Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30#include <linux/log2.h>
31#include <drm/drmP.h>
32#include "i915_drv.h"
33#include <drm/i915_drm.h>
34#include "i915_trace.h"
35#include "intel_drv.h"
36
37/* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40#define LEGACY_REQUEST_SIZE 200
41
42static unsigned int __intel_ring_space(unsigned int head,
43 unsigned int tail,
44 unsigned int size)
45{
46 /*
47 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
48 * same cacheline, the Head Pointer must not be greater than the Tail
49 * Pointer."
50 */
51 GEM_BUG_ON(!is_power_of_2(size));
52 return (head - tail - CACHELINE_BYTES) & (size - 1);
53}
54
55unsigned int intel_ring_update_space(struct intel_ring *ring)
56{
57 unsigned int space;
58
59 space = __intel_ring_space(ring->head, ring->emit, ring->size);
60
61 ring->space = space;
62 return space;
63}
64
65static int
66gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
67{
68 u32 cmd, *cs;
69
70 cmd = MI_FLUSH;
71
72 if (mode & EMIT_INVALIDATE)
73 cmd |= MI_READ_FLUSH;
74
75 cs = intel_ring_begin(req, 2);
76 if (IS_ERR(cs))
77 return PTR_ERR(cs);
78
79 *cs++ = cmd;
80 *cs++ = MI_NOOP;
81 intel_ring_advance(req, cs);
82
83 return 0;
84}
85
86static int
87gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
88{
89 u32 cmd, *cs;
90
91 /*
92 * read/write caches:
93 *
94 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
96 * also flushed at 2d versus 3d pipeline switches.
97 *
98 * read-only caches:
99 *
100 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101 * MI_READ_FLUSH is set, and is always flushed on 965.
102 *
103 * I915_GEM_DOMAIN_COMMAND may not exist?
104 *
105 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106 * invalidated when MI_EXE_FLUSH is set.
107 *
108 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109 * invalidated with every MI_FLUSH.
110 *
111 * TLBs:
112 *
113 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116 * are flushed at any MI_FLUSH.
117 */
118
119 cmd = MI_FLUSH;
120 if (mode & EMIT_INVALIDATE) {
121 cmd |= MI_EXE_FLUSH;
122 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123 cmd |= MI_INVALIDATE_ISP;
124 }
125
126 cs = intel_ring_begin(req, 2);
127 if (IS_ERR(cs))
128 return PTR_ERR(cs);
129
130 *cs++ = cmd;
131 *cs++ = MI_NOOP;
132 intel_ring_advance(req, cs);
133
134 return 0;
135}
136
137/**
138 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139 * implementing two workarounds on gen6. From section 1.4.7.1
140 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141 *
142 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143 * produced by non-pipelined state commands), software needs to first
144 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145 * 0.
146 *
147 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149 *
150 * And the workaround for these two requires this workaround first:
151 *
152 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153 * BEFORE the pipe-control with a post-sync op and no write-cache
154 * flushes.
155 *
156 * And this last workaround is tricky because of the requirements on
157 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158 * volume 2 part 1:
159 *
160 * "1 of the following must also be set:
161 * - Render Target Cache Flush Enable ([12] of DW1)
162 * - Depth Cache Flush Enable ([0] of DW1)
163 * - Stall at Pixel Scoreboard ([1] of DW1)
164 * - Depth Stall ([13] of DW1)
165 * - Post-Sync Operation ([13] of DW1)
166 * - Notify Enable ([8] of DW1)"
167 *
168 * The cache flushes require the workaround flush that triggered this
169 * one, so we can't use it. Depth stall would trigger the same.
170 * Post-sync nonzero is what triggered this second workaround, so we
171 * can't use that one either. Notify enable is IRQs, which aren't
172 * really our business. That leaves only stall at scoreboard.
173 */
174static int
175intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176{
177 u32 scratch_addr =
178 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
179 u32 *cs;
180
181 cs = intel_ring_begin(req, 6);
182 if (IS_ERR(cs))
183 return PTR_ERR(cs);
184
185 *cs++ = GFX_OP_PIPE_CONTROL(5);
186 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
187 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
188 *cs++ = 0; /* low dword */
189 *cs++ = 0; /* high dword */
190 *cs++ = MI_NOOP;
191 intel_ring_advance(req, cs);
192
193 cs = intel_ring_begin(req, 6);
194 if (IS_ERR(cs))
195 return PTR_ERR(cs);
196
197 *cs++ = GFX_OP_PIPE_CONTROL(5);
198 *cs++ = PIPE_CONTROL_QW_WRITE;
199 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
200 *cs++ = 0;
201 *cs++ = 0;
202 *cs++ = MI_NOOP;
203 intel_ring_advance(req, cs);
204
205 return 0;
206}
207
208static int
209gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
210{
211 u32 scratch_addr =
212 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
213 u32 *cs, flags = 0;
214 int ret;
215
216 /* Force SNB workarounds for PIPE_CONTROL flushes */
217 ret = intel_emit_post_sync_nonzero_flush(req);
218 if (ret)
219 return ret;
220
221 /* Just flush everything. Experiments have shown that reducing the
222 * number of bits based on the write domains has little performance
223 * impact.
