514 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2515 csum_partial(start, len, 0)); 2516} 2517 2518/* GRO checksum functions. These are logical equivalents of the normal 2519 * checksum functions (in skbuff.h) except that they operate on the GRO 2520 * offsets and fields in sk_buff. 2521 */ 2522 2523__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2524 2525static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2526{ 2527 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2528} 2529 2530static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2531 bool zero_okay, 2532 __sum16 check) 2533{ 2534 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2535 skb_checksum_start_offset(skb) < 2536 skb_gro_offset(skb)) && 2537 !skb_at_gro_remcsum_start(skb) && 2538 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2539 (!zero_okay || check)); 2540} 2541 2542static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2543 __wsum psum) 2544{ 2545 if (NAPI_GRO_CB(skb)->csum_valid && 2546 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2547 return 0; 2548 2549 NAPI_GRO_CB(skb)->csum = psum; 2550 2551 return __skb_gro_checksum_complete(skb); 2552} 2553 2554static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2555{ 2556 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2557 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2558 NAPI_GRO_CB(skb)->csum_cnt--; 2559 } else { 2560 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2561 * verified a new top level checksum or an encapsulated one 2562 * during GRO. This saves work if we fallback to normal path. 2563 */ 2564 __skb_incr_checksum_unnecessary(skb); 2565 } 2566} 2567 2568#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2569 compute_pseudo) \ 2570({ \ 2571 __sum16 __ret = 0; \ 2572 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2573 __ret = __skb_gro_checksum_validate_complete(skb, \ 2574 compute_pseudo(skb, proto)); \ 2575 if (!__ret) \ 2576 skb_gro_incr_csum_unnecessary(skb); \ 2577 __ret; \ 2578}) 2579 2580#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2581 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2582 2583#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2584 compute_pseudo) \ 2585 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2586 2587#define skb_gro_checksum_simple_validate(skb) \ 2588 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2589 2590static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2591{ 2592 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2593 !NAPI_GRO_CB(skb)->csum_valid); 2594} 2595 2596static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2597 __sum16 check, __wsum pseudo) 2598{ 2599 NAPI_GRO_CB(skb)->csum = ~pseudo; 2600 NAPI_GRO_CB(skb)->csum_valid = 1; 2601} 2602 2603#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2604do { \ 2605 if (__skb_gro_checksum_convert_check(skb)) \ 2606 __skb_gro_checksum_convert(skb, check, \ 2607 compute_pseudo(skb, proto)); \ 2608} while (0) 2609 2610struct gro_remcsum { 2611 int offset; 2612 __wsum delta; 2613}; 2614 2615static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2616{ 2617 grc->offset = 0; 2618 grc->delta = 0; 2619} 2620 2621static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2622 unsigned int off, size_t hdrlen, 2623 int start, int offset, 2624 struct gro_remcsum *grc, 2625 bool nopartial) 2626{ 2627 __wsum delta; 2628 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2629 2630 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2631 2632 if (!nopartial) { 2633 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2634 return ptr; 2635 } 2636 2637 ptr = skb_gro_header_fast(skb, off); 2638 if (skb_gro_header_hard(skb, off + plen)) { 2639 ptr = skb_gro_header_slow(skb, off + plen, off); 2640 if (!ptr) 2641 return NULL; 2642 } 2643 2644 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2645 start, offset); 2646 2647 /* Adjust skb->csum since we changed the packet */ 2648 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2649 2650 grc->offset = off + hdrlen + offset; 2651 grc->delta = delta; 2652 2653 return ptr; 2654} 2655 2656static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2657 struct gro_remcsum *grc) 2658{ 2659 void *ptr; 2660 size_t plen = grc->offset + sizeof(u16); 2661 2662 if (!grc->delta) 2663 return; 2664 2665 ptr = skb_gro_header_fast(skb, grc->offset); 2666 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2667 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2668 if (!ptr) 2669 return; 2670 } 2671 2672 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2673} 2674 2675#ifdef CONFIG_XFRM_OFFLOAD 2676static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2677{ 2678 if (PTR_ERR(pp) != -EINPROGRESS) 2679 NAPI_GRO_CB(skb)->flush |= flush; 2680} 2681#else 2682static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2683{ 2684 NAPI_GRO_CB(skb)->flush |= flush; 2685} 2686#endif 2687 2688static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2689 unsigned short type, 2690 const void *daddr, const void *saddr, 2691 unsigned int len) 2692{ 2693 if (!dev->header_ops || !dev->header_ops->create) 2694 return 0; 2695 2696 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2697} 2698 2699static inline int dev_parse_header(const struct sk_buff *skb, 2700 unsigned char *haddr) 2701{ 2702 const struct net_device *dev = skb->dev; 2703 2704 if (!dev->header_ops || !dev->header_ops->parse) 2705 return 0; 2706 return dev->header_ops->parse(skb, haddr); 2707} 2708 2709/* ll_header must have at least hard_header_len allocated */ 2710static inline bool dev_validate_header(const struct net_device *dev, 2711 char *ll_header, int len) 2712{ 2713 if (likely(len >= dev->hard_header_len)) 2714 return true; 2715 if (len < dev->min_header_len) 2716 return false; 2717 2718 if (capable(CAP_SYS_RAWIO)) { 2719 memset(ll_header + len, 0, dev->hard_header_len - len); 2720 return true; 2721 } 2722 2723 if (dev->header_ops && dev->header_ops->validate) 2724 return dev->header_ops->validate(ll_header, len); 2725 2726 return false; 2727} 2728 2729typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2730int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2731static inline int unregister_gifconf(unsigned int family) 2732{ 2733 return register_gifconf(family, NULL); 2734} 2735 2736#ifdef CONFIG_NET_FLOW_LIMIT 2737#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2738struct sd_flow_limit { 2739 u64 count; 2740 unsigned int num_buckets; 2741 unsigned int history_head; 2742 u16 history[FLOW_LIMIT_HISTORY]; 2743 u8 buckets[]; 2744}; 2745 2746extern int netdev_flow_limit_table_len; 2747#endif /* CONFIG_NET_FLOW_LIMIT */ 2748 2749/* 2750 * Incoming packets are placed on per-CPU queues 2751 */ 2752struct softnet_data { 2753 struct list_head poll_list; 2754 struct sk_buff_head process_queue; 2755 2756 /* stats */ 2757 unsigned int processed; 2758 unsigned int time_squeeze; 2759 unsigned int received_rps; 2760#ifdef CONFIG_RPS 2761 struct softnet_data *rps_ipi_list; 2762#endif 2763#ifdef CONFIG_NET_FLOW_LIMIT 2764 struct sd_flow_limit __rcu *flow_limit; 2765#endif 2766 struct Qdisc *output_queue; 2767 struct Qdisc **output_queue_tailp; 2768 struct sk_buff *completion_queue; 2769 2770#ifdef CONFIG_RPS 2771 /* input_queue_head should be written by cpu owning this struct, 2772 * and only read by other cpus. Worth using a cache line. 2773 */ 2774 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2775 2776 /* Elements below can be accessed between CPUs for RPS/RFS */ 2777 struct call_single_data csd ____cacheline_aligned_in_smp; 2778 struct