at v4.13 3127 lines 95 kB view raw
1/* 2 * RocketPort device driver for Linux 3 * 4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000. 5 * 6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of the 11 * License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23/* 24 * Kernel Synchronization: 25 * 26 * This driver has 2 kernel control paths - exception handlers (calls into the driver 27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts 28 * are not used. 29 * 30 * Critical data: 31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of 32 * serial port state information and the xmit_buf circular buffer. Protected by 33 * a per port spinlock. 34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there 35 * is data to be transmitted. Protected by atomic bit operations. 36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations. 37 * 38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against 39 * simultaneous access to the same port by more than one process. 40 */ 41 42/****** Defines ******/ 43#define ROCKET_PARANOIA_CHECK 44#define ROCKET_DISABLE_SIMUSAGE 45 46#undef ROCKET_SOFT_FLOW 47#undef ROCKET_DEBUG_OPEN 48#undef ROCKET_DEBUG_INTR 49#undef ROCKET_DEBUG_WRITE 50#undef ROCKET_DEBUG_FLOW 51#undef ROCKET_DEBUG_THROTTLE 52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT 53#undef ROCKET_DEBUG_RECEIVE 54#undef ROCKET_DEBUG_HANGUP 55#undef REV_PCI_ORDER 56#undef ROCKET_DEBUG_IO 57 58#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */ 59 60/****** Kernel includes ******/ 61 62#include <linux/module.h> 63#include <linux/errno.h> 64#include <linux/major.h> 65#include <linux/kernel.h> 66#include <linux/signal.h> 67#include <linux/slab.h> 68#include <linux/mm.h> 69#include <linux/sched.h> 70#include <linux/timer.h> 71#include <linux/interrupt.h> 72#include <linux/tty.h> 73#include <linux/tty_driver.h> 74#include <linux/tty_flip.h> 75#include <linux/serial.h> 76#include <linux/string.h> 77#include <linux/fcntl.h> 78#include <linux/ptrace.h> 79#include <linux/mutex.h> 80#include <linux/ioport.h> 81#include <linux/delay.h> 82#include <linux/completion.h> 83#include <linux/wait.h> 84#include <linux/pci.h> 85#include <linux/uaccess.h> 86#include <linux/atomic.h> 87#include <asm/unaligned.h> 88#include <linux/bitops.h> 89#include <linux/spinlock.h> 90#include <linux/init.h> 91 92/****** RocketPort includes ******/ 93 94#include "rocket_int.h" 95#include "rocket.h" 96 97#define ROCKET_VERSION "2.09" 98#define ROCKET_DATE "12-June-2003" 99 100/****** RocketPort Local Variables ******/ 101 102static void rp_do_poll(unsigned long dummy); 103 104static struct tty_driver *rocket_driver; 105 106static struct rocket_version driver_version = { 107 ROCKET_VERSION, ROCKET_DATE 108}; 109 110static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */ 111static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */ 112 /* eg. Bit 0 indicates port 0 has xmit data, ... */ 113static atomic_t rp_num_ports_open; /* Number of serial ports open */ 114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0); 115 116static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */ 117static unsigned long board2; 118static unsigned long board3; 119static unsigned long board4; 120static unsigned long controller; 121static bool support_low_speed; 122static unsigned long modem1; 123static unsigned long modem2; 124static unsigned long modem3; 125static unsigned long modem4; 126static unsigned long pc104_1[8]; 127static unsigned long pc104_2[8]; 128static unsigned long pc104_3[8]; 129static unsigned long pc104_4[8]; 130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 }; 131 132static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */ 133static unsigned long rcktpt_io_addr[NUM_BOARDS]; 134static int rcktpt_type[NUM_BOARDS]; 135static int is_PCI[NUM_BOARDS]; 136static rocketModel_t rocketModel[NUM_BOARDS]; 137static int max_board; 138static const struct tty_port_operations rocket_port_ops; 139 140/* 141 * The following arrays define the interrupt bits corresponding to each AIOP. 142 * These bits are different between the ISA and regular PCI boards and the 143 * Universal PCI boards. 144 */ 145 146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = { 147 AIOP_INTR_BIT_0, 148 AIOP_INTR_BIT_1, 149 AIOP_INTR_BIT_2, 150 AIOP_INTR_BIT_3 151}; 152 153#ifdef CONFIG_PCI 154static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = { 155 UPCI_AIOP_INTR_BIT_0, 156 UPCI_AIOP_INTR_BIT_1, 157 UPCI_AIOP_INTR_BIT_2, 158 UPCI_AIOP_INTR_BIT_3 159}; 160#endif 161 162static Byte_t RData[RDATASIZE] = { 163 0x00, 0x09, 0xf6, 0x82, 164 0x02, 0x09, 0x86, 0xfb, 165 0x04, 0x09, 0x00, 0x0a, 166 0x06, 0x09, 0x01, 0x0a, 167 0x08, 0x09, 0x8a, 0x13, 168 0x0a, 0x09, 0xc5, 0x11, 169 0x0c, 0x09, 0x86, 0x85, 170 0x0e, 0x09, 0x20, 0x0a, 171 0x10, 0x09, 0x21, 0x0a, 172 0x12, 0x09, 0x41, 0xff, 173 0x14, 0x09, 0x82, 0x00, 174 0x16, 0x09, 0x82, 0x7b, 175 0x18, 0x09, 0x8a, 0x7d, 176 0x1a, 0x09, 0x88, 0x81, 177 0x1c, 0x09, 0x86, 0x7a, 178 0x1e, 0x09, 0x84, 0x81, 179 0x20, 0x09, 0x82, 0x7c, 180 0x22, 0x09, 0x0a, 0x0a 181}; 182 183static Byte_t RRegData[RREGDATASIZE] = { 184 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */ 185 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */ 186 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */ 187 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */ 188 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */ 189 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */ 190 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */ 191 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */ 192 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */ 193 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */ 194 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */ 195 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */ 196 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */ 197}; 198 199static CONTROLLER_T sController[CTL_SIZE] = { 200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 206 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 207 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}} 208}; 209 210static Byte_t sBitMapClrTbl[8] = { 211 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f 212}; 213 214static Byte_t sBitMapSetTbl[8] = { 215 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 216}; 217 218static int sClockPrescale = 0x14; 219 220/* 221 * Line number is the ttySIx number (x), the Minor number. We 222 * assign them sequentially, starting at zero. The following 223 * array keeps track of the line number assigned to a given board/aiop/channel. 224 */ 225static unsigned char lineNumbers[MAX_RP_PORTS]; 226static unsigned long nextLineNumber; 227 228/***** RocketPort Static Prototypes *********/ 229static int __init init_ISA(int i); 230static void rp_wait_until_sent(struct tty_struct *tty, int timeout); 231static void rp_flush_buffer(struct tty_struct *tty); 232static unsigned char GetLineNumber(int ctrl, int aiop, int ch); 233static unsigned char SetLineNumber(int ctrl, int aiop, int ch); 234static void rp_start(struct tty_struct *tty); 235static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 236 int ChanNum); 237static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode); 238static void sFlushRxFIFO(CHANNEL_T * ChP); 239static void sFlushTxFIFO(CHANNEL_T * ChP); 240static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags); 241static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags); 242static void sModemReset(CONTROLLER_T * CtlP, int chan, int on); 243static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on); 244static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data); 245static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 246 ByteIO_t * AiopIOList, int AiopIOListSize, 247 int IRQNum, Byte_t Frequency, int PeriodicOnly); 248static int sReadAiopID(ByteIO_t io); 249static int sReadAiopNumChan(WordIO_t io); 250 251MODULE_AUTHOR("Theodore Ts'o"); 252MODULE_DESCRIPTION("Comtrol RocketPort driver"); 253module_param_hw(board1, ulong, ioport, 0); 254MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1"); 255module_param_hw(board2, ulong, ioport, 0); 256MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2"); 257module_param_hw(board3, ulong, ioport, 0); 258MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3"); 259module_param_hw(board4, ulong, ioport, 0); 260MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4"); 261module_param_hw(controller, ulong, ioport, 0); 262MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller"); 263module_param(support_low_speed, bool, 0); 264MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud"); 265module_param(modem1, ulong, 0); 266MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem"); 267module_param(modem2, ulong, 0); 268MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem"); 269module_param(modem3, ulong, 0); 270MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem"); 271module_param(modem4, ulong, 0); 272MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem"); 273module_param_array(pc104_1, ulong, NULL, 0); 274MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,..."); 275module_param_array(pc104_2, ulong, NULL, 0); 276MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,..."); 277module_param_array(pc104_3, ulong, NULL, 0); 278MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,..."); 279module_param_array(pc104_4, ulong, NULL, 0); 280MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,..."); 281 282static int rp_init(void); 283static void rp_cleanup_module(void); 284 285module_init(rp_init); 286module_exit(rp_cleanup_module); 287 288 289MODULE_LICENSE("Dual BSD/GPL"); 290 291/*************************************************************************/ 292/* Module code starts here */ 293 294static inline int rocket_paranoia_check(struct r_port *info, 295 const char *routine) 296{ 297#ifdef ROCKET_PARANOIA_CHECK 298 if (!info) 299 return 1; 300 if (info->magic != RPORT_MAGIC) { 301 printk(KERN_WARNING "Warning: bad magic number for rocketport " 302 "struct in %s\n", routine); 303 return 1; 304 } 305#endif 306 return 0; 307} 308 309 310/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals 311 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the 312 * tty layer. 313 */ 314static void rp_do_receive(struct r_port *info, CHANNEL_t *cp, 315 unsigned int ChanStatus) 316{ 317 unsigned int CharNStat; 318 int ToRecv, wRecv, space; 319 unsigned char *cbuf; 320 321 ToRecv = sGetRxCnt(cp); 322#ifdef ROCKET_DEBUG_INTR 323 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv); 324#endif 325 if (ToRecv == 0) 326 return; 327 328 /* 329 * if status indicates there are errored characters in the 330 * FIFO, then enter status mode (a word in FIFO holds 331 * character and status). 332 */ 333 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) { 334 if (!(ChanStatus & STATMODE)) { 335#ifdef ROCKET_DEBUG_RECEIVE 336 printk(KERN_INFO "Entering STATMODE...\n"); 337#endif 338 ChanStatus |= STATMODE; 339 sEnRxStatusMode(cp); 340 } 341 } 342 343 /* 344 * if we previously entered status mode, then read down the 345 * FIFO one word at a time, pulling apart the character and 346 * the status. Update error counters depending on status 347 */ 348 if (ChanStatus & STATMODE) { 349#ifdef ROCKET_DEBUG_RECEIVE 350 printk(KERN_INFO "Ignore %x, read %x...\n", 351 info->ignore_status_mask, info->read_status_mask); 352#endif 353 while (ToRecv) { 354 char flag; 355 356 CharNStat = sInW(sGetTxRxDataIO(cp)); 357#ifdef ROCKET_DEBUG_RECEIVE 358 printk(KERN_INFO "%x...\n", CharNStat); 359#endif 360 if (CharNStat & STMBREAKH) 361 CharNStat &= ~(STMFRAMEH | STMPARITYH); 362 if (CharNStat & info->ignore_status_mask) { 363 ToRecv--; 364 continue; 365 } 366 CharNStat &= info->read_status_mask; 367 if (CharNStat & STMBREAKH) 368 flag = TTY_BREAK; 369 else if (CharNStat & STMPARITYH) 370 flag = TTY_PARITY; 371 else if (CharNStat & STMFRAMEH) 372 flag = TTY_FRAME; 373 else if (CharNStat & STMRCVROVRH) 374 flag = TTY_OVERRUN; 375 else 376 flag = TTY_NORMAL; 377 tty_insert_flip_char(&info->port, CharNStat & 0xff, 378 flag); 379 ToRecv--; 380 } 381 382 /* 383 * after we've emptied the FIFO in status mode, turn 384 * status mode back off 385 */ 386 if (sGetRxCnt(cp) == 0) { 387#ifdef ROCKET_DEBUG_RECEIVE 388 printk(KERN_INFO "Status mode off.