at v4.13 28 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26#include <linux/page_counter.h> 27#include <linux/vmpressure.h> 28#include <linux/eventfd.h> 29#include <linux/mm.h> 30#include <linux/vmstat.h> 31#include <linux/writeback.h> 32#include <linux/page-flags.h> 33 34struct mem_cgroup; 35struct page; 36struct mm_struct; 37struct kmem_cache; 38 39/* Cgroup-specific page state, on top of universal node page state */ 40enum memcg_stat_item { 41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 42 MEMCG_RSS, 43 MEMCG_RSS_HUGE, 44 MEMCG_SWAP, 45 MEMCG_SOCK, 46 /* XXX: why are these zone and not node counters? */ 47 MEMCG_KERNEL_STACK_KB, 48 MEMCG_NR_STAT, 49}; 50 51/* Cgroup-specific events, on top of universal VM events */ 52enum memcg_event_item { 53 MEMCG_LOW = NR_VM_EVENT_ITEMS, 54 MEMCG_HIGH, 55 MEMCG_MAX, 56 MEMCG_OOM, 57 MEMCG_NR_EVENTS, 58}; 59 60struct mem_cgroup_reclaim_cookie { 61 pg_data_t *pgdat; 62 int priority; 63 unsigned int generation; 64}; 65 66#ifdef CONFIG_MEMCG 67 68#define MEM_CGROUP_ID_SHIFT 16 69#define MEM_CGROUP_ID_MAX USHRT_MAX 70 71struct mem_cgroup_id { 72 int id; 73 atomic_t ref; 74}; 75 76/* 77 * Per memcg event counter is incremented at every pagein/pageout. With THP, 78 * it will be incremated by the number of pages. This counter is used for 79 * for trigger some periodic events. This is straightforward and better 80 * than using jiffies etc. to handle periodic memcg event. 81 */ 82enum mem_cgroup_events_target { 83 MEM_CGROUP_TARGET_THRESH, 84 MEM_CGROUP_TARGET_SOFTLIMIT, 85 MEM_CGROUP_TARGET_NUMAINFO, 86 MEM_CGROUP_NTARGETS, 87}; 88 89struct mem_cgroup_stat_cpu { 90 long count[MEMCG_NR_STAT]; 91 unsigned long events[MEMCG_NR_EVENTS]; 92 unsigned long nr_page_events; 93 unsigned long targets[MEM_CGROUP_NTARGETS]; 94}; 95 96struct mem_cgroup_reclaim_iter { 97 struct mem_cgroup *position; 98 /* scan generation, increased every round-trip */ 99 unsigned int generation; 100}; 101 102struct lruvec_stat { 103 long count[NR_VM_NODE_STAT_ITEMS]; 104}; 105 106/* 107 * per-zone information in memory controller. 108 */ 109struct mem_cgroup_per_node { 110 struct lruvec lruvec; 111 struct lruvec_stat __percpu *lruvec_stat; 112 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 113 114 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 115 116 struct rb_node tree_node; /* RB tree node */ 117 unsigned long usage_in_excess;/* Set to the value by which */ 118 /* the soft limit is exceeded*/ 119 bool on_tree; 120 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 121 /* use container_of */ 122}; 123 124struct mem_cgroup_threshold { 125 struct eventfd_ctx *eventfd; 126 unsigned long threshold; 127}; 128 129/* For threshold */ 130struct mem_cgroup_threshold_ary { 131 /* An array index points to threshold just below or equal to usage. */ 132 int current_threshold; 133 /* Size of entries[] */ 134 unsigned int size; 135 /* Array of thresholds */ 136 struct mem_cgroup_threshold entries[0]; 137}; 138 139struct mem_cgroup_thresholds { 140 /* Primary thresholds array */ 141 struct mem_cgroup_threshold_ary *primary; 142 /* 143 * Spare threshold array. 144 * This is needed to make mem_cgroup_unregister_event() "never fail". 145 * It must be able to store at least primary->size - 1 entries. 