at v4.13 1546 lines 45 kB view raw
1/* 2 * Copyright (C) 2005-2006 by Texas Instruments 3 * 4 * This file implements a DMA interface using TI's CPPI DMA. 5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB. 6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci. 7 */ 8 9#include <linux/module.h> 10#include <linux/platform_device.h> 11#include <linux/slab.h> 12#include <linux/usb.h> 13 14#include "musb_core.h" 15#include "musb_debug.h" 16#include "cppi_dma.h" 17#include "davinci.h" 18 19 20/* CPPI DMA status 7-mar-2006: 21 * 22 * - See musb_{host,gadget}.c for more info 23 * 24 * - Correct RX DMA generally forces the engine into irq-per-packet mode, 25 * which can easily saturate the CPU under non-mass-storage loads. 26 * 27 * NOTES 24-aug-2006 (2.6.18-rc4): 28 * 29 * - peripheral RXDMA wedged in a test with packets of length 512/512/1. 30 * evidently after the 1 byte packet was received and acked, the queue 31 * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003, 32 * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401 33 * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx 34 * of its next (512 byte) packet. IRQ issues? 35 * 36 * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will 37 * evidently also directly update the RX and TX CSRs ... so audit all 38 * host and peripheral side DMA code to avoid CSR access after DMA has 39 * been started. 40 */ 41 42/* REVISIT now we can avoid preallocating these descriptors; or 43 * more simply, switch to a global freelist not per-channel ones. 44 * Note: at full speed, 64 descriptors == 4K bulk data. 45 */ 46#define NUM_TXCHAN_BD 64 47#define NUM_RXCHAN_BD 64 48 49static inline void cpu_drain_writebuffer(void) 50{ 51 wmb(); 52#ifdef CONFIG_CPU_ARM926T 53 /* REVISIT this "should not be needed", 54 * but lack of it sure seemed to hurt ... 55 */ 56 asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n"); 57#endif 58} 59 60static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c) 61{ 62 struct cppi_descriptor *bd = c->freelist; 63 64 if (bd) 65 c->freelist = bd->next; 66 return bd; 67} 68 69static inline void 70cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd) 71{ 72 if (!bd) 73 return; 74 bd->next = c->freelist; 75 c->freelist = bd; 76} 77 78/* 79 * Start DMA controller 80 * 81 * Initialize the DMA controller as necessary. 82 */ 83 84/* zero out entire rx state RAM entry for the channel */ 85static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx) 86{ 87 musb_writel(&rx->rx_skipbytes, 0, 0); 88 musb_writel(&rx->rx_head, 0, 0); 89 musb_writel(&rx->rx_sop, 0, 0); 90 musb_writel(&rx->rx_current, 0, 0); 91 musb_writel(&rx->rx_buf_current, 0, 0); 92 musb_writel(&rx->rx_len_len, 0, 0); 93 musb_writel(&rx->rx_cnt_cnt, 0, 0); 94} 95 96/* zero out entire tx state RAM entry for the channel */ 97static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr) 98{ 99 musb_writel(&tx->tx_head, 0, 0); 100 musb_writel(&tx->tx_buf, 0, 0); 101 musb_writel(&tx->tx_current, 0, 0); 102 musb_writel(&tx->tx_buf_current, 0, 0); 103 musb_writel(&tx->tx_info, 0, 0); 104 musb_writel(&tx->tx_rem_len, 0, 0); 105 /* musb_writel(&tx->tx_dummy, 0, 0); */ 106 musb_writel(&tx->tx_complete, 0, ptr); 107} 108 109static void cppi_pool_init(struct cppi *cppi, struct cppi_channel *c) 110{ 111 int j; 112 113 /* initialize channel fields */ 114 c->head = NULL; 115 c->tail = NULL; 116 c->last_processed = NULL; 117 c->channel.status = MUSB_DMA_STATUS_UNKNOWN; 118 c->controller = cppi; 119 c->is_rndis = 0; 120 c->freelist = NULL; 121 122 /* build the BD Free list for the channel */ 123 for (j = 0; j < NUM_TXCHAN_BD + 1; j++) { 124 struct cppi_descriptor *bd; 125 dma_addr_t dma; 126 127 bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma); 128 bd->dma = dma; 129 cppi_bd_free(c, bd); 130 } 131} 132 133static int cppi_channel_abort(struct dma_channel *); 134 135static void cppi_pool_free(struct cppi_channel *c) 136{ 137 struct cppi *cppi = c->controller; 138 struct cppi_descriptor *bd; 139 140 (void) cppi_channel_abort(&c->channel); 141 c->channel.status = MUSB_DMA_STATUS_UNKNOWN; 142 c->controller = NULL; 143 144 /* free all its bds */ 145 bd = c->last_processed; 146 do { 147 if (bd) 148 dma_pool_free(cppi->pool, bd, bd->dma); 149 bd = cppi_bd_alloc(c); 150 } while (bd); 151 c->last_processed = NULL; 152} 153 154static void cppi_controller_start(struct cppi *controller) 155{ 156 void __iomem *tibase; 157 int i; 158 159 /* do whatever is necessary to start controller */ 160 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { 161 controller->tx[i].transmit = true; 162 controller->tx[i].index = i; 163 } 164 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { 165 controller->rx[i].transmit = false; 166 controller->rx[i].index = i; 167 } 168 169 /* setup BD list on a per channel basis */ 170 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) 171 cppi_pool_init(controller, controller->tx + i); 172 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) 173 cppi_pool_init(controller, controller->rx + i); 174 175 tibase = controller->tibase; 176 INIT_LIST_HEAD(&controller->tx_complete); 177 178 /* initialise tx/rx channel head pointers to zero */ 179 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { 180 struct cppi_channel *tx_ch = controller->tx + i; 181 struct cppi_tx_stateram __iomem *tx; 182 183 INIT_LIST_HEAD(&tx_ch->tx_complete); 184 185 tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i); 186 tx_ch->state_ram = tx; 187 cppi_reset_tx(tx, 0); 188 } 189 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { 190 struct cppi_channel *rx_ch = controller->rx + i; 191 struct cppi_rx_stateram __iomem *rx; 192 193 INIT_LIST_HEAD(&rx_ch->tx_complete); 194 195 rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i); 196 rx_ch->state_ram = rx; 197 cppi_reset_rx(rx); 198 } 199 200 /* enable individual cppi channels */ 201 musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG, 202 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 203 musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG, 204 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 205 206 /* enable tx/rx CPPI control */ 207 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); 208 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); 209 210 /* disable RNDIS mode, also host rx RNDIS autorequest */ 211 musb_writel(tibase, DAVINCI_RNDIS_REG, 0); 212 musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0); 213} 214 215/* 216 * Stop DMA controller 217 * 218 * De-Init the DMA controller as necessary. 