at v4.13 1712 lines 49 kB view raw
1/* 2 * drivers/mtd/nand/diskonchip.c 3 * 4 * (C) 2003 Red Hat, Inc. 5 * (C) 2004 Dan Brown <dan_brown@ieee.org> 6 * (C) 2004 Kalev Lember <kalev@smartlink.ee> 7 * 8 * Author: David Woodhouse <dwmw2@infradead.org> 9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org> 10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee> 11 * 12 * Error correction code lifted from the old docecc code 13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com) 14 * Copyright (C) 2000 Netgem S.A. 15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de> 16 * 17 * Interface to generic NAND code for M-Systems DiskOnChip devices 18 */ 19 20#include <linux/kernel.h> 21#include <linux/init.h> 22#include <linux/sched.h> 23#include <linux/delay.h> 24#include <linux/rslib.h> 25#include <linux/moduleparam.h> 26#include <linux/slab.h> 27#include <linux/io.h> 28 29#include <linux/mtd/mtd.h> 30#include <linux/mtd/nand.h> 31#include <linux/mtd/doc2000.h> 32#include <linux/mtd/partitions.h> 33#include <linux/mtd/inftl.h> 34#include <linux/module.h> 35 36/* Where to look for the devices? */ 37#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 38#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 39#endif 40 41static unsigned long doc_locations[] __initdata = { 42#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) 43#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH 44 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, 45 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, 46 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, 47 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, 48 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, 49#else 50 0xc8000, 0xca000, 0xcc000, 0xce000, 51 0xd0000, 0xd2000, 0xd4000, 0xd6000, 52 0xd8000, 0xda000, 0xdc000, 0xde000, 53 0xe0000, 0xe2000, 0xe4000, 0xe6000, 54 0xe8000, 0xea000, 0xec000, 0xee000, 55#endif 56#endif 57 0xffffffff }; 58 59static struct mtd_info *doclist = NULL; 60 61struct doc_priv { 62 void __iomem *virtadr; 63 unsigned long physadr; 64 u_char ChipID; 65 u_char CDSNControl; 66 int chips_per_floor; /* The number of chips detected on each floor */ 67 int curfloor; 68 int curchip; 69 int mh0_page; 70 int mh1_page; 71 struct mtd_info *nextdoc; 72 73 /* Handle the last stage of initialization (BBT scan, partitioning) */ 74 int (*late_init)(struct mtd_info *mtd); 75}; 76 77/* This is the ecc value computed by the HW ecc generator upon writing an empty 78 page, one with all 0xff for data. */ 79static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; 80 81#define INFTL_BBT_RESERVED_BLOCKS 4 82 83#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) 84#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) 85#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) 86 87static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, 88 unsigned int bitmask); 89static void doc200x_select_chip(struct mtd_info *mtd, int chip); 90 91static int debug = 0; 92module_param(debug, int, 0); 93 94static int try_dword = 1; 95module_param(try_dword, int, 0); 96 97static int no_ecc_failures = 0; 98module_param(no_ecc_failures, int, 0); 99 100static int no_autopart = 0; 101module_param(no_autopart, int, 0); 102 103static int show_firmware_partition = 0; 104module_param(show_firmware_partition, int, 0); 105 106#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE 107static int inftl_bbt_write = 1; 108#else 109static int inftl_bbt_write = 0; 110#endif 111module_param(inftl_bbt_write, int, 0); 112 113static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS; 114module_param(doc_config_location, ulong, 0); 115MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); 116 117/* Sector size for HW ECC */ 118#define SECTOR_SIZE 512 119/* The sector bytes are packed into NB_DATA 10 bit words */ 120#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) 121/* Number of roots */ 122#define NROOTS 4 123/* First consective root */ 124#define FCR 510 125/* Number of symbols */ 126#define NN 1023 127 128/* the Reed Solomon control structure */ 129static struct rs_control *rs_decoder; 130 131/* 132 * The HW decoder in the DoC ASIC's provides us a error syndrome, 133 * which we must convert to a standard syndrome usable by the generic 134 * Reed-Solomon library code. 135 * 136 * Fabrice Bellard figured this out in the old docecc code. I added 137 * some comments, improved a minor bit and converted it to make use 138 * of the generic Reed-Solomon library. tglx 139 */ 140static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) 141{ 142 int i, j, nerr, errpos[8]; 143 uint8_t parity; 144 uint16_t ds[4], s[5], tmp, errval[8], syn[4]; 145 146 memset(syn, 0, sizeof(syn)); 147 /* Convert the ecc bytes into words */ 148 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); 149 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); 150 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); 151 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); 152 parity = ecc[1]; 153 154 /* Initialize the syndrome buffer */ 155 for (i = 0; i < NROOTS; i++) 156 s[i] = ds[0]; 157 /* 158 * Evaluate 159 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] 160 * where x = alpha^(FCR + i) 161 */ 162 for (j = 1; j < NROOTS; j++) { 163 if (ds[j] == 0) 164 continue; 165 tmp = rs->index_of[ds[j]]; 166 for (i = 0; i < NROOTS; i++) 167 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)]; 168 } 169 170 /* Calc syn[i] = s[i] / alpha^(v + i) */ 171 for (i = 0; i < NROOTS; i++) { 172 if (s[i]) 173 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i)); 174 } 175 /* Call the decoder library */ 176 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); 177 178 /* Incorrectable errors ? */ 179 if (nerr < 0) 180 return nerr; 181 182 /* 183 * Correct the errors. The bitpositions are a bit of magic, 184 * but they are given by the design of the de/encoder circuit 185 * in the DoC ASIC's. 186 */ 187 for (i = 0; i < nerr; i++) { 188 int index, bitpos, pos = 1015 - errpos[i]; 189 uint8_t val; 190 if (pos >= NB_DATA && pos < 1019) 191 continue; 192 if (pos < NB_DATA) { 193 /* extract bit position (MSB first) */ 194 pos = 10 * (NB_DATA - 1 - pos) - 6; 195 /* now correct the following 10 bits. At most two bytes 196 can be modified since pos is even */ 197 index = (pos >> 3) ^ 1; 198 bitpos = pos & 7; 199 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { 200 val = (uint8_t) (errval[i] >> (2 + bitpos)); 201 parity ^= val; 202 if (index < SECTOR_SIZE) 203 data[index] ^= val; 204 } 205 index = ((pos >> 3) + 1) ^ 1; 206 bitpos = (bitpos + 10) & 7; 207 if (bitpos == 0) 208 bitpos = 8; 209 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { 210 val = (uint8_t) (errval[i] << (8 - bitpos)); 211 parity ^= val; 212 if (index < SECTOR_SIZE) 213 data[index] ^= val; 214 } 215 } 216 } 217 /* If the parity is wrong, no rescue possible */ 218 return parity ? -EBADMSG : nerr; 219} 220 221static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) 222{ 223 volatile char dummy; 224 int i; 225 226 for (i = 0; i < cycles; i++) { 227 if (DoC_is_Millennium(doc)) 228 dummy = ReadDOC(doc->virtadr, NOP); 229 else if (DoC_is_MillenniumPlus(doc)) 230 dummy = ReadDOC(doc->virtadr, Mplus_NOP); 231 else 232 dummy = ReadDOC(doc->virtadr, DOCStatus); 233 } 234 235} 236 237#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) 238 239/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ 240static int _DoC_WaitReady(struct doc_priv *doc) 241{ 242 void __iomem *docptr = doc->virtadr; 243 unsigned long timeo = jiffies + (HZ * 10); 244 245 if (debug) 246 printk("_DoC_WaitReady...\n"); 247 /* Out-of-line routine to wait for chip response */ 248 if (DoC_is_MillenniumPlus(doc)) { 249 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { 250 if (time_after(jiffies, timeo)) { 251 printk("_DoC_WaitReady timed out.\n"); 252 return -EIO; 253 } 254 udelay(1); 255 cond_resched(); 256 } 257 } else { 258 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { 259 if (time_after(jiffies, timeo)) { 260 printk("_DoC_WaitReady timed out.\n"); 261 return -EIO; 262 } 263 udelay(1); 264 cond_resched(); 265 } 266 } 267 268 return 0; 269} 270 271static inline int DoC_WaitReady(struct doc_priv *doc) 272{ 273 void __iomem *docptr = doc->virtadr; 274 int ret = 0; 275 276 if (DoC_is_MillenniumPlus(doc)) { 277 DoC_Delay(doc, 4); 278 279 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) 280 /* Call the out-of-line routine to wait */ 281 ret = _DoC_WaitReady(doc); 282 } else { 283 DoC_Delay(doc, 4); 284 285 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) 286 /* Call the out-of-line routine to wait */ 287 ret = _DoC_WaitReady(doc); 288 DoC_Delay(doc, 2); 289 } 290 291 if (debug) 292 printk("DoC_WaitReady OK\n"); 293 return ret; 294} 295 296static void doc2000_write_byte(struct mtd_info *mtd, u_char datum) 297{ 298 struct nand_chip *this = mtd_to_nand(mtd); 299 struct doc_priv *doc = nand_get_controller_data(this); 300 void __iomem *docptr = doc->virtadr; 301 302 if (debug) 303 printk("write_byte %02x\n", datum); 304 WriteDOC(datum, docptr, CDSNSlowIO); 305 WriteDOC(datum, docptr, 2k_CDSN_IO); 306} 307 308static u_char doc2000_read_byte(struct mtd_info *mtd) 309{ 310 struct nand_chip *this = mtd_to_nand(mtd); 311 struct doc_priv *doc = nand_get_controller_data(this); 312 void __iomem *docptr = doc->virtadr; 313 u_char ret; 314 315 ReadDOC(docptr, CDSNSlowIO); 316 DoC_Delay(doc, 2); 317 ret = ReadDOC(docptr, 2k_CDSN_IO); 318 if (debug) 319 printk("read_byte returns %02x\n", ret); 320 return ret; 321} 322 323static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len) 324{ 325 struct nand_chip *this = mtd_to_nand(mtd); 326 struct doc_priv *doc = nand_get_controller_data(this); 327 void __iomem *docptr = doc->virtadr; 328 int i; 329 if (debug) 330 printk("writebuf of %d bytes: ", len); 331 for (i = 0; i < len; i++) { 332 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); 333 if (debug && i < 16) 334 printk("%02x ", buf[i]); 335 } 336 if (debug) 337 printk("\n"); 338} 339 340static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len) 341{ 342 struct nand_chip *this = mtd_to_nand(mtd); 343 struct doc_priv *doc = nand_get_controller_data(this); 344 void __iomem *docptr = doc->virtadr; 345 int i; 346 347 if (debug) 348 printk("readbuf of %d bytes: ", len); 349 350 for (i = 0; i < len; i++) { 351 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); 352 } 353} 354 355static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len) 356{ 357 struct nand_chip *this = mtd_to_nand(mtd); 358 struct doc_priv *doc = nand_get_controller_data(this); 359 void __iomem *docptr = doc->virtadr; 360 int i; 361 362 if (debug) 363 printk("readbuf_dword of %d bytes: ", len); 364 365 if (unlikely((((unsigned long)buf) | len) & 3)) { 366 for (i = 0; i < len; i++) { 367 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i); 368 } 369 } else { 370 for (i = 0; i < len; i += 4) { 371 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i); 372 } 373 } 374} 375 376static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) 377{ 378 struct nand_chip *this = mtd_to_nand(mtd); 379 struct doc_priv *doc = nand_get_controller_data(this); 380 uint16_t ret; 381 382 doc200x_select_chip(mtd, nr); 383 doc200x_hwcontrol(mtd, NAND_CMD_READID, 384 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 385 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); 386 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 387 388 /* We can't use dev_ready here, but at least we wait for the 389 * command to complete 390 */ 391 udelay(50); 392 393 ret = this->read_byte(mtd) << 8; 394 ret |= this->read_byte(mtd); 395 396 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { 397 /* First chip probe. See if we get same results by 32-bit access */ 398 union { 399 uint32_t dword; 400 uint8_t byte[4]; 401 } ident; 402 void __iomem *docptr = doc->virtadr; 403 404 doc200x_hwcontrol(mtd, NAND_CMD_READID, 405 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 406 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); 407 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 408 NAND_NCE | NAND_CTRL_CHANGE); 409 410 udelay(50); 411 412 ident.dword = readl(docptr + DoC_2k_CDSN_IO); 413 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { 414 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n"); 415 this->read_buf = &doc2000_readbuf_dword; 416 } 417 } 418 419 return ret; 420} 421 422static void __init doc2000_count_chips(struct mtd_info *mtd) 423{ 424 struct nand_chip *this = mtd_to_nand(mtd); 425 struct doc_priv *doc = nand_get_controller_data(this); 426 uint16_t mfrid; 427 int i; 428 429 /* Max 4 chips per floor on DiskOnChip 2000 */ 430 doc->chips_per_floor = 4; 431 432 /* Find out what the first chip is */ 433 mfrid = doc200x_ident_chip(mtd, 0); 434 435 /* Find how many chips in each floor. */ 436 for (i = 1; i < 4; i++) { 437 if (doc200x_ident_chip(mtd, i) != mfrid) 438 break; 439 } 440 doc->chips_per_floor = i; 441 printk(KERN_DEBUG "Detected %d chips per floor.