224 */
225 if (mode & EMIT_FLUSH) {
226 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
227 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
228 /*
229 * Ensure that any following seqno writes only happen
230 * when the render cache is indeed flushed.
231 */
232 flags |= PIPE_CONTROL_CS_STALL;
233 }
234 if (mode & EMIT_INVALIDATE) {
235 flags |= PIPE_CONTROL_TLB_INVALIDATE;
236 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
237 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
238 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
239 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
241 /*
242 * TLB invalidate requires a post-sync write.
243 */
244 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
245 }
246
247 cs = intel_ring_begin(req, 4);
248 if (IS_ERR(cs))
249 return PTR_ERR(cs);
250
251 *cs++ = GFX_OP_PIPE_CONTROL(4);
252 *cs++ = flags;
253 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
254 *cs++ = 0;
255 intel_ring_advance(req, cs);
256
257 return 0;
258}
259
260static int
261gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
262{
263 u32 *cs;
264
265 cs = intel_ring_begin(req, 4);
266 if (IS_ERR(cs))
267 return PTR_ERR(cs);
268
269 *cs++ = GFX_OP_PIPE_CONTROL(4);
270 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
271 *cs++ = 0;
272 *cs++ = 0;
273 intel_ring_advance(req, cs);
274
275 return 0;
276}
277
278static int
279gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
280{
281 u32 scratch_addr =
282 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
283 u32 *cs, flags = 0;
284
285 /*
286 * Ensure that any following seqno writes only happen when the render
287 * cache is indeed flushed.
288 *
289 * Workaround: 4th PIPE_CONTROL command (except the ones with only
290 * read-cache invalidate bits set) must have the CS_STALL bit set. We
291 * don't try to be clever and just set it unconditionally.
292 */
293 flags |= PIPE_CONTROL_CS_STALL;
294
295 /* Just flush everything. Experiments have shown that reducing the
296 * number of bits based on the write domains has little performance
297 * impact.
298 */
299 if (mode & EMIT_FLUSH) {
300 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
301 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
302 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
303 flags |= PIPE_CONTROL_FLUSH_ENABLE;
304 }
305 if (mode & EMIT_INVALIDATE) {
306 flags |= PIPE_CONTROL_TLB_INVALIDATE;
307 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
308 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
309 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
310 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
311 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
312 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
313 /*
314 * TLB invalidate requires a post-sync write.
315 */
316 flags |= PIPE_CONTROL_QW_WRITE;
317 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
318
319 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
320
321 /* Workaround: we must issue a pipe_control with CS-stall bit
322 * set before a pipe_control command that has the state cache
323 * invalidate bit set. */
324 gen7_render_ring_cs_stall_wa(req);
325 }
326
327 cs = intel_ring_begin(req, 4);
328 if (IS_ERR(cs))
329 return PTR_ERR(cs);
330
331 *cs++ = GFX_OP_PIPE_CONTROL(4);
332 *cs++ = flags;
333 *cs++ = scratch_addr;
334 *cs++ = 0;
335 intel_ring_advance(req, cs);
336
337 return 0;
338}
339
340static int
341gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
342{
343 u32 flags;
344 u32 *cs;
345
346 cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
347 if (IS_ERR(cs))
348 return PTR_ERR(cs);
349
350 flags = PIPE_CONTROL_CS_STALL;
351
352 if (mode & EMIT_FLUSH) {
353 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
354 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
355 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
356 flags |= PIPE_CONTROL_FLUSH_ENABLE;
357 }
358 if (mode & EMIT_INVALIDATE) {
359 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365 flags |= PIPE_CONTROL_QW_WRITE;
366 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
367
368 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
369 cs = gen8_emit_pipe_control(cs,
370 PIPE_CONTROL_CS_STALL |
371 PIPE_CONTROL_STALL_AT_SCOREBOARD,
372 0);
373 }
374
375 cs = gen8_emit_pipe_control(cs, flags,
376 i915_ggtt_offset(req->engine->scratch) +
377 2 * CACHELINE_BYTES);
378
379 intel_ring_advance(req, cs);
380
381 return 0;
382}
383
384static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
385{
386 struct drm_i915_private *dev_priv = engine->i915;
387 u32 addr;
388
389 addr = dev_priv->status_page_dmah->busaddr;
390 if (INTEL_GEN(dev_priv) >= 4)
391 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
392 I915_WRITE(HWS_PGA, addr);
393}
394
395static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
396{
397 struct drm_i915_private *dev_priv = engine->i915;
398 i915_reg_t mmio;
399
400 /* The ring status page addresses are no longer next to the rest of
401 * the ring registers as of gen7.