\n"); 389#endif 390 sDisRxStatusMode(cp); 391 } 392 } else { 393 /* 394 * we aren't in status mode, so read down the FIFO two 395 * characters at time by doing repeated word IO 396 * transfer. 397 */ 398 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv); 399 if (space < ToRecv) { 400#ifdef ROCKET_DEBUG_RECEIVE 401 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space); 402#endif 403 if (space <= 0) 404 return; 405 ToRecv = space; 406 } 407 wRecv = ToRecv >> 1; 408 if (wRecv) 409 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv); 410 if (ToRecv & 1) 411 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp)); 412 } 413 /* Push the data up to the tty layer */ 414 tty_flip_buffer_push(&info->port); 415} 416 417/* 418 * Serial port transmit data function. Called from the timer polling loop as a 419 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready 420 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is 421 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks. 422 */ 423static void rp_do_transmit(struct r_port *info) 424{ 425 int c; 426 CHANNEL_t *cp = &info->channel; 427 struct tty_struct *tty; 428 unsigned long flags; 429 430#ifdef ROCKET_DEBUG_INTR 431 printk(KERN_DEBUG "%s\n", __func__); 432#endif 433 if (!info) 434 return; 435 tty = tty_port_tty_get(&info->port); 436 437 if (tty == NULL) { 438 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__); 439 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 440 return; 441 } 442 443 spin_lock_irqsave(&info->slock, flags); 444 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 445 446 /* Loop sending data to FIFO until done or FIFO full */ 447 while (1) { 448 if (tty->stopped) 449 break; 450 c = min(info->xmit_fifo_room, info->xmit_cnt); 451 c = min(c, XMIT_BUF_SIZE - info->xmit_tail); 452 if (c <= 0 || info->xmit_fifo_room <= 0) 453 break; 454 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2); 455 if (c & 1) 456 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]); 457 info->xmit_tail += c; 458 info->xmit_tail &= XMIT_BUF_SIZE - 1; 459 info->xmit_cnt -= c; 460 info->xmit_fifo_room -= c; 461#ifdef ROCKET_DEBUG_INTR 462 printk(KERN_INFO "tx %d chars...\n", c); 463#endif 464 } 465 466 if (info->xmit_cnt == 0) 467 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 468 469 if (info->xmit_cnt < WAKEUP_CHARS) { 470 tty_wakeup(tty); 471#ifdef ROCKETPORT_HAVE_POLL_WAIT 472 wake_up_interruptible(&tty->poll_wait); 473#endif 474 } 475 476 spin_unlock_irqrestore(&info->slock, flags); 477 tty_kref_put(tty); 478 479#ifdef ROCKET_DEBUG_INTR 480 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head, 481 info->xmit_tail, info->xmit_fifo_room); 482#endif 483} 484 485/* 486 * Called when a serial port signals it has read data in it's RX FIFO. 487 * It checks what interrupts are pending and services them, including 488 * receiving serial data. 489 */ 490static void rp_handle_port(struct r_port *info) 491{ 492 CHANNEL_t *cp; 493 unsigned int IntMask, ChanStatus; 494 495 if (!info) 496 return; 497 498 if (!tty_port_initialized(&info->port)) { 499 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with " 500 "info->flags & NOT_INIT\n"); 501 return; 502 } 503 504 cp = &info->channel; 505 506 IntMask = sGetChanIntID(cp) & info->intmask; 507#ifdef ROCKET_DEBUG_INTR 508 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask); 509#endif 510 ChanStatus = sGetChanStatus(cp); 511 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */ 512 rp_do_receive(info, cp, ChanStatus); 513 } 514 if (IntMask & DELTA_CD) { /* CD change */ 515#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP)) 516 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line, 517 (ChanStatus & CD_ACT) ? "on" : "off"); 518#endif 519 if (!(ChanStatus & CD_ACT) && info->cd_status) { 520#ifdef ROCKET_DEBUG_HANGUP 521 printk(KERN_INFO "CD drop, calling hangup.\n"); 522#endif 523 tty_port_tty_hangup(&info->port, false); 524 } 525 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0; 526 wake_up_interruptible(&info->port.open_wait); 527 } 528#ifdef ROCKET_DEBUG_INTR 529 if (IntMask & DELTA_CTS) { /* CTS change */ 530 printk(KERN_INFO "CTS change...\n"); 531 } 532 if (IntMask & DELTA_DSR) { /* DSR change */ 533 printk(KERN_INFO "DSR change...\n"); 534 } 535#endif 536} 537 538/* 539 * The top level polling routine. Repeats every 1/100 HZ (10ms). 540 */ 541static void rp_do_poll(unsigned long dummy) 542{ 543 CONTROLLER_t *ctlp; 544 int ctrl, aiop, ch, line; 545 unsigned int xmitmask, i; 546 unsigned int CtlMask; 547 unsigned char AiopMask; 548 Word_t bit; 549 550 /* Walk through all the boards (ctrl's) */ 551 for (ctrl = 0; ctrl < max_board; ctrl++) { 552 if (rcktpt_io_addr[ctrl] <= 0) 553 continue; 554 555 /* Get a ptr to the board's control struct */ 556 ctlp = sCtlNumToCtlPtr(ctrl); 557 558 /* Get the interrupt status from the board */ 559#ifdef CONFIG_PCI 560 if (ctlp->BusType == isPCI) 561 CtlMask = sPCIGetControllerIntStatus(ctlp); 562 else 563#endif 564 CtlMask = sGetControllerIntStatus(ctlp); 565 566 /* Check if any AIOP read bits are set */ 567 for (aiop = 0; CtlMask; aiop++) { 568 bit = ctlp->AiopIntrBits[aiop]; 569 if (CtlMask & bit) { 570 CtlMask &= ~bit; 571 AiopMask = sGetAiopIntStatus(ctlp, aiop); 572 573 /* Check if any port read bits are set */ 574 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) { 575 if (AiopMask & 1) { 576 577 /* Get the line number (/dev/ttyRx number). */ 578 /* Read the data from the port. */ 579 line = GetLineNumber(ctrl, aiop, ch); 580 rp_handle_port(rp_table[line]); 581 } 582 } 583 } 584 } 585 586 xmitmask = xmit_flags[ctrl]; 587 588 /* 589 * xmit_flags contains bit-significant flags, indicating there is data 590 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 591 * 1, ... (32 total possible). The variable i has the aiop and ch 592 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc). 593 */ 594 if (xmitmask) { 595 for (i = 0; i < rocketModel[ctrl].numPorts; i++) { 596 if (xmitmask & (1 << i)) { 597 aiop = (i & 0x18) >> 3; 598 ch = i & 0x07; 599 line = GetLineNumber(ctrl, aiop, ch); 600 rp_do_transmit(rp_table[line]); 601 } 602 } 603 } 604 } 605 606 /* 607 * Reset the timer so we get called at the next clock tick (10ms). 608 */ 609 if (atomic_read(&rp_num_ports_open)) 610 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 611} 612 613/* 614 * Initializes the r_port structure for a port, as well as enabling the port on 615 * the board. 616 * Inputs: board, aiop, chan numbers 617 */ 618static void __init 619init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev) 620{ 621 unsigned rocketMode; 622 struct r_port *info; 623 int line; 624 CONTROLLER_T *ctlp; 625 626 /* Get the next available line number */ 627 line = SetLineNumber(board, aiop, chan); 628 629 ctlp = sCtlNumToCtlPtr(board); 630 631 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */ 632 info = kzalloc(sizeof (struct r_port), GFP_KERNEL); 633 if (!info) { 634 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n", 635 line); 636 return; 637 } 638 639 info->magic = RPORT_MAGIC; 640 info->line = line; 641 info->ctlp = ctlp; 642 info->board = board; 643 info->aiop = aiop; 644 info->chan = chan; 645 tty_port_init(&info->port); 646 info->port.ops = &rocket_port_ops; 647 info->flags &= ~ROCKET_MODE_MASK; 648 switch (pc104[board][line]) { 649 case 422: 650 info->flags |= ROCKET_MODE_RS422; 651 break; 652 case 485: 653 info->flags |= ROCKET_MODE_RS485; 654 break; 655 case 232: 656 default: 657 info->flags |= ROCKET_MODE_RS232; 658 break; 659 } 660 661 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR; 662 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) { 663 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n", 664 board, aiop, chan); 665 tty_port_destroy(&info->port); 666 kfree(info); 667 return; 668 } 669 670 rocketMode = info->flags & ROCKET_MODE_MASK; 671 672 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485)) 673 sEnRTSToggle(&info->channel); 674 else 675 sDisRTSToggle(&info->channel); 676 677 if (ctlp->boardType == ROCKET_TYPE_PC104) { 678 switch (rocketMode) { 679 case ROCKET_MODE_RS485: 680 sSetInterfaceMode(&info->channel, InterfaceModeRS485); 681 break; 682 case ROCKET_MODE_RS422: 683 sSetInterfaceMode(&info->channel, InterfaceModeRS422); 684 break; 685 case ROCKET_MODE_RS232: 686 default: 687 if (info->flags & ROCKET_RTS_TOGGLE) 688 sSetInterfaceMode(&info->channel, InterfaceModeRS232T); 689 else 690 sSetInterfaceMode(&info->channel, InterfaceModeRS232); 691 break; 692 } 693 } 694 spin_lock_init(&info->slock); 695 mutex_init(&info->write_mtx); 696 rp_table[line] = info; 697 tty_port_register_device(&info->port, rocket_driver, line, 698 pci_dev ? &pci_dev->dev : NULL); 699} 700 701/* 702 * Configures a rocketport port according to its termio settings. Called from 703 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected. 704 */ 705static void configure_r_port(struct tty_struct *tty, struct r_port *info, 706 struct ktermios *old_termios) 707{ 708 unsigned cflag; 709 unsigned long flags; 710 unsigned rocketMode; 711 int bits, baud, divisor; 712 CHANNEL_t *cp; 713 struct ktermios *t = &tty->termios; 714 715 cp = &info->channel; 716 cflag = t->c_cflag; 717 718 /* Byte size and parity */ 719 if ((cflag & CSIZE) == CS8) { 720 sSetData8(cp); 721 bits = 10; 722 } else { 723 sSetData7(cp); 724 bits = 9; 725 } 726 if (cflag & CSTOPB) { 727 sSetStop2(cp); 728 bits++; 729 } else { 730 sSetStop1(cp); 731 } 732 733 if (cflag & PARENB) { 734 sEnParity(cp); 735 bits++; 736 if (cflag & PARODD) { 737 sSetOddParity(cp); 738 } else { 739 sSetEvenParity(cp); 740 } 741 } else { 742 sDisParity(cp); 743 } 744 745 /* baud rate */ 746 baud = tty_get_baud_rate(tty); 747 if (!baud) 748 baud = 9600; 749 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1; 750 if ((divisor >= 8192 || divisor < 0) && old_termios) { 751 baud = tty_termios_baud_rate(old_termios); 752 if (!baud) 753 baud = 9600; 754 divisor = (rp_baud_base[info->board] / baud) - 1; 755 } 756 if (divisor >= 8192 || divisor < 0) { 757 baud = 9600; 758 divisor = (rp_baud_base[info->board] / baud) - 1; 759 } 760 info->cps = baud / bits; 761 sSetBaud(cp, divisor); 762 763 /* FIXME: Should really back compute a baud rate from the divisor */ 764 tty_encode_baud_rate(tty, baud, baud); 765 766 if (cflag & CRTSCTS) { 767 info->intmask |= DELTA_CTS; 768 sEnCTSFlowCtl(cp); 769 } else { 770 info->intmask &= ~DELTA_CTS; 771 sDisCTSFlowCtl(cp); 772 } 773 if (cflag & CLOCAL) { 774 info->intmask &= ~DELTA_CD; 775 } else { 776 spin_lock_irqsave(&info->slock, flags); 777 if (sGetChanStatus(cp) & CD_ACT) 778 info->cd_status = 1; 779 else 780 info->cd_status = 0; 781 info->intmask |= DELTA_CD; 782 spin_unlock_irqrestore(&info->slock, flags); 783 } 784 785 /* 786 * Handle software flow control in the board 787 */ 788#ifdef ROCKET_SOFT_FLOW 789 if (I_IXON(tty)) { 790 sEnTxSoftFlowCtl(cp); 791 if (I_IXANY(tty)) { 792 sEnIXANY(cp); 793 } else { 794 sDisIXANY(cp); 795 } 796 sSetTxXONChar(cp, START_CHAR(tty)); 797 sSetTxXOFFChar(cp, STOP_CHAR(tty)); 798 } else { 799 sDisTxSoftFlowCtl(cp); 800 sDisIXANY(cp); 801 sClrTxXOFF(cp); 802 } 803#endif 804 805 /* 806 * Set up ignore/read mask words 807 */ 808 info->read_status_mask = STMRCVROVRH | 0xFF; 809 if (I_INPCK(tty)) 810 info->read_status_mask |= STMFRAMEH | STMPARITYH; 811 if (I_BRKINT(tty) || I_PARMRK(tty)) 812 info->read_status_mask |= STMBREAKH; 813 814 /* 815 * Characters to ignore 816 */ 817 info->ignore_status_mask = 0; 818 if (I_IGNPAR(tty)) 819 info->ignore_status_mask |= STMFRAMEH | STMPARITYH; 820 if (I_IGNBRK(tty)) { 821 info->ignore_status_mask |= STMBREAKH; 822 /* 823 * If we're ignoring parity and break indicators, 824 * ignore overruns too. (For real raw support). 