\n", i); 442} 443 444static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this) 445{ 446 struct doc_priv *doc = nand_get_controller_data(this); 447 448 int status; 449 450 DoC_WaitReady(doc); 451 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); 452 DoC_WaitReady(doc); 453 status = (int)this->read_byte(mtd); 454 455 return status; 456} 457 458static void doc2001_write_byte(struct mtd_info *mtd, u_char datum) 459{ 460 struct nand_chip *this = mtd_to_nand(mtd); 461 struct doc_priv *doc = nand_get_controller_data(this); 462 void __iomem *docptr = doc->virtadr; 463 464 WriteDOC(datum, docptr, CDSNSlowIO); 465 WriteDOC(datum, docptr, Mil_CDSN_IO); 466 WriteDOC(datum, docptr, WritePipeTerm); 467} 468 469static u_char doc2001_read_byte(struct mtd_info *mtd) 470{ 471 struct nand_chip *this = mtd_to_nand(mtd); 472 struct doc_priv *doc = nand_get_controller_data(this); 473 void __iomem *docptr = doc->virtadr; 474 475 //ReadDOC(docptr, CDSNSlowIO); 476 /* 11.4.5 -- delay twice to allow extended length cycle */ 477 DoC_Delay(doc, 2); 478 ReadDOC(docptr, ReadPipeInit); 479 //return ReadDOC(docptr, Mil_CDSN_IO); 480 return ReadDOC(docptr, LastDataRead); 481} 482 483static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len) 484{ 485 struct nand_chip *this = mtd_to_nand(mtd); 486 struct doc_priv *doc = nand_get_controller_data(this); 487 void __iomem *docptr = doc->virtadr; 488 int i; 489 490 for (i = 0; i < len; i++) 491 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); 492 /* Terminate write pipeline */ 493 WriteDOC(0x00, docptr, WritePipeTerm); 494} 495 496static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len) 497{ 498 struct nand_chip *this = mtd_to_nand(mtd); 499 struct doc_priv *doc = nand_get_controller_data(this); 500 void __iomem *docptr = doc->virtadr; 501 int i; 502 503 /* Start read pipeline */ 504 ReadDOC(docptr, ReadPipeInit); 505 506 for (i = 0; i < len - 1; i++) 507 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); 508 509 /* Terminate read pipeline */ 510 buf[i] = ReadDOC(docptr, LastDataRead); 511} 512 513static u_char doc2001plus_read_byte(struct mtd_info *mtd) 514{ 515 struct nand_chip *this = mtd_to_nand(mtd); 516 struct doc_priv *doc = nand_get_controller_data(this); 517 void __iomem *docptr = doc->virtadr; 518 u_char ret; 519 520 ReadDOC(docptr, Mplus_ReadPipeInit); 521 ReadDOC(docptr, Mplus_ReadPipeInit); 522 ret = ReadDOC(docptr, Mplus_LastDataRead); 523 if (debug) 524 printk("read_byte returns %02x\n", ret); 525 return ret; 526} 527 528static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len) 529{ 530 struct nand_chip *this = mtd_to_nand(mtd); 531 struct doc_priv *doc = nand_get_controller_data(this); 532 void __iomem *docptr = doc->virtadr; 533 int i; 534 535 if (debug) 536 printk("writebuf of %d bytes: ", len); 537 for (i = 0; i < len; i++) { 538 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); 539 if (debug && i < 16) 540 printk("%02x ", buf[i]); 541 } 542 if (debug) 543 printk("\n"); 544} 545 546static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len) 547{ 548 struct nand_chip *this = mtd_to_nand(mtd); 549 struct doc_priv *doc = nand_get_controller_data(this); 550 void __iomem *docptr = doc->virtadr; 551 int i; 552 553 if (debug) 554 printk("readbuf of %d bytes: ", len); 555 556 /* Start read pipeline */ 557 ReadDOC(docptr, Mplus_ReadPipeInit); 558 ReadDOC(docptr, Mplus_ReadPipeInit); 559 560 for (i = 0; i < len - 2; i++) { 561 buf[i] = ReadDOC(docptr, Mil_CDSN_IO); 562 if (debug && i < 16) 563 printk("%02x ", buf[i]); 564 } 565 566 /* Terminate read pipeline */ 567 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead); 568 if (debug && i < 16) 569 printk("%02x ", buf[len - 2]); 570 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead); 571 if (debug && i < 16) 572 printk("%02x ", buf[len - 1]); 573 if (debug) 574 printk("\n"); 575} 576 577static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) 578{ 579 struct nand_chip *this = mtd_to_nand(mtd); 580 struct doc_priv *doc = nand_get_controller_data(this); 581 void __iomem *docptr = doc->virtadr; 582 int floor = 0; 583 584 if (debug) 585 printk("select chip (%d)\n", chip); 586 587 if (chip == -1) { 588 /* Disable flash internally */ 589 WriteDOC(0, docptr, Mplus_FlashSelect); 590 return; 591 } 592 593 floor = chip / doc->chips_per_floor; 594 chip -= (floor * doc->chips_per_floor); 595 596 /* Assert ChipEnable and deassert WriteProtect */ 597 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect); 598 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); 599 600 doc->curchip = chip; 601 doc->curfloor = floor; 602} 603 604static void doc200x_select_chip(struct mtd_info *mtd, int chip) 605{ 606 struct nand_chip *this = mtd_to_nand(mtd); 607 struct doc_priv *doc = nand_get_controller_data(this); 608 void __iomem *docptr = doc->virtadr; 609 int floor = 0; 610 611 if (debug) 612 printk("select chip (%d)\n", chip); 613 614 if (chip == -1) 615 return; 616 617 floor = chip / doc->chips_per_floor; 618 chip -= (floor * doc->chips_per_floor); 619 620 /* 11.4.4 -- deassert CE before changing chip */ 621 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); 622 623 WriteDOC(floor, docptr, FloorSelect); 624 WriteDOC(chip, docptr, CDSNDeviceSelect); 625 626 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 627 628 doc->curchip = chip; 629 doc->curfloor = floor; 630} 631 632#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE) 633 634static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, 635 unsigned int ctrl) 636{ 637 struct nand_chip *this = mtd_to_nand(mtd); 638 struct doc_priv *doc = nand_get_controller_data(this); 639 void __iomem *docptr = doc->virtadr; 640 641 if (ctrl & NAND_CTRL_CHANGE) { 642 doc->CDSNControl &= ~CDSN_CTRL_MSK; 643 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK; 644 if (debug) 645 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl); 646 WriteDOC(doc->CDSNControl, docptr, CDSNControl); 647 /* 11.4.3 -- 4 NOPs after CSDNControl write */ 648 DoC_Delay(doc, 4); 649 } 650 if (cmd != NAND_CMD_NONE) { 651 if (DoC_is_2000(doc)) 652 doc2000_write_byte(mtd, cmd); 653 else 654 doc2001_write_byte(mtd, cmd); 655 } 656} 657 658static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) 659{ 660 struct nand_chip *this = mtd_to_nand(mtd); 661 struct doc_priv *doc = nand_get_controller_data(this); 662 void __iomem *docptr = doc->virtadr; 663 664 /* 665 * Must terminate write pipeline before sending any commands 666 * to the device. 