402 */
403 if (IS_GEN7(dev_priv)) {
404 switch (engine->id) {
405 case RCS:
406 mmio = RENDER_HWS_PGA_GEN7;
407 break;
408 case BCS:
409 mmio = BLT_HWS_PGA_GEN7;
410 break;
411 /*
412 * VCS2 actually doesn't exist on Gen7. Only shut up
413 * gcc switch check warning
414 */
415 case VCS2:
416 case VCS:
417 mmio = BSD_HWS_PGA_GEN7;
418 break;
419 case VECS:
420 mmio = VEBOX_HWS_PGA_GEN7;
421 break;
422 }
423 } else if (IS_GEN6(dev_priv)) {
424 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
425 } else {
426 /* XXX: gen8 returns to sanity */
427 mmio = RING_HWS_PGA(engine->mmio_base);
428 }
429
430 I915_WRITE(mmio, engine->status_page.ggtt_offset);
431 POSTING_READ(mmio);
432
433 /*
434 * Flush the TLB for this page
435 *
436 * FIXME: These two bits have disappeared on gen8, so a question
437 * arises: do we still need this and if so how should we go about
438 * invalidating the TLB?
439 */
440 if (IS_GEN(dev_priv, 6, 7)) {
441 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
442
443 /* ring should be idle before issuing a sync flush*/
444 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
445
446 I915_WRITE(reg,
447 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
448 INSTPM_SYNC_FLUSH));
449 if (intel_wait_for_register(dev_priv,
450 reg, INSTPM_SYNC_FLUSH, 0,
451 1000))
452 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
453 engine->name);
454 }
455}
456
457static bool stop_ring(struct intel_engine_cs *engine)
458{
459 struct drm_i915_private *dev_priv = engine->i915;
460
461 if (INTEL_GEN(dev_priv) > 2) {
462 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
463 if (intel_wait_for_register(dev_priv,
464 RING_MI_MODE(engine->mmio_base),
465 MODE_IDLE,
466 MODE_IDLE,
467 1000)) {
468 DRM_ERROR("%s : timed out trying to stop ring\n",
469 engine->name);
470 /* Sometimes we observe that the idle flag is not
471 * set even though the ring is empty. So double
472 * check before giving up.
473 */
474 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
475 return false;
476 }
477 }
478
479 I915_WRITE_CTL(engine, 0);
480 I915_WRITE_HEAD(engine, 0);
481 I915_WRITE_TAIL(engine, 0);
482
483 if (INTEL_GEN(dev_priv) > 2) {
484 (void)I915_READ_CTL(engine);
485 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
486 }
487
488 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
489}
490
491static int init_ring_common(struct intel_engine_cs *engine)
492{
493 struct drm_i915_private *dev_priv = engine->i915;
494 struct intel_ring *ring = engine->buffer;
495 int ret = 0;
496
497 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
498
499 if (!stop_ring(engine)) {
500 /* G45 ring initialization often fails to reset head to zero */
501 DRM_DEBUG_KMS("%s head not reset to zero "
502 "ctl %08x head %08x tail %08x start %08x\n",
503 engine->name,
504 I915_READ_CTL(engine),
505 I915_READ_HEAD(engine),
506 I915_READ_TAIL(engine),
507 I915_READ_START(engine));
508
509 if (!stop_ring(engine)) {
510 DRM_ERROR("failed to set %s head to zero "
511 "ctl %08x head %08x tail %08x start %08x\n",
512 engine->name,
513 I915_READ_CTL(engine),
514 I915_READ_HEAD(engine),
515 I915_READ_TAIL(engine),
516 I915_READ_START(engine));
517 ret = -EIO;
518 goto out;
519 }
520 }
521
522 if (HWS_NEEDS_PHYSICAL(dev_priv))
523 ring_setup_phys_status_page(engine);
524 else
525 intel_ring_setup_status_page(engine);
526
527 intel_engine_reset_breadcrumbs(engine);
528
529 /* Enforce ordering by reading HEAD register back */
530 I915_READ_HEAD(engine);
531
532 /* Initialize the ring. This must happen _after_ we've cleared the ring
533 * registers with the above sequence (the readback of the HEAD registers
534 * also enforces ordering), otherwise the hw might lose the new ring
535 * register values. */
536 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
537
538 /* WaClearRingBufHeadRegAtInit:ctg,elk */
539 if (I915_READ_HEAD(engine))
540 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
541 engine->name, I915_READ_HEAD(engine));
542
543 intel_ring_update_space(ring);
544 I915_WRITE_HEAD(engine, ring->head);
545 I915_WRITE_TAIL(engine, ring->tail);
546 (void)I915_READ_TAIL(engine);
547
548 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
549
550 /* If the head is still not zero, the ring is dead */
551 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
552 RING_VALID, RING_VALID,
553 50)) {
554 DRM_ERROR("%s initialization failed "
555 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
556 engine->name,
557 I915_READ_CTL(engine),
558 I915_READ_CTL(engine) & RING_VALID,
559 I915_READ_HEAD(engine), ring->head,
560 I915_READ_TAIL(engine), ring->tail,
561 I915_READ_START(engine),
562 i915_ggtt_offset(ring->vma));
563 ret = -EIO;
564 goto out;
565 }
566
567 intel_engine_init_hangcheck(engine);
568
569out:
570 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
571
572 return ret;
573}
574
575static void reset_ring_common(struct intel_engine_cs *engine,
576 struct drm_i915_gem_request *request)
577{
578 /* Try to restore the logical GPU state to match the continuation
579 * of the request queue. If we skip the context/PD restore, then
580 * the next request may try to execute assuming that its context
581 * is valid and loaded on the GPU and so may try to access invalid
582 * memory, prompting repeated GPU hangs.