softnet_data *rps_ipi_next; 2779 unsigned int cpu; 2780 unsigned int input_queue_tail; 2781#endif 2782 unsigned int dropped; 2783 struct sk_buff_head input_pkt_queue; 2784 struct napi_struct backlog; 2785 2786}; 2787 2788static inline void input_queue_head_incr(struct softnet_data *sd) 2789{ 2790#ifdef CONFIG_RPS 2791 sd->input_queue_head++; 2792#endif 2793} 2794 2795static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2796 unsigned int *qtail) 2797{ 2798#ifdef CONFIG_RPS 2799 *qtail = ++sd->input_queue_tail; 2800#endif 2801} 2802 2803DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2804 2805void __netif_schedule(struct Qdisc *q); 2806void netif_schedule_queue(struct netdev_queue *txq); 2807 2808static inline void netif_tx_schedule_all(struct net_device *dev) 2809{ 2810 unsigned int i; 2811 2812 for (i = 0; i < dev->num_tx_queues; i++) 2813 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2814} 2815 2816static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2817{ 2818 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2819} 2820 2821/** 2822 * netif_start_queue - allow transmit 2823 * @dev: network device 2824 * 2825 * Allow upper layers to call the device hard_start_xmit routine. 2826 */ 2827static inline void netif_start_queue(struct net_device *dev) 2828{ 2829 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2830} 2831 2832static inline void netif_tx_start_all_queues(struct net_device *dev) 2833{ 2834 unsigned int i; 2835 2836 for (i = 0; i < dev->num_tx_queues; i++) { 2837 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2838 netif_tx_start_queue(txq); 2839 } 2840} 2841 2842void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2843 2844/** 2845 * netif_wake_queue - restart transmit 2846 * @dev: network device 2847 * 2848 * Allow upper layers to call the device hard_start_xmit routine. 2849 * Used for flow control when transmit resources are available. 2850 */ 2851static inline void netif_wake_queue(struct net_device *dev) 2852{ 2853 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2854} 2855 2856static inline void netif_tx_wake_all_queues(struct net_device *dev) 2857{ 2858 unsigned int i; 2859 2860 for (i = 0; i < dev->num_tx_queues; i++) { 2861 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2862 netif_tx_wake_queue(txq); 2863 } 2864} 2865 2866static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2867{ 2868 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2869} 2870 2871/** 2872 * netif_stop_queue - stop transmitted packets 2873 * @dev: network device 2874 * 2875 * Stop upper layers calling the device hard_start_xmit routine. 2876 * Used for flow control when transmit resources are unavailable. 2877 */ 2878static inline void netif_stop_queue(struct net_device *dev) 2879{ 2880 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2881} 2882 2883void netif_tx_stop_all_queues(struct net_device *dev); 2884 2885static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2886{ 2887 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2888} 2889 2890/** 2891 * netif_queue_stopped - test if transmit queue is flowblocked 2892 * @dev: network device 2893 * 2894 * Test if transmit queue on device is currently unable to send. 2895 */ 2896static inline bool netif_queue_stopped(const struct net_device *dev) 2897{ 2898 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2899} 2900 2901static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2902{ 2903 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2904} 2905 2906static inline bool 2907netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2908{ 2909 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2910} 2911 2912static inline bool 2913netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2914{ 2915 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2916} 2917 2918/** 2919 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2920 * @dev_queue: pointer to transmit queue 2921 * 2922 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2923 * to give appropriate hint to the CPU. 2924 */ 2925static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2926{ 2927#ifdef CONFIG_BQL 2928 prefetchw(&dev_queue->dql.num_queued); 2929#endif 2930} 2931 2932/** 2933 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2934 * @dev_queue: pointer to transmit queue 2935 * 2936 * BQL enabled drivers might use this helper in their TX completion path, 2937 * to give appropriate hint to the CPU. 2938 */ 2939static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2940{ 2941#ifdef CONFIG_BQL 2942 prefetchw(&dev_queue->dql.limit); 2943#endif 2944} 2945 2946static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2947 unsigned int bytes) 2948{ 2949#ifdef CONFIG_BQL 2950 dql_queued(&dev_queue->dql, bytes); 2951 2952 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2953 return; 2954 2955 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2956 2957 /* 2958 * The XOFF flag must be set before checking the dql_avail below, 2959 * because in netdev_tx_completed_queue we update the dql_completed 2960 * before checking the XOFF flag. 2961 */ 2962 smp_mb(); 2963 2964 /* check again in case another CPU has just made room avail */ 2965 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2966 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2967#endif 2968} 2969 2970/** 2971 * netdev_sent_queue - report the number of bytes queued to hardware 2972 * @dev: network device 2973 * @bytes: number of bytes queued to the hardware device queue 2974 * 2975 * Report the number of bytes queued for sending/completion to the network 2976 * device hardware queue. @bytes should be a good approximation and should 2977 * exactly match netdev_completed_queue() @bytes 2978 */ 2979static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2980{ 2981 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2982} 2983 2984static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2985 unsigned int pkts, unsigned int bytes) 2986{ 2987#ifdef CONFIG_BQL 2988 if (unlikely(!bytes)) 2989 return; 2990 2991 dql_completed(&dev_queue->dql, bytes); 2992 2993 /* 2994 * Without the memory barrier there is a small possiblity that 2995 * netdev_tx_sent_queue will miss the update and cause the queue to 2996 * be stopped forever 2997 */ 2998 smp_mb(); 2999 3000 if (dql_avail(&dev_queue->dql) < 0) 3001 return; 3002 3003 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3004 netif_schedule_queue(dev_queue); 3005#endif 3006} 3007 3008/** 3009 * netdev_completed_queue - report bytes and packets completed by device 3010 * @dev: network device 3011 * @pkts: actual number of packets sent over the medium 3012 * @bytes: actual number of bytes sent over the medium 3013 * 3014 * Report the number of bytes and packets transmitted by the network device 3015 * hardware queue over the physical medium, @bytes must exactly match the 3016 * @bytes amount passed to netdev_sent_queue() 3017 */ 3018static inline void netdev_completed_queue(struct net_device *dev, 3019 unsigned int pkts, unsigned int bytes) 3020{ 3021 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3022} 3023 3024static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3025{ 3026#ifdef CONFIG_BQL 3027 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3028 dql_reset(&q->dql); 3029#endif 3030} 3031 3032/** 3033 * netdev_reset_queue - reset the packets and bytes count of a network device 3034 * @dev_queue: network device 3035 * 3036 * Reset the bytes and packet count of a network device and clear the 3037 * software flow control OFF bit for this network device 3038 */ 3039static inline void netdev_reset_queue(struct net_device *dev_queue) 3040{ 3041 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3042} 3043 3044/** 3045 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3046 * @dev: network device 3047 * @queue_index: given tx queue index 3048 * 3049 * Returns 0 if given tx queue index >= number of device tx queues, 3050 * otherwise returns the originally passed tx queue index. 