146 */ 147 struct mem_cgroup_threshold_ary *spare; 148}; 149 150enum memcg_kmem_state { 151 KMEM_NONE, 152 KMEM_ALLOCATED, 153 KMEM_ONLINE, 154}; 155 156/* 157 * The memory controller data structure. The memory controller controls both 158 * page cache and RSS per cgroup. We would eventually like to provide 159 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 160 * to help the administrator determine what knobs to tune. 161 */ 162struct mem_cgroup { 163 struct cgroup_subsys_state css; 164 165 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 166 struct mem_cgroup_id id; 167 168 /* Accounted resources */ 169 struct page_counter memory; 170 struct page_counter swap; 171 172 /* Legacy consumer-oriented counters */ 173 struct page_counter memsw; 174 struct page_counter kmem; 175 struct page_counter tcpmem; 176 177 /* Normal memory consumption range */ 178 unsigned long low; 179 unsigned long high; 180 181 /* Range enforcement for interrupt charges */ 182 struct work_struct high_work; 183 184 unsigned long soft_limit; 185 186 /* vmpressure notifications */ 187 struct vmpressure vmpressure; 188 189 /* 190 * Should the accounting and control be hierarchical, per subtree? 191 */ 192 bool use_hierarchy; 193 194 /* protected by memcg_oom_lock */ 195 bool oom_lock; 196 int under_oom; 197 198 int swappiness; 199 /* OOM-Killer disable */ 200 int oom_kill_disable; 201 202 /* handle for "memory.events" */ 203 struct cgroup_file events_file; 204 205 /* protect arrays of thresholds */ 206 struct mutex thresholds_lock; 207 208 /* thresholds for memory usage. RCU-protected */ 209 struct mem_cgroup_thresholds thresholds; 210 211 /* thresholds for mem+swap usage. RCU-protected */ 212 struct mem_cgroup_thresholds memsw_thresholds; 213 214 /* For oom notifier event fd */ 215 struct list_head oom_notify; 216 217 /* 218 * Should we move charges of a task when a task is moved into this 219 * mem_cgroup ? And what type of charges should we move ? 220 */ 221 unsigned long move_charge_at_immigrate; 222 /* 223 * set > 0 if pages under this cgroup are moving to other cgroup. 224 */ 225 atomic_t moving_account; 226 /* taken only while moving_account > 0 */ 227 spinlock_t move_lock; 228 struct task_struct *move_lock_task; 229 unsigned long move_lock_flags; 230 /* 231 * percpu counter. 232 */ 233 struct mem_cgroup_stat_cpu __percpu *stat; 234 235 unsigned long socket_pressure; 236 237 /* Legacy tcp memory accounting */ 238 bool tcpmem_active; 239 int tcpmem_pressure; 240 241#ifndef CONFIG_SLOB 242 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 243 int kmemcg_id; 244 enum memcg_kmem_state kmem_state; 245 struct list_head kmem_caches; 246#endif 247 248 int last_scanned_node; 249#if MAX_NUMNODES > 1 250 nodemask_t scan_nodes; 251 atomic_t numainfo_events; 252 atomic_t numainfo_updating; 253#endif 254 255#ifdef CONFIG_CGROUP_WRITEBACK 256 struct list_head cgwb_list; 257 struct wb_domain cgwb_domain; 258#endif 259 260 /* List of events which userspace want to receive */ 261 struct list_head event_list; 262 spinlock_t event_list_lock; 263 264 struct mem_cgroup_per_node *nodeinfo[0]; 265 /* WARNING: nodeinfo must be the last member here */ 266}; 267 268extern struct mem_cgroup *root_mem_cgroup; 269 270static inline bool mem_cgroup_disabled(void) 271{ 272 return !cgroup_subsys_enabled(memory_cgrp_subsys); 273} 274 275static inline void mem_cgroup_event(struct mem_cgroup *memcg, 276 enum memcg_event_item event) 277{ 278 this_cpu_inc(memcg->stat->events[event]); 279 cgroup_file_notify(&memcg->events_file); 280} 281 282bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg); 283 284int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 285 gfp_t gfp_mask, struct mem_cgroup **memcgp, 286 bool compound); 287void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 288 bool lrucare, bool compound); 289void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 290 bool compound); 291void mem_cgroup_uncharge(struct page *page); 292void mem_cgroup_uncharge_list(struct list_head *page_list); 293 294void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 295 296static struct mem_cgroup_per_node * 297mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 298{ 299 return memcg->nodeinfo[nid]; 300} 301 302/** 303 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 304 * @node: node of the wanted lruvec 305 * @memcg: memcg of the wanted lruvec 306 * 307 * Returns the lru list vector holding pages for a given @node or a given 308 * @memcg and @zone. This can be the node lruvec, if the memory controller 309 * is disabled. 