825 */ 826 if (I_IGNPAR(tty)) 827 info->ignore_status_mask |= STMRCVROVRH; 828 } 829 830 rocketMode = info->flags & ROCKET_MODE_MASK; 831 832 if ((info->flags & ROCKET_RTS_TOGGLE) 833 || (rocketMode == ROCKET_MODE_RS485)) 834 sEnRTSToggle(cp); 835 else 836 sDisRTSToggle(cp); 837 838 sSetRTS(&info->channel); 839 840 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) { 841 switch (rocketMode) { 842 case ROCKET_MODE_RS485: 843 sSetInterfaceMode(cp, InterfaceModeRS485); 844 break; 845 case ROCKET_MODE_RS422: 846 sSetInterfaceMode(cp, InterfaceModeRS422); 847 break; 848 case ROCKET_MODE_RS232: 849 default: 850 if (info->flags & ROCKET_RTS_TOGGLE) 851 sSetInterfaceMode(cp, InterfaceModeRS232T); 852 else 853 sSetInterfaceMode(cp, InterfaceModeRS232); 854 break; 855 } 856 } 857} 858 859static int carrier_raised(struct tty_port *port) 860{ 861 struct r_port *info = container_of(port, struct r_port, port); 862 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0; 863} 864 865static void dtr_rts(struct tty_port *port, int on) 866{ 867 struct r_port *info = container_of(port, struct r_port, port); 868 if (on) { 869 sSetDTR(&info->channel); 870 sSetRTS(&info->channel); 871 } else { 872 sClrDTR(&info->channel); 873 sClrRTS(&info->channel); 874 } 875} 876 877/* 878 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in 879 * port's r_port struct. Initializes the port hardware. 880 */ 881static int rp_open(struct tty_struct *tty, struct file *filp) 882{ 883 struct r_port *info; 884 struct tty_port *port; 885 int retval; 886 CHANNEL_t *cp; 887 unsigned long page; 888 889 info = rp_table[tty->index]; 890 if (info == NULL) 891 return -ENXIO; 892 port = &info->port; 893 894 page = __get_free_page(GFP_KERNEL); 895 if (!page) 896 return -ENOMEM; 897 898 /* 899 * We must not sleep from here until the port is marked fully in use. 900 */ 901 if (info->xmit_buf) 902 free_page(page); 903 else 904 info->xmit_buf = (unsigned char *) page; 905 906 tty->driver_data = info; 907 tty_port_tty_set(port, tty); 908 909 if (port->count++ == 0) { 910 atomic_inc(&rp_num_ports_open); 911 912#ifdef ROCKET_DEBUG_OPEN 913 printk(KERN_INFO "rocket mod++ = %d...\n", 914 atomic_read(&rp_num_ports_open)); 915#endif 916 } 917#ifdef ROCKET_DEBUG_OPEN 918 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count); 919#endif 920 921 /* 922 * Info->count is now 1; so it's safe to sleep now. 923 */ 924 if (!tty_port_initialized(port)) { 925 cp = &info->channel; 926 sSetRxTrigger(cp, TRIG_1); 927 if (sGetChanStatus(cp) & CD_ACT) 928 info->cd_status = 1; 929 else 930 info->cd_status = 0; 931 sDisRxStatusMode(cp); 932 sFlushRxFIFO(cp); 933 sFlushTxFIFO(cp); 934 935 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 936 sSetRxTrigger(cp, TRIG_1); 937 938 sGetChanStatus(cp); 939 sDisRxStatusMode(cp); 940 sClrTxXOFF(cp); 941 942 sDisCTSFlowCtl(cp); 943 sDisTxSoftFlowCtl(cp); 944 945 sEnRxFIFO(cp); 946 sEnTransmit(cp); 947 948 tty_port_set_initialized(&info->port, 1); 949 950 configure_r_port(tty, info, NULL); 951 if (C_BAUD(tty)) { 952 sSetDTR(cp); 953 sSetRTS(cp); 954 } 955 } 956 /* Starts (or resets) the maint polling loop */ 957 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 958 959 retval = tty_port_block_til_ready(port, tty, filp); 960 if (retval) { 961#ifdef ROCKET_DEBUG_OPEN 962 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval); 963#endif 964 return retval; 965 } 966 return 0; 967} 968 969/* 970 * Exception handler that closes a serial port. info->port.count is considered critical. 971 */ 972static void rp_close(struct tty_struct *tty, struct file *filp) 973{ 974 struct r_port *info = tty->driver_data; 975 struct tty_port *port = &info->port; 976 int timeout; 977 CHANNEL_t *cp; 978 979 if (rocket_paranoia_check(info, "rp_close")) 980 return; 981 982#ifdef ROCKET_DEBUG_OPEN 983 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count); 984#endif 985 986 if (tty_port_close_start(port, tty, filp) == 0) 987 return; 988 989 mutex_lock(&port->mutex); 990 cp = &info->channel; 991 /* 992 * Before we drop DTR, make sure the UART transmitter 993 * has completely drained; this is especially 994 * important if there is a transmit FIFO! 995 */ 996 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps; 997 if (timeout == 0) 998 timeout = 1; 999 rp_wait_until_sent(tty, timeout); 1000 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1001 1002 sDisTransmit(cp); 1003 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1004 sDisCTSFlowCtl(cp); 1005 sDisTxSoftFlowCtl(cp); 1006 sClrTxXOFF(cp); 1007 sFlushRxFIFO(cp); 1008 sFlushTxFIFO(cp); 1009 sClrRTS(cp); 1010 if (C_HUPCL(tty)) 1011 sClrDTR(cp); 1012 1013 rp_flush_buffer(tty); 1014 1015 tty_ldisc_flush(tty); 1016 1017 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1018 1019 /* We can't yet use tty_port_close_end as the buffer handling in this 1020 driver is a bit different to the usual */ 1021 1022 if (port->blocked_open) { 1023 if (port->close_delay) { 1024 msleep_interruptible(jiffies_to_msecs(port->close_delay)); 1025 } 1026 wake_up_interruptible(&port->open_wait); 1027 } else { 1028 if (info->xmit_buf) { 1029 free_page((unsigned long) info->xmit_buf); 1030 info->xmit_buf = NULL; 1031 } 1032 } 1033 spin_lock_irq(&port->lock); 1034 tty->closing = 0; 1035 spin_unlock_irq(&port->lock); 1036 tty_port_set_initialized(port, 0); 1037 tty_port_set_active(port, 0); 1038 mutex_unlock(&port->mutex); 1039 tty_port_tty_set(port, NULL); 1040 1041 atomic_dec(&rp_num_ports_open); 1042 1043#ifdef ROCKET_DEBUG_OPEN 1044 printk(KERN_INFO "rocket mod-- = %d...\n", 1045 atomic_read(&rp_num_ports_open)); 1046 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line); 1047#endif 1048 1049} 1050 1051static void rp_set_termios(struct tty_struct *tty, 1052 struct ktermios *old_termios) 1053{ 1054 struct r_port *info = tty->driver_data; 1055 CHANNEL_t *cp; 1056 unsigned cflag; 1057 1058 if (rocket_paranoia_check(info, "rp_set_termios")) 1059 return; 1060 1061 cflag = tty->termios.c_cflag; 1062 1063 /* 1064 * This driver doesn't support CS5 or CS6 1065 */ 1066 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6)) 1067 tty->termios.c_cflag = 1068 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE)); 1069 /* Or CMSPAR */ 1070 tty->termios.c_cflag &= ~CMSPAR; 1071 1072 configure_r_port(tty, info, old_termios); 1073 1074 cp = &info->channel; 1075 1076 /* Handle transition to B0 status */ 1077 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) { 1078 sClrDTR(cp); 1079 sClrRTS(cp); 1080 } 1081 1082 /* Handle transition away from B0 status */ 1083 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) { 1084 sSetRTS(cp); 1085 sSetDTR(cp); 1086 } 1087 1088 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty)) 1089 rp_start(tty); 1090} 1091 1092static int rp_break(struct tty_struct *tty, int break_state) 1093{ 1094 struct r_port *info = tty->driver_data; 1095 unsigned long flags; 1096 1097 if (rocket_paranoia_check(info, "rp_break")) 1098 return -EINVAL; 1099 1100 spin_lock_irqsave(&info->slock, flags); 1101 if (break_state == -1) 1102 sSendBreak(&info->channel); 1103 else 1104 sClrBreak(&info->channel); 1105 spin_unlock_irqrestore(&info->slock, flags); 1106 return 0; 1107} 1108 1109/* 1110 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for 1111 * the UPCI boards was added, it was decided to make this a function because 1112 * the macro was getting too complicated. All cases except the first one 1113 * (UPCIRingInd) are taken directly from the original macro. 1114 */ 1115static int sGetChanRI(CHANNEL_T * ChP) 1116{ 1117 CONTROLLER_t *CtlP = ChP->CtlP; 1118 int ChanNum = ChP->ChanNum; 1119 int RingInd = 0; 1120 1121 if (CtlP->UPCIRingInd) 1122 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]); 1123 else if (CtlP->AltChanRingIndicator) 1124 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT; 1125 else if (CtlP->boardType == ROCKET_TYPE_PC104) 1126 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]); 1127 1128 return RingInd; 1129} 1130 1131/********************************************************************************************/ 1132/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */ 1133 1134/* 1135 * Returns the state of the serial modem control lines. These next 2 functions 1136 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs. 1137 */ 1138static int rp_tiocmget(struct tty_struct *tty) 1139{ 1140 struct r_port *info = tty->driver_data; 1141 unsigned int control, result, ChanStatus; 1142 1143 ChanStatus = sGetChanStatusLo(&info->channel); 1144 control = info->channel.TxControl[3]; 1145 result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 1146 ((control & SET_DTR) ? TIOCM_DTR : 0) | 1147 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) | 1148 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) | 1149 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) | 1150 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0); 1151 1152 return result; 1153} 1154 1155/* 1156 * Sets the modem control lines 1157 */ 1158static int rp_tiocmset(struct tty_struct *tty, 1159 unsigned int set, unsigned int clear) 1160{ 1161 struct r_port *info = tty->driver_data; 1162 1163 if (set & TIOCM_RTS) 1164 info->channel.TxControl[3] |= SET_RTS; 1165 if (set & TIOCM_DTR) 1166 info->channel.TxControl[3] |= SET_DTR; 1167 if (clear & TIOCM_RTS) 1168 info->channel.TxControl[3] &= ~SET_RTS; 1169 if (clear & TIOCM_DTR) 1170 info->channel.TxControl[3] &= ~SET_DTR; 1171 1172 out32(info->channel.IndexAddr, info->channel.TxControl); 1173 return 0; 1174} 1175 1176static int get_config(struct r_port *info, struct rocket_config __user *retinfo) 1177{ 1178 struct rocket_config tmp; 1179 1180 memset(&tmp, 0, sizeof (tmp)); 1181 mutex_lock(&info->port.mutex); 1182 tmp.line = info->line; 1183 tmp.flags = info->flags; 1184 tmp.close_delay = info->port.close_delay; 1185 tmp.closing_wait = info->port.closing_wait; 1186 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3]; 1187 mutex_unlock(&info->port.mutex); 1188 1189 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo))) 1190 return -EFAULT; 1191 return 0; 1192} 1193 1194static int set_config(struct tty_struct *tty, struct r_port *info, 1195 struct rocket_config __user *new_info) 1196{ 1197 struct rocket_config new_serial; 1198 1199 if (copy_from_user(&new_serial, new_info, sizeof (new_serial))) 1200 return -EFAULT; 1201 1202 mutex_lock(&info->port.mutex); 1203 if (!capable(CAP_SYS_ADMIN)) 1204 { 1205 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) { 1206 mutex_unlock(&info->port.mutex); 1207 return -EPERM; 1208 } 1209 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK)); 1210 mutex_unlock(&info->port.mutex); 1211 return 0; 1212 } 1213 1214 if ((new_serial.flags ^ info->flags) & ROCKET_SPD_MASK) { 1215 /* warn about deprecation, unless clearing */ 1216 if (new_serial.flags & ROCKET_SPD_MASK) 1217 dev_warn_ratelimited(tty->dev, "use of SPD flags is deprecated\n"); 1218 } 1219 1220 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS)); 1221 info->port.close_delay = new_serial.close_delay; 1222 info->port.closing_wait = new_serial.closing_wait; 1223 1224 mutex_unlock(&info->port.mutex); 1225 1226 configure_r_port(tty, info, NULL); 1227 return 0; 1228} 1229 1230/* 1231 * This function fills in a rocket_ports struct with information 1232 * about what boards/ports are in the system. This info is passed 1233 * to user space. See setrocket.c where the info is used to create 1234 * the /dev/ttyRx ports. 