Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef __LINUX_COMPILER_H
2#define __LINUX_COMPILER_H
3
4#ifndef __ASSEMBLY__
5
6#ifdef __CHECKER__
7# define __user __attribute__((noderef, address_space(1)))
8# define __kernel __attribute__((address_space(0)))
9# define __safe __attribute__((safe))
10# define __force __attribute__((force))
11# define __nocast __attribute__((nocast))
12# define __iomem __attribute__((noderef, address_space(2)))
13# define __must_hold(x) __attribute__((context(x,1,1)))
14# define __acquires(x) __attribute__((context(x,0,1)))
15# define __releases(x) __attribute__((context(x,1,0)))
16# define __acquire(x) __context__(x,1)
17# define __release(x) __context__(x,-1)
18# define __cond_lock(x,c) ((c) ? ({ __acquire(x); 1; }) : 0)
19# define __percpu __attribute__((noderef, address_space(3)))
20# define __rcu __attribute__((noderef, address_space(4)))
21# define __private __attribute__((noderef))
22extern void __chk_user_ptr(const volatile void __user *);
23extern void __chk_io_ptr(const volatile void __iomem *);
24# define ACCESS_PRIVATE(p, member) (*((typeof((p)->member) __force *) &(p)->member))
25#else /* __CHECKER__ */
26# ifdef STRUCTLEAK_PLUGIN
27# define __user __attribute__((user))
28# else
29# define __user
30# endif
31# define __kernel
32# define __safe
33# define __force
34# define __nocast
35# define __iomem
36# define __chk_user_ptr(x) (void)0
37# define __chk_io_ptr(x) (void)0
38# define __builtin_warning(x, y...) (1)
39# define __must_hold(x)
40# define __acquires(x)
41# define __releases(x)
42# define __acquire(x) (void)0
43# define __release(x) (void)0
44# define __cond_lock(x,c) (c)
45# define __percpu
46# define __rcu
47# define __private
48# define ACCESS_PRIVATE(p, member) ((p)->member)
49#endif /* __CHECKER__ */
50
51/* Indirect macros required for expanded argument pasting, eg. __LINE__. */
52#define ___PASTE(a,b) a##b
53#define __PASTE(a,b) ___PASTE(a,b)
54
55#ifdef __KERNEL__
56
57#ifdef __GNUC__
58#include <linux/compiler-gcc.h>
59#endif
60
61#if defined(CC_USING_HOTPATCH) && !defined(__CHECKER__)
62#define notrace __attribute__((hotpatch(0,0)))
63#else
64#define notrace __attribute__((no_instrument_function))
65#endif
66
67/* Intel compiler defines __GNUC__. So we will overwrite implementations
68 * coming from above header files here
69 */
70#ifdef __INTEL_COMPILER
71# include <linux/compiler-intel.h>
72#endif
73
74/* Clang compiler defines __GNUC__. So we will overwrite implementations
75 * coming from above header files here
76 */
77#ifdef __clang__
78#include <linux/compiler-clang.h>
79#endif
80
81/*
82 * Generic compiler-dependent macros required for kernel
83 * build go below this comment. Actual compiler/compiler version
84 * specific implementations come from the above header files
85 */
86
87struct ftrace_branch_data {
88 const char *func;
89 const char *file;
90 unsigned line;
91 union {
92 struct {
93 unsigned long correct;
94 unsigned long incorrect;
95 };
96 struct {
97 unsigned long miss;
98 unsigned long hit;
99 };
100 unsigned long miss_hit[2];
101 };
102};
103
104struct ftrace_likely_data {
105 struct ftrace_branch_data data;
106 unsigned long constant;
107};
108
109/*
110 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
111 * to disable branch tracing on a per file basis.
112 */
113#if defined(CONFIG_TRACE_BRANCH_PROFILING) \
114 && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
115void ftrace_likely_update(struct ftrace_likely_data *f, int val,
116 int expect, int is_constant);
117
118#define likely_notrace(x) __builtin_expect(!!(x), 1)
119#define unlikely_notrace(x) __builtin_expect(!!(x), 0)
120
121#define __branch_check__(x, expect, is_constant) ({ \
122 int ______r; \
123 static struct ftrace_likely_data \
124 __attribute__((__aligned__(4))) \
125 __attribute__((section("_ftrace_annotated_branch"))) \
126 ______f = { \
127 .data.func = __func__, \
128 .data.file = __FILE__, \
129 .data.line = __LINE__, \
130 }; \
131 ______r = __builtin_expect(!!(x), expect); \
132 ftrace_likely_update(&______f, ______r, \
133 expect, is_constant); \
134 ______r; \
135 })
136
137/*
138 * Using __builtin_constant_p(x) to ignore cases where the return
139 * value is always the same. This idea is taken from a similar patch
140 * written by Daniel Walker.