310 */ 311static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 312 struct mem_cgroup *memcg) 313{ 314 struct mem_cgroup_per_node *mz; 315 struct lruvec *lruvec; 316 317 if (mem_cgroup_disabled()) { 318 lruvec = node_lruvec(pgdat); 319 goto out; 320 } 321 322 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 323 lruvec = &mz->lruvec; 324out: 325 /* 326 * Since a node can be onlined after the mem_cgroup was created, 327 * we have to be prepared to initialize lruvec->pgdat here; 328 * and if offlined then reonlined, we need to reinitialize it. 329 */ 330 if (unlikely(lruvec->pgdat != pgdat)) 331 lruvec->pgdat = pgdat; 332 return lruvec; 333} 334 335struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 336 337bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 338struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 339 340static inline 341struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 342 return css ? container_of(css, struct mem_cgroup, css) : NULL; 343} 344 345#define mem_cgroup_from_counter(counter, member) \ 346 container_of(counter, struct mem_cgroup, member) 347 348struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 349 struct mem_cgroup *, 350 struct mem_cgroup_reclaim_cookie *); 351void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 352int mem_cgroup_scan_tasks(struct mem_cgroup *, 353 int (*)(struct task_struct *, void *), void *); 354 355static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 356{ 357 if (mem_cgroup_disabled()) 358 return 0; 359 360 return memcg->id.id; 361} 362struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 363 364static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 365{ 366 struct mem_cgroup_per_node *mz; 367 368 if (mem_cgroup_disabled()) 369 return NULL; 370 371 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 372 return mz->memcg; 373} 374 375/** 376 * parent_mem_cgroup - find the accounting parent of a memcg 377 * @memcg: memcg whose parent to find 378 * 379 * Returns the parent memcg, or NULL if this is the root or the memory 380 * controller is in legacy no-hierarchy mode. 381 */ 382static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 383{ 384 if (!memcg->memory.parent) 385 return NULL; 386 return mem_cgroup_from_counter(memcg->memory.parent, memory); 387} 388 389static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 390 struct mem_cgroup *root) 391{ 392 if (root == memcg) 393 return true; 394 if (!root->use_hierarchy) 395 return false; 396 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 397} 398 399static inline bool mm_match_cgroup(struct mm_struct *mm, 400 struct mem_cgroup *memcg) 401{ 402 struct mem_cgroup *task_memcg; 403 bool match = false; 404 405 rcu_read_lock(); 406 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 407 if (task_memcg) 408 match = mem_cgroup_is_descendant(task_memcg, memcg); 409 rcu_read_unlock(); 410 return match; 411} 412 413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 414ino_t page_cgroup_ino(struct page *page); 415 416static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 417{ 418 if (mem_cgroup_disabled()) 419 return true; 420 return !!(memcg->css.flags & CSS_ONLINE); 421} 422 423/* 424 * For memory reclaim. 