at v4.13 7.2 kB view raw
1#ifndef _LINUX_CPUSET_H 2#define _LINUX_CPUSET_H 3/* 4 * cpuset interface 5 * 6 * Copyright (C) 2003 BULL SA 7 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 8 * 9 */ 10 11#include <linux/sched.h> 12#include <linux/sched/topology.h> 13#include <linux/sched/task.h> 14#include <linux/cpumask.h> 15#include <linux/nodemask.h> 16#include <linux/mm.h> 17#include <linux/jump_label.h> 18 19#ifdef CONFIG_CPUSETS 20 21/* 22 * Static branch rewrites can happen in an arbitrary order for a given 23 * key. In code paths where we need to loop with read_mems_allowed_begin() and 24 * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need 25 * to ensure that begin() always gets rewritten before retry() in the 26 * disabled -> enabled transition. If not, then if local irqs are disabled 27 * around the loop, we can deadlock since retry() would always be 28 * comparing the latest value of the mems_allowed seqcount against 0 as 29 * begin() still would see cpusets_enabled() as false. The enabled -> disabled 30 * transition should happen in reverse order for the same reasons (want to stop 31 * looking at real value of mems_allowed.sequence in retry() first). 32 */ 33extern struct static_key_false cpusets_pre_enable_key; 34extern struct static_key_false cpusets_enabled_key; 35static inline bool cpusets_enabled(void) 36{ 37 return static_branch_unlikely(&cpusets_enabled_key); 38} 39 40static inline int nr_cpusets(void) 41{ 42 /* jump label reference count + the top-level cpuset */ 43 return static_key_count(&cpusets_enabled_key.key) + 1; 44} 45 46static inline void cpuset_inc(void) 47{ 48 static_branch_inc(&cpusets_pre_enable_key); 49 static_branch_inc(&cpusets_enabled_key); 50} 51 52static inline void cpuset_dec(void) 53{ 54 static_branch_dec(&cpusets_enabled_key); 55 static_branch_dec(&cpusets_pre_enable_key); 56} 57 58extern int cpuset_init(void); 59extern void cpuset_init_smp(void); 60extern void cpuset_update_active_cpus(void); 61extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask); 62extern void cpuset_cpus_allowed_fallback(struct task_struct *p); 63extern nodemask_t cpuset_mems_allowed(struct task_struct *p); 64#define cpuset_current_mems_allowed (current->mems_allowed) 65void cpuset_init_current_mems_allowed(void); 66int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask); 67 68extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask); 69 70static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask) 71{ 72 if (cpusets_enabled()) 73 return __cpuset_node_allowed(node, gfp_mask); 74 return true; 75} 76 77static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 78{ 79 return __cpuset_node_allowed(zone_to_nid(z), gfp_mask); 80} 81 82static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 83{ 84 if (cpusets_enabled()) 85 return __cpuset_zone_allowed(z, gfp_mask); 86 return true; 87} 88 89extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 90 const struct task_struct *tsk2); 91 92#define cpuset_memory_pressure_bump() \ 93 do { \ 94 if (cpuset_memory_pressure_enabled) \ 95 __cpuset_memory_pressure_bump(); \ 96 } while (0) 97extern int cpuset_memory_pressure_enabled; 98extern void __cpuset_memory_pressure_bump(void); 99 100extern void cpuset_task_status_allowed(struct seq_file *m, 101 struct task_struct *task); 102extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 103 struct pid *pid, struct task_struct *tsk); 104 105extern int cpuset_mem_spread_node(void); 106extern int cpuset_slab_spread_node(void); 107 108static inline int cpuset_do_page_mem_spread(void) 109{ 110 return task_spread_page(current); 111} 112 113static inline int cpuset_do_slab_mem_spread(void) 114{ 115 return task_spread_slab(current); 116} 117 118extern int current_cpuset_is_being_rebound(void); 119 120extern void rebuild_sched_domains(void); 121 122extern void cpuset_print_current_mems_allowed(void); 123 124/* 125 * read_mems_allowed_begin is required when making decisions involving 126 * mems_allowed such as during page allocation. mems_allowed can be updated in 127 * parallel and depending on the new value an operation can fail potentially 128 * causing process failure. A retry loop with read_mems_allowed_begin and 129 * read_mems_allowed_retry prevents these artificial failures. 