219 */ 220 221static void cppi_controller_stop(struct cppi *controller) 222{ 223 void __iomem *tibase; 224 int i; 225 struct musb *musb; 226 227 musb = controller->controller.musb; 228 229 tibase = controller->tibase; 230 /* DISABLE INDIVIDUAL CHANNEL Interrupts */ 231 musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG, 232 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 233 musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG, 234 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 235 236 musb_dbg(musb, "Tearing down RX and TX Channels"); 237 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { 238 /* FIXME restructure of txdma to use bds like rxdma */ 239 controller->tx[i].last_processed = NULL; 240 cppi_pool_free(controller->tx + i); 241 } 242 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) 243 cppi_pool_free(controller->rx + i); 244 245 /* in Tx Case proper teardown is supported. We resort to disabling 246 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is 247 * complete TX CPPI cannot be disabled. 248 */ 249 /*disable tx/rx cppi */ 250 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); 251 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); 252} 253 254/* While dma channel is allocated, we only want the core irqs active 255 * for fault reports, otherwise we'd get irqs that we don't care about. 256 * Except for TX irqs, where dma done != fifo empty and reusable ... 257 * 258 * NOTE: docs don't say either way, but irq masking **enables** irqs. 259 * 260 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma... 261 */ 262static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum) 263{ 264 musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8)); 265} 266 267static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum) 268{ 269 musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8)); 270} 271 272 273/* 274 * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to 275 * each transfer direction of a non-control endpoint, so allocating 276 * (and deallocating) is mostly a way to notice bad housekeeping on 277 * the software side. We assume the irqs are always active. 278 */ 279static struct dma_channel * 280cppi_channel_allocate(struct dma_controller *c, 281 struct musb_hw_ep *ep, u8 transmit) 282{ 283 struct cppi *controller; 284 u8 index; 285 struct cppi_channel *cppi_ch; 286 void __iomem *tibase; 287 struct musb *musb; 288 289 controller = container_of(c, struct cppi, controller); 290 tibase = controller->tibase; 291 musb = c->musb; 292 293 /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */ 294 index = ep->epnum - 1; 295 296 /* return the corresponding CPPI Channel Handle, and 297 * probably disable the non-CPPI irq until we need it. 298 */ 299 if (transmit) { 300 if (index >= ARRAY_SIZE(controller->tx)) { 301 musb_dbg(musb, "no %cX%d CPPI channel", 'T', index); 302 return NULL; 303 } 304 cppi_ch = controller->tx + index; 305 } else { 306 if (index >= ARRAY_SIZE(controller->rx)) { 307 musb_dbg(musb, "no %cX%d CPPI channel", 'R', index); 308 return NULL; 309 } 310 cppi_ch = controller->rx + index; 311 core_rxirq_disable(tibase, ep->epnum); 312 } 313 314 /* REVISIT make this an error later once the same driver code works 315 * with the other DMA engine too 316 */ 317 if (cppi_ch->hw_ep) 318 musb_dbg(musb, "re-allocating DMA%d %cX channel %p", 319 index, transmit ? 'T' : 'R', cppi_ch); 320 cppi_ch->hw_ep = ep; 321 cppi_ch->channel.status = MUSB_DMA_STATUS_FREE; 322 cppi_ch->channel.max_len = 0x7fffffff; 323 324 musb_dbg(musb, "Allocate CPPI%d %cX", index, transmit ? 'T' : 'R'); 325 return &cppi_ch->channel; 326} 327 328/* Release a CPPI Channel. */ 329static void cppi_channel_release(struct dma_channel *channel) 330{ 331 struct cppi_channel *c; 332 void __iomem *tibase; 333 334 /* REVISIT: for paranoia, check state and abort if needed... */ 335 336 c = container_of(channel, struct cppi_channel, channel); 337 tibase = c->controller->tibase; 338 if (!c->hw_ep) 339 musb_dbg(c->controller->controller.musb, 340 "releasing idle DMA channel %p", c); 341 else if (!c->transmit) 342 core_rxirq_enable(tibase, c->index + 1); 343 344 /* for now, leave its cppi IRQ enabled (we won't trigger it) */ 345 c->hw_ep = NULL; 346 channel->status = MUSB_DMA_STATUS_UNKNOWN; 347} 348 349/* Context: controller irqlocked */ 350static void 351cppi_dump_rx(int level, struct cppi_channel *c, const char *tag) 352{ 353 void __iomem *base = c->controller->mregs; 354 struct cppi_rx_stateram __iomem *rx = c->state_ram; 355 356 musb_ep_select(base, c->index + 1); 357 358 musb_dbg(c->controller->controller.musb, 359 "RX DMA%d%s: %d left, csr %04x, " 360 "%08x H%08x S%08x C%08x, " 361 "B%08x L%08x %08x .. %08x", 362 c->index, tag, 363 musb_readl(c->controller->tibase, 364 DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index), 365 musb_readw(c->hw_ep->regs, MUSB_RXCSR), 366 367 musb_readl(&rx->rx_skipbytes, 0), 368 musb_readl(&rx->rx_head, 0), 369 musb_readl(&rx->rx_sop, 0), 370 musb_readl(&rx->rx_current, 0), 371 372 musb_readl(&rx->rx_buf_current, 0), 373 musb_readl(&rx->rx_len_len, 0), 374 musb_readl(&rx->rx_cnt_cnt, 0), 375 musb_readl(&rx->rx_complete, 0) 376 ); 377} 378 379/* Context: controller irqlocked */ 380static void 381cppi_dump_tx(int level, struct cppi_channel *c, const char *tag) 382{ 383 void __iomem *base = c->controller->mregs; 384 struct cppi_tx_stateram __iomem *tx = c->state_ram; 385 386 musb_ep_select(base, c->index + 1); 387 388 musb_dbg(c->controller->controller.musb, 389 "TX DMA%d%s: csr %04x, " 390 "H%08x S%08x C%08x %08x, " 391 "F%08x L%08x .. %08x", 392 