141 */
142# ifndef likely
143# define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x)))
144# endif
145# ifndef unlikely
146# define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x)))
147# endif
148
149#ifdef CONFIG_PROFILE_ALL_BRANCHES
150/*
151 * "Define 'is'", Bill Clinton
152 * "Define 'if'", Steven Rostedt
153 */
154#define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
155#define __trace_if(cond) \
156 if (__builtin_constant_p(!!(cond)) ? !!(cond) : \
157 ({ \
158 int ______r; \
159 static struct ftrace_branch_data \
160 __attribute__((__aligned__(4))) \
161 __attribute__((section("_ftrace_branch"))) \
162 ______f = { \
163 .func = __func__, \
164 .file = __FILE__, \
165 .line = __LINE__, \
166 }; \
167 ______r = !!(cond); \
168 ______f.miss_hit[______r]++; \
169 ______r; \
170 }))
171#endif /* CONFIG_PROFILE_ALL_BRANCHES */
172
173#else
174# define likely(x) __builtin_expect(!!(x), 1)
175# define unlikely(x) __builtin_expect(!!(x), 0)
176#endif
177
178/* Optimization barrier */
179#ifndef barrier
180# define barrier() __memory_barrier()
181#endif
182
183#ifndef barrier_data
184# define barrier_data(ptr) barrier()
185#endif
186
187/* Unreachable code */
188#ifndef unreachable
189# define unreachable() do { } while (1)
190#endif
191
192/*
193 * KENTRY - kernel entry point
194 * This can be used to annotate symbols (functions or data) that are used
195 * without their linker symbol being referenced explicitly. For example,
196 * interrupt vector handlers, or functions in the kernel image that are found
197 * programatically.
198 *
199 * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
200 * are handled in their own way (with KEEP() in linker scripts).
201 *
202 * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
203 * linker script. For example an architecture could KEEP() its entire
204 * boot/exception vector code rather than annotate each function and data.
205 */
206#ifndef KENTRY
207# define KENTRY(sym) \
208 extern typeof(sym) sym; \
209 static const unsigned long __kentry_##sym \
210 __used \
211 __attribute__((section("___kentry" "+" #sym ), used)) \
212 = (unsigned long)&sym;
213#endif
214
215#ifndef RELOC_HIDE
216# define RELOC_HIDE(ptr, off) \
217 ({ unsigned long __ptr; \
218 __ptr = (unsigned long) (ptr); \
219 (typeof(ptr)) (__ptr + (off)); })
220#endif
221
222#ifndef OPTIMIZER_HIDE_VAR
223#define OPTIMIZER_HIDE_VAR(var) barrier()
224#endif
225
226/* Not-quite-unique ID. */
227#ifndef __UNIQUE_ID
228# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
229#endif
230
231#include <uapi/linux/types.h>
232
233#define __READ_ONCE_SIZE \
234({ \
235 switch (size) { \
236 case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \
237 case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \
238 case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \
239 case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \
240 default: \
241 barrier(); \
242 __builtin_memcpy((void *)res, (const void *)p, size); \
243 barrier(); \
244 } \
245})
246
247static __always_inline
248void __read_once_size(const volatile void *p, void *res, int size)
249{
250 __READ_ONCE_SIZE;
251}
252
253#ifdef CONFIG_KASAN
254/*
255 * This function is not 'inline' because __no_sanitize_address confilcts
256 * with inlining. Attempt to inline it may cause a build failure.
257 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
258 * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
259 */
260static __no_sanitize_address __maybe_unused
261void __read_once_size_nocheck(const volatile void *p, void *res, int size)
262{
263 __READ_ONCE_SIZE;
264}
265#else
266static __always_inline
267void __read_once_size_nocheck(const volatile void *p, void *res, int size)
268{
269 __READ_ONCE_SIZE;
270}
271#endif
272
273static __always_inline void __write_once_size(volatile void *p, void *res, int size)
274{
275 switch (size) {
276 case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
277 case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
278 case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
279 case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
280 default:
281 barrier();
282 __builtin_memcpy((void *)p, (const void *)res, size);
283 barrier();
284 }
285}
286
287/*
288 * Prevent the compiler from merging or refetching reads or writes. The
289 * compiler is also forbidden from reordering successive instances of
290 * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
291 * compiler is aware of some particular ordering. One way to make the
292 * compiler aware of ordering is to put the two invocations of READ_ONCE,
293 * WRITE_ONCE or ACCESS_ONCE() in different C statements.
