at v4.13 18 kB view raw
1#ifndef _LINUX_MM_TYPES_H 2#define _LINUX_MM_TYPES_H 3 4#include <linux/mm_types_task.h> 5 6#include <linux/auxvec.h> 7#include <linux/list.h> 8#include <linux/spinlock.h> 9#include <linux/rbtree.h> 10#include <linux/rwsem.h> 11#include <linux/completion.h> 12#include <linux/cpumask.h> 13#include <linux/uprobes.h> 14#include <linux/page-flags-layout.h> 15#include <linux/workqueue.h> 16 17#include <asm/mmu.h> 18 19#ifndef AT_VECTOR_SIZE_ARCH 20#define AT_VECTOR_SIZE_ARCH 0 21#endif 22#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 23 24struct address_space; 25struct mem_cgroup; 26 27/* 28 * Each physical page in the system has a struct page associated with 29 * it to keep track of whatever it is we are using the page for at the 30 * moment. Note that we have no way to track which tasks are using 31 * a page, though if it is a pagecache page, rmap structures can tell us 32 * who is mapping it. 33 * 34 * The objects in struct page are organized in double word blocks in 35 * order to allows us to use atomic double word operations on portions 36 * of struct page. That is currently only used by slub but the arrangement 37 * allows the use of atomic double word operations on the flags/mapping 38 * and lru list pointers also. 39 */ 40struct page { 41 /* First double word block */ 42 unsigned long flags; /* Atomic flags, some possibly 43 * updated asynchronously */ 44 union { 45 struct address_space *mapping; /* If low bit clear, points to 46 * inode address_space, or NULL. 47 * If page mapped as anonymous 48 * memory, low bit is set, and 49 * it points to anon_vma object: 50 * see PAGE_MAPPING_ANON below. 51 */ 52 void *s_mem; /* slab first object */ 53 atomic_t compound_mapcount; /* first tail page */ 54 /* page_deferred_list().next -- second tail page */ 55 }; 56 57 /* Second double word */ 58 union { 59 pgoff_t index; /* Our offset within mapping. */ 60 void *freelist; /* sl[aou]b first free object */ 61 /* page_deferred_list().prev -- second tail page */ 62 }; 63 64 union { 65#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 66 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 67 /* Used for cmpxchg_double in slub */ 68 unsigned long counters; 69#else 70 /* 71 * Keep _refcount separate from slub cmpxchg_double data. 72 * As the rest of the double word is protected by slab_lock 73 * but _refcount is not. 74 */ 75 unsigned counters; 76#endif 77 struct { 78 79 union { 80 /* 81 * Count of ptes mapped in mms, to show when 82 * page is mapped & limit reverse map searches. 83 * 84 * Extra information about page type may be 85 * stored here for pages that are never mapped, 86 * in which case the value MUST BE <= -2. 87 * See page-flags.h for more details. 88 */ 89 atomic_t _mapcount; 90 91 unsigned int active; /* SLAB */ 92 struct { /* SLUB */ 93 unsigned inuse:16; 94 unsigned objects:15; 95 unsigned frozen:1; 96 }; 97 int units; /* SLOB */ 98 }; 99 /* 100 * Usage count, *USE WRAPPER FUNCTION* when manual 101 * accounting. See page_ref.h 102 */ 103 atomic_t _refcount; 104 }; 105 }; 106 107 /* 108 * Third double word block 109 * 110 * WARNING: bit 0 of the first word encode PageTail(). That means 111 * the rest users of the storage space MUST NOT use the bit to 112 * avoid collision and false-positive PageTail(). 113 */ 114 union { 115 struct list_head lru; /* Pageout list, eg. active_list 116 * protected by zone_lru_lock ! 117 * Can be used as a generic list 118 * by the page owner. 