583 *
584 * If the request was guilty, we still restore the logical state
585 * in case the next request requires it (e.g. the aliasing ppgtt),
586 * but skip over the hung batch.
587 *
588 * If the request was innocent, we try to replay the request with
589 * the restored context.
590 */
591 if (request) {
592 struct drm_i915_private *dev_priv = request->i915;
593 struct intel_context *ce = &request->ctx->engine[engine->id];
594 struct i915_hw_ppgtt *ppgtt;
595
596 /* FIXME consider gen8 reset */
597
598 if (ce->state) {
599 I915_WRITE(CCID,
600 i915_ggtt_offset(ce->state) |
601 BIT(8) /* must be set! */ |
602 CCID_EXTENDED_STATE_SAVE |
603 CCID_EXTENDED_STATE_RESTORE |
604 CCID_EN);
605 }
606
607 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
608 if (ppgtt) {
609 u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
610
611 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
612 I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
613
614 /* Wait for the PD reload to complete */
615 if (intel_wait_for_register(dev_priv,
616 RING_PP_DIR_BASE(engine),
617 BIT(0), 0,
618 10))
619 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
620
621 ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
622 }
623
624 /* If the rq hung, jump to its breadcrumb and skip the batch */
625 if (request->fence.error == -EIO)
626 request->ring->head = request->postfix;
627 } else {
628 engine->legacy_active_context = NULL;
629 }
630}
631
632static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
633{
634 int ret;
635
636 ret = intel_ring_workarounds_emit(req);
637 if (ret != 0)
638 return ret;
639
640 ret = i915_gem_render_state_emit(req);
641 if (ret)
642 return ret;
643
644 return 0;
645}
646
647static int init_render_ring(struct intel_engine_cs *engine)
648{
649 struct drm_i915_private *dev_priv = engine->i915;
650 int ret = init_ring_common(engine);
651 if (ret)
652 return ret;
653
654 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
655 if (IS_GEN(dev_priv, 4, 6))
656 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
657
658 /* We need to disable the AsyncFlip performance optimisations in order
659 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
660 * programmed to '1' on all products.
661 *
662 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
663 */
664 if (IS_GEN(dev_priv, 6, 7))
665 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
666
667 /* Required for the hardware to program scanline values for waiting */
668 /* WaEnableFlushTlbInvalidationMode:snb */
669 if (IS_GEN6(dev_priv))
670 I915_WRITE(GFX_MODE,
671 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
672
673 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
674 if (IS_GEN7(dev_priv))
675 I915_WRITE(GFX_MODE_GEN7,
676 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
677 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
678
679 if (IS_GEN6(dev_priv)) {
680 /* From the Sandybridge PRM, volume 1 part 3, page 24:
681 * "If this bit is set, STCunit will have LRA as replacement
682 * policy. [...] This bit must be reset. LRA replacement
683 * policy is not supported."