294 *
295 * In contrast to ACCESS_ONCE these two macros will also work on aggregate
296 * data types like structs or unions. If the size of the accessed data
297 * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
298 * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at
299 * least two memcpy()s: one for the __builtin_memcpy() and then one for
300 * the macro doing the copy of variable - '__u' allocated on the stack.
301 *
302 * Their two major use cases are: (1) Mediating communication between
303 * process-level code and irq/NMI handlers, all running on the same CPU,
304 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
305 * mutilate accesses that either do not require ordering or that interact
306 * with an explicit memory barrier or atomic instruction that provides the
307 * required ordering.
308 */
309
310#define __READ_ONCE(x, check) \
311({ \
312 union { typeof(x) __val; char __c[1]; } __u; \
313 if (check) \
314 __read_once_size(&(x), __u.__c, sizeof(x)); \
315 else \
316 __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \
317 __u.__val; \
318})
319#define READ_ONCE(x) __READ_ONCE(x, 1)
320
321/*
322 * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
323 * to hide memory access from KASAN.
324 */
325#define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
326
327#define WRITE_ONCE(x, val) \
328({ \
329 union { typeof(x) __val; char __c[1]; } __u = \
330 { .__val = (__force typeof(x)) (val) }; \
331 __write_once_size(&(x), __u.__c, sizeof(x)); \
332 __u.__val; \
333})
334
335#endif /* __KERNEL__ */
336
337#endif /* __ASSEMBLY__ */
338
339#ifdef __KERNEL__
340/*
341 * Allow us to mark functions as 'deprecated' and have gcc emit a nice
342 * warning for each use, in hopes of speeding the functions removal.
343 * Usage is:
344 * int __deprecated foo(void)
345 */
346#ifndef __deprecated
347# define __deprecated /* unimplemented */
348#endif
349
350#ifdef MODULE
351#define __deprecated_for_modules __deprecated
352#else
353#define __deprecated_for_modules
354#endif
355
356#ifndef __must_check
357#define __must_check
358#endif
359
360#ifndef CONFIG_ENABLE_MUST_CHECK
361#undef __must_check
362#define __must_check
363#endif
364#ifndef CONFIG_ENABLE_WARN_DEPRECATED
365#undef __deprecated
366#undef __deprecated_for_modules
367#define __deprecated
368#define __deprecated_for_modules
369#endif
370
371#ifndef __malloc
372#define __malloc
373#endif
374
375/*
376 * Allow us to avoid 'defined but not used' warnings on functions and data,
377 * as well as force them to be emitted to the assembly file.
378 *
379 * As of gcc 3.4, static functions that are not marked with attribute((used))
380 * may be elided from the assembly file. As of gcc 3.4, static data not so
381 * marked will not be elided, but this may change in a future gcc version.
382 *
383 * NOTE: Because distributions shipped with a backported unit-at-a-time
384 * compiler in gcc 3.3, we must define __used to be __attribute__((used))
385 * for gcc >=3.3 instead of 3.4.
386 *
387 * In prior versions of gcc, such functions and data would be emitted, but
388 * would be warned about except with attribute((unused)).
389 *
390 * Mark functions that are referenced only in inline assembly as __used so
391 * the code is emitted even though it appears to be unreferenced.
392 */
393#ifndef __used
394# define __used /* unimplemented */
395#endif
396
397#ifndef __maybe_unused
398# define __maybe_unused /* unimplemented */
399#endif
400
401#ifndef __always_unused
402# define __always_unused /* unimplemented */
403#endif
404
405#ifndef noinline
406#define noinline
407#endif
408
409/*
410 * Rather then using noinline to prevent stack consumption, use
411 * noinline_for_stack instead. For documentation reasons.
412 */
413#define noinline_for_stack noinline
414
415#ifndef __always_inline
416#define __always_inline inline
417#endif
418
419#endif /* __KERNEL__ */
420
421/*
422 * From the GCC manual:
423 *
424 * Many functions do not examine any values except their arguments,
425 * and have no effects except the return value. Basically this is
426 * just slightly more strict class than the `pure' attribute above,
427 * since function is not allowed to read global memory.
428 *
429 * Note that a function that has pointer arguments and examines the
430 * data pointed to must _not_ be declared `const'. Likewise, a
431 * function that calls a non-`const' function usually must not be
432 * `const'. It does not make sense for a `const' function to return
433 * `void'.
434 */
435#ifndef __attribute_const__
436# define __attribute_const__ /* unimplemented */
437#endif
438
439#ifndef __designated_init
440# define __designated_init
441#endif
442
443#ifndef __latent_entropy
444# define __latent_entropy
445#endif
446
447#ifndef __randomize_layout
448# define __randomize_layout __designated_init
449#endif
450
451#ifndef __no_randomize_layout
452# define __no_randomize_layout
453#endif
454
455#ifndef randomized_struct_fields_start
456# define randomized_struct_fields_start
457# define randomized_struct_fields_end
458#endif
459
460/*
461 * Tell gcc if a function is cold. The compiler will assume any path
462 * directly leading to the call is unlikely.