1235 */ 1236static int get_ports(struct r_port *info, struct rocket_ports __user *retports) 1237{ 1238 struct rocket_ports tmp; 1239 int board; 1240 1241 memset(&tmp, 0, sizeof (tmp)); 1242 tmp.tty_major = rocket_driver->major; 1243 1244 for (board = 0; board < 4; board++) { 1245 tmp.rocketModel[board].model = rocketModel[board].model; 1246 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString); 1247 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts; 1248 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2; 1249 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber; 1250 } 1251 if (copy_to_user(retports, &tmp, sizeof (*retports))) 1252 return -EFAULT; 1253 return 0; 1254} 1255 1256static int reset_rm2(struct r_port *info, void __user *arg) 1257{ 1258 int reset; 1259 1260 if (!capable(CAP_SYS_ADMIN)) 1261 return -EPERM; 1262 1263 if (copy_from_user(&reset, arg, sizeof (int))) 1264 return -EFAULT; 1265 if (reset) 1266 reset = 1; 1267 1268 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII && 1269 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII) 1270 return -EINVAL; 1271 1272 if (info->ctlp->BusType == isISA) 1273 sModemReset(info->ctlp, info->chan, reset); 1274 else 1275 sPCIModemReset(info->ctlp, info->chan, reset); 1276 1277 return 0; 1278} 1279 1280static int get_version(struct r_port *info, struct rocket_version __user *retvers) 1281{ 1282 if (copy_to_user(retvers, &driver_version, sizeof (*retvers))) 1283 return -EFAULT; 1284 return 0; 1285} 1286 1287/* IOCTL call handler into the driver */ 1288static int rp_ioctl(struct tty_struct *tty, 1289 unsigned int cmd, unsigned long arg) 1290{ 1291 struct r_port *info = tty->driver_data; 1292 void __user *argp = (void __user *)arg; 1293 int ret = 0; 1294 1295 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl")) 1296 return -ENXIO; 1297 1298 switch (cmd) { 1299 case RCKP_GET_STRUCT: 1300 if (copy_to_user(argp, info, sizeof (struct r_port))) 1301 ret = -EFAULT; 1302 break; 1303 case RCKP_GET_CONFIG: 1304 ret = get_config(info, argp); 1305 break; 1306 case RCKP_SET_CONFIG: 1307 ret = set_config(tty, info, argp); 1308 break; 1309 case RCKP_GET_PORTS: 1310 ret = get_ports(info, argp); 1311 break; 1312 case RCKP_RESET_RM2: 1313 ret = reset_rm2(info, argp); 1314 break; 1315 case RCKP_GET_VERSION: 1316 ret = get_version(info, argp); 1317 break; 1318 default: 1319 ret = -ENOIOCTLCMD; 1320 } 1321 return ret; 1322} 1323 1324static void rp_send_xchar(struct tty_struct *tty, char ch) 1325{ 1326 struct r_port *info = tty->driver_data; 1327 CHANNEL_t *cp; 1328 1329 if (rocket_paranoia_check(info, "rp_send_xchar")) 1330 return; 1331 1332 cp = &info->channel; 1333 if (sGetTxCnt(cp)) 1334 sWriteTxPrioByte(cp, ch); 1335 else 1336 sWriteTxByte(sGetTxRxDataIO(cp), ch); 1337} 1338 1339static void rp_throttle(struct tty_struct *tty) 1340{ 1341 struct r_port *info = tty->driver_data; 1342 1343#ifdef ROCKET_DEBUG_THROTTLE 1344 printk(KERN_INFO "throttle %s ....\n", tty->name); 1345#endif 1346 1347 if (rocket_paranoia_check(info, "rp_throttle")) 1348 return; 1349 1350 if (I_IXOFF(tty)) 1351 rp_send_xchar(tty, STOP_CHAR(tty)); 1352 1353 sClrRTS(&info->channel); 1354} 1355 1356static void rp_unthrottle(struct tty_struct *tty) 1357{ 1358 struct r_port *info = tty->driver_data; 1359#ifdef ROCKET_DEBUG_THROTTLE 1360 printk(KERN_INFO "unthrottle %s ....\n", tty->name); 1361#endif 1362 1363 if (rocket_paranoia_check(info, "rp_unthrottle")) 1364 return; 1365 1366 if (I_IXOFF(tty)) 1367 rp_send_xchar(tty, START_CHAR(tty)); 1368 1369 sSetRTS(&info->channel); 1370} 1371 1372/* 1373 * ------------------------------------------------------------ 1374 * rp_stop() and rp_start() 1375 * 1376 * This routines are called before setting or resetting tty->stopped. 1377 * They enable or disable transmitter interrupts, as necessary. 1378 * ------------------------------------------------------------ 1379 */ 1380static void rp_stop(struct tty_struct *tty) 1381{ 1382 struct r_port *info = tty->driver_data; 1383 1384#ifdef ROCKET_DEBUG_FLOW 1385 printk(KERN_INFO "stop %s: %d %d....\n", tty->name, 1386 info->xmit_cnt, info->xmit_fifo_room); 1387#endif 1388 1389 if (rocket_paranoia_check(info, "rp_stop")) 1390 return; 1391 1392 if (sGetTxCnt(&info->channel)) 1393 sDisTransmit(&info->channel); 1394} 1395 1396static void rp_start(struct tty_struct *tty) 1397{ 1398 struct r_port *info = tty->driver_data; 1399 1400#ifdef ROCKET_DEBUG_FLOW 1401 printk(KERN_INFO "start %s: %d %d....\n", tty->name, 1402 info->xmit_cnt, info->xmit_fifo_room); 1403#endif 1404 1405 if (rocket_paranoia_check(info, "rp_stop")) 1406 return; 1407 1408 sEnTransmit(&info->channel); 1409 set_bit((info->aiop * 8) + info->chan, 1410 (void *) &xmit_flags[info->board]); 1411} 1412 1413/* 1414 * rp_wait_until_sent() --- wait until the transmitter is empty 1415 */ 1416static void rp_wait_until_sent(struct tty_struct *tty, int timeout) 1417{ 1418 struct r_port *info = tty->driver_data; 1419 CHANNEL_t *cp; 1420 unsigned long orig_jiffies; 1421 int check_time, exit_time; 1422 int txcnt; 1423 1424 if (rocket_paranoia_check(info, "rp_wait_until_sent")) 1425 return; 1426 1427 cp = &info->channel; 1428 1429 orig_jiffies = jiffies; 1430#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1431 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout, 1432 jiffies); 1433 printk(KERN_INFO "cps=%d...\n", info->cps); 1434#endif 1435 while (1) { 1436 txcnt = sGetTxCnt(cp); 1437 if (!txcnt) { 1438 if (sGetChanStatusLo(cp) & TXSHRMT) 1439 break; 1440 check_time = (HZ / info->cps) / 5; 1441 } else { 1442 check_time = HZ * txcnt / info->cps; 1443 } 1444 if (timeout) { 1445 exit_time = orig_jiffies + timeout - jiffies; 1446 if (exit_time <= 0) 1447 break; 1448 if (exit_time < check_time) 1449 check_time = exit_time; 1450 } 1451 if (check_time == 0) 1452 check_time = 1; 1453#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1454 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt, 1455 jiffies, check_time); 1456#endif 1457 msleep_interruptible(jiffies_to_msecs(check_time)); 1458 if (signal_pending(current)) 1459 break; 1460 } 1461 __set_current_state(TASK_RUNNING); 1462#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1463 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies); 1464#endif 1465} 1466 1467/* 1468 * rp_hangup() --- called by tty_hangup() when a hangup is signaled. 1469 */ 1470static void rp_hangup(struct tty_struct *tty) 1471{ 1472 CHANNEL_t *cp; 1473 struct r_port *info = tty->driver_data; 1474 unsigned long flags; 1475 1476 if (rocket_paranoia_check(info, "rp_hangup")) 1477 return; 1478 1479#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP)) 1480 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line); 1481#endif 1482 rp_flush_buffer(tty); 1483 spin_lock_irqsave(&info->port.lock, flags); 1484 if (info->port.count) 1485 atomic_dec(&rp_num_ports_open); 1486 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1487 spin_unlock_irqrestore(&info->port.lock, flags); 1488 1489 tty_port_hangup(&info->port); 1490 1491 cp = &info->channel; 1492 sDisRxFIFO(cp); 1493 sDisTransmit(cp); 1494 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1495 sDisCTSFlowCtl(cp); 1496 sDisTxSoftFlowCtl(cp); 1497 sClrTxXOFF(cp); 1498 tty_port_set_initialized(&info->port, 0); 1499 1500 wake_up_interruptible(&info->port.open_wait); 1501} 1502 1503/* 1504 * Exception handler - write char routine. The RocketPort driver uses a 1505 * double-buffering strategy, with the twist that if the in-memory CPU 1506 * buffer is empty, and there's space in the transmit FIFO, the 1507 * writing routines will write directly to transmit FIFO. 1508 * Write buffer and counters protected by spinlocks 1509 */ 1510static int rp_put_char(struct tty_struct *tty, unsigned char ch) 1511{ 1512 struct r_port *info = tty->driver_data; 1513 CHANNEL_t *cp; 1514 unsigned long flags; 1515 1516 if (rocket_paranoia_check(info, "rp_put_char")) 1517 return 0; 1518 1519 /* 1520 * Grab the port write mutex, locking out other processes that try to 1521 * write to this port 1522 */ 1523 mutex_lock(&info->write_mtx); 1524 1525#ifdef ROCKET_DEBUG_WRITE 1526 printk(KERN_INFO "rp_put_char %c...\n", ch); 1527#endif 1528 1529 spin_lock_irqsave(&info->slock, flags); 1530 cp = &info->channel; 1531 1532 if (!tty->stopped && info->xmit_fifo_room == 0) 1533 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1534 1535 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) { 1536 info->xmit_buf[info->xmit_head++] = ch; 1537 info->xmit_head &= XMIT_BUF_SIZE - 1; 1538 info->xmit_cnt++; 1539 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1540 } else { 1541 sOutB(sGetTxRxDataIO(cp), ch); 1542 info->xmit_fifo_room--; 1543 } 1544 spin_unlock_irqrestore(&info->slock, flags); 1545 mutex_unlock(&info->write_mtx); 1546 return 1; 1547} 1548 1549/* 1550 * Exception handler - write routine, called when user app writes to the device. 1551 * A per port write mutex is used to protect from another process writing to 1552 * this port at the same time. This other process could be running on the other CPU 1553 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 1554 * Spinlocks protect the info xmit members. 1555 */ 1556static int rp_write(struct tty_struct *tty, 1557 const unsigned char *buf, int count) 1558{ 1559 struct r_port *info = tty->driver_data; 1560 CHANNEL_t *cp; 1561 const unsigned char *b; 1562 int c, retval = 0; 1563 unsigned long flags; 1564 1565 if (count <= 0 || rocket_paranoia_check(info, "rp_write")) 1566 return 0; 1567 1568 if (mutex_lock_interruptible(&info->write_mtx)) 1569 return -ERESTARTSYS; 1570 1571#ifdef ROCKET_DEBUG_WRITE 1572 printk(KERN_INFO "rp_write %d chars...\n", count); 1573#endif 1574 cp = &info->channel; 1575 1576 if (!tty->stopped && info->xmit_fifo_room < count) 1577 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1578 1579 /* 1580 * If the write queue for the port is empty, and there is FIFO space, stuff bytes 1581 * into FIFO. Use the write queue for temp storage. 1582 */ 1583 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) { 1584 c = min(count, info->xmit_fifo_room); 1585 b = buf; 1586 1587 /* Push data into FIFO, 2 bytes at a time */ 1588 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2); 1589 1590 /* If there is a byte remaining, write it */ 1591 if (c & 1) 1592 sOutB(sGetTxRxDataIO(cp), b[c - 1]); 1593 1594 retval += c; 1595 buf += c; 1596 count -= c; 1597 1598 spin_lock_irqsave(&info->slock, flags); 1599 info->xmit_fifo_room -= c; 1600 spin_unlock_irqrestore(&info->slock, flags); 1601 } 1602 1603 /* If count is zero, we wrote it all and are done */ 1604 if (!count) 1605 goto end; 1606 1607 /* Write remaining data into the port's xmit_buf */ 1608 while (1) { 1609 /* Hung up ? */ 1610 if (!tty_port_active(&info->port)) 1611 goto end; 1612 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1); 1613 c = min(c, XMIT_BUF_SIZE - info->xmit_head); 1614 if (c <= 0) 1615 break; 1616 1617 b = buf; 1618 memcpy(info->xmit_buf + info->xmit_head, b, c); 1619 1620 spin_lock_irqsave(&info->slock, flags); 1621 info->xmit_head = 1622 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1); 1623 info->xmit_cnt += c; 1624 spin_unlock_irqrestore(&info->slock, flags); 1625 1626 buf += c; 1627 count -= c; 1628 retval += c; 1629 } 1630 1631 if ((retval > 0) && !tty->stopped) 1632 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1633 1634end: 1635 if (info->xmit_cnt < WAKEUP_CHARS) { 1636 tty_wakeup(tty); 1637#ifdef ROCKETPORT_HAVE_POLL_WAIT 1638 wake_up_interruptible(&tty->poll_wait); 1639#endif 1640 } 1641 mutex_unlock(&info->write_mtx); 1642 return retval; 1643} 1644 1645/* 1646 * Return the number of characters that can be sent. We estimate 1647 * only using the in-memory transmit buffer only, and ignore the 1648 * potential space in the transmit FIFO. 1649 */ 1650static int rp_write_room(struct tty_struct *tty) 1651{ 1652 struct r_port *info = tty->driver_data; 1653 int ret; 1654 1655 if (rocket_paranoia_check(info, "rp_write_room")) 1656 return 0; 1657 1658 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1; 1659 if (ret < 0) 1660 ret = 0; 1661#ifdef ROCKET_DEBUG_WRITE 1662 printk(KERN_INFO "rp_write_room returns %d...\n", ret); 1663#endif 1664 return ret; 1665} 1666 1667/* 1668 * Return the number of characters in the buffer. Again, this only 1669 * counts those characters in the in-memory transmit buffer. 