3051 */ 3052static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3053{ 3054 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3055 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3056 dev->name, queue_index, 3057 dev->real_num_tx_queues); 3058 return 0; 3059 } 3060 3061 return queue_index; 3062} 3063 3064/** 3065 * netif_running - test if up 3066 * @dev: network device 3067 * 3068 * Test if the device has been brought up. 3069 */ 3070static inline bool netif_running(const struct net_device *dev) 3071{ 3072 return test_bit(__LINK_STATE_START, &dev->state); 3073} 3074 3075/* 3076 * Routines to manage the subqueues on a device. We only need start, 3077 * stop, and a check if it's stopped. All other device management is 3078 * done at the overall netdevice level. 3079 * Also test the device if we're multiqueue. 3080 */ 3081 3082/** 3083 * netif_start_subqueue - allow sending packets on subqueue 3084 * @dev: network device 3085 * @queue_index: sub queue index 3086 * 3087 * Start individual transmit queue of a device with multiple transmit queues. 3088 */ 3089static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3090{ 3091 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3092 3093 netif_tx_start_queue(txq); 3094} 3095 3096/** 3097 * netif_stop_subqueue - stop sending packets on subqueue 3098 * @dev: network device 3099 * @queue_index: sub queue index 3100 * 3101 * Stop individual transmit queue of a device with multiple transmit queues. 3102 */ 3103static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3104{ 3105 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3106 netif_tx_stop_queue(txq); 3107} 3108 3109/** 3110 * netif_subqueue_stopped - test status of subqueue 3111 * @dev: network device 3112 * @queue_index: sub queue index 3113 * 3114 * Check individual transmit queue of a device with multiple transmit queues. 3115 */ 3116static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3117 u16 queue_index) 3118{ 3119 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3120 3121 return netif_tx_queue_stopped(txq); 3122} 3123 3124static inline bool netif_subqueue_stopped(const struct net_device *dev, 3125 struct sk_buff *skb) 3126{ 3127 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3128} 3129 3130/** 3131 * netif_wake_subqueue - allow sending packets on subqueue 3132 * @dev: network device 3133 * @queue_index: sub queue index 3134 * 3135 * Resume individual transmit queue of a device with multiple transmit queues. 3136 */ 3137static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3138{ 3139 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3140 3141 netif_tx_wake_queue(txq); 3142} 3143 3144#ifdef CONFIG_XPS 3145int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3146 u16 index); 3147#else 3148static inline int netif_set_xps_queue(struct net_device *dev, 3149 const struct cpumask *mask, 3150 u16 index) 3151{ 3152 return 0; 3153} 3154#endif 3155 3156u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3157 unsigned int num_tx_queues); 3158 3159/* 3160 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3161 * as a distribution range limit for the returned value. 3162 */ 3163static inline u16 skb_tx_hash(const struct net_device *dev, 3164 struct sk_buff *skb) 3165{ 3166 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3167} 3168 3169/** 3170 * netif_is_multiqueue - test if device has multiple transmit queues 3171 * @dev: network device 3172 * 3173 * Check if device has multiple transmit queues 3174 */ 3175static inline bool netif_is_multiqueue(const struct net_device *dev) 3176{ 3177 return dev->num_tx_queues > 1; 3178} 3179 3180int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3181 3182#ifdef CONFIG_SYSFS 3183int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3184#else 3185static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3186 unsigned int rxq) 3187{ 3188 return 0; 3189} 3190#endif 3191 3192#ifdef CONFIG_SYSFS 3193static inline unsigned int get_netdev_rx_queue_index( 3194 struct netdev_rx_queue *queue) 3195{ 3196 struct net_device *dev = queue->dev; 3197 int index = queue - dev->_rx; 3198 3199 BUG_ON(index >= dev->num_rx_queues); 3200 return index; 3201} 3202#endif 3203 3204#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3205int netif_get_num_default_rss_queues(void); 3206 3207enum skb_free_reason { 3208 SKB_REASON_CONSUMED, 3209 SKB_REASON_DROPPED, 3210}; 3211 3212void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3213void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3214 3215/* 3216 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3217 * interrupt context or with hardware interrupts being disabled. 3218 * (in_irq() || irqs_disabled()) 3219 * 3220 * We provide four helpers that can be used in following contexts : 3221 * 3222 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3223 * replacing kfree_skb(skb) 3224 * 3225 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3226 * Typically used in place of consume_skb(skb) in TX completion path 3227 * 3228 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3229 * replacing kfree_skb(skb) 3230 * 3231 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3232 * and consumed a packet. Used in place of consume_skb(skb) 3233 */ 3234static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3235{ 3236 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3237} 3238 3239static inline void dev_consume_skb_irq(struct sk_buff *skb) 3240{ 3241 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3242} 3243 3244static inline void dev_kfree_skb_any(struct sk_buff *skb) 3245{ 3246 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3247} 3248 3249static inline void dev_consume_skb_any(struct sk_buff *skb) 3250{ 3251 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3252} 3253 3254int netif_rx(struct sk_buff *skb); 3255int netif_rx_ni(struct sk_buff *skb); 3256int netif_receive_skb(struct sk_buff *skb); 3257gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3258void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3259struct sk_buff *napi_get_frags(struct napi_struct *napi); 3260gro_result_t napi_gro_frags(struct napi_struct *napi); 3261struct packet_offload *gro_find_receive_by_type(__be16 type); 3262struct packet_offload *gro_find_complete_by_type(__be16 type); 3263 3264static inline void napi_free_frags(struct napi_struct *napi) 3265{ 3266 kfree_skb(napi->skb); 3267 napi->skb = NULL; 3268} 3269 3270bool netdev_is_rx_handler_busy(struct net_device *dev); 3271int netdev_rx_handler_register(struct net_device *dev, 3272 rx_handler_func_t *rx_handler, 3273 void *rx_handler_data); 3274void netdev_rx_handler_unregister(struct net_device *dev); 3275 3276bool dev_valid_name(const char *name); 3277int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3278int dev_ethtool(struct net *net, struct ifreq *); 3279unsigned int dev_get_flags(const struct net_device *); 3280int __dev_change_flags(struct net_device *, unsigned int flags); 3281int dev_change_flags(struct net_device *, unsigned int); 3282void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3283 unsigned int gchanges); 3284int dev_change_name(struct net_device *, const char *); 3285int dev_set_alias(struct net_device *, const char *, size_t); 3286int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3287int __dev_set_mtu(struct net_device *, int); 3288int dev_set_mtu(struct net_device *, int); 3289void dev_set_group(struct net_device *, int); 3290int dev_set_mac_address(struct net_device *, struct sockaddr *); 3291int dev_change_carrier(struct net_device *, bool new_carrier); 3292int dev_get_phys_port_id(struct net_device *dev, 3293 struct netdev_phys_item_id *ppid); 3294int dev_get_phys_port_name(struct net_device *dev, 3295 char *name, size_t len); 3296int dev_change_proto_down(struct net_device *dev, bool proto_down); 3297struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3298struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3299 struct netdev_queue *txq, int *ret); 3300 3301typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp); 3302int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3303 int fd, u32 flags); 3304u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id); 3305 3306int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3307int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3308bool is_skb_forwardable(const struct net_device *dev, 3309 const struct sk_buff *skb); 3310 3311static __always_inline int ____dev_forward_skb(struct net_device *dev, 3312 struct sk_buff *skb) 3313{ 3314 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3315 unlikely(!is_skb_forwardable(dev, skb))) { 3316 atomic_long_inc(&dev->rx_dropped); 3317 kfree_skb(skb); 3318 return NET_RX_DROP; 3319 } 3320 3321 skb_scrub_packet(skb, true); 3322 skb->priority = 0; 3323 return 0; 3324} 3325 3326void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3327 3328extern int netdev_budget; 3329extern unsigned int netdev_budget_usecs; 3330 3331/* Called by rtnetlink.c:rtnl_unlock() */ 3332void netdev_run_todo(void); 3333 3334/** 3335 * dev_put - release reference to device 3336 * @dev: network device 3337 * 3338 * Release reference to device to allow it to be freed. 3339 */ 3340static inline void dev_put(struct net_device *dev) 3341{ 3342 this_cpu_dec(*dev->pcpu_refcnt); 3343} 3344 3345/** 3346 * dev_hold - get reference to device 3347 * @dev: network device 3348 * 3349 * Hold reference to device to keep it from being freed. 3350 */ 3351static inline void dev_hold(struct net_device *dev) 3352{ 3353 this_cpu_inc(*dev->pcpu_refcnt); 3354} 3355 3356/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3357 * and _off may be called from IRQ context, but it is caller 3358 * who is responsible for serialization of these calls. 3359 * 3360 * The name carrier is inappropriate, these functions should really be 3361 * called netif_lowerlayer_*() because they represent the state of any 3362 * kind of lower layer not just hardware media. 3363 */ 3364 3365void linkwatch_init_dev(struct net_device *dev); 3366void linkwatch_fire_event(struct net_device *dev); 3367void linkwatch_forget_dev(struct net_device *dev); 3368 3369/** 3370 * netif_carrier_ok - test if carrier present 3371 * @dev: network device 3372 * 3373 * Check if carrier is present on device 3374 */ 3375static inline bool netif_carrier_ok(const struct net_device *dev) 3376{ 3377 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3378} 3379 3380unsigned long dev_trans_start(struct net_device *dev); 3381 3382void __netdev_watchdog_up(struct net_device *dev); 3383 3384void netif_carrier_on(struct net_device *dev); 3385 3386void netif_carrier_off(struct net_device *dev); 3387 3388/** 3389 * netif_dormant_on - mark device as dormant. 3390 * @dev: network device 3391 * 3392 * Mark device as dormant (as per RFC2863). 3393 * 3394 * The dormant state indicates that the relevant interface is not 3395 * actually in a condition to pass packets (i.e., it is not 'up') but is 3396 * in a "pending" state, waiting for some external event. For "on- 3397 * demand" interfaces, this new state identifies the situation where the 3398 * interface is waiting for events to place it in the up state. 3399 */ 3400static inline void netif_dormant_on(struct net_device *dev) 3401{ 3402 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3403 linkwatch_fire_event(dev); 3404} 3405 3406/** 3407 * netif_dormant_off - set device as not dormant. 3408 * @dev: network device 3409 * 3410 * Device is not in dormant state. 3411 */ 3412static inline void netif_dormant_off(struct net_device *dev) 3413{ 3414 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3415 linkwatch_fire_event(dev); 3416} 3417 3418/** 3419 * netif_dormant - test if device is dormant 3420 * @dev: network device 3421 * 3422 * Check if device is dormant. 3423 */ 3424static inline bool netif_dormant(const struct net_device *dev) 3425{ 3426 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3427} 3428 3429 3430/** 3431 * netif_oper_up - test if device is operational 3432 * @dev: network device 3433 * 3434 * Check if carrier is operational 3435 */ 3436static inline bool netif_oper_up(const struct net_device *dev) 3437{ 3438 return (dev->operstate == IF_OPER_UP || 3439 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3440} 3441 3442/** 3443 * netif_device_present - is device available or removed 3444 * @dev: network device 3445 * 3446 * Check if device has not been removed from system. 3447 */ 3448static inline bool netif_device_present(struct net_device *dev) 3449{ 3450 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3451} 3452 3453void netif_device_detach(struct net_device *dev); 3454 3455void netif_device_attach(struct net_device *dev); 3456 3457/* 3458 * Network interface message level settings 3459 */ 3460 3461enum { 3462 NETIF_MSG_DRV = 0x0001, 3463 NETIF_MSG_PROBE = 0x0002, 3464 NETIF_MSG_LINK = 0x0004, 3465 NETIF_MSG_TIMER = 0x0008, 3466 NETIF_MSG_IFDOWN = 0x0010, 3467 NETIF_MSG_IFUP = 0x0020, 3468 NETIF_MSG_RX_ERR = 0x0040, 3469 NETIF_MSG_TX_ERR = 0x0080, 3470 NETIF_MSG_TX_QUEUED = 0x0100, 3471 NETIF_MSG_INTR = 0x0200, 3472 NETIF_MSG_TX_DONE = 0x0400, 3473 NETIF_MSG_RX_STATUS = 0x0800, 3474 NETIF_MSG_PKTDATA = 0x1000, 3475 NETIF_MSG_HW = 0x2000, 3476 NETIF_MSG_WOL = 0x4000, 3477}; 3478 3479#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3480#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3481#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3482#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3483#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3484#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3485#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3486#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3487#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3488#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3489#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3490#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3491#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3492#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3493#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3494 3495static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3496{ 3497 /* use default */ 3498 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3499 return default_msg_enable_bits; 3500 if (debug_value == 0) /* no output */ 3501 return 0; 3502 /* set low N bits */ 3503 return (1 << debug_value) - 1; 3504} 3505 3506static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3507{ 3508 spin_lock(&txq->_xmit_lock); 3509 txq->xmit_lock_owner = cpu; 3510} 3511 3512static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3513{ 3514 __acquire(&txq->_xmit_lock); 3515 return true; 3516} 