c->index, tag, 393 musb_readw(c->hw_ep->regs, MUSB_TXCSR), 394 395 musb_readl(&tx->tx_head, 0), 396 musb_readl(&tx->tx_buf, 0), 397 musb_readl(&tx->tx_current, 0), 398 musb_readl(&tx->tx_buf_current, 0), 399 400 musb_readl(&tx->tx_info, 0), 401 musb_readl(&tx->tx_rem_len, 0), 402 /* dummy/unused word 6 */ 403 musb_readl(&tx->tx_complete, 0) 404 ); 405} 406 407/* Context: controller irqlocked */ 408static inline void 409cppi_rndis_update(struct cppi_channel *c, int is_rx, 410 void __iomem *tibase, int is_rndis) 411{ 412 /* we may need to change the rndis flag for this cppi channel */ 413 if (c->is_rndis != is_rndis) { 414 u32 value = musb_readl(tibase, DAVINCI_RNDIS_REG); 415 u32 temp = 1 << (c->index); 416 417 if (is_rx) 418 temp <<= 16; 419 if (is_rndis) 420 value |= temp; 421 else 422 value &= ~temp; 423 musb_writel(tibase, DAVINCI_RNDIS_REG, value); 424 c->is_rndis = is_rndis; 425 } 426} 427 428static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd) 429{ 430 pr_debug("RXBD/%s %08x: " 431 "nxt %08x buf %08x off.blen %08x opt.plen %08x\n", 432 tag, bd->dma, 433 bd->hw_next, bd->hw_bufp, bd->hw_off_len, 434 bd->hw_options); 435} 436 437static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx) 438{ 439 struct cppi_descriptor *bd; 440 441 cppi_dump_rx(level, rx, tag); 442 if (rx->last_processed) 443 cppi_dump_rxbd("last", rx->last_processed); 444 for (bd = rx->head; bd; bd = bd->next) 445 cppi_dump_rxbd("active", bd); 446} 447 448 449/* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX; 450 * so we won't ever use it (see "CPPI RX Woes" below). 451 */ 452static inline int cppi_autoreq_update(struct cppi_channel *rx, 453 void __iomem *tibase, int onepacket, unsigned n_bds) 454{ 455 u32 val; 456 457#ifdef RNDIS_RX_IS_USABLE 458 u32 tmp; 459 /* assert(is_host_active(musb)) */ 460 461 /* start from "AutoReq never" */ 462 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); 463 val = tmp & ~((0x3) << (rx->index * 2)); 464 465 /* HCD arranged reqpkt for packet #1. we arrange int 466 * for all but the last one, maybe in two segments. 467 */ 468 if (!onepacket) { 469#if 0 470 /* use two segments, autoreq "all" then the last "never" */ 471 val |= ((0x3) << (rx->index * 2)); 472 n_bds--; 473#else 474 /* one segment, autoreq "all-but-last" */ 475 val |= ((0x1) << (rx->index * 2)); 476#endif 477 } 478 479 if (val != tmp) { 480 int n = 100; 481 482 /* make sure that autoreq is updated before continuing */ 483 musb_writel(tibase, DAVINCI_AUTOREQ_REG, val); 484 do { 485 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); 486 if (tmp == val) 487 break; 488 cpu_relax(); 489 } while (n-- > 0); 490 } 491#endif 492 493 /* REQPKT is turned off after each segment */ 494 if (n_bds && rx->channel.actual_len) { 495 void __iomem *regs = rx->hw_ep->regs; 496 497 val = musb_readw(regs, MUSB_RXCSR); 498 if (!(val & MUSB_RXCSR_H_REQPKT)) { 499 val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS; 500 musb_writew(regs, MUSB_RXCSR, val); 501 /* flush writebuffer */ 502 val = musb_readw(regs, MUSB_RXCSR); 503 } 504 } 505 return n_bds; 506} 507 508 509/* Buffer enqueuing Logic: 510 * 511 * - RX builds new queues each time, to help handle routine "early 512 * termination" cases (faults, including errors and short reads) 513 * more correctly. 514 * 515 * - for now, TX reuses the same queue of BDs every time 516 * 517 * REVISIT long term, we want a normal dynamic model. 518 * ... the goal will be to append to the 519 * existing queue, processing completed "dma buffers" (segments) on the fly. 520 * 521 * Otherwise we force an IRQ latency between requests, which slows us a lot 522 * (especially in "transparent" dma). Unfortunately that model seems to be 523 * inherent in the DMA model from the Mentor code, except in the rare case 524 * of transfers big enough (~128+ KB) that we could append "middle" segments 525 * in the TX paths. (RX can't do this, see below.) 526 * 527 * That's true even in the CPPI- friendly iso case, where most urbs have 528 * several small segments provided in a group and where the "packet at a time" 529 * "transparent" DMA model is always correct, even on the RX side. 530 */ 531 532/* 533 * CPPI TX: 534 * ======== 535 * TX is a lot more reasonable than RX; it doesn't need to run in 536 * irq-per-packet mode very often. RNDIS mode seems to behave too 537 * (except how it handles the exactly-N-packets case). Building a 538 * txdma queue with multiple requests (urb or usb_request) looks 539 * like it would work ... but fault handling would need much testing. 540 * 541 * The main issue with TX mode RNDIS relates to transfer lengths that 542 * are an exact multiple of the packet length. It appears that there's 543 * a hiccup in that case (maybe the DMA completes before the ZLP gets 544 * written?) boiling down to not being able to rely on CPPI writing any 545 * terminating zero length packet before the next transfer is written. 546 * So that's punted to PIO; better yet, gadget drivers can avoid it. 547 * 548 * Plus, there's allegedly an undocumented constraint that rndis transfer 549 * length be a multiple of 64 bytes ... but the chip doesn't act that 550 * way, and we really don't _want_ that behavior anyway. 551 * 552 * On TX, "transparent" mode works ... although experiments have shown 553 * problems trying to use the SOP/EOP bits in different USB packets. 554 * 555 * REVISIT try to handle terminating zero length packets using CPPI 556 * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet 557 * links avoid that issue by forcing them to avoid zlps.) 558 */ 559static void 560cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx) 561{ 562 unsigned maxpacket = tx->maxpacket; 563 dma_addr_t addr = tx->buf_dma + tx->offset; 564 size_t length = tx->buf_len - tx->offset; 565 struct cppi_descriptor *bd; 566 unsigned n_bds; 567 unsigned i; 568 struct cppi_tx_stateram __iomem *tx_ram = tx->state_ram; 569 int rndis; 570 571 /* TX can use the CPPI "rndis" mode, where we can probably fit this 572 * transfer in one BD and one IRQ. The only time we would NOT want 573 * to use it is when hardware constraints prevent it, or if we'd 574 * trigger the "send a ZLP?" confusion. 