1670 */ 1671static int rp_chars_in_buffer(struct tty_struct *tty) 1672{ 1673 struct r_port *info = tty->driver_data; 1674 1675 if (rocket_paranoia_check(info, "rp_chars_in_buffer")) 1676 return 0; 1677 1678#ifdef ROCKET_DEBUG_WRITE 1679 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt); 1680#endif 1681 return info->xmit_cnt; 1682} 1683 1684/* 1685 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the 1686 * r_port struct for the port. Note that spinlock are used to protect info members, 1687 * do not call this function if the spinlock is already held. 1688 */ 1689static void rp_flush_buffer(struct tty_struct *tty) 1690{ 1691 struct r_port *info = tty->driver_data; 1692 CHANNEL_t *cp; 1693 unsigned long flags; 1694 1695 if (rocket_paranoia_check(info, "rp_flush_buffer")) 1696 return; 1697 1698 spin_lock_irqsave(&info->slock, flags); 1699 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; 1700 spin_unlock_irqrestore(&info->slock, flags); 1701 1702#ifdef ROCKETPORT_HAVE_POLL_WAIT 1703 wake_up_interruptible(&tty->poll_wait); 1704#endif 1705 tty_wakeup(tty); 1706 1707 cp = &info->channel; 1708 sFlushTxFIFO(cp); 1709} 1710 1711#ifdef CONFIG_PCI 1712 1713static const struct pci_device_id rocket_pci_ids[] = { 1714 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) }, 1715 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) }, 1716 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) }, 1717 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) }, 1718 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) }, 1719 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) }, 1720 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) }, 1721 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) }, 1722 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) }, 1723 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) }, 1724 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) }, 1725 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) }, 1726 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) }, 1727 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) }, 1728 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) }, 1729 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) }, 1730 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) }, 1731 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) }, 1732 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) }, 1733 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) }, 1734 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) }, 1735 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) }, 1736 { } 1737}; 1738MODULE_DEVICE_TABLE(pci, rocket_pci_ids); 1739 1740/* Resets the speaker controller on RocketModem II and III devices */ 1741static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model) 1742{ 1743 ByteIO_t addr; 1744 1745 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */ 1746 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) { 1747 addr = CtlP->AiopIO[0] + 0x4F; 1748 sOutB(addr, 0); 1749 } 1750 1751 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */ 1752 if ((model == MODEL_UPCI_RM3_8PORT) 1753 || (model == MODEL_UPCI_RM3_4PORT)) { 1754 addr = CtlP->AiopIO[0] + 0x88; 1755 sOutB(addr, 0); 1756 } 1757} 1758 1759/*************************************************************************** 1760Function: sPCIInitController 1761Purpose: Initialization of controller global registers and controller 1762 structure. 1763Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize, 1764 IRQNum,Frequency,PeriodicOnly) 1765 CONTROLLER_T *CtlP; Ptr to controller structure 1766 int CtlNum; Controller number 1767 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 1768 This list must be in the order the AIOPs will be found on the 1769 controller. Once an AIOP in the list is not found, it is 1770 assumed that there are no more AIOPs on the controller. 1771 int AiopIOListSize; Number of addresses in AiopIOList 1772 int IRQNum; Interrupt Request number. Can be any of the following: 1773 0: Disable global interrupts 1774 3: IRQ 3 1775 4: IRQ 4 1776 5: IRQ 5 1777 9: IRQ 9 1778 10: IRQ 10 1779 11: IRQ 11 1780 12: IRQ 12 1781 15: IRQ 15 1782 Byte_t Frequency: A flag identifying the frequency 1783 of the periodic interrupt, can be any one of the following: 1784 FREQ_DIS - periodic interrupt disabled 1785 FREQ_137HZ - 137 Hertz 1786 FREQ_69HZ - 69 Hertz 1787 FREQ_34HZ - 34 Hertz 1788 FREQ_17HZ - 17 Hertz 1789 FREQ_9HZ - 9 Hertz 1790 FREQ_4HZ - 4 Hertz 1791 If IRQNum is set to 0 the Frequency parameter is 1792 overidden, it is forced to a value of FREQ_DIS. 1793 int PeriodicOnly: 1 if all interrupts except the periodic 1794 interrupt are to be blocked. 1795 0 is both the periodic interrupt and 1796 other channel interrupts are allowed. 1797 If IRQNum is set to 0 the PeriodicOnly parameter is 1798 overidden, it is forced to a value of 0. 1799Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 1800 initialization failed. 1801 1802Comments: 1803 If periodic interrupts are to be disabled but AIOP interrupts 1804 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 1805 1806 If interrupts are to be completely disabled set IRQNum to 0. 1807 1808 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 1809 invalid combination. 1810 1811 This function performs initialization of global interrupt modes, 1812 but it does not actually enable global interrupts. To enable 1813 and disable global interrupts use functions sEnGlobalInt() and 1814 sDisGlobalInt(). Enabling of global interrupts is normally not 1815 done until all other initializations are complete. 1816 1817 Even if interrupts are globally enabled, they must also be 1818 individually enabled for each channel that is to generate 1819 interrupts. 1820 1821Warnings: No range checking on any of the parameters is done. 1822 1823 No context switches are allowed while executing this function. 1824 1825 After this function all AIOPs on the controller are disabled, 1826 they can be enabled with sEnAiop(). 1827*/ 1828static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum, 1829 ByteIO_t * AiopIOList, int AiopIOListSize, 1830 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency, 1831 int PeriodicOnly, int altChanRingIndicator, 1832 int UPCIRingInd) 1833{ 1834 int i; 1835 ByteIO_t io; 1836 1837 CtlP->AltChanRingIndicator = altChanRingIndicator; 1838 CtlP->UPCIRingInd = UPCIRingInd; 1839 CtlP->CtlNum = CtlNum; 1840 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 1841 CtlP->BusType = isPCI; /* controller release 1 */ 1842 1843 if (ConfigIO) { 1844 CtlP->isUPCI = 1; 1845 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL; 1846 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL; 1847 CtlP->AiopIntrBits = upci_aiop_intr_bits; 1848 } else { 1849 CtlP->isUPCI = 0; 1850 CtlP->PCIIO = 1851 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC); 1852 CtlP->AiopIntrBits = aiop_intr_bits; 1853 } 1854 1855 sPCIControllerEOI(CtlP); /* clear EOI if warm init */ 1856 /* Init AIOPs */ 1857 CtlP->NumAiop = 0; 1858 for (i = 0; i < AiopIOListSize; i++) { 1859 io = AiopIOList[i]; 1860 CtlP->AiopIO[i] = (WordIO_t) io; 1861 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 1862 1863 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 1864 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 1865 break; /* done looking for AIOPs */ 1866 1867 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 1868 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 1869 sOutB(io + _INDX_DATA, sClockPrescale); 1870 CtlP->NumAiop++; /* bump count of AIOPs */ 1871 } 1872 1873 if (CtlP->NumAiop == 0) 1874 return (-1); 1875 else 1876 return (CtlP->NumAiop); 1877} 1878 1879/* 1880 * Called when a PCI card is found. Retrieves and stores model information, 1881 * init's aiopic and serial port hardware. 1882 * Inputs: i is the board number (0-n) 1883 */ 1884static __init int register_PCI(int i, struct pci_dev *dev) 1885{ 1886 int num_aiops, aiop, max_num_aiops, num_chan, chan; 1887 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 1888 CONTROLLER_t *ctlp; 1889 1890 int fast_clock = 0; 1891 int altChanRingIndicator = 0; 1892 int ports_per_aiop = 8; 1893 WordIO_t ConfigIO = 0; 1894 ByteIO_t UPCIRingInd = 0; 1895 1896 if (!dev || !pci_match_id(rocket_pci_ids, dev) || 1897 pci_enable_device(dev)) 1898 return 0; 1899 1900 rcktpt_io_addr[i] = pci_resource_start(dev, 0); 1901 1902 rcktpt_type[i] = ROCKET_TYPE_NORMAL; 1903 rocketModel[i].loadrm2 = 0; 1904 rocketModel[i].startingPortNumber = nextLineNumber; 1905 1906 /* Depending on the model, set up some config variables */ 1907 switch (dev->device) { 1908 case PCI_DEVICE_ID_RP4QUAD: 1909 max_num_aiops = 1; 1910 ports_per_aiop = 4; 1911 rocketModel[i].model = MODEL_RP4QUAD; 1912 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable"); 1913 rocketModel[i].numPorts = 4; 1914 break; 1915 case PCI_DEVICE_ID_RP8OCTA: 1916 max_num_aiops = 1; 1917 rocketModel[i].model = MODEL_RP8OCTA; 1918 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable"); 1919 rocketModel[i].numPorts = 8; 1920 break; 1921 case PCI_DEVICE_ID_URP8OCTA: 1922 max_num_aiops = 1; 1923 rocketModel[i].model = MODEL_UPCI_RP8OCTA; 1924 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable"); 1925 rocketModel[i].numPorts = 8; 1926 break; 1927 case PCI_DEVICE_ID_RP8INTF: 1928 max_num_aiops = 1; 1929 rocketModel[i].model = MODEL_RP8INTF; 1930 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F"); 1931 rocketModel[i].numPorts = 8; 1932 break; 1933 case PCI_DEVICE_ID_URP8INTF: 1934 max_num_aiops = 1; 1935 rocketModel[i].model = MODEL_UPCI_RP8INTF; 1936 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F"); 1937 rocketModel[i].numPorts = 8; 1938 break; 1939 case PCI_DEVICE_ID_RP8J: 1940 max_num_aiops = 1; 1941 rocketModel[i].model = MODEL_RP8J; 1942 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors"); 1943 rocketModel[i].numPorts = 8; 1944 break; 1945 case PCI_DEVICE_ID_RP4J: 1946 max_num_aiops = 1; 1947 ports_per_aiop = 4; 1948 rocketModel[i].model = MODEL_RP4J; 1949 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors"); 1950 rocketModel[i].numPorts = 4; 1951 break; 1952 case PCI_DEVICE_ID_RP8SNI: 1953 max_num_aiops = 1; 1954 rocketModel[i].model = MODEL_RP8SNI; 1955 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78"); 1956 rocketModel[i].numPorts = 8; 1957 break; 1958 case PCI_DEVICE_ID_RP16SNI: 1959 max_num_aiops = 2; 1960 rocketModel[i].model = MODEL_RP16SNI; 1961 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78"); 1962 rocketModel[i].numPorts = 16; 1963 break; 1964 case PCI_DEVICE_ID_RP16INTF: 1965 max_num_aiops = 2; 1966 rocketModel[i].model = MODEL_RP16INTF; 1967 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F"); 1968 rocketModel[i].numPorts = 16; 1969 break; 1970 case PCI_DEVICE_ID_URP16INTF: 1971 max_num_aiops = 2; 1972 rocketModel[i].model = MODEL_UPCI_RP16INTF; 1973 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F"); 1974 rocketModel[i].numPorts = 16; 1975 break; 1976 case PCI_DEVICE_ID_CRP16INTF: 1977 max_num_aiops = 2; 1978 rocketModel[i].model = MODEL_CPCI_RP16INTF; 1979 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F"); 1980 rocketModel[i].numPorts = 16; 1981 break; 1982 case PCI_DEVICE_ID_RP32INTF: 1983 max_num_aiops = 4; 1984 rocketModel[i].model = MODEL_RP32INTF; 1985 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F"); 1986 rocketModel[i].numPorts = 32; 1987 break; 1988 case PCI_DEVICE_ID_URP32INTF: 1989 max_num_aiops = 4; 1990 rocketModel[i].model = MODEL_UPCI_RP32INTF; 1991 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F"); 1992 rocketModel[i].numPorts = 32; 1993 break; 1994 case PCI_DEVICE_ID_RPP4: 1995 max_num_aiops = 1; 1996 ports_per_aiop = 4; 1997 altChanRingIndicator++; 1998 fast_clock++; 1999 rocketModel[i].model = MODEL_RPP4; 2000 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port"); 2001 rocketModel[i].numPorts = 4; 2002 break; 2003 case PCI_DEVICE_ID_RPP8: 2004 max_num_aiops = 2; 2005 ports_per_aiop = 4; 2006 altChanRingIndicator++; 2007 fast_clock++; 2008 rocketModel[i].model = MODEL_RPP8; 2009 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port"); 2010 rocketModel[i].numPorts = 8; 2011 break; 2012 case PCI_DEVICE_ID_RP2_232: 2013 max_num_aiops = 1; 2014 ports_per_aiop = 2; 2015 altChanRingIndicator++; 2016 fast_clock++; 2017 rocketModel[i].model = MODEL_RP2_232; 2018 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232"); 2019 rocketModel[i].numPorts = 2; 2020 break; 2021 case PCI_DEVICE_ID_RP2_422: 2022 max_num_aiops = 1; 2023 ports_per_aiop = 2; 2024 altChanRingIndicator++; 2025 fast_clock++; 2026 rocketModel[i].model = MODEL_RP2_422; 2027 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422"); 2028 rocketModel[i].numPorts = 2; 2029 break; 2030 case PCI_DEVICE_ID_RP6M: 2031 2032 max_num_aiops = 1; 2033 ports_per_aiop = 6; 2034 2035 /* If revision is 1, the rocketmodem flash must be loaded. 2036 * If it is 2 it is a "socketed" version. */ 2037 if (dev->revision == 1) { 2038 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2039 rocketModel[i].loadrm2 = 1; 2040 } else { 2041 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2042 } 2043 2044 rocketModel[i].model = MODEL_RP6M; 2045 strcpy(rocketModel[i].modelString, "RocketModem 6 port"); 2046 rocketModel[i].numPorts = 6; 2047 break; 2048 case PCI_DEVICE_ID_RP4M: 2049 max_num_aiops = 1; 2050 ports_per_aiop = 4; 2051 if (dev->revision == 1) { 2052 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2053 rocketModel[i].loadrm2 = 1; 2054 } else { 2055 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2056 } 2057 2058 rocketModel[i].model = MODEL_RP4M; 2059 strcpy(rocketModel[i].modelString, "RocketModem 4 port"); 2060 rocketModel[i].numPorts = 4; 2061 break; 2062 default: 2063 max_num_aiops = 0; 2064 break; 2065 } 2066 2067 /* 2068 * Check for UPCI boards. 