667 */ 668 if (command == NAND_CMD_PAGEPROG) { 669 WriteDOC(0x00, docptr, Mplus_WritePipeTerm); 670 WriteDOC(0x00, docptr, Mplus_WritePipeTerm); 671 } 672 673 /* 674 * Write out the command to the device. 675 */ 676 if (command == NAND_CMD_SEQIN) { 677 int readcmd; 678 679 if (column >= mtd->writesize) { 680 /* OOB area */ 681 column -= mtd->writesize; 682 readcmd = NAND_CMD_READOOB; 683 } else if (column < 256) { 684 /* First 256 bytes --> READ0 */ 685 readcmd = NAND_CMD_READ0; 686 } else { 687 column -= 256; 688 readcmd = NAND_CMD_READ1; 689 } 690 WriteDOC(readcmd, docptr, Mplus_FlashCmd); 691 } 692 WriteDOC(command, docptr, Mplus_FlashCmd); 693 WriteDOC(0, docptr, Mplus_WritePipeTerm); 694 WriteDOC(0, docptr, Mplus_WritePipeTerm); 695 696 if (column != -1 || page_addr != -1) { 697 /* Serially input address */ 698 if (column != -1) { 699 /* Adjust columns for 16 bit buswidth */ 700 if (this->options & NAND_BUSWIDTH_16 && 701 !nand_opcode_8bits(command)) 702 column >>= 1; 703 WriteDOC(column, docptr, Mplus_FlashAddress); 704 } 705 if (page_addr != -1) { 706 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress); 707 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress); 708 /* One more address cycle for higher density devices */ 709 if (this->chipsize & 0x0c000000) { 710 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress); 711 printk("high density\n"); 712 } 713 } 714 WriteDOC(0, docptr, Mplus_WritePipeTerm); 715 WriteDOC(0, docptr, Mplus_WritePipeTerm); 716 /* deassert ALE */ 717 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || 718 command == NAND_CMD_READOOB || command == NAND_CMD_READID) 719 WriteDOC(0, docptr, Mplus_FlashControl); 720 } 721 722 /* 723 * program and erase have their own busy handlers 724 * status and sequential in needs no delay 725 */ 726 switch (command) { 727 728 case NAND_CMD_PAGEPROG: 729 case NAND_CMD_ERASE1: 730 case NAND_CMD_ERASE2: 731 case NAND_CMD_SEQIN: 732 case NAND_CMD_STATUS: 733 return; 734 735 case NAND_CMD_RESET: 736 if (this->dev_ready) 737 break; 738 udelay(this->chip_delay); 739 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd); 740 WriteDOC(0, docptr, Mplus_WritePipeTerm); 741 WriteDOC(0, docptr, Mplus_WritePipeTerm); 742 while (!(this->read_byte(mtd) & 0x40)) ; 743 return; 744 745 /* This applies to read commands */ 746 default: 747 /* 748 * If we don't have access to the busy pin, we apply the given 749 * command delay 750 */ 751 if (!this->dev_ready) { 752 udelay(this->chip_delay); 753 return; 754 } 755 } 756 757 /* Apply this short delay always to ensure that we do wait tWB in 758 * any case on any machine. */ 759 ndelay(100); 760 /* wait until command is processed */ 761 while (!this->dev_ready(mtd)) ; 762} 763 764static int doc200x_dev_ready(struct mtd_info *mtd) 765{ 766 struct nand_chip *this = mtd_to_nand(mtd); 767 struct doc_priv *doc = nand_get_controller_data(this); 768 void __iomem *docptr = doc->virtadr; 769 770 if (DoC_is_MillenniumPlus(doc)) { 771 /* 11.4.2 -- must NOP four times before checking FR/B# */ 772 DoC_Delay(doc, 4); 773 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { 774 if (debug) 775 printk("not ready\n"); 776 return 0; 777 } 778 if (debug) 779 printk("was ready\n"); 780 return 1; 781 } else { 782 /* 11.4.2 -- must NOP four times before checking FR/B# */ 783 DoC_Delay(doc, 4); 784 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { 785 if (debug) 786 printk("not ready\n"); 787 return 0; 788 } 789 /* 11.4.2 -- Must NOP twice if it's ready */ 790 DoC_Delay(doc, 2); 791 if (debug) 792 printk("was ready\n"); 793 return 1; 794 } 795} 796 797static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs) 798{ 799 /* This is our last resort if we couldn't find or create a BBT. Just 800 pretend all blocks are good. */ 801 return 0; 802} 803 804static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode) 805{ 806 struct nand_chip *this = mtd_to_nand(mtd); 807 struct doc_priv *doc = nand_get_controller_data(this); 808 void __iomem *docptr = doc->virtadr; 809 810 /* Prime the ECC engine */ 811 switch (mode) { 812 case NAND_ECC_READ: 813 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 814 WriteDOC(DOC_ECC_EN, docptr, ECCConf); 815 break; 816 case NAND_ECC_WRITE: 817 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 818 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); 819 break; 820 } 821} 822 823static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode) 824{ 825 struct nand_chip *this = mtd_to_nand(mtd); 826 struct doc_priv *doc = nand_get_controller_data(this); 827 void __iomem *docptr = doc->virtadr; 828 829 /* Prime the ECC engine */ 830 switch (mode) { 831 case NAND_ECC_READ: 832 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); 833 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); 834 break; 835 case NAND_ECC_WRITE: 836 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); 837 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); 838 break; 839 } 840} 841 842/* This code is only called on write */ 843static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code) 844{ 845 struct nand_chip *this = mtd_to_nand(mtd); 846 struct doc_priv *doc = nand_get_controller_data(this); 847 void __iomem *docptr = doc->virtadr; 848 int i; 849 int emptymatch = 1; 850 851 /* flush the pipeline */ 852 if (DoC_is_2000(doc)) { 853 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); 854 WriteDOC(0, docptr, 2k_CDSN_IO); 855 WriteDOC(0, docptr, 2k_CDSN_IO); 856 WriteDOC(0, docptr, 2k_CDSN_IO); 857 WriteDOC(doc->CDSNControl, docptr, CDSNControl); 858 } else if (DoC_is_MillenniumPlus(doc)) { 859 WriteDOC(0, docptr, Mplus_NOP); 860 WriteDOC(0, docptr, Mplus_NOP); 861 WriteDOC(0, docptr, Mplus_NOP); 862 } else { 863 WriteDOC(0, docptr, NOP); 864 WriteDOC(0, docptr, NOP); 865 WriteDOC(0, docptr, NOP); 866 } 867 868 for (i = 0; i < 6; i++) { 869 if (DoC_is_MillenniumPlus(doc)) 870 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); 871 else 872 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); 873 if (ecc_code[i] != empty_write_ecc[i]) 874 emptymatch = 0; 875 } 876 if (DoC_is_MillenniumPlus(doc)) 877 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); 878 else 879 WriteDOC(DOC_ECC_DIS, docptr, ECCConf); 880#if 0 881 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */ 882 if (emptymatch) { 883 /* Note: this somewhat expensive test should not be triggered 884 often. It could be optimized away by examining the data in 885 the writebuf routine, and remembering the result. */ 886 for (i = 0; i < 512; i++) { 887 if (dat[i] == 0xff) 888 continue; 889 emptymatch = 0; 890 break; 891 } 892 } 893 /* If emptymatch still =1, we do have an all-0xff data buffer. 