425 */ 426int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 427 428void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 429 int zid, int nr_pages); 430 431unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 432 int nid, unsigned int lru_mask); 433 434static inline 435unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 436{ 437 struct mem_cgroup_per_node *mz; 438 unsigned long nr_pages = 0; 439 int zid; 440 441 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 442 for (zid = 0; zid < MAX_NR_ZONES; zid++) 443 nr_pages += mz->lru_zone_size[zid][lru]; 444 return nr_pages; 445} 446 447static inline 448unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 449 enum lru_list lru, int zone_idx) 450{ 451 struct mem_cgroup_per_node *mz; 452 453 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 454 return mz->lru_zone_size[zone_idx][lru]; 455} 456 457void mem_cgroup_handle_over_high(void); 458 459unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg); 460 461void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 462 struct task_struct *p); 463 464static inline void mem_cgroup_oom_enable(void) 465{ 466 WARN_ON(current->memcg_may_oom); 467 current->memcg_may_oom = 1; 468} 469 470static inline void mem_cgroup_oom_disable(void) 471{ 472 WARN_ON(!current->memcg_may_oom); 473 current->memcg_may_oom = 0; 474} 475 476static inline bool task_in_memcg_oom(struct task_struct *p) 477{ 478 return p->memcg_in_oom; 479} 480 481bool mem_cgroup_oom_synchronize(bool wait); 482 483#ifdef CONFIG_MEMCG_SWAP 484extern int do_swap_account; 485#endif 486 487struct mem_cgroup *lock_page_memcg(struct page *page); 488void __unlock_page_memcg(struct mem_cgroup *memcg); 489void unlock_page_memcg(struct page *page); 490 491static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 492 enum memcg_stat_item idx) 493{ 494 long val = 0; 495 int cpu; 496 497 for_each_possible_cpu(cpu) 498 val += per_cpu(memcg->stat->count[idx], cpu); 499 500 if (val < 0) 501 val = 0; 502 503 return val; 504} 505 506static inline void __mod_memcg_state(struct mem_cgroup *memcg, 507 enum memcg_stat_item idx, int val) 508{ 509 if (!mem_cgroup_disabled()) 510 __this_cpu_add(memcg->stat->count[idx], val); 511} 512 513static inline void mod_memcg_state(struct mem_cgroup *memcg, 514 enum memcg_stat_item idx, int val) 515{ 516 if (!mem_cgroup_disabled()) 517 this_cpu_add(memcg->stat->count[idx], val); 518} 519 520/** 521 * mod_memcg_page_state - update page state statistics 522 * @page: the page 523 * @idx: page state item to account 524 * @val: number of pages (positive or negative) 525 * 526 * The @page must be locked or the caller must use lock_page_memcg() 527 * to prevent double accounting when the page is concurrently being 528 * moved to another memcg: 529 * 530 * lock_page(page) or lock_page_memcg(page) 531 * if (TestClearPageState(page)) 532 * mod_memcg_page_state(page, state, -1); 533 * unlock_page(page) or unlock_page_memcg(page) 534 * 535 * Kernel pages are an exception to this, since they'll never move. 536 */ 537static inline void __mod_memcg_page_state(struct page *page, 538 enum memcg_stat_item idx, int val) 539{ 540 if (page->mem_cgroup) 541 __mod_memcg_state(page->mem_cgroup, idx, val); 542} 543 544static inline void mod_memcg_page_state(struct page *page, 545 enum memcg_stat_item idx, int val) 546{ 547 if (page->mem_cgroup) 548 mod_memcg_state(page->mem_cgroup, idx, val); 549} 550 551static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 552 enum node_stat_item idx) 553{ 554 struct mem_cgroup_per_node *pn; 555 long val = 0; 556 int cpu; 557 558 if (mem_cgroup_disabled()) 559 return node_page_state(lruvec_pgdat(lruvec), idx); 560 561 