2069 */ 2070 2071 switch (dev->device) { 2072 case PCI_DEVICE_ID_URP32INTF: 2073 case PCI_DEVICE_ID_URP8INTF: 2074 case PCI_DEVICE_ID_URP16INTF: 2075 case PCI_DEVICE_ID_CRP16INTF: 2076 case PCI_DEVICE_ID_URP8OCTA: 2077 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2078 ConfigIO = pci_resource_start(dev, 1); 2079 if (dev->device == PCI_DEVICE_ID_URP8OCTA) { 2080 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2081 2082 /* 2083 * Check for octa or quad cable. 2084 */ 2085 if (! 2086 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) & 2087 PCI_GPIO_CTRL_8PORT)) { 2088 ports_per_aiop = 4; 2089 rocketModel[i].numPorts = 4; 2090 } 2091 } 2092 break; 2093 case PCI_DEVICE_ID_UPCI_RM3_8PORT: 2094 max_num_aiops = 1; 2095 rocketModel[i].model = MODEL_UPCI_RM3_8PORT; 2096 strcpy(rocketModel[i].modelString, "RocketModem III 8 port"); 2097 rocketModel[i].numPorts = 8; 2098 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2099 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2100 ConfigIO = pci_resource_start(dev, 1); 2101 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2102 break; 2103 case PCI_DEVICE_ID_UPCI_RM3_4PORT: 2104 max_num_aiops = 1; 2105 rocketModel[i].model = MODEL_UPCI_RM3_4PORT; 2106 strcpy(rocketModel[i].modelString, "RocketModem III 4 port"); 2107 rocketModel[i].numPorts = 4; 2108 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2109 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2110 ConfigIO = pci_resource_start(dev, 1); 2111 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2112 break; 2113 default: 2114 break; 2115 } 2116 2117 if (fast_clock) { 2118 sClockPrescale = 0x12; /* mod 2 (divide by 3) */ 2119 rp_baud_base[i] = 921600; 2120 } else { 2121 /* 2122 * If support_low_speed is set, use the slow clock 2123 * prescale, which supports 50 bps 2124 */ 2125 if (support_low_speed) { 2126 /* mod 9 (divide by 10) prescale */ 2127 sClockPrescale = 0x19; 2128 rp_baud_base[i] = 230400; 2129 } else { 2130 /* mod 4 (divide by 5) prescale */ 2131 sClockPrescale = 0x14; 2132 rp_baud_base[i] = 460800; 2133 } 2134 } 2135 2136 for (aiop = 0; aiop < max_num_aiops; aiop++) 2137 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40); 2138 ctlp = sCtlNumToCtlPtr(i); 2139 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd); 2140 for (aiop = 0; aiop < max_num_aiops; aiop++) 2141 ctlp->AiopNumChan[aiop] = ports_per_aiop; 2142 2143 dev_info(&dev->dev, "comtrol PCI controller #%d found at " 2144 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n", 2145 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString, 2146 rocketModel[i].startingPortNumber, 2147 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1); 2148 2149 if (num_aiops <= 0) { 2150 rcktpt_io_addr[i] = 0; 2151 return (0); 2152 } 2153 is_PCI[i] = 1; 2154 2155 /* Reset the AIOPIC, init the serial ports */ 2156 for (aiop = 0; aiop < num_aiops; aiop++) { 2157 sResetAiopByNum(ctlp, aiop); 2158 num_chan = ports_per_aiop; 2159 for (chan = 0; chan < num_chan; chan++) 2160 init_r_port(i, aiop, chan, dev); 2161 } 2162 2163 /* Rocket modems must be reset */ 2164 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || 2165 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) || 2166 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) { 2167 num_chan = ports_per_aiop; 2168 for (chan = 0; chan < num_chan; chan++) 2169 sPCIModemReset(ctlp, chan, 1); 2170 msleep(500); 2171 for (chan = 0; chan < num_chan; chan++) 2172 sPCIModemReset(ctlp, chan, 0); 2173 msleep(500); 2174 rmSpeakerReset(ctlp, rocketModel[i].model); 2175 } 2176 return (1); 2177} 2178 2179/* 2180 * Probes for PCI cards, inits them if found 2181 * Input: board_found = number of ISA boards already found, or the 2182 * starting board number 2183 * Returns: Number of PCI boards found 2184 */ 2185static int __init init_PCI(int boards_found) 2186{ 2187 struct pci_dev *dev = NULL; 2188 int count = 0; 2189 2190 /* Work through the PCI device list, pulling out ours */ 2191 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) { 2192 if (register_PCI(count + boards_found, dev)) 2193 count++; 2194 } 2195 return (count); 2196} 2197 2198#endif /* CONFIG_PCI */ 2199 2200/* 2201 * Probes for ISA cards 2202 * Input: i = the board number to look for 2203 * Returns: 1 if board found, 0 else 2204 */ 2205static int __init init_ISA(int i) 2206{ 2207 int num_aiops, num_chan = 0, total_num_chan = 0; 2208 int aiop, chan; 2209 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 2210 CONTROLLER_t *ctlp; 2211 char *type_string; 2212 2213 /* If io_addr is zero, no board configured */ 2214 if (rcktpt_io_addr[i] == 0) 2215 return (0); 2216 2217 /* Reserve the IO region */ 2218 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) { 2219 printk(KERN_ERR "Unable to reserve IO region for configured " 2220 "ISA RocketPort at address 0x%lx, board not " 2221 "installed...\n", rcktpt_io_addr[i]); 2222 rcktpt_io_addr[i] = 0; 2223 return (0); 2224 } 2225 2226 ctlp = sCtlNumToCtlPtr(i); 2227 2228 ctlp->boardType = rcktpt_type[i]; 2229 2230 switch (rcktpt_type[i]) { 2231 case ROCKET_TYPE_PC104: 2232 type_string = "(PC104)"; 2233 break; 2234 case ROCKET_TYPE_MODEM: 2235 type_string = "(RocketModem)"; 2236 break; 2237 case ROCKET_TYPE_MODEMII: 2238 type_string = "(RocketModem II)"; 2239 break; 2240 default: 2241 type_string = ""; 2242 break; 2243 } 2244 2245 /* 2246 * If support_low_speed is set, use the slow clock prescale, 2247 * which supports 50 bps 2248 */ 2249 if (support_low_speed) { 2250 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */ 2251 rp_baud_base[i] = 230400; 2252 } else { 2253 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */ 2254 rp_baud_base[i] = 460800; 2255 } 2256 2257 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++) 2258 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400); 2259 2260 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0); 2261 2262 if (ctlp->boardType == ROCKET_TYPE_PC104) { 2263 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */ 2264 sEnAiop(ctlp, 3); /* CSels used for other stuff */ 2265 } 2266 2267 /* If something went wrong initing the AIOP's release the ISA IO memory */ 2268 if (num_aiops <= 0) { 2269 release_region(rcktpt_io_addr[i], 64); 2270 rcktpt_io_addr[i] = 0; 2271 return (0); 2272 } 2273 2274 rocketModel[i].startingPortNumber = nextLineNumber; 2275 2276 for (aiop = 0; aiop < num_aiops; aiop++) { 2277 sResetAiopByNum(ctlp, aiop); 2278 sEnAiop(ctlp, aiop); 2279 num_chan = sGetAiopNumChan(ctlp, aiop); 2280 total_num_chan += num_chan; 2281 for (chan = 0; chan < num_chan; chan++) 2282 init_r_port(i, aiop, chan, NULL); 2283 } 2284 is_PCI[i] = 0; 2285 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) { 2286 num_chan = sGetAiopNumChan(ctlp, 0); 2287 total_num_chan = num_chan; 2288 for (chan = 0; chan < num_chan; chan++) 2289 sModemReset(ctlp, chan, 1); 2290 msleep(500); 2291 for (chan = 0; chan < num_chan; chan++) 2292 sModemReset(ctlp, chan, 0); 2293 msleep(500); 2294 strcpy(rocketModel[i].modelString, "RocketModem ISA"); 2295 } else { 2296 strcpy(rocketModel[i].modelString, "RocketPort ISA"); 2297 } 2298 rocketModel[i].numPorts = total_num_chan; 2299 rocketModel[i].model = MODEL_ISA; 2300 2301 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 2302 i, rcktpt_io_addr[i], num_aiops, type_string); 2303 2304 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n", 2305 rocketModel[i].modelString, 2306 rocketModel[i].startingPortNumber, 2307 rocketModel[i].startingPortNumber + 2308 rocketModel[i].numPorts - 1); 2309 2310 return (1); 2311} 2312 2313static const struct tty_operations rocket_ops = { 2314 .open = rp_open, 2315 .close = rp_close, 2316 .write = rp_write, 2317 .put_char = rp_put_char, 2318 .write_room = rp_write_room, 2319 .chars_in_buffer = rp_chars_in_buffer, 2320 .flush_buffer = rp_flush_buffer, 2321 .ioctl = rp_ioctl, 2322 .throttle = rp_throttle, 2323 .unthrottle = rp_unthrottle, 2324 .set_termios = rp_set_termios, 2325 .stop = rp_stop, 2326 .start = rp_start, 2327 .hangup = rp_hangup, 2328 .break_ctl = rp_break, 2329 .send_xchar = rp_send_xchar, 2330 .wait_until_sent = rp_wait_until_sent, 2331 .tiocmget = rp_tiocmget, 2332 .tiocmset = rp_tiocmset, 2333}; 2334 2335static const struct tty_port_operations rocket_port_ops = { 2336 .carrier_raised = carrier_raised, 2337 .dtr_rts = dtr_rts, 2338}; 2339 2340/* 2341 * The module "startup" routine; it's run when the module is loaded. 2342 */ 2343static int __init rp_init(void) 2344{ 2345 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i; 2346 2347 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n", 2348 ROCKET_VERSION, ROCKET_DATE); 2349 2350 rocket_driver = alloc_tty_driver(MAX_RP_PORTS); 2351 if (!rocket_driver) 2352 goto err; 2353 2354 /* 2355 * If board 1 is non-zero, there is at least one ISA configured. If controller is 2356 * zero, use the default controller IO address of board1 + 0x40. 2357 */ 2358 if (board1) { 2359 if (controller == 0) 2360 controller = board1 + 0x40; 2361 } else { 2362 controller = 0; /* Used as a flag, meaning no ISA boards */ 2363 } 2364 2365 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */ 2366 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) { 2367 printk(KERN_ERR "Unable to reserve IO region for first " 2368 "configured ISA RocketPort controller 0x%lx. " 2369 "Driver exiting\n", controller); 2370 ret = -EBUSY; 2371 goto err_tty; 2372 } 2373 2374 /* Store ISA variable retrieved from command line or .conf file. */ 2375 rcktpt_io_addr[0] = board1; 2376 rcktpt_io_addr[1] = board2; 2377 rcktpt_io_addr[2] = board3; 2378 rcktpt_io_addr[3] = board4; 2379 2380 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2381 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0]; 2382 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2383 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1]; 2384 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2385 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2]; 2386 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2387 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3]; 2388 2389 /* 2390 * Set up the tty driver structure and then register this 2391 * driver with the tty layer. 2392 */ 2393 2394 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV; 2395 rocket_driver->name = "ttyR"; 2396 rocket_driver->driver_name = "Comtrol RocketPort"; 2397 rocket_driver->major = TTY_ROCKET_MAJOR; 2398 rocket_driver->minor_start = 0; 2399 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL; 2400 rocket_driver->subtype = SERIAL_TYPE_NORMAL; 2401 rocket_driver->init_termios = tty_std_termios; 2402 rocket_driver->init_termios.c_cflag = 2403 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 2404 rocket_driver->init_termios.c_ispeed = 9600; 2405 rocket_driver->init_termios.c_ospeed = 9600; 2406#ifdef ROCKET_SOFT_FLOW 2407 rocket_driver->flags |= TTY_DRIVER_REAL_RAW; 2408#endif 2409 tty_set_operations(rocket_driver, &rocket_ops); 2410 2411 ret = tty_register_driver(rocket_driver); 2412 if (ret < 0) { 2413 printk(KERN_ERR "Couldn't install tty RocketPort driver\n"); 2414 goto err_controller; 2415 } 2416 2417#ifdef ROCKET_DEBUG_OPEN 2418 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major); 2419#endif 2420 2421 /* 2422 * OK, let's probe each of the controllers looking for boards. Any boards found 2423 * will be initialized here. 2424 */ 2425 isa_boards_found = 0; 2426 pci_boards_found = 0; 2427 2428 for (i = 0; i < NUM_BOARDS; i++) { 2429 if (init_ISA(i)) 2430 isa_boards_found++; 2431 } 2432 2433#ifdef CONFIG_PCI 2434 if (isa_boards_found < NUM_BOARDS) 2435 pci_boards_found = init_PCI(isa_boards_found); 2436#endif 2437 2438 max_board = pci_boards_found + isa_boards_found; 2439 2440 if (max_board == 0) { 2441 printk(KERN_ERR "No rocketport ports found; unloading driver\n"); 2442 ret = -ENXIO; 2443 goto err_ttyu; 2444 } 2445 2446 return 0; 2447err_ttyu: 2448 tty_unregister_driver(rocket_driver); 2449err_controller: 2450 if (controller) 2451 release_region(controller, 4); 2452err_tty: 2453 put_tty_driver(rocket_driver); 2454err: 2455 return ret; 2456} 2457 2458 2459static void rp_cleanup_module(void) 2460{ 2461 int retval; 2462 int i; 2463 2464 del_timer_sync(&rocket_timer); 2465 2466 retval = tty_unregister_driver(rocket_driver); 2467 if (retval) 2468 printk(KERN_ERR "Error %d while trying to unregister " 2469 "rocketport driver\n", -retval); 2470 2471 for (i = 0; i < MAX_RP_PORTS; i++) 2472 if (rp_table[i]) { 2473 tty_unregister_device(rocket_driver, i); 2474 tty_port_destroy(&rp_table[i]->port); 2475 kfree(rp_table[i]); 2476 } 2477 2478 put_tty_driver(rocket_driver); 2479 2480 for (i = 0; i < NUM_BOARDS; i++) { 2481 if (rcktpt_io_addr[i] <= 0 || is_PCI[i]) 2482 continue; 2483 release_region(rcktpt_io_addr[i], 64); 2484 } 2485 if (controller) 2486 release_region(controller, 4); 2487} 2488 2489/*************************************************************************** 2490Function: sInitController 2491Purpose: Initialization of controller global registers and controller 2492 structure. 