684 */
685 I915_WRITE(CACHE_MODE_0,
686 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
687 }
688
689 if (IS_GEN(dev_priv, 6, 7))
690 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
691
692 if (INTEL_INFO(dev_priv)->gen >= 6)
693 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
694
695 return init_workarounds_ring(engine);
696}
697
698static void render_ring_cleanup(struct intel_engine_cs *engine)
699{
700 struct drm_i915_private *dev_priv = engine->i915;
701
702 i915_vma_unpin_and_release(&dev_priv->semaphore);
703}
704
705static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
706{
707 struct drm_i915_private *dev_priv = req->i915;
708 struct intel_engine_cs *waiter;
709 enum intel_engine_id id;
710
711 for_each_engine(waiter, dev_priv, id) {
712 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
713 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
714 continue;
715
716 *cs++ = GFX_OP_PIPE_CONTROL(6);
717 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
718 PIPE_CONTROL_CS_STALL;
719 *cs++ = lower_32_bits(gtt_offset);
720 *cs++ = upper_32_bits(gtt_offset);
721 *cs++ = req->global_seqno;
722 *cs++ = 0;
723 *cs++ = MI_SEMAPHORE_SIGNAL |
724 MI_SEMAPHORE_TARGET(waiter->hw_id);
725 *cs++ = 0;
726 }
727
728 return cs;
729}
730
731static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
732{
733 struct drm_i915_private *dev_priv = req->i915;
734 struct intel_engine_cs *waiter;
735 enum intel_engine_id id;
736
737 for_each_engine(waiter, dev_priv, id) {
738 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
739 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
740 continue;
741
742 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
743 *cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
744 *cs++ = upper_32_bits(gtt_offset);
745 *cs++ = req->global_seqno;
746 *cs++ = MI_SEMAPHORE_SIGNAL |
747 MI_SEMAPHORE_TARGET(waiter->hw_id);
748 *cs++ = 0;
749 }
750
751 return cs;
752}
753
754static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
755{
756 struct drm_i915_private *dev_priv = req->i915;
757 struct intel_engine_cs *engine;
758 enum intel_engine_id id;
759 int num_rings = 0;
760
761 for_each_engine(engine, dev_priv, id) {
762 i915_reg_t mbox_reg;
763
764 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
765 continue;
766
767 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
768 if (i915_mmio_reg_valid(mbox_reg)) {
769 *cs++ = MI_LOAD_REGISTER_IMM(1);
770 *cs++ = i915_mmio_reg_offset(mbox_reg);
771 *cs++ = req->global_seqno;
772 num_rings++;
773 }
774 }
775 if (num_rings & 1)
776 *cs++ = MI_NOOP;
777
778 return cs;
779}
780
781static void i9xx_submit_request(struct drm_i915_gem_request *request)
782{
783 struct drm_i915_private *dev_priv = request->i915;
784
785 i915_gem_request_submit(request);
786
787 I915_WRITE_TAIL(request->engine,
788 intel_ring_set_tail(request->ring, request->tail));
789}
790
791static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
792{
793 *cs++ = MI_STORE_DWORD_INDEX;
794 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
795 *cs++ = req->global_seqno;
796 *cs++ = MI_USER_INTERRUPT;
797
798 req->tail = intel_ring_offset(req, cs);
799 assert_ring_tail_valid(req->ring, req->tail);
800}
801
802static const int i9xx_emit_breadcrumb_sz = 4;
803
804/**
805 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
806 *
807 * @request - request to write to the ring
808 *
809 * Update the mailbox registers in the *other* rings with the current seqno.
810 * This acts like a signal in the canonical semaphore.
811 */
812static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
813{
814 return i9xx_emit_breadcrumb(req,
815 req->engine->semaphore.signal(req, cs));
816}
817
818static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
819 u32 *cs)
820{
821 struct intel_engine_cs *engine = req->engine;
822
823 if (engine->semaphore.signal)
824 cs = engine->semaphore.signal(req, cs);
825
826 *cs++ = GFX_OP_PIPE_CONTROL(6);
827 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
828 PIPE_CONTROL_QW_WRITE;
829 *cs++ = intel_hws_seqno_address(engine);
830 *cs++ = 0;
831 *cs++ = req->global_seqno;
832 /* We're thrashing one dword of HWS. */
833 *cs++ = 0;
834 *cs++ = MI_USER_INTERRUPT;
835 *cs++ = MI_NOOP;
836
837 req->tail = intel_ring_offset(req, cs);
838 assert_ring_tail_valid(req->ring, req->tail);
839}
840
841static const int gen8_render_emit_breadcrumb_sz = 8;
842
843/**
844 * intel_ring_sync - sync the waiter to the signaller on seqno
845 *
846 * @waiter - ring that is waiting
847 * @signaller - ring which has, or will signal
848 * @seqno - seqno which the waiter will block on
849 */
850
851static int
852gen8_ring_sync_to(struct drm_i915_gem_request *req,
853 struct drm_i915_gem_request *signal)
854{
855 struct drm_i915_private *dev_priv = req->i915;
856 u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
857 struct i915_hw_ppgtt *ppgtt;
858 u32 *cs;
859
860 cs = intel_ring_begin(req, 4);
861 if (IS_ERR(cs))
862 return PTR_ERR(cs);
863
864 *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
865 MI_SEMAPHORE_SAD_GTE_SDD;
866 *cs++ = signal->global_seqno;
867 *cs++ = lower_32_bits(offset);
868 *cs++ = upper_32_bits(offset);
869 intel_ring_advance(req, cs);
870
871 /* When the !RCS engines idle waiting upon a semaphore, they lose their
872 * pagetables and we must reload them before executing the batch.
873 * We do this on the i915_switch_context() following the wait and
874 * before the dispatch.