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 562 for_each_possible_cpu(cpu) 563 val += per_cpu(pn->lruvec_stat->count[idx], cpu); 564 565 if (val < 0) 566 val = 0; 567 568 return val; 569} 570 571static inline void __mod_lruvec_state(struct lruvec *lruvec, 572 enum node_stat_item idx, int val) 573{ 574 struct mem_cgroup_per_node *pn; 575 576 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 577 if (mem_cgroup_disabled()) 578 return; 579 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 580 __mod_memcg_state(pn->memcg, idx, val); 581 __this_cpu_add(pn->lruvec_stat->count[idx], val); 582} 583 584static inline void mod_lruvec_state(struct lruvec *lruvec, 585 enum node_stat_item idx, int val) 586{ 587 struct mem_cgroup_per_node *pn; 588 589 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 590 if (mem_cgroup_disabled()) 591 return; 592 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 593 mod_memcg_state(pn->memcg, idx, val); 594 this_cpu_add(pn->lruvec_stat->count[idx], val); 595} 596 597static inline void __mod_lruvec_page_state(struct page *page, 598 enum node_stat_item idx, int val) 599{ 600 struct mem_cgroup_per_node *pn; 601 602 __mod_node_page_state(page_pgdat(page), idx, val); 603 if (mem_cgroup_disabled() || !page->mem_cgroup) 604 return; 605 __mod_memcg_state(page->mem_cgroup, idx, val); 606 pn = page->mem_cgroup->nodeinfo[page_to_nid(page)]; 607 __this_cpu_add(pn->lruvec_stat->count[idx], val); 608} 609 610static inline void mod_lruvec_page_state(struct page *page, 611 enum node_stat_item idx, int val) 612{ 613 struct mem_cgroup_per_node *pn; 614 615 mod_node_page_state(page_pgdat(page), idx, val); 616 if (mem_cgroup_disabled() || !page->mem_cgroup) 617 return; 618 mod_memcg_state(page->mem_cgroup, idx, val); 619 pn = page->mem_cgroup->nodeinfo[page_to_nid(page)]; 620 this_cpu_add(pn->lruvec_stat->count[idx], val); 621} 622 623unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 624 gfp_t gfp_mask, 625 unsigned long *total_scanned); 626 627static inline void count_memcg_events(struct mem_cgroup *memcg, 628 enum vm_event_item idx, 629 unsigned long count) 630{ 631 if (!mem_cgroup_disabled()) 632 this_cpu_add(memcg->stat->events[idx], count); 633} 634 635static inline void count_memcg_page_event(struct page *page, 636 enum memcg_stat_item idx) 637{ 638 if (page->mem_cgroup) 639 count_memcg_events(page->mem_cgroup, idx, 1); 640} 641 642static inline void count_memcg_event_mm(struct mm_struct *mm, 643 enum vm_event_item idx) 644{ 645 struct mem_cgroup *memcg; 646 647 if (mem_cgroup_disabled()) 648 return; 649 650 rcu_read_lock(); 651 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 652 if (likely(memcg)) { 653 this_cpu_inc(memcg->stat->events[idx]); 654 if (idx == OOM_KILL) 655 cgroup_file_notify(&memcg->events_file); 656 } 657 rcu_read_unlock(); 658} 659#ifdef CONFIG_TRANSPARENT_HUGEPAGE 660void mem_cgroup_split_huge_fixup(struct page *head); 661#endif 662 663#else /* CONFIG_MEMCG */ 664 665#define MEM_CGROUP_ID_SHIFT 0 666#define MEM_CGROUP_ID_MAX 0 667 668struct mem_cgroup; 669 670static inline bool mem_cgroup_disabled(void) 671{ 672 return true; 673} 674 675static inline void mem_cgroup_event(struct mem_cgroup *memcg, 676 enum memcg_event_item event) 677{ 678} 679 680static inline bool mem_cgroup_low(struct mem_cgroup *root, 681 struct mem_cgroup *memcg) 682{ 683 return false; 684} 685 686static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 687 gfp_t gfp_mask, 688 struct mem_cgroup **memcgp, 689 bool compound) 690{ 691 *memcgp = NULL; 692 return 0; 693} 694 695static inline void mem_cgroup_commit_charge(struct page *page, 696 struct mem_cgroup *memcg, 697 bool lrucare, bool compound) 698{ 699} 700 701static inline