3517 3518static inline void __netif_tx_release(struct netdev_queue *txq) 3519{ 3520 __release(&txq->_xmit_lock); 3521} 3522 3523static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3524{ 3525 spin_lock_bh(&txq->_xmit_lock); 3526 txq->xmit_lock_owner = smp_processor_id(); 3527} 3528 3529static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3530{ 3531 bool ok = spin_trylock(&txq->_xmit_lock); 3532 if (likely(ok)) 3533 txq->xmit_lock_owner = smp_processor_id(); 3534 return ok; 3535} 3536 3537static inline void __netif_tx_unlock(struct netdev_queue *txq) 3538{ 3539 txq->xmit_lock_owner = -1; 3540 spin_unlock(&txq->_xmit_lock); 3541} 3542 3543static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3544{ 3545 txq->xmit_lock_owner = -1; 3546 spin_unlock_bh(&txq->_xmit_lock); 3547} 3548 3549static inline void txq_trans_update(struct netdev_queue *txq) 3550{ 3551 if (txq->xmit_lock_owner != -1) 3552 txq->trans_start = jiffies; 3553} 3554 3555/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3556static inline void netif_trans_update(struct net_device *dev) 3557{ 3558 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3559 3560 if (txq->trans_start != jiffies) 3561 txq->trans_start = jiffies; 3562} 3563 3564/** 3565 * netif_tx_lock - grab network device transmit lock 3566 * @dev: network device 3567 * 3568 * Get network device transmit lock 3569 */ 3570static inline void netif_tx_lock(struct net_device *dev) 3571{ 3572 unsigned int i; 3573 int cpu; 3574 3575 spin_lock(&dev->tx_global_lock); 3576 cpu = smp_processor_id(); 3577 for (i = 0; i < dev->num_tx_queues; i++) { 3578 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3579 3580 /* We are the only thread of execution doing a 3581 * freeze, but we have to grab the _xmit_lock in 3582 * order to synchronize with threads which are in 3583 * the ->hard_start_xmit() handler and already 3584 * checked the frozen bit. 3585 */ 3586 __netif_tx_lock(txq, cpu); 3587 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3588 __netif_tx_unlock(txq); 3589 } 3590} 3591 3592static inline void netif_tx_lock_bh(struct net_device *dev) 3593{ 3594 local_bh_disable(); 3595 netif_tx_lock(dev); 3596} 3597 3598static inline void netif_tx_unlock(struct net_device *dev) 3599{ 3600 unsigned int i; 3601 3602 for (i = 0; i < dev->num_tx_queues; i++) { 3603 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3604 3605 /* No need to grab the _xmit_lock here. If the 3606 * queue is not stopped for another reason, we 3607 * force a schedule. 3608 */ 3609 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3610 netif_schedule_queue(txq); 3611 } 3612 spin_unlock(&dev->tx_global_lock); 3613} 3614 3615static inline void netif_tx_unlock_bh(struct net_device *dev) 3616{ 3617 netif_tx_unlock(dev); 3618 local_bh_enable(); 3619} 3620 3621#define HARD_TX_LOCK(dev, txq, cpu) { \ 3622 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3623 __netif_tx_lock(txq, cpu); \ 3624 } else { \ 3625 __netif_tx_acquire(txq); \ 3626 } \ 3627} 3628 3629#define HARD_TX_TRYLOCK(dev, txq) \ 3630 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3631 __netif_tx_trylock(txq) : \ 3632 __netif_tx_acquire(txq)) 3633 3634#define HARD_TX_UNLOCK(dev, txq) { \ 3635 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3636 __netif_tx_unlock(txq); \ 3637 } else { \ 3638 __netif_tx_release(txq); \ 3639 } \ 3640} 3641 3642static inline void netif_tx_disable(struct net_device *dev) 3643{ 3644 unsigned int i; 3645 int cpu; 3646 3647 local_bh_disable(); 3648 cpu = smp_processor_id(); 3649 for (i = 0; i < dev->num_tx_queues; i++) { 3650 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3651 3652 __netif_tx_lock(txq, cpu); 3653 netif_tx_stop_queue(txq); 3654 __netif_tx_unlock(txq); 3655 } 3656 local_bh_enable(); 3657} 3658 3659static inline void netif_addr_lock(struct net_device *dev) 3660{ 3661 spin_lock(&dev->addr_list_lock); 3662} 3663 3664static inline void netif_addr_lock_nested(struct net_device *dev) 3665{ 3666 int subclass = SINGLE_DEPTH_NESTING; 3667 3668 if (dev->netdev_ops->ndo_get_lock_subclass) 3669 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3670 3671 spin_lock_nested(&dev->addr_list_lock, subclass); 3672} 3673 3674static inline void netif_addr_lock_bh(struct net_device *dev) 3675{ 3676 spin_lock_bh(&dev->addr_list_lock); 3677} 3678 3679static inline void netif_addr_unlock(struct net_device *dev) 3680{ 3681 spin_unlock(&dev->addr_list_lock); 3682} 3683 3684static inline void netif_addr_unlock_bh(struct net_device *dev) 3685{ 3686 spin_unlock_bh(&dev->addr_list_lock); 3687} 3688 3689/* 3690 * dev_addrs walker. Should be used only for read access. Call with 3691 * rcu_read_lock held. 3692 */ 3693#define for_each_dev_addr(dev, ha) \ 3694 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3695 3696/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3697 3698void ether_setup(struct net_device *dev); 3699 3700/* Support for loadable net-drivers */ 3701struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3702 unsigned char name_assign_type, 3703 void (*setup)(struct net_device *), 3704 unsigned int txqs, unsigned int rxqs); 3705#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3706 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3707 3708#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3709 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3710 count) 3711 3712int register_netdev(struct net_device *dev); 3713void unregister_netdev(struct net_device *dev); 3714 3715/* General hardware address lists handling functions */ 3716int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3717 struct netdev_hw_addr_list *from_list, int addr_len); 3718void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3719 struct netdev_hw_addr_list *from_list, int addr_len); 3720int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3721 struct net_device *dev, 3722 int (*sync)(struct net_device *, const unsigned char *), 3723 int (*unsync)(struct net_device *, 3724 const unsigned char *)); 3725void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3726 struct net_device *dev, 3727 int (*unsync)(struct net_device *, 3728 const unsigned char *)); 3729void __hw_addr_init(struct netdev_hw_addr_list *list); 3730 3731/* Functions used for device addresses handling */ 3732int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3733 unsigned char addr_type); 3734int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3735 unsigned char addr_type); 3736void dev_addr_flush(struct net_device *dev); 3737int dev_addr_init(struct net_device *dev); 3738 3739/* Functions used for unicast addresses handling */ 3740int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3741int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3742int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3743int dev_uc_sync(struct net_device *to, struct net_device *from); 3744int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3745void dev_uc_unsync(struct net_device *to, struct net_device *from); 3746void dev_uc_flush(struct net_device *dev); 3747void dev_uc_init(struct net_device *dev); 3748 3749/** 3750 * __dev_uc_sync - Synchonize device's unicast list 3751 * @dev: device to sync 3752 * @sync: function to call if address should be added 3753 * @unsync: function to call if address should be removed 3754 * 3755 * Add newly added addresses to the interface, and release 3756 * addresses that have been deleted. 