875 */
876 ppgtt = req->ctx->ppgtt;
877 if (ppgtt && req->engine->id != RCS)
878 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
879 return 0;
880}
881
882static int
883gen6_ring_sync_to(struct drm_i915_gem_request *req,
884 struct drm_i915_gem_request *signal)
885{
886 u32 dw1 = MI_SEMAPHORE_MBOX |
887 MI_SEMAPHORE_COMPARE |
888 MI_SEMAPHORE_REGISTER;
889 u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
890 u32 *cs;
891
892 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
893
894 cs = intel_ring_begin(req, 4);
895 if (IS_ERR(cs))
896 return PTR_ERR(cs);
897
898 *cs++ = dw1 | wait_mbox;
899 /* Throughout all of the GEM code, seqno passed implies our current
900 * seqno is >= the last seqno executed. However for hardware the
901 * comparison is strictly greater than.
902 */
903 *cs++ = signal->global_seqno - 1;
904 *cs++ = 0;
905 *cs++ = MI_NOOP;
906 intel_ring_advance(req, cs);
907
908 return 0;
909}
910
911static void
912gen5_seqno_barrier(struct intel_engine_cs *engine)
913{
914 /* MI_STORE are internally buffered by the GPU and not flushed
915 * either by MI_FLUSH or SyncFlush or any other combination of
916 * MI commands.
917 *
918 * "Only the submission of the store operation is guaranteed.
919 * The write result will be complete (coherent) some time later
920 * (this is practically a finite period but there is no guaranteed
921 * latency)."
922 *
923 * Empirically, we observe that we need a delay of at least 75us to
924 * be sure that the seqno write is visible by the CPU.
925 */
926 usleep_range(125, 250);
927}
928
929static void
930gen6_seqno_barrier(struct intel_engine_cs *engine)
931{
932 struct drm_i915_private *dev_priv = engine->i915;
933
934 /* Workaround to force correct ordering between irq and seqno writes on
935 * ivb (and maybe also on snb) by reading from a CS register (like
936 * ACTHD) before reading the status page.
937 *
938 * Note that this effectively stalls the read by the time it takes to
939 * do a memory transaction, which more or less ensures that the write
940 * from the GPU has sufficient time to invalidate the CPU cacheline.
941 * Alternatively we could delay the interrupt from the CS ring to give
942 * the write time to land, but that would incur a delay after every
943 * batch i.e. much more frequent than a delay when waiting for the
944 * interrupt (with the same net latency).
945 *
946 * Also note that to prevent whole machine hangs on gen7, we have to
947 * take the spinlock to guard against concurrent cacheline access.
948 */
949 spin_lock_irq(&dev_priv->uncore.lock);
950 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
951 spin_unlock_irq(&dev_priv->uncore.lock);
952}
953
954static void
955gen5_irq_enable(struct intel_engine_cs *engine)
956{
957 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
958}
959
960static void
961gen5_irq_disable(struct intel_engine_cs *engine)
962{
963 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
964}
965
966static void
967i9xx_irq_enable(struct intel_engine_cs *engine)
968{
969 struct drm_i915_private *dev_priv = engine->i915;
970
971 dev_priv->irq_mask &= ~engine->irq_enable_mask;
972 I915_WRITE(IMR, dev_priv->irq_mask);
973 POSTING_READ_FW(RING_IMR(engine->mmio_base));
974}
975
976static void
977i9xx_irq_disable(struct intel_engine_cs *engine)
978{
979 struct drm_i915_private *dev_priv = engine->i915;
980
981 dev_priv->irq_mask |= engine->irq_enable_mask;
982 I915_WRITE(IMR, dev_priv->irq_mask);
983}
984
985static void
986i8xx_irq_enable(struct intel_engine_cs *engine)
987{
988 struct drm_i915_private *dev_priv = engine->i915;
989
990 dev_priv->irq_mask &= ~engine->irq_enable_mask;
991 I915_WRITE16(IMR, dev_priv->irq_mask);
992 POSTING_READ16(RING_IMR(engine->mmio_base));
993}
994
995static void
996i8xx_irq_disable(struct intel_engine_cs *engine)
997{
998 struct drm_i915_private *dev_priv = engine->i915;
999
1000 dev_priv->irq_mask |= engine->irq_enable_mask;
1001 I915_WRITE16(IMR, dev_priv->irq_mask);
1002}
1003
1004static int
1005bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1006{
1007 u32 *cs;
1008
1009 cs = intel_ring_begin(req, 2);
1010 if (IS_ERR(cs))
1011 return PTR_ERR(cs);
1012
1013 *cs++ = MI_FLUSH;
1014 *cs++ = MI_NOOP;
1015 intel_ring_advance(req, cs);
1016 return 0;
1017}
1018
1019static void
1020gen6_irq_enable(struct intel_engine_cs *engine)
1021{
1022 struct drm_i915_private *dev_priv = engine->i915;
1023
1024 I915_WRITE_IMR(engine,
1025 ~(engine->irq_enable_mask |
1026 engine->irq_keep_mask));
1027 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1028}
1029
1030static void
1031gen6_irq_disable(struct intel_engine_cs *engine)
1032{
1033 struct drm_i915_private *dev_priv = engine->i915;
1034
1035 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1036 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1037}
1038
1039static void
1040hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1041{
1042 struct drm_i915_private *dev_priv = engine->i915;
1043
1044 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1045 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1046}