894 Return all-0xff ecc value instead of the computed one, so 895 it'll look just like a freshly-erased page. */ 896 if (emptymatch) 897 memset(ecc_code, 0xff, 6); 898#endif 899 return 0; 900} 901 902static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, 903 u_char *read_ecc, u_char *isnull) 904{ 905 int i, ret = 0; 906 struct nand_chip *this = mtd_to_nand(mtd); 907 struct doc_priv *doc = nand_get_controller_data(this); 908 void __iomem *docptr = doc->virtadr; 909 uint8_t calc_ecc[6]; 910 volatile u_char dummy; 911 912 /* flush the pipeline */ 913 if (DoC_is_2000(doc)) { 914 dummy = ReadDOC(docptr, 2k_ECCStatus); 915 dummy = ReadDOC(docptr, 2k_ECCStatus); 916 dummy = ReadDOC(docptr, 2k_ECCStatus); 917 } else if (DoC_is_MillenniumPlus(doc)) { 918 dummy = ReadDOC(docptr, Mplus_ECCConf); 919 dummy = ReadDOC(docptr, Mplus_ECCConf); 920 dummy = ReadDOC(docptr, Mplus_ECCConf); 921 } else { 922 dummy = ReadDOC(docptr, ECCConf); 923 dummy = ReadDOC(docptr, ECCConf); 924 dummy = ReadDOC(docptr, ECCConf); 925 } 926 927 /* Error occurred ? */ 928 if (dummy & 0x80) { 929 for (i = 0; i < 6; i++) { 930 if (DoC_is_MillenniumPlus(doc)) 931 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); 932 else 933 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); 934 } 935 936 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc); 937 if (ret > 0) 938 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret); 939 } 940 if (DoC_is_MillenniumPlus(doc)) 941 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); 942 else 943 WriteDOC(DOC_ECC_DIS, docptr, ECCConf); 944 if (no_ecc_failures && mtd_is_eccerr(ret)) { 945 printk(KERN_ERR "suppressing ECC failure\n"); 946 ret = 0; 947 } 948 return ret; 949} 950 951//u_char mydatabuf[528]; 952 953static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section, 954 struct mtd_oob_region *oobregion) 955{ 956 if (section) 957 return -ERANGE; 958 959 oobregion->offset = 0; 960 oobregion->length = 6; 961 962 return 0; 963} 964 965static int doc200x_ooblayout_free(struct mtd_info *mtd, int section, 966 struct mtd_oob_region *oobregion) 967{ 968 if (section > 1) 969 return -ERANGE; 970 971 /* 972 * The strange out-of-order free bytes definition is a (possibly 973 * unneeded) attempt to retain compatibility. It used to read: 974 * .oobfree = { {8, 8} } 975 * Since that leaves two bytes unusable, it was changed. But the 976 * following scheme might affect existing jffs2 installs by moving the 977 * cleanmarker: 978 * .oobfree = { {6, 10} } 979 * jffs2 seems to handle the above gracefully, but the current scheme 980 * seems safer. The only problem with it is that any code retrieving 981 * free bytes position must be able to handle out-of-order segments. 982 */ 983 if (!section) { 984 oobregion->offset = 8; 985 oobregion->length = 8; 986 } else { 987 oobregion->offset = 6; 988 oobregion->length = 2; 989 } 990 991 return 0; 992} 993 994static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = { 995 .ecc = doc200x_ooblayout_ecc, 996 .free = doc200x_ooblayout_free, 997}; 998 999/* Find the (I)NFTL Media Header, and optionally also the mirror media header. 1000 On successful return, buf will contain a copy of the media header for 1001 further processing. id is the string to scan for, and will presumably be 1002 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media 1003 header. The page #s of the found media headers are placed in mh0_page and 1004 mh1_page in the DOC private structure. */ 1005static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror) 1006{ 1007 struct nand_chip *this = mtd_to_nand(mtd); 1008 struct doc_priv *doc = nand_get_controller_data(this); 1009 unsigned offs; 1010 int ret; 1011 size_t retlen; 1012 1013 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { 1014 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); 1015 if (retlen != mtd->writesize) 1016 continue; 1017 if (ret) { 1018 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs); 1019 } 1020 if (memcmp(buf, id, 6)) 1021 continue; 1022 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs); 1023 if (doc->mh0_page == -1) { 1024 doc->mh0_page = offs >> this->page_shift; 1025 if (!findmirror) 1026 return 1; 1027 continue; 1028 } 1029 doc->mh1_page = offs >> this->page_shift; 1030 return 2; 1031 } 1032 if (doc->mh0_page == -1) { 1033 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id); 1034 return 0; 1035 } 1036 /* Only one mediaheader was found. We want buf to contain a 1037 mediaheader on return, so we'll have to re-read the one we found. */ 1038 offs = doc->mh0_page << this->page_shift; 1039 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); 1040 if (retlen != mtd->writesize) { 1041 /* Insanity. Give up. */ 1042 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n"); 1043 return 0; 1044 } 1045 return 1; 1046} 1047 1048static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) 1049{ 1050 struct nand_chip *this = mtd_to_nand(mtd); 1051 struct doc_priv *doc = nand_get_controller_data(this); 1052 int ret = 0; 1053 u_char *buf; 1054 struct NFTLMediaHeader *mh; 1055 const unsigned psize = 1 << this->page_shift; 1056 int numparts = 0; 1057 unsigned blocks, maxblocks; 1058 int offs, numheaders; 1059 1060 buf = kmalloc(mtd->writesize, GFP_KERNEL); 1061 if (!buf) { 1062 return 0; 1063 } 1064 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) 1065 goto out; 1066 mh = (struct NFTLMediaHeader *)buf; 1067 1068 le16_to_cpus(&mh->NumEraseUnits); 1069 le16_to_cpus(&mh->FirstPhysicalEUN); 1070 le32_to_cpus(&mh->FormattedSize); 1071 1072 printk(KERN_INFO " DataOrgID = %s\n" 1073 " NumEraseUnits = %d\n" 1074 " FirstPhysicalEUN = %d\n" 1075 " FormattedSize = %d\n" 1076 " UnitSizeFactor = %d\n", 1077 mh->DataOrgID, mh->NumEraseUnits, 1078 mh->FirstPhysicalEUN, mh->FormattedSize, 1079 mh->UnitSizeFactor); 1080 1081 blocks = mtd->size >> this->phys_erase_shift; 1082 maxblocks = min(32768U, mtd->erasesize - psize); 1083 1084 if (mh->UnitSizeFactor == 0x00) { 1085 /* Auto-determine UnitSizeFactor. The constraints are: 1086 - There can be at most 32768 virtual blocks. 1087 - There can be at most (virtual block size - page size) 1088 virtual blocks (because MediaHeader+BBT must fit in 1). 