575 */ 576 rndis = (maxpacket & 0x3f) == 0 577 && length > maxpacket 578 && length < 0xffff 579 && (length % maxpacket) != 0; 580 581 if (rndis) { 582 maxpacket = length; 583 n_bds = 1; 584 } else { 585 if (length) 586 n_bds = DIV_ROUND_UP(length, maxpacket); 587 else 588 n_bds = 1; 589 n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD); 590 length = min(n_bds * maxpacket, length); 591 } 592 593 musb_dbg(musb, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u", 594 tx->index, 595 maxpacket, 596 rndis ? "rndis" : "transparent", 597 n_bds, 598 (unsigned long long)addr, length); 599 600 cppi_rndis_update(tx, 0, musb->ctrl_base, rndis); 601 602 /* assuming here that channel_program is called during 603 * transfer initiation ... current code maintains state 604 * for one outstanding request only (no queues, not even 605 * the implicit ones of an iso urb). 606 */ 607 608 bd = tx->freelist; 609 tx->head = bd; 610 tx->last_processed = NULL; 611 612 /* FIXME use BD pool like RX side does, and just queue 613 * the minimum number for this request. 614 */ 615 616 /* Prepare queue of BDs first, then hand it to hardware. 617 * All BDs except maybe the last should be of full packet 618 * size; for RNDIS there _is_ only that last packet. 619 */ 620 for (i = 0; i < n_bds; ) { 621 if (++i < n_bds && bd->next) 622 bd->hw_next = bd->next->dma; 623 else 624 bd->hw_next = 0; 625 626 bd->hw_bufp = tx->buf_dma + tx->offset; 627 628 /* FIXME set EOP only on the last packet, 629 * SOP only on the first ... avoid IRQs 630 */ 631 if ((tx->offset + maxpacket) <= tx->buf_len) { 632 tx->offset += maxpacket; 633 bd->hw_off_len = maxpacket; 634 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET 635 | CPPI_OWN_SET | maxpacket; 636 } else { 637 /* only this one may be a partial USB Packet */ 638 u32 partial_len; 639 640 partial_len = tx->buf_len - tx->offset; 641 tx->offset = tx->buf_len; 642 bd->hw_off_len = partial_len; 643 644 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET 645 | CPPI_OWN_SET | partial_len; 646 if (partial_len == 0) 647 bd->hw_options |= CPPI_ZERO_SET; 648 } 649 650 musb_dbg(musb, "TXBD %p: nxt %08x buf %08x len %04x opt %08x", 651 bd, bd->hw_next, bd->hw_bufp, 652 bd->hw_off_len, bd->hw_options); 653 654 /* update the last BD enqueued to the list */ 655 tx->tail = bd; 656 bd = bd->next; 657 } 658 659 /* BDs live in DMA-coherent memory, but writes might be pending */ 660 cpu_drain_writebuffer(); 661 662 /* Write to the HeadPtr in state RAM to trigger */ 663 musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma); 664 665 cppi_dump_tx(5, tx, "/S"); 666} 667 668/* 669 * CPPI RX Woes: 670 * ============= 671 * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte 672 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back. 673 * (Full speed transfers have similar scenarios.) 674 * 675 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes, 676 * and the next packet goes into a buffer that's queued later; while (b) fills 677 * the buffer with 1024 bytes. How to do that with CPPI? 678 * 679 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but 680 * (b) loses **BADLY** because nothing (!) happens when that second packet 681 * fills the buffer, much less when a third one arrives. (Which makes this 682 * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination 683 * is optional, and it's fine if peripherals -- not hosts! -- pad messages 684 * out to end-of-buffer. Standard PCI host controller DMA descriptors 685 * implement that mode by default ... which is no accident.) 686 * 687 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have 688 * converse problems: (b) is handled right, but (a) loses badly. CPPI RX 689 * ignores SOP/EOP markings and processes both of those BDs; so both packets 690 * are loaded into the buffer (with a 212 byte gap between them), and the next 691 * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP 692 * are intended as outputs for RX queues, not inputs...) 693 * 694 * - A variant of "transparent" mode -- one BD at a time -- is the only way to 695 * reliably make both cases work, with software handling both cases correctly 696 * and at the significant penalty of needing an IRQ per packet. (The lack of 697 * I/O overlap can be slightly ameliorated by enabling double buffering.) 698 * 699 * So how to get rid of IRQ-per-packet? The transparent multi-BD case could 700 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK 701 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors 702 * with guaranteed driver level fault recovery and scrubbing out what's left 703 * of that garbaged datastream. 704 * 705 * But there seems to be no way to identify the cases where CPPI RNDIS mode 706 * is appropriate -- which do NOT include RNDIS host drivers, but do include 707 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong. 708 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic 709 * that applies best on the peripheral side (and which could fail rudely). 710 * 711 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all 712 * cases other than mass storage class. Otherwise we're correct but slow, 713 * since CPPI penalizes our need for a "true RNDIS" default mode. 714 */ 715 716 717/* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY 718 * 719 * IFF 720 * (a) peripheral mode ... since rndis peripherals could pad their 721 * writes to hosts, causing i/o failure; or we'd have to cope with 722 * a largely unknowable variety of host side protocol variants 723 * (b) and short reads are NOT errors ... since full reads would 724 * cause those same i/o failures 725 * (c) and read length is 726 * - less than 64KB (max per cppi descriptor) 727 * - not a multiple of 4096 (g_zero default, full reads typical) 728 * - N (>1) packets long, ditto (full reads not EXPECTED) 729 * THEN 730 * try rx rndis mode 731 * 732 * Cost of heuristic failing: RXDMA wedges at the end of transfers that 733 * fill out the whole buffer. Buggy host side usb network drivers could 734 * trigger that, but "in the field" such bugs seem to be all but unknown. 