3757 */ 3758static inline int __dev_uc_sync(struct net_device *dev, 3759 int (*sync)(struct net_device *, 3760 const unsigned char *), 3761 int (*unsync)(struct net_device *, 3762 const unsigned char *)) 3763{ 3764 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3765} 3766 3767/** 3768 * __dev_uc_unsync - Remove synchronized addresses from device 3769 * @dev: device to sync 3770 * @unsync: function to call if address should be removed 3771 * 3772 * Remove all addresses that were added to the device by dev_uc_sync(). 3773 */ 3774static inline void __dev_uc_unsync(struct net_device *dev, 3775 int (*unsync)(struct net_device *, 3776 const unsigned char *)) 3777{ 3778 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3779} 3780 3781/* Functions used for multicast addresses handling */ 3782int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3783int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3784int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3785int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3786int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3787int dev_mc_sync(struct net_device *to, struct net_device *from); 3788int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3789void dev_mc_unsync(struct net_device *to, struct net_device *from); 3790void dev_mc_flush(struct net_device *dev); 3791void dev_mc_init(struct net_device *dev); 3792 3793/** 3794 * __dev_mc_sync - Synchonize device's multicast list 3795 * @dev: device to sync 3796 * @sync: function to call if address should be added 3797 * @unsync: function to call if address should be removed 3798 * 3799 * Add newly added addresses to the interface, and release 3800 * addresses that have been deleted. 3801 */ 3802static inline int __dev_mc_sync(struct net_device *dev, 3803 int (*sync)(struct net_device *, 3804 const unsigned char *), 3805 int (*unsync)(struct net_device *, 3806 const unsigned char *)) 3807{ 3808 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3809} 3810 3811/** 3812 * __dev_mc_unsync - Remove synchronized addresses from device 3813 * @dev: device to sync 3814 * @unsync: function to call if address should be removed 3815 * 3816 * Remove all addresses that were added to the device by dev_mc_sync(). 3817 */ 3818static inline void __dev_mc_unsync(struct net_device *dev, 3819 int (*unsync)(struct net_device *, 3820 const unsigned char *)) 3821{ 3822 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3823} 3824 3825/* Functions used for secondary unicast and multicast support */ 3826void dev_set_rx_mode(struct net_device *dev); 3827void __dev_set_rx_mode(struct net_device *dev); 3828int dev_set_promiscuity(struct net_device *dev, int inc); 3829int dev_set_allmulti(struct net_device *dev, int inc); 3830void netdev_state_change(struct net_device *dev); 3831void netdev_notify_peers(struct net_device *dev); 3832void netdev_features_change(struct net_device *dev); 3833/* Load a device via the kmod */ 3834void dev_load(struct net *net, const char *name); 3835struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3836 struct rtnl_link_stats64 *storage); 3837void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3838 const struct net_device_stats *netdev_stats); 3839 3840extern int netdev_max_backlog; 3841extern int netdev_tstamp_prequeue; 3842extern int weight_p; 3843extern int dev_weight_rx_bias; 3844extern int dev_weight_tx_bias; 3845extern int dev_rx_weight; 3846extern int dev_tx_weight; 3847 3848bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3849struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3850 struct list_head **iter); 3851struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3852 struct list_head **iter); 3853 3854/* iterate through upper list, must be called under RCU read lock */ 3855#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3856 for (iter = &(dev)->adj_list.upper, \ 3857 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3858 updev; \ 3859 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3860 3861int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3862 int (*fn)(struct net_device *upper_dev, 3863 void *data), 3864 void *data); 3865 3866bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3867 struct net_device *upper_dev); 3868 3869bool netdev_has_any_upper_dev(struct net_device *dev); 3870 3871void *netdev_lower_get_next_private(struct net_device *dev, 3872 struct list_head **iter); 3873void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3874 struct list_head **iter); 3875 3876#define netdev_for_each_lower_private(dev, priv, iter) \ 3877 for (iter = (dev)->adj_list.lower.next, \ 3878 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3879 priv; \ 3880 priv = netdev_lower_get_next_private(dev, &(iter))) 3881 3882#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3883 for (iter = &(dev)->adj_list.lower, \ 3884 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3885 priv; \ 3886 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3887 3888void *netdev_lower_get_next(struct net_device *dev, 3889 struct list_head **iter); 3890 3891#define netdev_for_each_lower_dev(dev, ldev, iter) \ 3892 for (iter = (dev)->adj_list.lower.next, \ 3893 ldev = netdev_lower_get_next(dev, &(iter)); \ 3894 ldev; \ 3895 ldev = netdev_lower_get_next(dev, &(iter))) 3896 3897struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3898 struct list_head **iter); 3899struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3900 struct list_head **iter); 3901 3902int netdev_walk_all_lower_dev(struct net_device *dev, 3903 int (*fn)(struct net_device *lower_dev, 3904 void *data), 3905 void *data); 3906int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3907 int (*fn)(struct net_device *lower_dev, 3908 void *data), 3909 void *data); 3910 3911void *netdev_adjacent_get_private(struct list_head *adj_list); 3912void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3913struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3914struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3915int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3916int netdev_master_upper_dev_link(struct net_device *dev, 3917 struct net_device *upper_dev, 3918 void *upper_priv, void *upper_info); 3919void netdev_upper_dev_unlink(struct net_device *dev, 3920 struct net_device *upper_dev); 3921void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3922void *netdev_lower_dev_get_private(struct net_device *dev, 3923 struct net_device *lower_dev); 3924void netdev_lower_state_changed(struct net_device *lower_dev, 3925 void *lower_state_info); 3926 3927/* RSS keys are 40 or 52 bytes long */ 3928#define NETDEV_RSS_KEY_LEN 52 3929extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3930void netdev_rss_key_fill(void *buffer, size_t len); 3931 3932int dev_get_nest_level(struct net_device *dev); 3933int skb_checksum_help(struct sk_buff *skb); 3934int skb_crc32c_csum_help(struct sk_buff *skb); 3935int skb_csum_hwoffload_help(struct sk_buff *skb, 3936 const netdev_features_t features); 3937 3938struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3939 netdev_features_t features, bool tx_path); 3940struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3941 netdev_features_t features); 3942 3943struct netdev_bonding_info { 3944 ifslave slave; 3945 ifbond master; 3946}; 3947 3948struct netdev_notifier_bonding_info { 3949 struct netdev_notifier_info info; /* must be first */ 3950 struct netdev_bonding_info bonding_info; 3951}; 3952 3953void netdev_bonding_info_change(struct net_device *dev, 3954 struct netdev_bonding_info *bonding_info); 3955 3956static inline 3957struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3958{ 3959 return __skb_gso_segment(skb, features, true); 3960} 3961__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3962 3963static inline bool can_checksum_protocol(netdev_features_t features, 3964 __be16 protocol) 3965{ 3966 if (protocol == htons(ETH_P_FCOE)) 3967 return !!