1047
1048static void
1049hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1050{
1051 struct drm_i915_private *dev_priv = engine->i915;
1052
1053 I915_WRITE_IMR(engine, ~0);
1054 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1055}
1056
1057static void
1058gen8_irq_enable(struct intel_engine_cs *engine)
1059{
1060 struct drm_i915_private *dev_priv = engine->i915;
1061
1062 I915_WRITE_IMR(engine,
1063 ~(engine->irq_enable_mask |
1064 engine->irq_keep_mask));
1065 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1066}
1067
1068static void
1069gen8_irq_disable(struct intel_engine_cs *engine)
1070{
1071 struct drm_i915_private *dev_priv = engine->i915;
1072
1073 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1074}
1075
1076static int
1077i965_emit_bb_start(struct drm_i915_gem_request *req,
1078 u64 offset, u32 length,
1079 unsigned int dispatch_flags)
1080{
1081 u32 *cs;
1082
1083 cs = intel_ring_begin(req, 2);
1084 if (IS_ERR(cs))
1085 return PTR_ERR(cs);
1086
1087 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1088 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1089 *cs++ = offset;
1090 intel_ring_advance(req, cs);
1091
1092 return 0;
1093}
1094
1095/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1096#define I830_BATCH_LIMIT (256*1024)
1097#define I830_TLB_ENTRIES (2)
1098#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1099static int
1100i830_emit_bb_start(struct drm_i915_gem_request *req,
1101 u64 offset, u32 len,
1102 unsigned int dispatch_flags)
1103{
1104 u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
1105
1106 cs = intel_ring_begin(req, 6);
1107 if (IS_ERR(cs))
1108 return PTR_ERR(cs);
1109
1110 /* Evict the invalid PTE TLBs */
1111 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1112 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1113 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1114 *cs++ = cs_offset;
1115 *cs++ = 0xdeadbeef;
1116 *cs++ = MI_NOOP;
1117 intel_ring_advance(req, cs);
1118
1119 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1120 if (len > I830_BATCH_LIMIT)
1121 return -ENOSPC;
1122
1123 cs = intel_ring_begin(req, 6 + 2);
1124 if (IS_ERR(cs))
1125 return PTR_ERR(cs);
1126
1127 /* Blit the batch (which has now all relocs applied) to the
1128 * stable batch scratch bo area (so that the CS never
1129 * stumbles over its tlb invalidation bug) ...
1130 */
1131 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1132 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1133 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1134 *cs++ = cs_offset;
1135 *cs++ = 4096;
1136 *cs++ = offset;
1137
1138 *cs++ = MI_FLUSH;
1139 *cs++ = MI_NOOP;
1140 intel_ring_advance(req, cs);
1141
1142 /* ... and execute it. */
1143 offset = cs_offset;
1144 }
1145
1146 cs = intel_ring_begin(req, 2);
1147 if (IS_ERR(cs))
1148 return PTR_ERR(cs);
1149
1150 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1151 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1152 MI_BATCH_NON_SECURE);
1153 intel_ring_advance(req, cs);
1154
1155 return 0;
1156}
1157
1158static int
1159i915_emit_bb_start(struct drm_i915_gem_request *req,
1160 u64 offset, u32 len,
1161 unsigned int dispatch_flags)
1162{
1163 u32 *cs;
1164
1165 cs = intel_ring_begin(req, 2);
1166 if (IS_ERR(cs))
1167 return PTR_ERR(cs);
1168
1169 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1170 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1171 MI_BATCH_NON_SECURE);
1172 intel_ring_advance(req, cs);
1173
1174 return 0;
1175}
1176
1177static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1178{
1179 struct drm_i915_private *dev_priv = engine->i915;
1180
1181 if (!dev_priv->status_page_dmah)
1182 return;
1183
1184 drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1185 engine->status_page.page_addr = NULL;
1186}
1187
1188static void cleanup_status_page(struct intel_engine_cs *engine)
1189{
1190 struct i915_vma *vma;
1191 struct drm_i915_gem_object *obj;
1192
1193 vma = fetch_and_zero(&engine->status_page.vma);
1194 if (!vma)
1195 return;
1196
1197 obj = vma->obj;
1198
1199 i915_vma_unpin(vma);
1200 i915_vma_close(vma);
1201
1202 i915_gem_object_unpin_map(obj);
1203 __i915_gem_object_release_unless_active(obj);
1204}
1205
1206static int init_status_page(struct intel_engine_cs *engine)
1207{
1208 struct drm_i915_gem_object *obj;
1209 struct i915_vma *vma;
1210 unsigned int flags;
1211 void *vaddr;
1212 int ret;
1213
1214 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1215 if (IS_ERR(obj)) {
1216 DRM_ERROR("Failed to allocate status page\n");
1217 return PTR_ERR(obj);
1218 }
1219
1220 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1221 if (ret)
1222 goto err;
1223
1224 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1225 if (IS_ERR(vma)) {
1226 ret = PTR_ERR(vma);
1227 goto err;
1228 }
1229
1230 flags = PIN_GLOBAL;
1231 if (!HAS_LLC(engine->i915))
1232 /* On g33, we cannot place HWS above 256MiB, so
1233 * restrict its pinning to the low mappable arena.