735 * 736 * So this module parameter lets the heuristic be disabled. When using 737 * gadgetfs, the heuristic will probably need to be disabled. 738 */ 739static bool cppi_rx_rndis = 1; 740 741module_param(cppi_rx_rndis, bool, 0); 742MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic"); 743 744 745/** 746 * cppi_next_rx_segment - dma read for the next chunk of a buffer 747 * @musb: the controller 748 * @rx: dma channel 749 * @onepacket: true unless caller treats short reads as errors, and 750 * performs fault recovery above usbcore. 751 * Context: controller irqlocked 752 * 753 * See above notes about why we can't use multi-BD RX queues except in 754 * rare cases (mass storage class), and can never use the hardware "rndis" 755 * mode (since it's not a "true" RNDIS mode) with complete safety.. 756 * 757 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in 758 * code to recover from corrupted datastreams after each short transfer. 759 */ 760static void 761cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket) 762{ 763 unsigned maxpacket = rx->maxpacket; 764 dma_addr_t addr = rx->buf_dma + rx->offset; 765 size_t length = rx->buf_len - rx->offset; 766 struct cppi_descriptor *bd, *tail; 767 unsigned n_bds; 768 unsigned i; 769 void __iomem *tibase = musb->ctrl_base; 770 int is_rndis = 0; 771 struct cppi_rx_stateram __iomem *rx_ram = rx->state_ram; 772 struct cppi_descriptor *d; 773 774 if (onepacket) { 775 /* almost every USB driver, host or peripheral side */ 776 n_bds = 1; 777 778 /* maybe apply the heuristic above */ 779 if (cppi_rx_rndis 780 && is_peripheral_active(musb) 781 && length > maxpacket 782 && (length & ~0xffff) == 0 783 && (length & 0x0fff) != 0 784 && (length & (maxpacket - 1)) == 0) { 785 maxpacket = length; 786 is_rndis = 1; 787 } 788 } else { 789 /* virtually nothing except mass storage class */ 790 if (length > 0xffff) { 791 n_bds = 0xffff / maxpacket; 792 length = n_bds * maxpacket; 793 } else { 794 n_bds = DIV_ROUND_UP(length, maxpacket); 795 } 796 if (n_bds == 1) 797 onepacket = 1; 798 else 799 n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD); 800 } 801 802 /* In host mode, autorequest logic can generate some IN tokens; it's 803 * tricky since we can't leave REQPKT set in RXCSR after the transfer 804 * finishes. So: multipacket transfers involve two or more segments. 805 * And always at least two IRQs ... RNDIS mode is not an option. 806 */ 807 if (is_host_active(musb)) 808 n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds); 809 810 cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis); 811 812 length = min(n_bds * maxpacket, length); 813 814 musb_dbg(musb, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) " 815 "dma 0x%llx len %u %u/%u", 816 rx->index, maxpacket, 817 onepacket 818 ? (is_rndis ? "rndis" : "onepacket") 819 : "multipacket", 820 n_bds, 821 musb_readl(tibase, 822 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) 823 & 0xffff, 824 (unsigned long long)addr, length, 825 rx->channel.actual_len, rx->buf_len); 826 827 /* only queue one segment at a time, since the hardware prevents 828 * correct queue shutdown after unexpected short packets 829 */ 830 bd = cppi_bd_alloc(rx); 831 rx->head = bd; 832 833 /* Build BDs for all packets in this segment */ 834 for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) { 835 u32 bd_len; 836 837 if (i) { 838 bd = cppi_bd_alloc(rx); 839 if (!bd) 840 break; 841 tail->next = bd; 842 tail->hw_next = bd->dma; 843 } 844 bd->hw_next = 0; 845 846 /* all but the last packet will be maxpacket size */ 847 if (maxpacket < length) 848 bd_len = maxpacket; 849 else 850 bd_len = length; 851 852 bd->hw_bufp = addr; 853 addr += bd_len; 854 rx->offset += bd_len; 855 856 bd->hw_off_len = (0 /*offset*/ << 16) + bd_len; 857 bd->buflen = bd_len; 858 859 bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0); 860 length -= bd_len; 861 } 862 863 /* we always expect at least one reusable BD! */ 864 if (!tail) { 865 WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds); 866 return; 867 } else if (i < n_bds) 868 WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds); 869 870 tail->next = NULL; 871 tail->hw_next = 0; 872 873 bd = rx->head; 874 rx->tail = tail; 875 876 /* short reads and other faults should terminate this entire 877 * dma segment. we want one "dma packet" per dma segment, not 878 * one per USB packet, terminating the whole queue at once... 879 * NOTE that current hardware seems to ignore SOP and EOP. 880 */ 881 bd->hw_options |= CPPI_SOP_SET; 882 tail->hw_options |= CPPI_EOP_SET; 883 884 for (d = rx->head; d; d = d->next) 885 cppi_dump_rxbd("S", d); 886 887 /* in case the preceding transfer left some state... */ 888 tail = rx->last_processed; 889 if (tail) { 890 tail->next = bd; 891 tail->hw_next = bd->dma; 892 } 893 894 core_rxirq_enable(tibase, rx->index + 1); 895 896 /* BDs live in DMA-coherent memory, but writes might be pending */ 897 cpu_drain_writebuffer(); 898 899 /* REVISIT specs say to write this AFTER the BUFCNT register 900 * below ... but that loses badly. 901 */ 902 musb_writel(&rx_ram->rx_head, 0, bd->dma); 903 904 /* bufferCount must be at least 3, and zeroes on completion 905 * unless it underflows below zero, or stops at two, or keeps 906 * growing ... grr. 907 */ 908 i = musb_readl(tibase, 909 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) 910 & 0xffff; 911 912 if (!i) 913 musb_writel(tibase, 914 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), 915 n_bds + 2); 916 else if (n_bds > (i - 3)) 917 musb_writel(tibase, 918 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), 919 n_bds - (i - 3)); 920 921 i = musb_readl(tibase, 922 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) 923 & 0xffff; 924 if (i < (2 + n_bds)) { 925 musb_dbg(musb, "bufcnt%d underrun - %d (for %d)", 926 rx->index, i, n_bds); 927 musb_writel(tibase, 928 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), 929 n_bds + 2); 930 } 931 932 cppi_dump_rx(4, rx, "/S"); 933} 934 935/** 936 * cppi_channel_program - program channel for data transfer 937 * @ch: the channel 938 * @maxpacket: max packet size 939 * @mode: For RX, 1 unless the usb protocol driver promised to treat 940 * all short reads as errors and kick in high level fault recovery. 