void mem_cgroup_cancel_charge(struct page *page, 702 struct mem_cgroup *memcg, 703 bool compound) 704{ 705} 706 707static inline void mem_cgroup_uncharge(struct page *page) 708{ 709} 710 711static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 712{ 713} 714 715static inline void mem_cgroup_migrate(struct page *old, struct page *new) 716{ 717} 718 719static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 720 struct mem_cgroup *memcg) 721{ 722 return node_lruvec(pgdat); 723} 724 725static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 726 struct pglist_data *pgdat) 727{ 728 return &pgdat->lruvec; 729} 730 731static inline bool mm_match_cgroup(struct mm_struct *mm, 732 struct mem_cgroup *memcg) 733{ 734 return true; 735} 736 737static inline bool task_in_mem_cgroup(struct task_struct *task, 738 const struct mem_cgroup *memcg) 739{ 740 return true; 741} 742 743static inline struct mem_cgroup * 744mem_cgroup_iter(struct mem_cgroup *root, 745 struct mem_cgroup *prev, 746 struct mem_cgroup_reclaim_cookie *reclaim) 747{ 748 return NULL; 749} 750 751static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 752 struct mem_cgroup *prev) 753{ 754} 755 756static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 757 int (*fn)(struct task_struct *, void *), void *arg) 758{ 759 return 0; 760} 761 762static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 763{ 764 return 0; 765} 766 767static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 768{ 769 WARN_ON_ONCE(id); 770 /* XXX: This should always return root_mem_cgroup */ 771 return NULL; 772} 773 774static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 775{ 776 return NULL; 777} 778 779static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 780{ 781 return true; 782} 783 784static inline unsigned long 785mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 786{ 787 return 0; 788} 789static inline 790unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 791 enum lru_list lru, int zone_idx) 792{ 793 return 0; 794} 795 796static inline unsigned long 797mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 798 int nid, unsigned int lru_mask) 799{ 800 return 0; 801} 802 803static inline unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 804{ 805 return 0; 806} 807 808static inline void 809mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 810{ 811} 812 813static inline struct mem_cgroup *lock_page_memcg(struct page *page) 814{ 815 return NULL; 816} 817 818static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 819{ 820} 821 822static inline void unlock_page_memcg(struct page *page) 823{ 824} 825 826static inline void mem_cgroup_handle_over_high(void) 827{ 828} 829 830static inline void mem_cgroup_oom_enable(void) 831{ 832} 833 834static inline void mem_cgroup_oom_disable(void) 835{ 836} 837 838static inline bool task_in_memcg_oom(struct task_struct *p) 839{ 840 return false; 841} 842 843static inline bool mem_cgroup_oom_synchronize(bool wait) 844{ 845 return false; 846} 847 848static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 849 enum memcg_stat_item idx) 850{ 851 return 0; 852} 853 854static inline void __mod_memcg_state(struct mem_cgroup *memcg, 855 enum memcg_stat_item idx, 856 int nr) 857{ 858} 859 860static inline void mod_memcg_state(struct mem_cgroup *memcg, 861 enum memcg_stat_item idx, 862 int nr) 863{ 864} 865 866static inline void __mod_memcg_page_state(struct page *page, 867 enum memcg_stat_item idx, 868 int nr) 869{ 870} 871 872static inline void mod_memcg_page_state(struct page *page, 873 enum memcg_stat_item idx, 874 int nr) 875{ 876} 877 878static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 879 enum