119 */ 120 struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an 121 * lru or handled by a slab 122 * allocator, this points to the 123 * hosting device page map. 124 */ 125 struct { /* slub per cpu partial pages */ 126 struct page *next; /* Next partial slab */ 127#ifdef CONFIG_64BIT 128 int pages; /* Nr of partial slabs left */ 129 int pobjects; /* Approximate # of objects */ 130#else 131 short int pages; 132 short int pobjects; 133#endif 134 }; 135 136 struct rcu_head rcu_head; /* Used by SLAB 137 * when destroying via RCU 138 */ 139 /* Tail pages of compound page */ 140 struct { 141 unsigned long compound_head; /* If bit zero is set */ 142 143 /* First tail page only */ 144#ifdef CONFIG_64BIT 145 /* 146 * On 64 bit system we have enough space in struct page 147 * to encode compound_dtor and compound_order with 148 * unsigned int. It can help compiler generate better or 149 * smaller code on some archtectures. 150 */ 151 unsigned int compound_dtor; 152 unsigned int compound_order; 153#else 154 unsigned short int compound_dtor; 155 unsigned short int compound_order; 156#endif 157 }; 158 159#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS 160 struct { 161 unsigned long __pad; /* do not overlay pmd_huge_pte 162 * with compound_head to avoid 163 * possible bit 0 collision. 164 */ 165 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 166 }; 167#endif 168 }; 169 170 /* Remainder is not double word aligned */ 171 union { 172 unsigned long private; /* Mapping-private opaque data: 173 * usually used for buffer_heads 174 * if PagePrivate set; used for 175 * swp_entry_t if PageSwapCache; 176 * indicates order in the buddy 177 * system if PG_buddy is set. 178 */ 179#if USE_SPLIT_PTE_PTLOCKS 180#if ALLOC_SPLIT_PTLOCKS 181 spinlock_t *ptl; 182#else 183 spinlock_t ptl; 184#endif 185#endif 186 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */ 187 }; 188 189#ifdef CONFIG_MEMCG 190 struct mem_cgroup *mem_cgroup; 191#endif 192 193 /* 194 * On machines where all RAM is mapped into kernel address space, 195 * we can simply calculate the virtual address. On machines with 196 * highmem some memory is mapped into kernel virtual memory 197 * dynamically, so we need a place to store that address. 198 * Note that this field could be 16 bits on x86 ... ;) 199 * 200 * Architectures with slow multiplication can define 201 * WANT_PAGE_VIRTUAL in asm/page.h 202 */ 203#if defined(WANT_PAGE_VIRTUAL) 204 void *virtual; /* Kernel virtual address (NULL if 205 not kmapped, ie. highmem) */ 206#endif /* WANT_PAGE_VIRTUAL */ 207 208#ifdef CONFIG_KMEMCHECK 209 /* 210 * kmemcheck wants to track the status of each byte in a page; this 211 * is a pointer to such a status block. NULL if not tracked. 212 */ 213 void *shadow; 214#endif 215 216#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 217 int _last_cpupid; 218#endif 219} 220/* 221 * The struct page can be forced to be double word aligned so that atomic ops 222 * on double words work. The SLUB allocator can make use of such a feature. 223 */ 224#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 225 __aligned(2 * sizeof(unsigned long)) 226#endif 227; 228 229#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 230#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 231 232struct page_frag_cache { 233 void * va; 234#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 235 __u16 offset; 236 __u16 size; 237#else 238 __u32 offset; 239#endif 240 /* we maintain a pagecount bias, so that we dont dirty cache line 241 * containing page->_refcount every time we allocate a fragment. 242 */ 243 unsigned int pagecnt_bias; 244 bool pfmemalloc; 245}; 246 247typedef unsigned long vm_flags_t; 248 249/* 250 * A region containing a mapping of a non-memory backed file under NOMMU 251 * conditions. These are held in a global tree and are pinned by the VMAs that 252 * map parts of them. 253 */ 254struct vm_region { 255 struct rb_node vm_rb; /* link in global region tree */ 256 vm_flags_t vm_flags; /* VMA vm_flags */ 257 unsigned long vm_start; /* start address of region */ 258 unsigned long vm_end; /* region initialised to here */ 259 unsigned long vm_top; /* region allocated to here */ 260 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 261 struct file *vm_file; /* the backing file or NULL */ 262 263 int vm_usage; /* region usage count (access under nommu_region_sem) */ 264 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 265 * this region */ 266}; 267 268#ifdef CONFIG_USERFAULTFD 269#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 270struct vm_userfaultfd_ctx { 271 struct userfaultfd_ctx *ctx; 272}; 273#else /* CONFIG_USERFAULTFD */ 274#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 275struct vm_userfaultfd_ctx {}; 276#endif /* CONFIG_USERFAULTFD */ 277 278/* 279 * This struct defines a memory VMM memory area. There is one of these 280 * per VM-area/task. A VM area is any part of the process virtual memory 281 * space that has a special rule for the page-fault handlers (ie a shared 282 * library, the executable area etc). 283 */ 284struct vm_area_struct { 285 /* The first cache line has the info for VMA tree walking. */ 286 287 unsigned long vm_start; /* Our start address within vm_mm. */ 288 unsigned long vm_end; /* The first byte after our end address 289 within vm_mm. */ 290 291 /* linked list of VM areas per task, sorted by address */ 292 struct vm_area_struct *vm_next, *vm_prev; 293 294 struct rb_node vm_rb; 295 296 /* 297 * Largest free memory gap in bytes to the left of this VMA. 298 * Either between this VMA and vma->vm_prev, or between one of the 299 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 300 * get_unmapped_area find a free area of the right size. 301 */ 302 unsigned long rb_subtree_gap; 303 304 /* Second cache line starts here. */ 305 306 struct mm_struct *vm_mm; /* The address space we belong to. */ 307 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 308 unsigned long vm_flags; /* Flags, see mm.h. */ 309 310 /* 311 * For areas with an address space and backing store, 312 * linkage into the address_space->i_mmap interval tree. 313 */ 314 struct { 315 struct rb_node rb; 316 unsigned long rb_subtree_last; 317 } shared; 318 319 /* 320 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 321 * list, after a COW of one of the file pages. A MAP_SHARED vma 322 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 323 * or brk vma (with NULL file) can only be in an anon_vma list. 324 */ 325 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 326 * page_table_lock */ 327 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 328 329 /* Function pointers to deal with this struct. */ 330 const struct vm_operations_struct *vm_ops; 331 332 /* Information about our backing store: */ 333 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 334 units */ 335 struct file * vm_file; /* File we map to (can be NULL). */ 336 void * vm_private_data; /* was vm_pte (shared mem) */ 337 338#ifndef CONFIG_MMU 339 struct vm_region *vm_region; /* NOMMU mapping region */ 340#endif 341#ifdef CONFIG_NUMA 342 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 343#endif 344 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 345} __randomize_layout; 346 347struct core_thread { 348 struct task_struct *task; 349 struct core_thread *next; 350}; 351 352struct core_state { 353 atomic_t nr_threads; 354 struct core_thread dumper; 355 struct completion startup; 356}; 357 358struct kioctx_table; 359struct mm_struct { 360 struct vm_area_struct *mmap; /* list of VMAs */ 361 struct rb_root mm_rb; 362 u32 vmacache_seqnum; /* per-thread vmacache */ 363#ifdef CONFIG_MMU 364 unsigned long (*get_unmapped_area) (struct file *filp, 365 unsigned long addr, unsigned long len, 366 unsigned long pgoff, unsigned long flags); 367#endif 368 unsigned long mmap_base; /* base of mmap area */ 369 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 370#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 371 /* Base adresses for compatible mmap() */ 372 unsigned long mmap_compat_base; 373 unsigned long mmap_compat_legacy_base; 374#endif 375 unsigned long task_size; /* size of task vm space */ 376 unsigned long highest_vm_end; /* highest vma end address */ 377 pgd_t * pgd; 378 379 /** 380 * @mm_users: The number of users including userspace. 