941 * For TX, ignored because of RNDIS mode races/glitches. 942 * @dma_addr: dma address of buffer 943 * @len: length of buffer 944 * Context: controller irqlocked 945 */ 946static int cppi_channel_program(struct dma_channel *ch, 947 u16 maxpacket, u8 mode, 948 dma_addr_t dma_addr, u32 len) 949{ 950 struct cppi_channel *cppi_ch; 951 struct cppi *controller; 952 struct musb *musb; 953 954 cppi_ch = container_of(ch, struct cppi_channel, channel); 955 controller = cppi_ch->controller; 956 musb = controller->controller.musb; 957 958 switch (ch->status) { 959 case MUSB_DMA_STATUS_BUS_ABORT: 960 case MUSB_DMA_STATUS_CORE_ABORT: 961 /* fault irq handler should have handled cleanup */ 962 WARNING("%cX DMA%d not cleaned up after abort!\n", 963 cppi_ch->transmit ? 'T' : 'R', 964 cppi_ch->index); 965 /* WARN_ON(1); */ 966 break; 967 case MUSB_DMA_STATUS_BUSY: 968 WARNING("program active channel? %cX DMA%d\n", 969 cppi_ch->transmit ? 'T' : 'R', 970 cppi_ch->index); 971 /* WARN_ON(1); */ 972 break; 973 case MUSB_DMA_STATUS_UNKNOWN: 974 musb_dbg(musb, "%cX DMA%d not allocated!", 975 cppi_ch->transmit ? 'T' : 'R', 976 cppi_ch->index); 977 /* FALLTHROUGH */ 978 case MUSB_DMA_STATUS_FREE: 979 break; 980 } 981 982 ch->status = MUSB_DMA_STATUS_BUSY; 983 984 /* set transfer parameters, then queue up its first segment */ 985 cppi_ch->buf_dma = dma_addr; 986 cppi_ch->offset = 0; 987 cppi_ch->maxpacket = maxpacket; 988 cppi_ch->buf_len = len; 989 cppi_ch->channel.actual_len = 0; 990 991 /* TX channel? or RX? */ 992 if (cppi_ch->transmit) 993 cppi_next_tx_segment(musb, cppi_ch); 994 else 995 cppi_next_rx_segment(musb, cppi_ch, mode); 996 997 return true; 998} 999 1000static bool cppi_rx_scan(struct cppi *cppi, unsigned ch) 1001{ 1002 struct cppi_channel *rx = &cppi->rx[ch]; 1003 struct cppi_rx_stateram __iomem *state = rx->state_ram; 1004 struct cppi_descriptor *bd; 1005 struct cppi_descriptor *last = rx->last_processed; 1006 bool completed = false; 1007 bool acked = false; 1008 int i; 1009 dma_addr_t safe2ack; 1010 void __iomem *regs = rx->hw_ep->regs; 1011 struct musb *musb = cppi->controller.musb; 1012 1013 cppi_dump_rx(6, rx, "/K"); 1014 1015 bd = last ? last->next : rx->head; 1016 if (!bd) 1017 return false; 1018 1019 /* run through all completed BDs */ 1020 for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0); 1021 (safe2ack || completed) && bd && i < NUM_RXCHAN_BD; 1022 i++, bd = bd->next) { 1023 u16 len; 1024 1025 /* catch latest BD writes from CPPI */ 1026 rmb(); 1027 if (!completed && (bd->hw_options & CPPI_OWN_SET)) 1028 break; 1029 1030 musb_dbg(musb, "C/RXBD %llx: nxt %08x buf %08x " 1031 "off.len %08x opt.len %08x (%d)", 1032 (unsigned long long)bd->dma, bd->hw_next, bd->hw_bufp, 1033 bd->hw_off_len, bd->hw_options, 1034 rx->channel.actual_len); 1035 1036 /* actual packet received length */ 1037 if ((bd->hw_options & CPPI_SOP_SET) && !completed) 1038 len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK; 1039 else 1040 len = 0; 1041 1042 if (bd->hw_options & CPPI_EOQ_MASK) 1043 completed = true; 1044 1045 if (!completed && len < bd->buflen) { 1046 /* NOTE: when we get a short packet, RXCSR_H_REQPKT 1047 * must have been cleared, and no more DMA packets may 1048 * active be in the queue... TI docs didn't say, but 1049 * CPPI ignores those BDs even though OWN is still set. 1050 */ 1051 completed = true; 1052 musb_dbg(musb, "rx short %d/%d (%d)", 1053 len, bd->buflen, 1054 rx->channel.actual_len); 1055 } 1056 1057 /* If we got here, we expect to ack at least one BD; meanwhile 1058 * CPPI may completing other BDs while we scan this list... 1059 * 1060 * RACE: we can notice OWN cleared before CPPI raises the 1061 * matching irq by writing that BD as the completion pointer. 1062 * In such cases, stop scanning and wait for the irq, avoiding 1063 * lost acks and states where BD ownership is unclear. 1064 */ 1065 if (bd->dma == safe2ack) { 1066 musb_writel(&state->rx_complete, 0, safe2ack); 1067 safe2ack = musb_readl(&state->rx_complete, 0); 1068 acked = true; 1069 if (bd->dma == safe2ack) 1070 safe2ack = 0; 1071 } 1072 1073 rx->channel.actual_len += len; 1074 1075 cppi_bd_free(rx, last); 1076 last = bd; 1077 1078 /* stop scanning on end-of-segment */ 1079 if (bd->hw_next == 0) 1080 completed = true; 1081 } 1082 rx->last_processed = last; 1083 1084 /* dma abort, lost ack, or ... */ 1085 if (!acked && last) { 1086 int csr; 1087 1088 if (safe2ack == 0 || safe2ack == rx->last_processed->dma) 1089 musb_writel(&state->rx_complete, 0, safe2ack); 1090 if (safe2ack == 0) { 1091 cppi_bd_free(rx, last); 1092 rx->last_processed = NULL; 1093 1094 /* if we land here on the host side, H_REQPKT will 1095 * be clear and we need to restart the queue... 1096 */ 1097 WARN_ON(rx->head); 1098 } 1099 musb_ep_select(cppi->mregs, rx->index + 1); 1100 csr = musb_readw(regs, MUSB_RXCSR); 1101 if (csr & MUSB_RXCSR_DMAENAB) { 1102 musb_dbg(musb, "list%d %p/%p, last %llx%s, csr %04x", 1103 rx->index, 1104 rx->head, rx->tail, 1105 rx->last_processed 1106 ? (unsigned long long) 1107 rx->last_processed->dma 1108 : 0, 1109 completed ? ", completed" : "", 1110 csr); 1111 cppi_dump_rxq(4, "/what?", rx); 1112 } 1113 } 1114 if (!completed) { 1115 int csr; 1116 1117 rx->head = bd; 1118 1119 /* REVISIT seems like "autoreq all but EOP" doesn't... 1120 * setting it here "should" be racey, but seems to work 1121 */ 1122 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); 1123 if (is_host_active(cppi->controller.musb) 1124 && bd 1125 && !