2493Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize, 2494 IRQNum,Frequency,PeriodicOnly) 2495 CONTROLLER_T *CtlP; Ptr to controller structure 2496 int CtlNum; Controller number 2497 ByteIO_t MudbacIO; Mudbac base I/O address. 2498 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 2499 This list must be in the order the AIOPs will be found on the 2500 controller. Once an AIOP in the list is not found, it is 2501 assumed that there are no more AIOPs on the controller. 2502 int AiopIOListSize; Number of addresses in AiopIOList 2503 int IRQNum; Interrupt Request number. Can be any of the following: 2504 0: Disable global interrupts 2505 3: IRQ 3 2506 4: IRQ 4 2507 5: IRQ 5 2508 9: IRQ 9 2509 10: IRQ 10 2510 11: IRQ 11 2511 12: IRQ 12 2512 15: IRQ 15 2513 Byte_t Frequency: A flag identifying the frequency 2514 of the periodic interrupt, can be any one of the following: 2515 FREQ_DIS - periodic interrupt disabled 2516 FREQ_137HZ - 137 Hertz 2517 FREQ_69HZ - 69 Hertz 2518 FREQ_34HZ - 34 Hertz 2519 FREQ_17HZ - 17 Hertz 2520 FREQ_9HZ - 9 Hertz 2521 FREQ_4HZ - 4 Hertz 2522 If IRQNum is set to 0 the Frequency parameter is 2523 overidden, it is forced to a value of FREQ_DIS. 2524 int PeriodicOnly: 1 if all interrupts except the periodic 2525 interrupt are to be blocked. 2526 0 is both the periodic interrupt and 2527 other channel interrupts are allowed. 2528 If IRQNum is set to 0 the PeriodicOnly parameter is 2529 overidden, it is forced to a value of 0. 2530Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 2531 initialization failed. 2532 2533Comments: 2534 If periodic interrupts are to be disabled but AIOP interrupts 2535 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 2536 2537 If interrupts are to be completely disabled set IRQNum to 0. 2538 2539 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 2540 invalid combination. 2541 2542 This function performs initialization of global interrupt modes, 2543 but it does not actually enable global interrupts. To enable 2544 and disable global interrupts use functions sEnGlobalInt() and 2545 sDisGlobalInt(). Enabling of global interrupts is normally not 2546 done until all other initializations are complete. 2547 2548 Even if interrupts are globally enabled, they must also be 2549 individually enabled for each channel that is to generate 2550 interrupts. 2551 2552Warnings: No range checking on any of the parameters is done. 2553 2554 No context switches are allowed while executing this function. 2555 2556 After this function all AIOPs on the controller are disabled, 2557 they can be enabled with sEnAiop(). 2558*/ 2559static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 2560 ByteIO_t * AiopIOList, int AiopIOListSize, 2561 int IRQNum, Byte_t Frequency, int PeriodicOnly) 2562{ 2563 int i; 2564 ByteIO_t io; 2565 int done; 2566 2567 CtlP->AiopIntrBits = aiop_intr_bits; 2568 CtlP->AltChanRingIndicator = 0; 2569 CtlP->CtlNum = CtlNum; 2570 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 2571 CtlP->BusType = isISA; 2572 CtlP->MBaseIO = MudbacIO; 2573 CtlP->MReg1IO = MudbacIO + 1; 2574 CtlP->MReg2IO = MudbacIO + 2; 2575 CtlP->MReg3IO = MudbacIO + 3; 2576#if 1 2577 CtlP->MReg2 = 0; /* interrupt disable */ 2578 CtlP->MReg3 = 0; /* no periodic interrupts */ 2579#else 2580 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */ 2581 CtlP->MReg2 = 0; /* interrupt disable */ 2582 CtlP->MReg3 = 0; /* no periodic interrupts */ 2583 } else { 2584 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */ 2585 CtlP->MReg3 = Frequency; /* set frequency */ 2586 if (PeriodicOnly) { /* periodic interrupt only */ 2587 CtlP->MReg3 |= PERIODIC_ONLY; 2588 } 2589 } 2590#endif 2591 sOutB(CtlP->MReg2IO, CtlP->MReg2); 2592 sOutB(CtlP->MReg3IO, CtlP->MReg3); 2593 sControllerEOI(CtlP); /* clear EOI if warm init */ 2594 /* Init AIOPs */ 2595 CtlP->NumAiop = 0; 2596 for (i = done = 0; i < AiopIOListSize; i++) { 2597 io = AiopIOList[i]; 2598 CtlP->AiopIO[i] = (WordIO_t) io; 2599 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 2600 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */ 2601 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */ 2602 if (done) 2603 continue; 2604 sEnAiop(CtlP, i); /* enable the AIOP */ 2605 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 2606 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 2607 done = 1; /* done looking for AIOPs */ 2608 else { 2609 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 2610 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 2611 sOutB(io + _INDX_DATA, sClockPrescale); 2612 CtlP->NumAiop++; /* bump count of AIOPs */ 2613 } 2614 sDisAiop(CtlP, i); /* disable AIOP */ 2615 } 2616 2617 if (CtlP->NumAiop == 0) 2618 return (-1); 2619 else 2620 return (CtlP->NumAiop); 2621} 2622 2623/*************************************************************************** 2624Function: sReadAiopID 2625Purpose: Read the AIOP idenfication number directly from an AIOP. 2626Call: sReadAiopID(io) 2627 ByteIO_t io: AIOP base I/O address 2628Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X 2629 is replace by an identifying number. 2630 Flag AIOPID_NULL if no valid AIOP is found 2631Warnings: No context switches are allowed while executing this function. 2632 2633*/ 2634static int sReadAiopID(ByteIO_t io) 2635{ 2636 Byte_t AiopID; /* ID byte from AIOP */ 2637 2638 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */ 2639 sOutB(io + _CMD_REG, 0x0); 2640 AiopID = sInW(io + _CHN_STAT0) & 0x07; 2641 if (AiopID == 0x06) 2642 return (1); 2643 else /* AIOP does not exist */ 2644 return (-1); 2645} 2646 2647/*************************************************************************** 2648Function: sReadAiopNumChan 2649Purpose: Read the number of channels available in an AIOP directly from 2650 an AIOP. 2651Call: sReadAiopNumChan(io) 2652 WordIO_t io: AIOP base I/O address 2653Return: int: The number of channels available 2654Comments: The number of channels is determined by write/reads from identical 2655 offsets within the SRAM address spaces for channels 0 and 4. 2656 If the channel 4 space is mirrored to channel 0 it is a 4 channel 2657 AIOP, otherwise it is an 8 channel. 2658Warnings: No context switches are allowed while executing this function. 2659*/ 2660static int sReadAiopNumChan(WordIO_t io) 2661{ 2662 Word_t x; 2663 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 }; 2664 2665 /* write to chan 0 SRAM */ 2666 out32((DWordIO_t) io + _INDX_ADDR, R); 2667 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */ 2668 x = sInW(io + _INDX_DATA); 2669 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */ 2670 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */ 2671 return (8); 2672 else 2673 return (4); 2674} 2675 2676/*************************************************************************** 2677Function: sInitChan 2678Purpose: Initialization of a channel and channel structure 2679Call: sInitChan(CtlP,ChP,AiopNum,ChanNum) 2680 CONTROLLER_T *CtlP; Ptr to controller structure 2681 CHANNEL_T *ChP; Ptr to channel structure 2682 int AiopNum; AIOP number within controller 2683 int ChanNum; Channel number within AIOP 2684Return: int: 1 if initialization succeeded, 0 if it fails because channel 2685 number exceeds number of channels available in AIOP. 2686Comments: This function must be called before a channel can be used. 2687Warnings: No range checking on any of the parameters is done. 2688 2689 No context switches are allowed while executing this function. 2690*/ 2691static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 2692 int ChanNum) 2693{ 2694 int i; 2695 WordIO_t AiopIO; 2696 WordIO_t ChIOOff; 2697 Byte_t *ChR; 2698 Word_t ChOff; 2699 static Byte_t R[4]; 2700 int brd9600; 2701 2702 if (ChanNum >= CtlP->AiopNumChan[AiopNum]) 2703 return 0; /* exceeds num chans in AIOP */ 2704 2705 /* Channel, AIOP, and controller identifiers */ 2706 ChP->CtlP = CtlP; 2707 ChP->ChanID = CtlP->AiopID[AiopNum]; 2708 ChP->AiopNum = AiopNum; 2709 ChP->ChanNum = ChanNum; 2710 2711 /* Global direct addresses */ 2712 AiopIO = CtlP->AiopIO[AiopNum]; 2713 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG; 2714 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN; 2715 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK; 2716 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR; 2717 ChP->IndexData = AiopIO + _INDX_DATA; 2718 2719 /* Channel direct addresses */ 2720 ChIOOff = AiopIO + ChP->ChanNum * 2; 2721 ChP->TxRxData = ChIOOff + _TD0; 2722 ChP->ChanStat = ChIOOff + _CHN_STAT0; 2723 ChP->TxRxCount = ChIOOff + _FIFO_CNT0; 2724 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0; 2725 2726 /* Initialize the channel from the RData array */ 2727 for (i = 0; i < RDATASIZE; i += 4) { 2728 R[0] = RData[i]; 2729 R[1] = RData[i + 1] + 0x10 * ChanNum; 2730 R[2] = RData[i + 2]; 2731 R[3] = RData[i + 3]; 2732 out32(ChP->IndexAddr, R); 2733 } 2734 2735 ChR = ChP->R; 2736 for (i = 0; i < RREGDATASIZE; i += 4) { 2737 ChR[i] = RRegData[i]; 2738 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum; 2739 ChR[i + 2] = RRegData[i + 2]; 2740 ChR[i + 3] = RRegData[i + 3]; 2741 } 2742 2743 /* Indexed registers */ 2744 ChOff = (Word_t) ChanNum *0x1000; 2745 2746 if (sClockPrescale == 0x14) 2747 brd9600 = 47; 2748 else 2749 brd9600 = 23; 2750 2751 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD); 2752 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8); 2753 ChP->BaudDiv[2] = (Byte_t) brd9600; 2754 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8); 2755 out32(ChP->IndexAddr, ChP->BaudDiv); 2756 2757 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL); 2758 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8); 2759 ChP->TxControl[2] = 0; 2760 ChP->TxControl[3] = 0; 2761 out32(ChP->IndexAddr, ChP->TxControl); 2762 2763 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL); 2764 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8); 2765 ChP->RxControl[2] = 0; 2766 ChP->RxControl[3] = 0; 2767 out32(ChP->IndexAddr, ChP->RxControl); 2768 2769 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS); 2770 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8); 2771 ChP->TxEnables[2] = 0; 2772 ChP->TxEnables[3] = 0; 2773 out32(ChP->IndexAddr, ChP->TxEnables); 2774 2775 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1); 2776 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8); 2777 ChP->TxCompare[2] = 0; 2778 ChP->TxCompare[3] = 0; 2779 out32(ChP->IndexAddr, ChP->TxCompare); 2780 2781 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1); 2782 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8); 2783 ChP->TxReplace1[2] = 0; 2784 ChP->TxReplace1[3] = 0; 2785 out32(ChP->IndexAddr, ChP->TxReplace1); 2786 2787 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2); 2788 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8); 2789 ChP->TxReplace2[2] = 0; 2790 ChP->TxReplace2[3] = 0; 2791 out32(ChP->IndexAddr, ChP->TxReplace2); 2792 2793 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP; 2794 ChP->TxFIFO = ChOff + _TX_FIFO; 2795 2796 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */ 2797 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */ 2798 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2799 sOutW(ChP->IndexData, 0); 2800 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP; 2801 ChP->RxFIFO = ChOff + _RX_FIFO; 2802 2803 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */ 2804 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */ 2805 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2806 sOutW(ChP->IndexData, 0); 2807 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2808 sOutW(ChP->IndexData, 0); 2809 ChP->TxPrioCnt = ChOff + _TXP_CNT; 2810 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt); 2811 sOutB(ChP->IndexData, 0); 2812 ChP->TxPrioPtr = ChOff + _TXP_PNTR; 2813 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr); 2814 sOutB(ChP->IndexData, 0); 2815 ChP->TxPrioBuf = ChOff + _TXP_BUF; 2816 sEnRxProcessor(ChP); /* start the Rx processor */ 2817 2818 return 1; 2819} 2820 2821/*************************************************************************** 2822Function: sStopRxProcessor 2823Purpose: Stop the receive processor from processing a channel. 