at v4.13 292 lines 8.7 kB view raw
1#ifndef BLK_MQ_H 2#define BLK_MQ_H 3 4#include <linux/blkdev.h> 5#include <linux/sbitmap.h> 6#include <linux/srcu.h> 7 8struct blk_mq_tags; 9struct blk_flush_queue; 10 11struct blk_mq_hw_ctx { 12 struct { 13 spinlock_t lock; 14 struct list_head dispatch; 15 unsigned long state; /* BLK_MQ_S_* flags */ 16 } ____cacheline_aligned_in_smp; 17 18 struct delayed_work run_work; 19 cpumask_var_t cpumask; 20 int next_cpu; 21 int next_cpu_batch; 22 23 unsigned long flags; /* BLK_MQ_F_* flags */ 24 25 void *sched_data; 26 struct request_queue *queue; 27 struct blk_flush_queue *fq; 28 29 void *driver_data; 30 31 struct sbitmap ctx_map; 32 33 struct blk_mq_ctx **ctxs; 34 unsigned int nr_ctx; 35 36 wait_queue_entry_t dispatch_wait; 37 atomic_t wait_index; 38 39 struct blk_mq_tags *tags; 40 struct blk_mq_tags *sched_tags; 41 42 unsigned long queued; 43 unsigned long run; 44#define BLK_MQ_MAX_DISPATCH_ORDER 7 45 unsigned long dispatched[BLK_MQ_MAX_DISPATCH_ORDER]; 46 47 unsigned int numa_node; 48 unsigned int queue_num; 49 50 atomic_t nr_active; 51 52 struct hlist_node cpuhp_dead; 53 struct kobject kobj; 54 55 unsigned long poll_considered; 56 unsigned long poll_invoked; 57 unsigned long poll_success; 58 59#ifdef CONFIG_BLK_DEBUG_FS 60 struct dentry *debugfs_dir; 61 struct dentry *sched_debugfs_dir; 62#endif 63 64 /* Must be the last member - see also blk_mq_hw_ctx_size(). */ 65 struct srcu_struct queue_rq_srcu[0]; 66}; 67 68struct blk_mq_tag_set { 69 unsigned int *mq_map; 70 const struct blk_mq_ops *ops; 71 unsigned int nr_hw_queues; 72 unsigned int queue_depth; /* max hw supported */ 73 unsigned int reserved_tags; 74 unsigned int cmd_size; /* per-request extra data */ 75 int numa_node; 76 unsigned int timeout; 77 unsigned int flags; /* BLK_MQ_F_* */ 78 void *driver_data; 79 80 struct blk_mq_tags **tags; 81 82 struct mutex tag_list_lock; 83 struct list_head tag_list; 84}; 85 86struct blk_mq_queue_data { 87 struct request *rq; 88 bool last; 89}; 90 91typedef blk_status_t (queue_rq_fn)(struct blk_mq_hw_ctx *, 92 const struct blk_mq_queue_data *); 93typedef enum blk_eh_timer_return (timeout_fn)(struct request *, bool); 94typedef int (init_hctx_fn)(struct blk_mq_hw_ctx *, void *, unsigned int); 95typedef void (exit_hctx_fn)(struct blk_mq_hw_ctx *, unsigned int); 96typedef int (init_request_fn)(struct blk_mq_tag_set *set, struct request *, 97 unsigned int, unsigned int); 98typedef void (exit_request_fn)(struct blk_mq_tag_set *set, struct request *, 99 unsigned int); 100typedef int (reinit_request_fn)(void *, struct request *); 101 102typedef void (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *, 103 bool); 104typedef void (busy_tag_iter_fn)(struct request *, void *, bool); 105typedef int (poll_fn)(struct blk_mq_hw_ctx *, unsigned int); 106typedef int (map_queues_fn)(struct blk_mq_tag_set *set); 107 108 109struct blk_mq_ops { 110 /* 111 * Queue request 112 */ 113 queue_rq_fn *queue_rq; 114 115 /* 116 * Called on request timeout 117 */ 118 timeout_fn *timeout; 119 120 /* 121 * Called to poll for completion of a specific tag. 122 */ 123 poll_fn *poll; 124 125 softirq_done_fn *complete; 126 127 /* 128 * Called when the block layer side of a hardware queue has been 129 * set up, allowing the driver to allocate/init matching structures. 130 * Ditto for exit/teardown. 131 */ 132 init_hctx_fn *init_hctx; 133 exit_hctx_fn *exit_hctx; 134 135 /* 136 * Called for every command allocated by the block layer to allow 137 * the driver to set up driver specific data. 138 * 139 * Tag greater than or equal to queue_depth is for setting up 140 * flush request. 141 * 142 * Ditto for exit/teardown. 143 */ 144 init_request_fn *init_request; 145 exit_request_fn *exit_request; 146 reinit_request_fn *reinit_request; 147 /* Called from inside blk_get_request() */ 148 void (*initialize_rq_fn)(struct request *rq); 149 150 map_queues_fn *map_queues; 151 152#ifdef CONFIG_BLK_DEBUG_FS 153 /* 154 * Used by the debugfs implementation to show driver-specific 155 * information about a request. 