(features & NETIF_F_FCOE_CRC); 3968 3969 /* Assume this is an IP checksum (not SCTP CRC) */ 3970 3971 if (features & NETIF_F_HW_CSUM) { 3972 /* Can checksum everything */ 3973 return true; 3974 } 3975 3976 switch (protocol) { 3977 case htons(ETH_P_IP): 3978 return !!(features & NETIF_F_IP_CSUM); 3979 case htons(ETH_P_IPV6): 3980 return !!(features & NETIF_F_IPV6_CSUM); 3981 default: 3982 return false; 3983 } 3984} 3985 3986#ifdef CONFIG_BUG 3987void netdev_rx_csum_fault(struct net_device *dev); 3988#else 3989static inline void netdev_rx_csum_fault(struct net_device *dev) 3990{ 3991} 3992#endif 3993/* rx skb timestamps */ 3994void net_enable_timestamp(void); 3995void net_disable_timestamp(void); 3996 3997#ifdef CONFIG_PROC_FS 3998int __init dev_proc_init(void); 3999#else 4000#define dev_proc_init() 0 4001#endif 4002 4003static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4004 struct sk_buff *skb, struct net_device *dev, 4005 bool more) 4006{ 4007 skb->xmit_more = more ? 1 : 0; 4008 return ops->ndo_start_xmit(skb, dev); 4009} 4010 4011static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4012 struct netdev_queue *txq, bool more) 4013{ 4014 const struct net_device_ops *ops = dev->netdev_ops; 4015 int rc; 4016 4017 rc = __netdev_start_xmit(ops, skb, dev, more); 4018 if (rc == NETDEV_TX_OK) 4019 txq_trans_update(txq); 4020 4021 return rc; 4022} 4023 4024int netdev_class_create_file_ns(struct class_attribute *class_attr, 4025 const void *ns); 4026void netdev_class_remove_file_ns(struct class_attribute *class_attr, 4027 const void *ns); 4028 4029static inline int netdev_class_create_file(struct class_attribute *class_attr) 4030{ 4031 return netdev_class_create_file_ns(class_attr, NULL); 4032} 4033 4034static inline void netdev_class_remove_file(struct class_attribute *class_attr) 4035{ 4036 netdev_class_remove_file_ns(class_attr, NULL); 4037} 4038 4039extern struct kobj_ns_type_operations net_ns_type_operations; 4040 4041const char *netdev_drivername(const struct net_device *dev); 4042 4043void linkwatch_run_queue(void); 4044 4045static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4046 netdev_features_t f2) 4047{ 4048 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4049 if (f1 & NETIF_F_HW_CSUM) 4050 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4051 else 4052 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4053 } 4054 4055 return f1 & f2; 4056} 4057 4058static inline netdev_features_t netdev_get_wanted_features( 4059 struct net_device *dev) 4060{ 4061 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4062} 4063netdev_features_t netdev_increment_features(netdev_features_t all, 4064 netdev_features_t one, netdev_features_t mask); 4065 4066/* Allow TSO being used on stacked device : 4067 * Performing the GSO segmentation before last device 4068 * is a performance improvement. 4069 */ 4070static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4071 netdev_features_t mask) 4072{ 4073 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4074} 4075 4076int __netdev_update_features(struct net_device *dev); 4077void netdev_update_features(struct net_device *dev); 4078void netdev_change_features(struct net_device *dev); 4079 4080void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4081 struct net_device *dev); 4082 4083netdev_features_t passthru_features_check(struct sk_buff *skb, 4084 struct net_device *dev, 4085 netdev_features_t features); 4086netdev_features_t netif_skb_features(struct sk_buff *skb); 4087 4088static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4089{ 4090 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4091 4092 /* check flags correspondence */ 4093 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4094 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 4095 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4096 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4097 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4098 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4099 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4100 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4101 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4102 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4103 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4104 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4105 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4106 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4107 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4108 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4109 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4110 4111 return (features & feature) == feature; 4112} 4113 4114static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4115{ 4116 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4117 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4118} 4119 4120static inline bool netif_needs_gso(struct sk_buff *skb, 4121 netdev_features_t features) 4122{ 4123 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4124 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4125 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4126} 4127 4128static inline void netif_set_gso_max_size(struct net_device *dev, 4129 unsigned int size) 4130{ 4131 dev->gso_max_size = size; 4132} 4133 4134static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4135 int pulled_hlen, u16 mac_offset, 4136 int mac_len) 4137{ 4138 skb->protocol = protocol; 4139 skb->encapsulation = 1; 4140 skb_push(skb, pulled_hlen); 4141 skb_reset_transport_header(skb); 4142 skb->mac_header = mac_offset; 4143 skb->network_header = skb->mac_header + mac_len; 4144 skb->mac_len = mac_len; 4145} 4146 4147static inline bool netif_is_macsec(const struct net_device *dev) 4148{ 4149 return dev->priv_flags & IFF_MACSEC; 4150} 4151 4152static inline bool netif_is_macvlan(const struct net_device *dev) 4153{ 4154 return dev->priv_flags & IFF_MACVLAN; 4155} 4156 4157static inline bool netif_is_macvlan_port(const struct net_device *dev) 4158{ 4159 return dev->priv_flags & IFF_MACVLAN_PORT; 4160} 4161 4162static inline bool netif_is_ipvlan(const struct net_device *dev) 4163{ 4164 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4165} 4166 4167static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4168{ 4169 return dev->priv_flags & IFF_IPVLAN_MASTER; 4170} 4171 4172static inline bool netif_is_bond_master(const struct net_device *dev) 4173{ 4174 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4175} 4176 4177static inline bool netif_is_bond_slave(const struct net_device *dev) 4178{ 4179 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4180} 4181 4182static inline bool netif_supports_nofcs(struct net_device *dev) 4183{ 4184 return dev->priv_flags & IFF_SUPP_NOFCS; 4185} 4186 4187static inline bool netif_is_l3_master(const struct net_device *dev) 4188{ 4189 return dev->priv_flags & IFF_L3MDEV_MASTER; 4190} 4191 4192static inline bool netif_is_l3_slave(const struct net_device *dev) 4193{ 4194 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4195} 4196 4197static inline bool netif_is_bridge_master(const struct net_device *dev) 4198{ 4199 return dev->priv_flags & IFF_EBRIDGE; 4200} 4201 4202static inline bool netif_is_bridge_port(const struct net_device *dev) 4203{ 4204 return dev->priv_flags & IFF_BRIDGE_PORT; 4205} 4206 4207static inline bool netif_is_ovs_master(const