node_stat_item idx) 880{ 881 return node_page_state(lruvec_pgdat(lruvec), idx); 882} 883 884static inline void __mod_lruvec_state(struct lruvec *lruvec, 885 enum node_stat_item idx, int val) 886{ 887 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 888} 889 890static inline void mod_lruvec_state(struct lruvec *lruvec, 891 enum node_stat_item idx, int val) 892{ 893 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 894} 895 896static inline void __mod_lruvec_page_state(struct page *page, 897 enum node_stat_item idx, int val) 898{ 899 __mod_node_page_state(page_pgdat(page), idx, val); 900} 901 902static inline void mod_lruvec_page_state(struct page *page, 903 enum node_stat_item idx, int val) 904{ 905 mod_node_page_state(page_pgdat(page), idx, val); 906} 907 908static inline 909unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 910 gfp_t gfp_mask, 911 unsigned long *total_scanned) 912{ 913 return 0; 914} 915 916static inline void mem_cgroup_split_huge_fixup(struct page *head) 917{ 918} 919 920static inline void count_memcg_events(struct mem_cgroup *memcg, 921 enum vm_event_item idx, 922 unsigned long count) 923{ 924} 925 926static inline void count_memcg_page_event(struct page *page, 927 enum memcg_stat_item idx) 928{ 929} 930 931static inline 932void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 933{ 934} 935#endif /* CONFIG_MEMCG */ 936 937static inline void __inc_memcg_state(struct mem_cgroup *memcg, 938 enum memcg_stat_item idx) 939{ 940 __mod_memcg_state(memcg, idx, 1); 941} 942 943static inline void __dec_memcg_state(struct mem_cgroup *memcg, 944 enum memcg_stat_item idx) 945{ 946 __mod_memcg_state(memcg, idx, -1); 947} 948 949static inline void __inc_memcg_page_state(struct page *page, 950 enum memcg_stat_item idx) 951{ 952 __mod_memcg_page_state(page, idx, 1); 953} 954 955static inline void __dec_memcg_page_state(struct page *page, 956 enum memcg_stat_item idx) 957{ 958 __mod_memcg_page_state(page, idx, -1); 959} 960 961static inline void __inc_lruvec_state(struct lruvec *lruvec, 962 enum node_stat_item idx) 963{ 964 __mod_lruvec_state(lruvec, idx, 1); 965} 966 967static inline void __dec_lruvec_state(struct lruvec *lruvec, 968 enum node_stat_item idx) 969{ 970 __mod_lruvec_state(lruvec, idx, -1); 971} 972 973static inline void __inc_lruvec_page_state(struct page *page, 974 enum node_stat_item idx) 975{ 976 __mod_lruvec_page_state(page, idx, 1); 977} 978 979static inline void __dec_lruvec_page_state(struct page *page, 980 enum node_stat_item idx) 981{ 982 __mod_lruvec_page_state(page, idx, -1); 983} 984 985static inline void inc_memcg_state(struct mem_cgroup *memcg, 986 enum memcg_stat_item idx) 987{ 988 mod_memcg_state(memcg, idx, 1); 989} 990 991static inline void dec_memcg_state(struct mem_cgroup *memcg, 992 enum memcg_stat_item idx) 993{ 994 mod_memcg_state(memcg, idx, -1); 995} 996 997static inline void inc_memcg_page_state(struct page *page, 998 enum memcg_stat_item idx) 999{ 1000 mod_memcg_page_state(page, idx, 1); 1001} 1002 1003static inline void dec_memcg_page_state(struct page *page, 1004 enum memcg_stat_item idx) 1005{ 1006 mod_memcg_page_state(page, idx, -1); 1007} 1008 1009static inline void inc_lruvec_state(struct lruvec *lruvec, 1010 enum node_stat_item idx) 1011{ 1012 mod_lruvec_state(lruvec, idx, 1); 1013} 1014 1015static inline void dec_lruvec_state(struct lruvec *lruvec, 1016 enum node_stat_item idx) 1017{ 1018 mod_lruvec_state(lruvec, idx, -1); 1019} 1020 1021static inline void inc_lruvec_page_state(struct page *page, 1022 enum node_stat_item idx) 1023{ 1024 mod_lruvec_page_state(page, idx, 1); 1025} 1026 1027static inline void dec_lruvec_page_state(struct page *page, 1028 enum node_stat_item