1089 */ 1090 mh->UnitSizeFactor = 0xff; 1091 while (blocks > maxblocks) { 1092 blocks >>= 1; 1093 maxblocks = min(32768U, (maxblocks << 1) + psize); 1094 mh->UnitSizeFactor--; 1095 } 1096 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); 1097 } 1098 1099 /* NOTE: The lines below modify internal variables of the NAND and MTD 1100 layers; variables with have already been configured by nand_scan. 1101 Unfortunately, we didn't know before this point what these values 1102 should be. Thus, this code is somewhat dependent on the exact 1103 implementation of the NAND layer. */ 1104 if (mh->UnitSizeFactor != 0xff) { 1105 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); 1106 mtd->erasesize <<= (0xff - mh->UnitSizeFactor); 1107 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize); 1108 blocks = mtd->size >> this->bbt_erase_shift; 1109 maxblocks = min(32768U, mtd->erasesize - psize); 1110 } 1111 1112 if (blocks > maxblocks) { 1113 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); 1114 goto out; 1115 } 1116 1117 /* Skip past the media headers. */ 1118 offs = max(doc->mh0_page, doc->mh1_page); 1119 offs <<= this->page_shift; 1120 offs += mtd->erasesize; 1121 1122 if (show_firmware_partition == 1) { 1123 parts[0].name = " DiskOnChip Firmware / Media Header partition"; 1124 parts[0].offset = 0; 1125 parts[0].size = offs; 1126 numparts = 1; 1127 } 1128 1129 parts[numparts].name = " DiskOnChip BDTL partition"; 1130 parts[numparts].offset = offs; 1131 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; 1132 1133 offs += parts[numparts].size; 1134 numparts++; 1135 1136 if (offs < mtd->size) { 1137 parts[numparts].name = " DiskOnChip Remainder partition"; 1138 parts[numparts].offset = offs; 1139 parts[numparts].size = mtd->size - offs; 1140 numparts++; 1141 } 1142 1143 ret = numparts; 1144 out: 1145 kfree(buf); 1146 return ret; 1147} 1148 1149/* This is a stripped-down copy of the code in inftlmount.c */ 1150static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) 1151{ 1152 struct nand_chip *this = mtd_to_nand(mtd); 1153 struct doc_priv *doc = nand_get_controller_data(this); 1154 int ret = 0; 1155 u_char *buf; 1156 struct INFTLMediaHeader *mh; 1157 struct INFTLPartition *ip; 1158 int numparts = 0; 1159 int blocks; 1160 int vshift, lastvunit = 0; 1161 int i; 1162 int end = mtd->size; 1163 1164 if (inftl_bbt_write) 1165 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); 1166 1167 buf = kmalloc(mtd->writesize, GFP_KERNEL); 1168 if (!buf) { 1169 return 0; 1170 } 1171 1172 if (!find_media_headers(mtd, buf, "BNAND", 0)) 1173 goto out; 1174 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); 1175 mh = (struct INFTLMediaHeader *)buf; 1176 1177 le32_to_cpus(&mh->NoOfBootImageBlocks); 1178 le32_to_cpus(&mh->NoOfBinaryPartitions); 1179 le32_to_cpus(&mh->NoOfBDTLPartitions); 1180 le32_to_cpus(&mh->BlockMultiplierBits); 1181 le32_to_cpus(&mh->FormatFlags); 1182 le32_to_cpus(&mh->PercentUsed); 1183 1184 printk(KERN_INFO " bootRecordID = %s\n" 1185 " NoOfBootImageBlocks = %d\n" 1186 " NoOfBinaryPartitions = %d\n" 1187 " NoOfBDTLPartitions = %d\n" 1188 " BlockMultiplerBits = %d\n" 1189 " FormatFlgs = %d\n" 1190 " OsakVersion = %d.%d.%d.%d\n" 1191 " PercentUsed = %d\n", 1192 mh->bootRecordID, mh->NoOfBootImageBlocks, 1193 mh->NoOfBinaryPartitions, 1194 mh->NoOfBDTLPartitions, 1195 mh->BlockMultiplierBits, mh->FormatFlags, 1196 ((unsigned char *) &mh->OsakVersion)[0] & 0xf, 1197 ((unsigned char *) &mh->OsakVersion)[1] & 0xf, 1198 ((unsigned char *) &mh->OsakVersion)[2] & 0xf, 1199 ((unsigned char *) &mh->OsakVersion)[3] & 0xf, 1200 mh->PercentUsed); 1201 1202 vshift = this->phys_erase_shift + mh->BlockMultiplierBits; 1203 1204 blocks = mtd->size >> vshift; 1205 if (blocks > 32768) { 1206 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); 1207 goto out; 1208 } 1209 1210 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); 1211 if (inftl_bbt_write && (blocks > mtd->erasesize)) { 1212 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); 1213 goto out; 1214 } 1215 1216 /* Scan the partitions */ 1217 for (i = 0; (i < 4); i++) { 1218 ip = &(mh->Partitions[i]); 1219 le32_to_cpus(&ip->virtualUnits); 1220 le32_to_cpus(&ip->firstUnit); 1221 le32_to_cpus(&ip->lastUnit); 1222 le32_to_cpus(&ip->flags); 1223 le32_to_cpus(&ip->spareUnits); 1224 le32_to_cpus(&ip->Reserved0); 1225 1226 printk(KERN_INFO " PARTITION[%d] ->\n" 1227 " virtualUnits = %d\n" 1228 " firstUnit = %d\n" 1229 " lastUnit = %d\n" 1230 " flags = 0x%x\n" 1231 " spareUnits = %d\n", 1232 i, ip->virtualUnits, ip->firstUnit, 1233 ip->lastUnit, ip->flags, 1234 ip->spareUnits); 1235 1236 if ((show_firmware_partition == 1) && 1237 (i == 0) && (ip->firstUnit > 0)) { 1238 parts[0].name = " DiskOnChip IPL / Media Header partition"; 1239 parts[0].offset = 0; 1240 parts[0].size = mtd->erasesize * ip->firstUnit; 1241 numparts = 1; 1242 } 1243 1244 if (ip->flags & INFTL_BINARY) 1245 parts[numparts].name = " DiskOnChip BDK partition"; 1246 else 1247 parts[numparts].name = " DiskOnChip BDTL partition"; 1248 parts[numparts].offset = ip->firstUnit << vshift; 1249 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; 1250 numparts++; 1251 if (ip->lastUnit > lastvunit) 1252 lastvunit = ip->lastUnit; 1253 if (ip->flags & INFTL_LAST) 1254 break; 1255 } 1256 lastvunit++; 1257 if ((lastvunit << vshift) < end) { 1258 parts[numparts].name = " DiskOnChip Remainder partition"; 1259 parts[numparts].offset = lastvunit << vshift; 1260 parts[numparts].size = end - parts[numparts].offset; 1261 numparts++; 1262 } 1263 ret = numparts; 1264 out: 1265 kfree(buf); 1266 return ret; 1267} 1268 1269static int __init nftl_scan_bbt(struct mtd_info *mtd) 1270{ 1271 int ret, numparts; 1272 struct nand_chip *this = mtd_to_nand(mtd); 1273 struct doc_priv *doc = nand_get_controller_data(this); 1274 struct mtd_partition parts[2]; 1275 1276 memset((char *)parts, 0, sizeof(parts)); 1277 /* On NFTL, we have to find the media headers before we can read the 1278 BBTs, since they're stored in the media header eraseblocks. */ 1279 numparts = nftl_partscan(mtd, parts); 1280 if (!numparts) 1281 return -EIO; 1282 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | 1283 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | 1284 NAND_BBT_VERSION; 1285 this->bbt_td->veroffs = 7; 1286 this->bbt_td->pages[0] = doc->mh0_page + 1; 1287 if (doc->mh1_page != -1) { 1288 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | 1289 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | 1290 NAND_BBT_VERSION; 1291 this->bbt_md->veroffs = 7; 1292 this->bbt_md->pages[0] = doc->mh1_page + 1; 1293 } else { 1294 this->bbt_md = NULL; 1295 } 1296 1297 ret = this->scan_bbt(mtd); 1298 if (ret) 1299 return ret; 1300 1301 return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); 1302} 1303 1304static