156 */ 157 void (*show_rq)(struct seq_file *m, struct request *rq); 158#endif 159}; 160 161enum { 162 BLK_MQ_F_SHOULD_MERGE = 1 << 0, 163 BLK_MQ_F_TAG_SHARED = 1 << 1, 164 BLK_MQ_F_SG_MERGE = 1 << 2, 165 BLK_MQ_F_BLOCKING = 1 << 5, 166 BLK_MQ_F_NO_SCHED = 1 << 6, 167 BLK_MQ_F_ALLOC_POLICY_START_BIT = 8, 168 BLK_MQ_F_ALLOC_POLICY_BITS = 1, 169 170 BLK_MQ_S_STOPPED = 0, 171 BLK_MQ_S_TAG_ACTIVE = 1, 172 BLK_MQ_S_SCHED_RESTART = 2, 173 BLK_MQ_S_TAG_WAITING = 3, 174 BLK_MQ_S_START_ON_RUN = 4, 175 176 BLK_MQ_MAX_DEPTH = 10240, 177 178 BLK_MQ_CPU_WORK_BATCH = 8, 179}; 180#define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \ 181 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \ 182 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) 183#define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \ 184 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \ 185 << BLK_MQ_F_ALLOC_POLICY_START_BIT) 186 187struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *); 188struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 189 struct request_queue *q); 190int blk_mq_register_dev(struct device *, struct request_queue *); 191void blk_mq_unregister_dev(struct device *, struct request_queue *); 192 193int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set); 194void blk_mq_free_tag_set(struct blk_mq_tag_set *set); 195 196void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule); 197 198void blk_mq_free_request(struct request *rq); 199bool blk_mq_can_queue(struct blk_mq_hw_ctx *); 200 201enum { 202 BLK_MQ_REQ_NOWAIT = (1 << 0), /* return when out of requests */ 203 BLK_MQ_REQ_RESERVED = (1 << 1), /* allocate from reserved pool */ 204 BLK_MQ_REQ_INTERNAL = (1 << 2), /* allocate internal/sched tag */ 205}; 206 207struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 208 unsigned int flags); 209struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 210 unsigned int op, unsigned int flags, unsigned int hctx_idx); 211struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag); 212 213enum { 214 BLK_MQ_UNIQUE_TAG_BITS = 16, 215 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1, 216}; 217 218u32 blk_mq_unique_tag(struct request *rq); 219 220static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag) 221{ 222 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS; 223} 224 225static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag) 226{ 227 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK; 228} 229 230 231int blk_mq_request_started(struct request *rq); 232void blk_mq_start_request(struct request *rq); 233void blk_mq_end_request(struct request *rq, blk_status_t error); 234void __blk_mq_end_request(struct request *rq, blk_status_t error); 235 236void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list); 237void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 238 bool kick_requeue_list); 239void blk_mq_kick_requeue_list(struct request_queue *q); 240void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs); 241void blk_mq_complete_request(struct request *rq); 242 243bool blk_mq_queue_stopped(struct request_queue *q); 244void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx); 245void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx); 246void blk_mq_stop_hw_queues(struct request_queue *q); 247void blk_mq_start_hw_queues(struct request_queue *q); 248void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); 249void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async); 250void blk_mq_quiesce_queue(struct request_queue *q); 251void blk_mq_unquiesce_queue(struct request_queue *q); 252void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs); 253void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); 254void blk_mq_run_hw_queues(struct request_queue *q, bool async); 255void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs); 256void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 257 busy_tag_iter_fn *fn, void *priv); 258void blk_mq_freeze_queue(struct request_queue *q); 259void blk_mq_unfreeze_queue(struct request_queue *q); 260void blk_freeze_queue_start(struct request_queue *q); 261void blk_mq_freeze_queue_wait(struct request_queue *q); 262int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 263 unsigned long timeout); 264int blk_mq_reinit_tagset(struct blk_mq_tag_set *set); 265 266int blk_mq_map_queues(struct blk_mq_tag_set *set); 267void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues); 268 269void blk_mq_quiesce_queue_nowait(struct request_queue *q); 270 271/* 272 * Driver command data is immediately after the request. So subtract request 273 * size to get back to the original request, add request size to get the PDU. 274 */ 275static inline struct request *blk_mq_rq_from_pdu(void *pdu) 276{ 277 return pdu - sizeof(struct request); 278} 279static inline void *blk_mq_rq_to_pdu(struct request *rq) 280{ 281 return rq + 1; 282} 283 284#define queue_for_each_hw_ctx(q, hctx, i) \ 285 for ((i) = 0; (i) < (q)->nr_hw_queues && \ 286 ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++) 287 288#define hctx_for_each_ctx(hctx, ctx, i) \ 289 for ((i) = 0; (i) < (hctx)->nr_ctx && \ 290 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++) 291 292#endif