381 * 382 * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops 383 * to 0 (i.e. when the task exits and there are no other temporary 384 * reference holders), we also release a reference on @mm_count 385 * (which may then free the &struct mm_struct if @mm_count also 386 * drops to 0). 387 */ 388 atomic_t mm_users; 389 390 /** 391 * @mm_count: The number of references to &struct mm_struct 392 * (@mm_users count as 1). 393 * 394 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 395 * &struct mm_struct is freed. 396 */ 397 atomic_t mm_count; 398 399 atomic_long_t nr_ptes; /* PTE page table pages */ 400#if CONFIG_PGTABLE_LEVELS > 2 401 atomic_long_t nr_pmds; /* PMD page table pages */ 402#endif 403 int map_count; /* number of VMAs */ 404 405 spinlock_t page_table_lock; /* Protects page tables and some counters */ 406 struct rw_semaphore mmap_sem; 407 408 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 409 * together off init_mm.mmlist, and are protected 410 * by mmlist_lock 411 */ 412 413 414 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 415 unsigned long hiwater_vm; /* High-water virtual memory usage */ 416 417 unsigned long total_vm; /* Total pages mapped */ 418 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 419 unsigned long pinned_vm; /* Refcount permanently increased */ 420 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 421 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 422 unsigned long stack_vm; /* VM_STACK */ 423 unsigned long def_flags; 424 unsigned long start_code, end_code, start_data, end_data; 425 unsigned long start_brk, brk, start_stack; 426 unsigned long arg_start, arg_end, env_start, env_end; 427 428 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 429 430 /* 431 * Special counters, in some configurations protected by the 432 * page_table_lock, in other configurations by being atomic. 433 */ 434 struct mm_rss_stat rss_stat; 435 436 struct linux_binfmt *binfmt; 437 438 cpumask_var_t cpu_vm_mask_var; 439 440 /* Architecture-specific MM context */ 441 mm_context_t context; 442 443 unsigned long flags; /* Must use atomic bitops to access the bits */ 444 445 struct core_state *core_state; /* coredumping support */ 446#ifdef CONFIG_AIO 447 spinlock_t ioctx_lock; 448 struct kioctx_table __rcu *ioctx_table; 449#endif 450#ifdef CONFIG_MEMCG 451 /* 452 * "owner" points to a task that is regarded as the canonical 453 * user/owner of this mm. All of the following must be true in 454 * order for it to be changed: 455 * 456 * current == mm->owner 457 * current->mm != mm 458 * new_owner->mm == mm 459 * new_owner->alloc_lock is held 460 */ 461 struct task_struct __rcu *owner; 462#endif 463 struct user_namespace *user_ns; 464 465 /* store ref to file /proc/<pid>/exe symlink points to */ 466 struct file __rcu *exe_file; 467#ifdef CONFIG_MMU_NOTIFIER 468 struct mmu_notifier_mm *mmu_notifier_mm; 469#endif 470#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 471 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 472#endif 473#ifdef CONFIG_CPUMASK_OFFSTACK 474 struct cpumask cpumask_allocation; 475#endif 476#ifdef CONFIG_NUMA_BALANCING 477 /* 478 * numa_next_scan is the next time that the PTEs will be marked 479 * pte_numa. NUMA hinting faults will gather statistics and migrate 480 * pages to new nodes if necessary. 