int __init inftl_scan_bbt(struct mtd_info *mtd) 1305{ 1306 int ret, numparts; 1307 struct nand_chip *this = mtd_to_nand(mtd); 1308 struct doc_priv *doc = nand_get_controller_data(this); 1309 struct mtd_partition parts[5]; 1310 1311 if (this->numchips > doc->chips_per_floor) { 1312 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n"); 1313 return -EIO; 1314 } 1315 1316 if (DoC_is_MillenniumPlus(doc)) { 1317 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; 1318 if (inftl_bbt_write) 1319 this->bbt_td->options |= NAND_BBT_WRITE; 1320 this->bbt_td->pages[0] = 2; 1321 this->bbt_md = NULL; 1322 } else { 1323 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; 1324 if (inftl_bbt_write) 1325 this->bbt_td->options |= NAND_BBT_WRITE; 1326 this->bbt_td->offs = 8; 1327 this->bbt_td->len = 8; 1328 this->bbt_td->veroffs = 7; 1329 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; 1330 this->bbt_td->reserved_block_code = 0x01; 1331 this->bbt_td->pattern = "MSYS_BBT"; 1332 1333 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; 1334 if (inftl_bbt_write) 1335 this->bbt_md->options |= NAND_BBT_WRITE; 1336 this->bbt_md->offs = 8; 1337 this->bbt_md->len = 8; 1338 this->bbt_md->veroffs = 7; 1339 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; 1340 this->bbt_md->reserved_block_code = 0x01; 1341 this->bbt_md->pattern = "TBB_SYSM"; 1342 } 1343 1344 ret = this->scan_bbt(mtd); 1345 if (ret) 1346 return ret; 1347 1348 memset((char *)parts, 0, sizeof(parts)); 1349 numparts = inftl_partscan(mtd, parts); 1350 /* At least for now, require the INFTL Media Header. We could probably 1351 do without it for non-INFTL use, since all it gives us is 1352 autopartitioning, but I want to give it more thought. */ 1353 if (!numparts) 1354 return -EIO; 1355 return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); 1356} 1357 1358static inline int __init doc2000_init(struct mtd_info *mtd) 1359{ 1360 struct nand_chip *this = mtd_to_nand(mtd); 1361 struct doc_priv *doc = nand_get_controller_data(this); 1362 1363 this->read_byte = doc2000_read_byte; 1364 this->write_buf = doc2000_writebuf; 1365 this->read_buf = doc2000_readbuf; 1366 doc->late_init = nftl_scan_bbt; 1367 1368 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; 1369 doc2000_count_chips(mtd); 1370 mtd->name = "DiskOnChip 2000 (NFTL Model)"; 1371 return (4 * doc->chips_per_floor); 1372} 1373 1374static inline int __init doc2001_init(struct mtd_info *mtd) 1375{ 1376 struct nand_chip *this = mtd_to_nand(mtd); 1377 struct doc_priv *doc = nand_get_controller_data(this); 1378 1379 this->read_byte = doc2001_read_byte; 1380 this->write_buf = doc2001_writebuf; 1381 this->read_buf = doc2001_readbuf; 1382 1383 ReadDOC(doc->virtadr, ChipID); 1384 ReadDOC(doc->virtadr, ChipID); 1385 ReadDOC(doc->virtadr, ChipID); 1386 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { 1387 /* It's not a Millennium; it's one of the newer 1388 DiskOnChip 2000 units with a similar ASIC. 1389 Treat it like a Millennium, except that it 1390 can have multiple chips. */ 1391 doc2000_count_chips(mtd); 1392 mtd->name = "DiskOnChip 2000 (INFTL Model)"; 1393 doc->late_init = inftl_scan_bbt; 1394 return (4 * doc->chips_per_floor); 1395 } else { 1396 /* Bog-standard Millennium */ 1397 doc->chips_per_floor = 1; 1398 mtd->name = "DiskOnChip Millennium"; 1399 doc->late_init = nftl_scan_bbt; 1400 return 1; 1401 } 1402} 1403 1404static inline int __init doc2001plus_init(struct mtd_info *mtd) 1405{ 1406 struct nand_chip *this = mtd_to_nand(mtd); 1407 struct doc_priv *doc = nand_get_controller_data(this); 1408 1409 this->read_byte = doc2001plus_read_byte; 1410 this->write_buf = doc2001plus_writebuf; 1411 this->read_buf = doc2001plus_readbuf; 1412 doc->late_init = inftl_scan_bbt; 1413 this->cmd_ctrl = NULL; 1414 this->select_chip = doc2001plus_select_chip; 1415 this->cmdfunc = doc2001plus_command; 1416 this->ecc.hwctl = doc2001plus_enable_hwecc; 1417 1418 doc->chips_per_floor = 1; 1419 mtd->name = "DiskOnChip Millennium Plus"; 1420 1421 return 1; 1422} 1423 1424static int __init doc_probe(unsigned long physadr) 1425{ 1426 unsigned char ChipID; 1427 struct mtd_info *mtd; 1428 struct nand_chip *nand; 1429 struct doc_priv *doc; 1430 void __iomem *virtadr; 1431 unsigned char save_control; 1432 unsigned char tmp, tmpb, tmpc; 1433 int reg, len, numchips; 1434 int ret = 0; 1435 1436 if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip")) 1437 return -EBUSY; 1438 virtadr = ioremap(physadr, DOC_IOREMAP_LEN); 1439 if (!virtadr) { 1440 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); 1441 ret = -EIO; 1442 goto error_ioremap; 1443 } 1444 1445 /* It's not possible to cleanly detect the DiskOnChip - the 1446 * bootup procedure will put the device into reset mode, and 1447 * it's not possible to talk to it without actually writing 1448 * to the DOCControl register. So we store the current contents 1449 * of the DOCControl register's location, in case we later decide 1450 * that it's not a DiskOnChip, and want to put it back how we 1451 * found it. 1452 */ 1453 save_control = ReadDOC(virtadr, DOCControl); 1454 1455 /* Reset the DiskOnChip ASIC */ 1456 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); 1457 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); 1458 1459 /* Enable the DiskOnChip ASIC */ 1460 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); 1461 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); 1462 1463 ChipID = ReadDOC(virtadr, ChipID); 1464 1465 switch (ChipID) { 1466 case DOC_ChipID_Doc2k: 1467 reg = DoC_2k_ECCStatus; 1468 break; 1469 case DOC_ChipID_DocMil: 1470 reg = DoC_ECCConf; 1471 break; 1472 case DOC_ChipID_DocMilPlus16: 1473 case DOC_ChipID_DocMilPlus32: 1474 case 0: 1475 /* Possible Millennium Plus, need to do more checks */ 1476 /* Possibly release from power down mode */ 1477 for (tmp = 0; (tmp < 4); tmp++) 1478 ReadDOC(virtadr, Mplus_Power); 1479 1480 /* Reset the Millennium Plus ASIC */ 1481 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; 1482 WriteDOC(tmp, virtadr, Mplus_DOCControl); 1483 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); 1484 1485 mdelay(1); 1486 /* Enable the Millennium Plus ASIC */ 1487 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; 1488 WriteDOC(tmp, virtadr, Mplus_DOCControl); 1489 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); 1490 mdelay(1); 1491 1492 ChipID = ReadDOC(virtadr, ChipID); 1493 1494 switch (ChipID) { 1495 case DOC_ChipID_DocMilPlus16: 1496 reg = DoC_Mplus_Toggle; 1497 break; 1498 case DOC_ChipID_DocMilPlus32: 