2824Call: sStopRxProcessor(ChP) 2825 CHANNEL_T *ChP; Ptr to channel structure 2826 2827Comments: The receive processor can be started again with sStartRxProcessor(). 2828 This function causes the receive processor to skip over the 2829 stopped channel. It does not stop it from processing other channels. 2830 2831Warnings: No context switches are allowed while executing this function. 2832 2833 Do not leave the receive processor stopped for more than one 2834 character time. 2835 2836 After calling this function a delay of 4 uS is required to ensure 2837 that the receive processor is no longer processing this channel. 2838*/ 2839static void sStopRxProcessor(CHANNEL_T * ChP) 2840{ 2841 Byte_t R[4]; 2842 2843 R[0] = ChP->R[0]; 2844 R[1] = ChP->R[1]; 2845 R[2] = 0x0a; 2846 R[3] = ChP->R[3]; 2847 out32(ChP->IndexAddr, R); 2848} 2849 2850/*************************************************************************** 2851Function: sFlushRxFIFO 2852Purpose: Flush the Rx FIFO 2853Call: sFlushRxFIFO(ChP) 2854 CHANNEL_T *ChP; Ptr to channel structure 2855Return: void 2856Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2857 while it is being flushed the receive processor is stopped 2858 and the transmitter is disabled. After these operations a 2859 4 uS delay is done before clearing the pointers to allow 2860 the receive processor to stop. These items are handled inside 2861 this function. 2862Warnings: No context switches are allowed while executing this function. 2863*/ 2864static void sFlushRxFIFO(CHANNEL_T * ChP) 2865{ 2866 int i; 2867 Byte_t Ch; /* channel number within AIOP */ 2868 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */ 2869 2870 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */ 2871 return; /* don't need to flush */ 2872 2873 RxFIFOEnabled = 0; 2874 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */ 2875 RxFIFOEnabled = 1; 2876 sDisRxFIFO(ChP); /* disable it */ 2877 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */ 2878 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2879 } 2880 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */ 2881 Ch = (Byte_t) sGetChanNum(ChP); 2882 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */ 2883 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */ 2884 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2885 sOutW(ChP->IndexData, 0); 2886 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2887 sOutW(ChP->IndexData, 0); 2888 if (RxFIFOEnabled) 2889 sEnRxFIFO(ChP); /* enable Rx FIFO */ 2890} 2891 2892/*************************************************************************** 2893Function: sFlushTxFIFO 2894Purpose: Flush the Tx FIFO 2895Call: sFlushTxFIFO(ChP) 2896 CHANNEL_T *ChP; Ptr to channel structure 2897Return: void 2898Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2899 while it is being flushed the receive processor is stopped 2900 and the transmitter is disabled. After these operations a 2901 4 uS delay is done before clearing the pointers to allow 2902 the receive processor to stop. These items are handled inside 2903 this function. 2904Warnings: No context switches are allowed while executing this function. 2905*/ 2906static void sFlushTxFIFO(CHANNEL_T * ChP) 2907{ 2908 int i; 2909 Byte_t Ch; /* channel number within AIOP */ 2910 int TxEnabled; /* 1 if transmitter enabled */ 2911 2912 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */ 2913 return; /* don't need to flush */ 2914 2915 TxEnabled = 0; 2916 if (ChP->TxControl[3] & TX_ENABLE) { 2917 TxEnabled = 1; 2918 sDisTransmit(ChP); /* disable transmitter */ 2919 } 2920 sStopRxProcessor(ChP); /* stop Rx processor */ 2921 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */ 2922 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2923 Ch = (Byte_t) sGetChanNum(ChP); 2924 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */ 2925 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */ 2926 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2927 sOutW(ChP->IndexData, 0); 2928 if (TxEnabled) 2929 sEnTransmit(ChP); /* enable transmitter */ 2930 sStartRxProcessor(ChP); /* restart Rx processor */ 2931} 2932 2933/*************************************************************************** 2934Function: sWriteTxPrioByte 2935Purpose: Write a byte of priority transmit data to a channel 2936Call: sWriteTxPrioByte(ChP,Data) 2937 CHANNEL_T *ChP; Ptr to channel structure 2938 Byte_t Data; The transmit data byte 2939 2940Return: int: 1 if the bytes is successfully written, otherwise 0. 2941 2942Comments: The priority byte is transmitted before any data in the Tx FIFO. 2943 2944Warnings: No context switches are allowed while executing this function. 2945*/ 2946static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data) 2947{ 2948 Byte_t DWBuf[4]; /* buffer for double word writes */ 2949 Word_t *WordPtr; /* must be far because Win SS != DS */ 2950 register DWordIO_t IndexAddr; 2951 2952 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */ 2953 IndexAddr = ChP->IndexAddr; 2954 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */ 2955 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */ 2956 return (0); /* nothing sent */ 2957 2958 WordPtr = (Word_t *) (&DWBuf[0]); 2959 *WordPtr = ChP->TxPrioBuf; /* data byte address */ 2960 2961 DWBuf[2] = Data; /* data byte value */ 2962 out32(IndexAddr, DWBuf); /* write it out */ 2963 2964 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */ 2965 2966 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */ 2967 DWBuf[3] = 0; /* priority buffer pointer */ 2968 out32(IndexAddr, DWBuf); /* write it out */ 2969 } else { /* write it to Tx FIFO */ 2970 2971 sWriteTxByte(sGetTxRxDataIO(ChP), Data); 2972 } 2973 return (1); /* 1 byte sent */ 2974} 2975 2976/*************************************************************************** 2977Function: sEnInterrupts 2978Purpose: Enable one or more interrupts for a channel 2979Call: sEnInterrupts(ChP,Flags) 2980 CHANNEL_T *ChP; Ptr to channel structure 2981 Word_t Flags: Interrupt enable flags, can be any combination 2982 of the following flags: 2983 TXINT_EN: Interrupt on Tx FIFO empty 2984 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 2985 sSetRxTrigger()) 2986 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 2987 MCINT_EN: Interrupt on modem input change 2988 CHANINT_EN: Allow channel interrupt signal to the AIOP's 2989 Interrupt Channel Register. 2990Return: void 2991Comments: If an interrupt enable flag is set in Flags, that interrupt will be 2992 enabled. If an interrupt enable flag is not set in Flags, that 2993 interrupt will not be changed. Interrupts can be disabled with 2994 function sDisInterrupts(). 2995 2996 This function sets the appropriate bit for the channel in the AIOP's 2997 Interrupt Mask Register if the CHANINT_EN flag is set. This allows 2998 this channel's bit to be set in the AIOP's Interrupt Channel Register. 2999 3000 Interrupts must also be globally enabled before channel interrupts 3001 will be passed on to the host. This is done with function 3002 sEnGlobalInt(). 3003 3004 In some cases it may be desirable to disable interrupts globally but 3005 enable channel interrupts. This would allow the global interrupt 3006 status register to be used to determine which AIOPs need service. 3007*/ 3008static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags) 3009{ 3010 Byte_t Mask; /* Interrupt Mask Register */ 3011 3012 ChP->RxControl[2] |= 3013 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3014 3015 out32(ChP->IndexAddr, ChP->RxControl); 3016 3017 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN); 3018 3019 out32(ChP->IndexAddr, ChP->TxControl); 3020 3021 if (Flags & CHANINT_EN) { 3022 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum]; 3023 sOutB(ChP->IntMask, Mask); 3024 } 3025} 3026 3027/*************************************************************************** 3028Function: sDisInterrupts 3029Purpose: Disable one or more interrupts for a channel 3030Call: sDisInterrupts(ChP,Flags) 3031 CHANNEL_T *ChP; Ptr to channel structure 3032 Word_t Flags: Interrupt flags, can be any combination 3033 of the following flags: 3034 TXINT_EN: Interrupt on Tx FIFO empty 3035 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3036 sSetRxTrigger()) 3037 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3038 MCINT_EN: Interrupt on modem input change 3039 CHANINT_EN: Disable channel interrupt signal to the 3040 AIOP's Interrupt Channel Register. 3041Return: void 3042Comments: If an interrupt flag is set in Flags, that interrupt will be 3043 disabled. If an interrupt flag is not set in Flags, that 3044 interrupt will not be changed. Interrupts can be enabled with 3045 function sEnInterrupts(). 3046 3047 This function clears the appropriate bit for the channel in the AIOP's 3048 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks 3049 this channel's bit from being set in the AIOP's Interrupt Channel 3050 Register. 3051*/ 3052static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags) 3053{ 3054 Byte_t Mask; /* Interrupt Mask Register */ 3055 3056 ChP->RxControl[2] &= 3057 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3058 out32(ChP->IndexAddr, ChP->RxControl); 3059 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN); 3060 out32(ChP->IndexAddr, ChP->TxControl); 3061 3062 if (Flags & CHANINT_EN) { 3063 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum]; 3064 sOutB(ChP->IntMask, Mask); 3065 } 3066} 3067 3068static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode) 3069{ 3070 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum); 3071} 3072 3073/* 3074 * Not an official SSCI function, but how to reset RocketModems. 3075 * ISA bus version 3076 */ 3077static void sModemReset(CONTROLLER_T * CtlP, int chan, int on) 3078{ 3079 ByteIO_t addr; 3080 Byte_t val; 3081 3082 addr = CtlP->AiopIO[0] + 0x400; 3083 val = sInB(CtlP->MReg3IO); 3084 /* if AIOP[1] is not enabled, enable it */ 3085 if ((val & 2) == 0) { 3086 val = sInB(CtlP->MReg2IO); 3087 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03)); 3088 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6)); 3089 } 3090 3091 sEnAiop(CtlP, 1); 3092 if (!on) 3093 addr += 8; 3094 sOutB(addr + chan, 0); /* apply or remove reset */ 3095 sDisAiop(CtlP, 1); 3096} 3097 3098/* 3099 * Not an official SSCI function, but how to reset RocketModems. 3100 * PCI bus version 3101 */ 3102static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on) 3103{ 3104 ByteIO_t addr; 3105 3106 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */ 3107 if (!on) 3108 addr += 8; 3109 sOutB(addr + chan, 0); /* apply or remove reset */ 3110} 3111 3112/* Returns the line number given the controller (board), aiop and channel number */ 3113static unsigned char GetLineNumber(int ctrl, int aiop, int ch) 3114{ 3115 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch]; 3116} 3117 3118/* 3119 * Stores the line number associated with a given controller (board), aiop 3120 * and channel number. 3121 * Returns: The line number assigned 3122 */ 3123static unsigned char SetLineNumber(int ctrl, int aiop, int ch) 3124{ 3125 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++; 3126 return (nextLineNumber - 1); 3127}