481 */ 482 unsigned long numa_next_scan; 483 484 /* Restart point for scanning and setting pte_numa */ 485 unsigned long numa_scan_offset; 486 487 /* numa_scan_seq prevents two threads setting pte_numa */ 488 int numa_scan_seq; 489#endif 490 /* 491 * An operation with batched TLB flushing is going on. Anything that 492 * can move process memory needs to flush the TLB when moving a 493 * PROT_NONE or PROT_NUMA mapped page. 494 */ 495 atomic_t tlb_flush_pending; 496#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 497 /* See flush_tlb_batched_pending() */ 498 bool tlb_flush_batched; 499#endif 500 struct uprobes_state uprobes_state; 501#ifdef CONFIG_HUGETLB_PAGE 502 atomic_long_t hugetlb_usage; 503#endif 504 struct work_struct async_put_work; 505} __randomize_layout; 506 507extern struct mm_struct init_mm; 508 509static inline void mm_init_cpumask(struct mm_struct *mm) 510{ 511#ifdef CONFIG_CPUMASK_OFFSTACK 512 mm->cpu_vm_mask_var = &mm->cpumask_allocation; 513#endif 514 cpumask_clear(mm->cpu_vm_mask_var); 515} 516 517/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 518static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 519{ 520 return mm->cpu_vm_mask_var; 521} 522 523struct mmu_gather; 524extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 525 unsigned long start, unsigned long end); 526extern void tlb_finish_mmu(struct mmu_gather *tlb, 527 unsigned long start, unsigned long end); 528 529/* 530 * Memory barriers to keep this state in sync are graciously provided by 531 * the page table locks, outside of which no page table modifications happen. 532 * The barriers are used to ensure the order between tlb_flush_pending updates, 533 * which happen while the lock is not taken, and the PTE updates, which happen 534 * while the lock is taken, are serialized. 535 */ 536static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 537{ 538 return atomic_read(&mm->tlb_flush_pending) > 0; 539} 540 541/* 542 * Returns true if there are two above TLB batching threads in parallel. 543 */ 544static inline bool mm_tlb_flush_nested(struct mm_struct *mm) 545{ 546 return atomic_read(&mm->tlb_flush_pending) > 1; 547} 548 549static inline void init_tlb_flush_pending(struct mm_struct *mm) 550{ 551 atomic_set(&mm->tlb_flush_pending, 0); 552} 553 554static inline void inc_tlb_flush_pending(struct mm_struct *mm) 555{ 556 atomic_inc(&mm->tlb_flush_pending); 557 558 /* 559 * Guarantee that the tlb_flush_pending increase does not leak into the 560 * critical section updating the page tables 561 */ 562 smp_mb__before_spinlock(); 563} 564 565/* Clearing is done after a TLB flush, which also provides a barrier. */ 566static inline void dec_tlb_flush_pending(struct mm_struct *mm) 567{ 568 /* 569 * Guarantee that the tlb_flush_pending does not not leak into the 570 * critical section, since we must order the PTE change and changes to 571 * the pending TLB flush indication. We could have relied on TLB flush 572 * as a memory barrier, but this behavior is not clearly documented. 573 */ 574 smp_mb__before_atomic(); 575 atomic_dec(&mm->tlb_flush_pending); 576} 577 578struct vm_fault; 579 580struct vm_special_mapping { 581 const char *name; /* The name, e.g. "[vdso]". */ 582 583 /* 584 * If .fault is not provided, this points to a 585 * NULL-terminated array of pages that back the special mapping. 586 * 587 * This must not be NULL unless .fault is provided. 588 */ 589 struct page **pages; 590 591 /* 592 * If non-NULL, then this is called to resolve page faults 593 * on the special mapping. If used, .pages is not checked. 594 */ 595 int (*fault)(const struct vm_special_mapping *sm, 596 struct vm_area_struct *vma, 597 struct vm_fault *vmf); 598 599 int (*mremap)(const struct vm_special_mapping *sm, 600 struct vm_area_struct *new_vma); 601}; 602 603enum tlb_flush_reason { 604 TLB_FLUSH_ON_TASK_SWITCH, 605 TLB_REMOTE_SHOOTDOWN, 606 TLB_LOCAL_SHOOTDOWN, 607 TLB_LOCAL_MM_SHOOTDOWN, 608 TLB_REMOTE_SEND_IPI, 609 NR_TLB_FLUSH_REASONS, 610}; 611 612 /* 613 * A swap entry has to fit into a "unsigned long", as the entry is hidden 614 * in the "index" field of the swapper address space. 615 */ 616typedef struct { 617 unsigned long val; 618} swp_entry_t; 619 620#endif /* _LINUX_MM_TYPES_H */