struct net_device *dev) 4208{ 4209 return dev->priv_flags & IFF_OPENVSWITCH; 4210} 4211 4212static inline bool netif_is_ovs_port(const struct net_device *dev) 4213{ 4214 return dev->priv_flags & IFF_OVS_DATAPATH; 4215} 4216 4217static inline bool netif_is_team_master(const struct net_device *dev) 4218{ 4219 return dev->priv_flags & IFF_TEAM; 4220} 4221 4222static inline bool netif_is_team_port(const struct net_device *dev) 4223{ 4224 return dev->priv_flags & IFF_TEAM_PORT; 4225} 4226 4227static inline bool netif_is_lag_master(const struct net_device *dev) 4228{ 4229 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4230} 4231 4232static inline bool netif_is_lag_port(const struct net_device *dev) 4233{ 4234 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4235} 4236 4237static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4238{ 4239 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4240} 4241 4242/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4243static inline void netif_keep_dst(struct net_device *dev) 4244{ 4245 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4246} 4247 4248/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4249static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4250{ 4251 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4252 return dev->priv_flags & IFF_MACSEC; 4253} 4254 4255extern struct pernet_operations __net_initdata loopback_net_ops; 4256 4257/* Logging, debugging and troubleshooting/diagnostic helpers. */ 4258 4259/* netdev_printk helpers, similar to dev_printk */ 4260 4261static inline const char *netdev_name(const struct net_device *dev) 4262{ 4263 if (!dev->name[0] || strchr(dev->name, '%')) 4264 return "(unnamed net_device)"; 4265 return dev->name; 4266} 4267 4268static inline bool netdev_unregistering(const struct net_device *dev) 4269{ 4270 return dev->reg_state == NETREG_UNREGISTERING; 4271} 4272 4273static inline const char *netdev_reg_state(const struct net_device *dev) 4274{ 4275 switch (dev->reg_state) { 4276 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4277 case NETREG_REGISTERED: return ""; 4278 case NETREG_UNREGISTERING: return " (unregistering)"; 4279 case NETREG_UNREGISTERED: return " (unregistered)"; 4280 case NETREG_RELEASED: return " (released)"; 4281 case NETREG_DUMMY: return " (dummy)"; 4282 } 4283 4284 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4285 return " (unknown)"; 4286} 4287 4288__printf(3, 4) 4289void netdev_printk(const char *level, const struct net_device *dev, 4290 const char *format, ...); 4291__printf(2, 3) 4292void netdev_emerg(const struct net_device *dev, const char *format, ...); 4293__printf(2, 3) 4294void netdev_alert(const struct net_device *dev, const char *format, ...); 4295__printf(2, 3) 4296void netdev_crit(const struct net_device *dev, const char *format, ...); 4297__printf(2, 3) 4298void netdev_err(const struct net_device *dev, const char *format, ...); 4299__printf(2, 3) 4300void netdev_warn(const struct net_device *dev, const char *format, ...); 4301__printf(2, 3) 4302void netdev_notice(const struct net_device *dev, const char *format, ...); 4303__printf(2, 3) 4304void netdev_info(const struct net_device *dev, const char *format, ...); 4305 4306#define MODULE_ALIAS_NETDEV(device) \ 4307 MODULE_ALIAS("netdev-" device) 4308 4309#if defined(CONFIG_DYNAMIC_DEBUG) 4310#define netdev_dbg(__dev, format, args...) \ 4311do { \ 4312 dynamic_netdev_dbg(__dev, format, ##args); \ 4313} while (0) 4314#elif defined(DEBUG) 4315#define netdev_dbg(__dev, format, args...) \ 4316 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4317#else 4318#define netdev_dbg(__dev, format, args...) \ 4319({ \ 4320 if (0) \ 4321 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4322}) 4323#endif 4324 4325#if defined(VERBOSE_DEBUG) 4326#define netdev_vdbg netdev_dbg 4327#else 4328 4329#define netdev_vdbg(dev, format, args...) \ 4330({ \ 4331 if (0) \ 4332 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4333 0; \ 4334}) 4335#endif 4336 4337/* 4338 * netdev_WARN() acts like dev_printk(), but with the key difference 4339 * of using a WARN/WARN_ON to get the message out, including the 4340 * file/line information and a backtrace. 4341 */ 4342#define netdev_WARN(dev, format, args...) \ 4343 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4344 netdev_reg_state(dev), ##args) 4345 4346/* netif printk helpers, similar to netdev_printk */ 4347 4348#define netif_printk(priv, type, level, dev, fmt, args...) \ 4349do { \ 4350 if (netif_msg_##type(priv)) \ 4351 netdev_printk(level, (dev), fmt, ##args); \ 4352} while (0) 4353 4354#define netif_level(level, priv, type, dev, fmt, args...) \ 4355do { \ 4356 if (netif_msg_##type(priv)) \ 4357 netdev_##level(dev, fmt, ##args); \ 4358} while (0) 4359 4360#define netif_emerg(priv, type, dev, fmt, args...) \ 4361 netif_level(emerg, priv, type, dev, fmt, ##args) 4362#define netif_alert(priv, type, dev, fmt, args...) \ 4363 netif_level(alert, priv, type, dev, fmt, ##args) 4364#define netif_crit(priv, type, dev, fmt, args...) \ 4365 netif_level(crit, priv, type, dev, fmt, ##args) 4366#define netif_err(priv, type, dev, fmt, args...) \ 4367 netif_level(err, priv, type, dev, fmt, ##args) 4368#define netif_warn(priv, type, dev, fmt, args...) \ 4369 netif_level(warn, priv, type, dev, fmt, ##args) 4370#define netif_notice(priv, type, dev, fmt, args...) \ 4371 netif_level(notice, priv, type, dev, fmt, ##args) 4372#define netif_info(priv, type, dev, fmt, args...) \ 4373 netif_level(info, priv, type, dev, fmt, ##args) 4374 4375#if defined(CONFIG_DYNAMIC_DEBUG) 4376#define netif_dbg(priv, type, netdev, format, args...) \ 4377do { \ 4378 if (netif_msg_##type(priv)) \ 4379 dynamic_netdev_dbg(netdev, format, ##args); \ 4380} while (0) 4381#elif defined(DEBUG) 4382#define netif_dbg(priv, type, dev, format, args...) \ 4383 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4384#else 4385#define netif_dbg(priv, type, dev, format, args...) \ 4386({ \ 4387 if (0) \ 4388 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4389 0; \ 4390}) 4391#endif 4392 4393/* if @cond then downgrade to debug, else print at @level */ 4394#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4395 do { \ 4396 if (cond) \ 4397 netif_dbg(priv, type, netdev, fmt, ##args); \ 4398 else \ 4399 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4400 } while (0) 4401 4402#if defined(VERBOSE_DEBUG) 4403#define netif_vdbg netif_dbg 4404#else 4405#define netif_vdbg(priv, type, dev, format, args...) \ 4406({ \ 4407 if (0) \ 4408 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4409 0; \ 4410}) 4411#endif 4412 4413/* 4414 * The list of packet types we will receive (as opposed to discard) 4415 * and the routines to invoke. 4416 * 4417 * Why 16. Because with 16 the only overlap we get on a hash of the 4418 * low nibble of the protocol value is RARP/SNAP/X.25. 4419 * 4420 * NOTE: That is no longer true with the addition of VLAN tags. Not 4421 * sure which should go first, but I bet it won't make much 4422 * difference if we are running VLANs. The good news is that 4423 * this protocol won't be in the list unless compiled in, so 4424 * the average user (w/out VLANs) will not be adversely affected. 4425 * --BLG 4426 * 4427 * 0800 IP 4428 * 8100 802.1Q VLAN 4429 * 0001 802.3 4430 * 0002 AX.25 4431 * 0004 802.2 4432 * 8035 RARP 4433 * 0005 SNAP 4434 * 0805 X.25 4435 * 0806 ARP 4436 * 8137 IPX 4437 * 0009 Localtalk 4438 * 86DD IPv6 4439 */ 4440#define PTYPE_HASH_SIZE (16) 4441#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4442 4443#endif /* _LINUX_NETDEVICE_H */