463 */
464
465#ifndef __cold
466#define __cold
467#endif
468
469/* Simple shorthand for a section definition */
470#ifndef __section
471# define __section(S) __attribute__ ((__section__(#S)))
472#endif
473
474#ifndef __visible
475#define __visible
476#endif
477
478/*
479 * Assume alignment of return value.
480 */
481#ifndef __assume_aligned
482#define __assume_aligned(a, ...)
483#endif
484
485
486/* Are two types/vars the same type (ignoring qualifiers)? */
487#ifndef __same_type
488# define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
489#endif
490
491/* Is this type a native word size -- useful for atomic operations */
492#ifndef __native_word
493# define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long))
494#endif
495
496/* Compile time object size, -1 for unknown */
497#ifndef __compiletime_object_size
498# define __compiletime_object_size(obj) -1
499#endif
500#ifndef __compiletime_warning
501# define __compiletime_warning(message)
502#endif
503#ifndef __compiletime_error
504# define __compiletime_error(message)
505/*
506 * Sparse complains of variable sized arrays due to the temporary variable in
507 * __compiletime_assert. Unfortunately we can't just expand it out to make
508 * sparse see a constant array size without breaking compiletime_assert on old
509 * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
510 */
511# ifndef __CHECKER__
512# define __compiletime_error_fallback(condition) \
513 do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
514# endif
515#endif
516#ifndef __compiletime_error_fallback
517# define __compiletime_error_fallback(condition) do { } while (0)
518#endif
519
520#ifdef __OPTIMIZE__
521# define __compiletime_assert(condition, msg, prefix, suffix) \
522 do { \
523 bool __cond = !(condition); \
524 extern void prefix ## suffix(void) __compiletime_error(msg); \
525 if (__cond) \
526 prefix ## suffix(); \
527 __compiletime_error_fallback(__cond); \
528 } while (0)
529#else
530# define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
531#endif
532
533#define _compiletime_assert(condition, msg, prefix, suffix) \
534 __compiletime_assert(condition, msg, prefix, suffix)
535
536/**
537 * compiletime_assert - break build and emit msg if condition is false
538 * @condition: a compile-time constant condition to check
539 * @msg: a message to emit if condition is false
540 *
541 * In tradition of POSIX assert, this macro will break the build if the
542 * supplied condition is *false*, emitting the supplied error message if the
543 * compiler has support to do so.
544 */
545#define compiletime_assert(condition, msg) \
546 _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
547
548#define compiletime_assert_atomic_type(t) \
549 compiletime_assert(__native_word(t), \
550 "Need native word sized stores/loads for atomicity.")
551
552/*
553 * Prevent the compiler from merging or refetching accesses. The compiler
554 * is also forbidden from reordering successive instances of ACCESS_ONCE(),
555 * but only when the compiler is aware of some particular ordering. One way
556 * to make the compiler aware of ordering is to put the two invocations of
557 * ACCESS_ONCE() in different C statements.
558 *
559 * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
560 * on a union member will work as long as the size of the member matches the
561 * size of the union and the size is smaller than word size.
562 *
563 * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
564 * between process-level code and irq/NMI handlers, all running on the same CPU,
565 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
566 * mutilate accesses that either do not require ordering or that interact
567 * with an explicit memory barrier or atomic instruction that provides the
568 * required ordering.
569 *
570 * If possible use READ_ONCE()/WRITE_ONCE() instead.
571 */
572#define __ACCESS_ONCE(x) ({ \
573 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
574 (volatile typeof(x) *)&(x); })
575#define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
576
577/**
578 * lockless_dereference() - safely load a pointer for later dereference
579 * @p: The pointer to load
580 *
581 * Similar to rcu_dereference(), but for situations where the pointed-to
582 * object's lifetime is managed by something other than RCU. That
583 * "something other" might be reference counting or simple immortality.
584 *
585 * The seemingly unused variable ___typecheck_p validates that @p is
586 * indeed a pointer type by using a pointer to typeof(*p) as the type.
587 * Taking a pointer to typeof(*p) again is needed in case p is void *.
588 */
589#define lockless_dereference(p) \
590({ \
591 typeof(p) _________p1 = READ_ONCE(p); \
592 typeof(*(p)) *___typecheck_p __maybe_unused; \
593 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
594 (_________p1); \
595})
596
597#endif /* __LINUX_COMPILER_H */