(csr & MUSB_RXCSR_H_REQPKT)) { 1126 csr |= MUSB_RXCSR_H_REQPKT; 1127 musb_writew(regs, MUSB_RXCSR, 1128 MUSB_RXCSR_H_WZC_BITS | csr); 1129 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); 1130 } 1131 } else { 1132 rx->head = NULL; 1133 rx->tail = NULL; 1134 } 1135 1136 cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned"); 1137 return completed; 1138} 1139 1140irqreturn_t cppi_interrupt(int irq, void *dev_id) 1141{ 1142 struct musb *musb = dev_id; 1143 struct cppi *cppi; 1144 void __iomem *tibase; 1145 struct musb_hw_ep *hw_ep = NULL; 1146 u32 rx, tx; 1147 int i, index; 1148 unsigned long uninitialized_var(flags); 1149 1150 cppi = container_of(musb->dma_controller, struct cppi, controller); 1151 if (cppi->irq) 1152 spin_lock_irqsave(&musb->lock, flags); 1153 1154 tibase = musb->ctrl_base; 1155 1156 tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG); 1157 rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG); 1158 1159 if (!tx && !rx) { 1160 if (cppi->irq) 1161 spin_unlock_irqrestore(&musb->lock, flags); 1162 return IRQ_NONE; 1163 } 1164 1165 musb_dbg(musb, "CPPI IRQ Tx%x Rx%x", tx, rx); 1166 1167 /* process TX channels */ 1168 for (index = 0; tx; tx = tx >> 1, index++) { 1169 struct cppi_channel *tx_ch; 1170 struct cppi_tx_stateram __iomem *tx_ram; 1171 bool completed = false; 1172 struct cppi_descriptor *bd; 1173 1174 if (!(tx & 1)) 1175 continue; 1176 1177 tx_ch = cppi->tx + index; 1178 tx_ram = tx_ch->state_ram; 1179 1180 /* FIXME need a cppi_tx_scan() routine, which 1181 * can also be called from abort code 1182 */ 1183 1184 cppi_dump_tx(5, tx_ch, "/E"); 1185 1186 bd = tx_ch->head; 1187 1188 /* 1189 * If Head is null then this could mean that a abort interrupt 1190 * that needs to be acknowledged. 1191 */ 1192 if (NULL == bd) { 1193 musb_dbg(musb, "null BD"); 1194 musb_writel(&tx_ram->tx_complete, 0, 0); 1195 continue; 1196 } 1197 1198 /* run through all completed BDs */ 1199 for (i = 0; !completed && bd && i < NUM_TXCHAN_BD; 1200 i++, bd = bd->next) { 1201 u16 len; 1202 1203 /* catch latest BD writes from CPPI */ 1204 rmb(); 1205 if (bd->hw_options & CPPI_OWN_SET) 1206 break; 1207 1208 musb_dbg(musb, "C/TXBD %p n %x b %x off %x opt %x", 1209 bd, bd->hw_next, bd->hw_bufp, 1210 bd->hw_off_len, bd->hw_options); 1211 1212 len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK; 1213 tx_ch->channel.actual_len += len; 1214 1215 tx_ch->last_processed = bd; 1216 1217 /* write completion register to acknowledge 1218 * processing of completed BDs, and possibly 1219 * release the IRQ; EOQ might not be set ... 1220 * 1221 * REVISIT use the same ack strategy as rx 1222 * 1223 * REVISIT have observed bit 18 set; huh?? 1224 */ 1225 /* if ((bd->hw_options & CPPI_EOQ_MASK)) */ 1226 musb_writel(&tx_ram->tx_complete, 0, bd->dma); 1227 1228 /* stop scanning on end-of-segment */ 1229 if (bd->hw_next == 0) 1230 completed = true; 1231 } 1232 1233 /* on end of segment, maybe go to next one */ 1234 if (completed) { 1235 /* cppi_dump_tx(4, tx_ch, "/complete"); */ 1236 1237 /* transfer more, or report completion */ 1238 if (tx_ch->offset >= tx_ch->buf_len) { 1239 tx_ch->head = NULL; 1240 tx_ch->tail = NULL; 1241 tx_ch->channel.status = MUSB_DMA_STATUS_FREE; 1242 1243 hw_ep = tx_ch->hw_ep; 1244 1245 musb_dma_completion(musb, index + 1, 1); 1246 1247 } else { 1248 /* Bigger transfer than we could fit in 1249 * that first batch of descriptors... 1250 */ 1251 cppi_next_tx_segment(musb, tx_ch); 1252 } 1253 } else 1254 tx_ch->head = bd; 1255 } 1256 1257 /* Start processing the RX block */ 1258 for (index = 0; rx; rx = rx >> 1, index++) { 1259 1260 if (rx & 1) { 1261 struct cppi_channel *rx_ch; 1262 1263 rx_ch = cppi->rx + index; 1264 1265 /* let incomplete dma segments finish */ 1266 if (!cppi_rx_scan(cppi, index)) 1267 continue; 1268 1269 /* start another dma segment if needed */ 1270 if (rx_ch->channel.actual_len != rx_ch->buf_len 1271 && rx_ch->channel.actual_len 1272 == rx_ch->offset) { 1273 cppi_next_rx_segment(musb, rx_ch, 1); 1274 continue; 1275 } 1276 1277 /* all segments completed! */ 1278 rx_ch->channel.status = MUSB_DMA_STATUS_FREE; 1279 1280 hw_ep = rx_ch->hw_ep; 1281 1282 core_rxirq_disable(tibase, index + 1); 1283 musb_dma_completion(musb, index + 1, 0); 1284 } 1285 } 1286 1287 /* write to CPPI EOI register to re-enable interrupts */ 1288 musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0); 1289 1290 if (cppi->irq) 1291 spin_unlock_irqrestore(&musb->lock, flags); 1292 1293 return IRQ_HANDLED; 1294} 1295EXPORT_SYMBOL_GPL(cppi_interrupt); 1296 1297/* Instantiate a software object representing a DMA controller. */ 1298struct dma_controller * 1299cppi_dma_controller_create(struct musb *musb, void __iomem *mregs) 1300{ 1301 struct cppi *controller; 1302 struct device *dev = musb->controller; 1303 struct platform_device *pdev = to_platform_device(dev); 1304 int irq = platform_get_irq_byname(pdev, "dma"); 1305 1306 controller = kzalloc(sizeof *controller, GFP_KERNEL); 1307 if (!controller) 1308 return NULL; 1309 1310 controller->mregs = mregs; 1311 controller->tibase = mregs - DAVINCI_BASE_OFFSET; 1312 1313 controller->controller.musb = musb; 1314 controller->controller.channel_alloc = cppi_channel_allocate; 1315 controller->controller.channel_release = cppi_channel_release; 1316 controller->controller.channel_program = cppi_channel_program; 1317 controller->controller.channel_abort = cppi_channel_abort; 1318 1319 /* NOTE: allocating from on-chip SRAM would give the least 1320 * contention for memory access, if that ever matters here. 1321 */ 1322 1323 /* setup BufferPool */ 1324 controller->pool = dma_pool_create("cppi", 1325 controller->controller.musb->controller, 1326 sizeof(struct cppi_descriptor), 1327 CPPI_DESCRIPTOR_ALIGN, 0); 1328 if (!controller->pool) { 1329 kfree(controller); 1330 return NULL; 1331 } 1332 1333 if (irq > 0) { 1334 if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) { 1335 dev_err(dev, "request_irq %d failed!\n", irq); 1336 musb_dma_controller_destroy(&controller->controller); 1337 return NULL; 1338 } 1339 controller->irq = irq; 1340 } 1341 1342 cppi_controller_start(controller); 1343 return &controller->controller; 1344} 1345EXPORT_SYMBOL_GPL(cppi_dma_controller_create); 1346 1347/* 1348 * Destroy a previously-instantiated DMA controller. 