idx) 1029{ 1030 mod_lruvec_page_state(page, idx, -1); 1031} 1032 1033#ifdef CONFIG_CGROUP_WRITEBACK 1034 1035struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg); 1036struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1037void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1038 unsigned long *pheadroom, unsigned long *pdirty, 1039 unsigned long *pwriteback); 1040 1041#else /* CONFIG_CGROUP_WRITEBACK */ 1042 1043static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1044{ 1045 return NULL; 1046} 1047 1048static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1049 unsigned long *pfilepages, 1050 unsigned long *pheadroom, 1051 unsigned long *pdirty, 1052 unsigned long *pwriteback) 1053{ 1054} 1055 1056#endif /* CONFIG_CGROUP_WRITEBACK */ 1057 1058struct sock; 1059bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1060void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1061#ifdef CONFIG_MEMCG 1062extern struct static_key_false memcg_sockets_enabled_key; 1063#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1064void mem_cgroup_sk_alloc(struct sock *sk); 1065void mem_cgroup_sk_free(struct sock *sk); 1066static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1067{ 1068 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1069 return true; 1070 do { 1071 if (time_before(jiffies, memcg->socket_pressure)) 1072 return true; 1073 } while ((memcg = parent_mem_cgroup(memcg))); 1074 return false; 1075} 1076#else 1077#define mem_cgroup_sockets_enabled 0 1078static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1079static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1080static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1081{ 1082 return false; 1083} 1084#endif 1085 1086struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1087void memcg_kmem_put_cache(struct kmem_cache *cachep); 1088int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1089 struct mem_cgroup *memcg); 1090int memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1091void memcg_kmem_uncharge(struct page *page, int order); 1092 1093#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 1094extern struct static_key_false memcg_kmem_enabled_key; 1095extern struct workqueue_struct *memcg_kmem_cache_wq; 1096 1097extern int memcg_nr_cache_ids; 1098void memcg_get_cache_ids(void); 1099void memcg_put_cache_ids(void); 1100 1101/* 1102 * Helper macro to loop through all memcg-specific caches. Callers must still 1103 * check if the cache is valid (it is either valid or NULL). 1104 * the slab_mutex must be held when looping through those caches 1105 */ 1106#define for_each_memcg_cache_index(_idx) \ 1107 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1108 1109static inline bool memcg_kmem_enabled(void) 1110{ 1111 return static_branch_unlikely(&memcg_kmem_enabled_key); 1112} 1113 1114/* 1115 * helper for accessing a memcg's index. It will be used as an index in the 1116 * child cache array in kmem_cache, and also to derive its name. This function 1117 * will return -1 when this is not a kmem-limited memcg. 1118 */ 1119static inline int memcg_cache_id(struct mem_cgroup *memcg) 1120{ 1121 return memcg ? memcg->kmemcg_id : -1; 1122} 1123 1124#else 1125#define for_each_memcg_cache_index(_idx) \ 1126 for (; NULL; ) 1127 1128static inline bool memcg_kmem_enabled(void) 1129{ 1130 return false; 1131} 1132 1133static inline int memcg_cache_id(struct mem_cgroup *memcg) 1134{ 1135 return -1; 1136} 1137 1138static inline void memcg_get_cache_ids(void) 1139{ 1140} 1141 1142static inline void memcg_put_cache_ids(void) 1143{ 1144} 1145 1146#endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 1147 1148#endif /* _LINUX_MEMCONTROL_H */