1499 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); 1500 default: 1501 ret = -ENODEV; 1502 goto notfound; 1503 } 1504 break; 1505 1506 default: 1507 ret = -ENODEV; 1508 goto notfound; 1509 } 1510 /* Check the TOGGLE bit in the ECC register */ 1511 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1512 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1513 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1514 if ((tmp == tmpb) || (tmp != tmpc)) { 1515 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); 1516 ret = -ENODEV; 1517 goto notfound; 1518 } 1519 1520 for (mtd = doclist; mtd; mtd = doc->nextdoc) { 1521 unsigned char oldval; 1522 unsigned char newval; 1523 nand = mtd_to_nand(mtd); 1524 doc = nand_get_controller_data(nand); 1525 /* Use the alias resolution register to determine if this is 1526 in fact the same DOC aliased to a new address. If writes 1527 to one chip's alias resolution register change the value on 1528 the other chip, they're the same chip. */ 1529 if (ChipID == DOC_ChipID_DocMilPlus16) { 1530 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); 1531 newval = ReadDOC(virtadr, Mplus_AliasResolution); 1532 } else { 1533 oldval = ReadDOC(doc->virtadr, AliasResolution); 1534 newval = ReadDOC(virtadr, AliasResolution); 1535 } 1536 if (oldval != newval) 1537 continue; 1538 if (ChipID == DOC_ChipID_DocMilPlus16) { 1539 WriteDOC(~newval, virtadr, Mplus_AliasResolution); 1540 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); 1541 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it 1542 } else { 1543 WriteDOC(~newval, virtadr, AliasResolution); 1544 oldval = ReadDOC(doc->virtadr, AliasResolution); 1545 WriteDOC(newval, virtadr, AliasResolution); // restore it 1546 } 1547 newval = ~newval; 1548 if (oldval == newval) { 1549 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); 1550 goto notfound; 1551 } 1552 } 1553 1554 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr); 1555 1556 len = sizeof(struct nand_chip) + sizeof(struct doc_priv) + 1557 (2 * sizeof(struct nand_bbt_descr)); 1558 nand = kzalloc(len, GFP_KERNEL); 1559 if (!nand) { 1560 ret = -ENOMEM; 1561 goto fail; 1562 } 1563 1564 mtd = nand_to_mtd(nand); 1565 doc = (struct doc_priv *) (nand + 1); 1566 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1); 1567 nand->bbt_md = nand->bbt_td + 1; 1568 1569 mtd->owner = THIS_MODULE; 1570 mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops); 1571 1572 nand_set_controller_data(nand, doc); 1573 nand->select_chip = doc200x_select_chip; 1574 nand->cmd_ctrl = doc200x_hwcontrol; 1575 nand->dev_ready = doc200x_dev_ready; 1576 nand->waitfunc = doc200x_wait; 1577 nand->block_bad = doc200x_block_bad; 1578 nand->ecc.hwctl = doc200x_enable_hwecc; 1579 nand->ecc.calculate = doc200x_calculate_ecc; 1580 nand->ecc.correct = doc200x_correct_data; 1581 1582 nand->ecc.mode = NAND_ECC_HW_SYNDROME; 1583 nand->ecc.size = 512; 1584 nand->ecc.bytes = 6; 1585 nand->ecc.strength = 2; 1586 nand->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; 1587 nand->bbt_options = NAND_BBT_USE_FLASH; 1588 /* Skip the automatic BBT scan so we can run it manually */ 1589 nand->options |= NAND_SKIP_BBTSCAN; 1590 1591 doc->physadr = physadr; 1592 doc->virtadr = virtadr; 1593 doc->ChipID = ChipID; 1594 doc->curfloor = -1; 1595 doc->curchip = -1; 1596 doc->mh0_page = -1; 1597 doc->mh1_page = -1; 1598 doc->nextdoc = doclist; 1599 1600 if (ChipID == DOC_ChipID_Doc2k) 1601 numchips = doc2000_init(mtd); 1602 else if (ChipID == DOC_ChipID_DocMilPlus16) 1603 numchips = doc2001plus_init(mtd); 1604 else 1605 numchips = doc2001_init(mtd); 1606 1607 if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) { 1608 /* DBB note: i believe nand_release is necessary here, as 1609 buffers may have been allocated in nand_base. Check with 1610 Thomas. FIX ME! */ 1611 /* nand_release will call mtd_device_unregister, but we 1612 haven't yet added it. This is handled without incident by 1613 mtd_device_unregister, as far as I can tell. */ 1614 nand_release(mtd); 1615 kfree(nand); 1616 goto fail; 1617 } 1618 1619 /* Success! */ 1620 doclist = mtd; 1621 return 0; 1622 1623 notfound: 1624 /* Put back the contents of the DOCControl register, in case it's not 1625 actually a DiskOnChip. */ 1626 WriteDOC(save_control, virtadr, DOCControl); 1627 fail: 1628 iounmap(virtadr); 1629 1630error_ioremap: 1631 release_mem_region(physadr, DOC_IOREMAP_LEN); 1632 1633 return ret; 1634} 1635 1636static void release_nanddoc(void) 1637{ 1638 struct mtd_info *mtd, *nextmtd; 1639 struct nand_chip *nand; 1640 struct doc_priv *doc; 1641 1642 for (mtd = doclist; mtd; mtd = nextmtd) { 1643 nand = mtd_to_nand(mtd); 1644 doc = nand_get_controller_data(nand); 1645 1646 nextmtd = doc->nextdoc; 1647 nand_release(mtd); 1648 iounmap(doc->virtadr); 1649 release_mem_region(doc->physadr, DOC_IOREMAP_LEN); 1650 kfree(nand); 1651 } 1652} 1653 1654static int __init init_nanddoc(void) 1655{ 1656 int i, ret = 0; 1657 1658 /* We could create the decoder on demand, if memory is a concern. 1659 * This way we have it handy, if an error happens 1660 * 1661 * Symbolsize is 10 (bits) 1662 * Primitve polynomial is x^10+x^3+1 1663 * first consecutive root is 510 1664 * primitve element to generate roots = 1 1665 * generator polinomial degree = 4 1666 */ 1667 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); 1668 if (!rs_decoder) { 1669 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n"); 1670 return -ENOMEM; 1671 } 1672 1673 if (doc_config_location) { 1674 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); 1675 ret = doc_probe(doc_config_location); 1676 if (ret < 0) 1677 goto outerr; 1678 } else { 1679 for (i = 0; (doc_locations[i] != 0xffffffff); i++) { 1680 doc_probe(doc_locations[i]); 1681 } 1682 } 1683 /* No banner message any more. Print a message if no DiskOnChip 1684 found, so the user knows we at least tried. */ 1685 if (!doclist) { 1686 printk(KERN_INFO "No valid DiskOnChip devices found\n"); 1687 ret = -ENODEV; 1688 goto outerr; 1689 } 1690 return 0; 1691 outerr: 1692 free_rs(rs_decoder); 1693 return ret; 1694} 1695 1696static void __exit cleanup_nanddoc(void) 1697{ 1698 /* Cleanup the nand/DoC resources */ 1699 release_nanddoc(); 1700 1701 /* Free the reed solomon resources */ 1702 if (rs_decoder) { 1703 free_rs(rs_decoder); 1704 } 1705} 1706 1707module_init(init_nanddoc); 1708module_exit(cleanup_nanddoc); 1709 1710MODULE_LICENSE("GPL"); 1711MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1712MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");