130 */ 131static inline unsigned int read_mems_allowed_begin(void) 132{ 133 if (!static_branch_unlikely(&cpusets_pre_enable_key)) 134 return 0; 135 136 return read_seqcount_begin(&current->mems_allowed_seq); 137} 138 139/* 140 * If this returns true, the operation that took place after 141 * read_mems_allowed_begin may have failed artificially due to a concurrent 142 * update of mems_allowed. It is up to the caller to retry the operation if 143 * appropriate. 144 */ 145static inline bool read_mems_allowed_retry(unsigned int seq) 146{ 147 if (!static_branch_unlikely(&cpusets_enabled_key)) 148 return false; 149 150 return read_seqcount_retry(&current->mems_allowed_seq, seq); 151} 152 153static inline void set_mems_allowed(nodemask_t nodemask) 154{ 155 unsigned long flags; 156 157 task_lock(current); 158 local_irq_save(flags); 159 write_seqcount_begin(&current->mems_allowed_seq); 160 current->mems_allowed = nodemask; 161 write_seqcount_end(&current->mems_allowed_seq); 162 local_irq_restore(flags); 163 task_unlock(current); 164} 165 166#else /* !CONFIG_CPUSETS */ 167 168static inline bool cpusets_enabled(void) { return false; } 169 170static inline int cpuset_init(void) { return 0; } 171static inline void cpuset_init_smp(void) {} 172 173static inline void cpuset_update_active_cpus(void) 174{ 175 partition_sched_domains(1, NULL, NULL); 176} 177 178static inline void cpuset_cpus_allowed(struct task_struct *p, 179 struct cpumask *mask) 180{ 181 cpumask_copy(mask, cpu_possible_mask); 182} 183 184static inline void cpuset_cpus_allowed_fallback(struct task_struct *p) 185{ 186} 187 188static inline nodemask_t cpuset_mems_allowed(struct task_struct *p) 189{ 190 return node_possible_map; 191} 192 193#define cpuset_current_mems_allowed (node_states[N_MEMORY]) 194static inline void cpuset_init_current_mems_allowed(void) {} 195 196static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 197{ 198 return 1; 199} 200 201static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask) 202{ 203 return true; 204} 205 206static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 207{ 208 return true; 209} 210 211static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 212{ 213 return true; 214} 215 216static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 217 const struct task_struct *tsk2) 218{ 219 return 1; 220} 221 222static inline void cpuset_memory_pressure_bump(void) {} 223 224static inline void cpuset_task_status_allowed(struct seq_file *m, 225 struct task_struct *task) 226{ 227} 228 229static inline int cpuset_mem_spread_node(void) 230{ 231 return 0; 232} 233 234static inline int cpuset_slab_spread_node(void) 235{ 236 return 0; 237} 238 239static inline int cpuset_do_page_mem_spread(void) 240{ 241 return 0; 242} 243 244static inline int cpuset_do_slab_mem_spread(void) 245{ 246 return 0; 247} 248 249static inline int current_cpuset_is_being_rebound(void) 250{ 251 return 0; 252} 253 254static inline void rebuild_sched_domains(void) 255{ 256 partition_sched_domains(1, NULL, NULL); 257} 258 259static inline void cpuset_print_current_mems_allowed(void) 260{ 261} 262 263static inline void set_mems_allowed(nodemask_t nodemask) 264{ 265} 266 267static inline unsigned int read_mems_allowed_begin(void) 268{ 269 return 0; 270} 271 272static inline bool read_mems_allowed_retry(unsigned int seq) 273{ 274 return false; 275} 276 277#endif /* !CONFIG_CPUSETS */ 278 279#endif /* _LINUX_CPUSET_H */