1349 */ 1350void cppi_dma_controller_destroy(struct dma_controller *c) 1351{ 1352 struct cppi *cppi; 1353 1354 cppi = container_of(c, struct cppi, controller); 1355 1356 cppi_controller_stop(cppi); 1357 1358 if (cppi->irq) 1359 free_irq(cppi->irq, cppi->controller.musb); 1360 1361 /* assert: caller stopped the controller first */ 1362 dma_pool_destroy(cppi->pool); 1363 1364 kfree(cppi); 1365} 1366EXPORT_SYMBOL_GPL(cppi_dma_controller_destroy); 1367 1368/* 1369 * Context: controller irqlocked, endpoint selected 1370 */ 1371static int cppi_channel_abort(struct dma_channel *channel) 1372{ 1373 struct cppi_channel *cppi_ch; 1374 struct cppi *controller; 1375 void __iomem *mbase; 1376 void __iomem *tibase; 1377 void __iomem *regs; 1378 u32 value; 1379 struct cppi_descriptor *queue; 1380 1381 cppi_ch = container_of(channel, struct cppi_channel, channel); 1382 1383 controller = cppi_ch->controller; 1384 1385 switch (channel->status) { 1386 case MUSB_DMA_STATUS_BUS_ABORT: 1387 case MUSB_DMA_STATUS_CORE_ABORT: 1388 /* from RX or TX fault irq handler */ 1389 case MUSB_DMA_STATUS_BUSY: 1390 /* the hardware needs shutting down */ 1391 regs = cppi_ch->hw_ep->regs; 1392 break; 1393 case MUSB_DMA_STATUS_UNKNOWN: 1394 case MUSB_DMA_STATUS_FREE: 1395 return 0; 1396 default: 1397 return -EINVAL; 1398 } 1399 1400 if (!cppi_ch->transmit && cppi_ch->head) 1401 cppi_dump_rxq(3, "/abort", cppi_ch); 1402 1403 mbase = controller->mregs; 1404 tibase = controller->tibase; 1405 1406 queue = cppi_ch->head; 1407 cppi_ch->head = NULL; 1408 cppi_ch->tail = NULL; 1409 1410 /* REVISIT should rely on caller having done this, 1411 * and caller should rely on us not changing it. 1412 * peripheral code is safe ... check host too. 1413 */ 1414 musb_ep_select(mbase, cppi_ch->index + 1); 1415 1416 if (cppi_ch->transmit) { 1417 struct cppi_tx_stateram __iomem *tx_ram; 1418 /* REVISIT put timeouts on these controller handshakes */ 1419 1420 cppi_dump_tx(6, cppi_ch, " (teardown)"); 1421 1422 /* teardown DMA engine then usb core */ 1423 do { 1424 value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG); 1425 } while (!(value & CPPI_TEAR_READY)); 1426 musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index); 1427 1428 tx_ram = cppi_ch->state_ram; 1429 do { 1430 value = musb_readl(&tx_ram->tx_complete, 0); 1431 } while (0xFFFFFFFC != value); 1432 1433 /* FIXME clean up the transfer state ... here? 1434 * the completion routine should get called with 1435 * an appropriate status code. 1436 */ 1437 1438 value = musb_readw(regs, MUSB_TXCSR); 1439 value &= ~MUSB_TXCSR_DMAENAB; 1440 value |= MUSB_TXCSR_FLUSHFIFO; 1441 musb_writew(regs, MUSB_TXCSR, value); 1442 musb_writew(regs, MUSB_TXCSR, value); 1443 1444 /* 1445 * 1. Write to completion Ptr value 0x1(bit 0 set) 1446 * (write back mode) 1447 * 2. Wait for abort interrupt and then put the channel in 1448 * compare mode by writing 1 to the tx_complete register. 1449 */ 1450 cppi_reset_tx(tx_ram, 1); 1451 cppi_ch->head = NULL; 1452 musb_writel(&tx_ram->tx_complete, 0, 1); 1453 cppi_dump_tx(5, cppi_ch, " (done teardown)"); 1454 1455 /* REVISIT tx side _should_ clean up the same way 1456 * as the RX side ... this does no cleanup at all! 1457 */ 1458 1459 } else /* RX */ { 1460 u16 csr; 1461 1462 /* NOTE: docs don't guarantee any of this works ... we 1463 * expect that if the usb core stops telling the cppi core 1464 * to pull more data from it, then it'll be safe to flush 1465 * current RX DMA state iff any pending fifo transfer is done. 1466 */ 1467 1468 core_rxirq_disable(tibase, cppi_ch->index + 1); 1469 1470 /* for host, ensure ReqPkt is never set again */ 1471 if (is_host_active(cppi_ch->controller->controller.musb)) { 1472 value = musb_readl(tibase, DAVINCI_AUTOREQ_REG); 1473 value &= ~((0x3) << (cppi_ch->index * 2)); 1474 musb_writel(tibase, DAVINCI_AUTOREQ_REG, value); 1475 } 1476 1477 csr = musb_readw(regs, MUSB_RXCSR); 1478 1479 /* for host, clear (just) ReqPkt at end of current packet(s) */ 1480 if (is_host_active(cppi_ch->controller->controller.musb)) { 1481 csr |= MUSB_RXCSR_H_WZC_BITS; 1482 csr &= ~MUSB_RXCSR_H_REQPKT; 1483 } else 1484 csr |= MUSB_RXCSR_P_WZC_BITS; 1485 1486 /* clear dma enable */ 1487 csr &= ~(MUSB_RXCSR_DMAENAB); 1488 musb_writew(regs, MUSB_RXCSR, csr); 1489 csr = musb_readw(regs, MUSB_RXCSR); 1490 1491 /* Quiesce: wait for current dma to finish (if not cleanup). 1492 * We can't use bit zero of stateram->rx_sop, since that 1493 * refers to an entire "DMA packet" not just emptying the 1494 * current fifo. Most segments need multiple usb packets. 1495 */ 1496 if (channel->status == MUSB_DMA_STATUS_BUSY) 1497 udelay(50); 1498 1499 /* scan the current list, reporting any data that was 1500 * transferred and acking any IRQ 1501 */ 1502 cppi_rx_scan(controller, cppi_ch->index); 1503 1504 /* clobber the existing state once it's idle 1505 * 1506 * NOTE: arguably, we should also wait for all the other 1507 * RX channels to quiesce (how??) and then temporarily 1508 * disable RXCPPI_CTRL_REG ... but it seems that we can 1509 * rely on the controller restarting from state ram, with 1510 * only RXCPPI_BUFCNT state being bogus. BUFCNT will 1511 * correct itself after the next DMA transfer though. 1512 * 1513 * REVISIT does using rndis mode change that? 1514 */ 1515 cppi_reset_rx(cppi_ch->state_ram); 1516 1517 /* next DMA request _should_ load cppi head ptr */ 1518 1519 /* ... we don't "free" that list, only mutate it in place. */ 1520 cppi_dump_rx(5, cppi_ch, " (done abort)"); 1521 1522 /* clean up previously pending bds */ 1523 cppi_bd_free(cppi_ch, cppi_ch->last_processed); 1524 cppi_ch->last_processed = NULL; 1525 1526 while (queue) { 1527 struct cppi_descriptor *tmp = queue->next; 1528 1529 cppi_bd_free(cppi_ch, queue); 1530 queue = tmp; 1531 } 1532 } 1533 1534 channel->status = MUSB_DMA_STATUS_FREE; 1535 cppi_ch->buf_dma = 0; 1536 cppi_ch->offset = 0; 1537 cppi_ch->buf_len = 0; 1538 cppi_ch->maxpacket = 0; 1539 return 0; 1540} 1541 1542/* TBD Queries: 1543 * 1544 * Power Management ... probably turn off cppi during suspend, restart; 1545 * check state ram? Clocking is presumably shared with usb core. 1546 */