1234 * Though this restriction is not documented for
1235 * gen4, gen5, or byt, they also behave similarly
1236 * and hang if the HWS is placed at the top of the
1237 * GTT. To generalise, it appears that all !llc
1238 * platforms have issues with us placing the HWS
1239 * above the mappable region (even though we never
1240 * actualy map it).
1241 */
1242 flags |= PIN_MAPPABLE;
1243 ret = i915_vma_pin(vma, 0, 4096, flags);
1244 if (ret)
1245 goto err;
1246
1247 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1248 if (IS_ERR(vaddr)) {
1249 ret = PTR_ERR(vaddr);
1250 goto err_unpin;
1251 }
1252
1253 engine->status_page.vma = vma;
1254 engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1255 engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
1256
1257 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1258 engine->name, i915_ggtt_offset(vma));
1259 return 0;
1260
1261err_unpin:
1262 i915_vma_unpin(vma);
1263err:
1264 i915_gem_object_put(obj);
1265 return ret;
1266}
1267
1268static int init_phys_status_page(struct intel_engine_cs *engine)
1269{
1270 struct drm_i915_private *dev_priv = engine->i915;
1271
1272 GEM_BUG_ON(engine->id != RCS);
1273
1274 dev_priv->status_page_dmah =
1275 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1276 if (!dev_priv->status_page_dmah)
1277 return -ENOMEM;
1278
1279 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1280 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1281
1282 return 0;
1283}
1284
1285int intel_ring_pin(struct intel_ring *ring,
1286 struct drm_i915_private *i915,
1287 unsigned int offset_bias)
1288{
1289 enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1290 struct i915_vma *vma = ring->vma;
1291 unsigned int flags;
1292 void *addr;
1293 int ret;
1294
1295 GEM_BUG_ON(ring->vaddr);
1296
1297
1298 flags = PIN_GLOBAL;
1299 if (offset_bias)
1300 flags |= PIN_OFFSET_BIAS | offset_bias;
1301 if (vma->obj->stolen)
1302 flags |= PIN_MAPPABLE;
1303
1304 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1305 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1306 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1307 else
1308 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1309 if (unlikely(ret))
1310 return ret;
1311 }
1312
1313 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1314 if (unlikely(ret))
1315 return ret;
1316
1317 if (i915_vma_is_map_and_fenceable(vma))
1318 addr = (void __force *)i915_vma_pin_iomap(vma);
1319 else
1320 addr = i915_gem_object_pin_map(vma->obj, map);
1321 if (IS_ERR(addr))
1322 goto err;
1323
1324 ring->vaddr = addr;
1325 return 0;
1326
1327err:
1328 i915_vma_unpin(vma);
1329 return PTR_ERR(addr);
1330}
1331
1332void intel_ring_reset(struct intel_ring *ring, u32 tail)
1333{
1334 GEM_BUG_ON(!list_empty(&ring->request_list));
1335 ring->tail = tail;
1336 ring->head = tail;
1337 ring->emit = tail;
1338 intel_ring_update_space(ring);
1339}
1340
1341void intel_ring_unpin(struct intel_ring *ring)
1342{
1343 GEM_BUG_ON(!ring->vma);
1344 GEM_BUG_ON(!ring->vaddr);
1345
1346 /* Discard any unused bytes beyond that submitted to hw. */
1347 intel_ring_reset(ring, ring->tail);
1348
1349 if (i915_vma_is_map_and_fenceable(ring->vma))
1350 i915_vma_unpin_iomap(ring->vma);
1351 else
1352 i915_gem_object_unpin_map(ring->vma->obj);
1353 ring->vaddr = NULL;
1354
1355 i915_vma_unpin(ring->vma);
1356}
1357
1358static struct i915_vma *
1359intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1360{
1361 struct drm_i915_gem_object *obj;
1362 struct i915_vma *vma;
1363
1364 obj = i915_gem_object_create_stolen(dev_priv, size);
1365 if (!obj)
1366 obj = i915_gem_object_create_internal(dev_priv, size);
1367 if (IS_ERR(obj))
1368 return ERR_CAST(obj);
1369
1370 /* mark ring buffers as read-only from GPU side by default */
1371 obj->gt_ro = 1;
1372
1373 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1374 if (IS_ERR(vma))
1375 goto err;
1376
1377 return vma;
1378
1379err:
1380 i915_gem_object_put(obj);
1381 return vma;
1382}
1383
1384struct intel_ring *
1385intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1386{
1387 struct intel_ring *ring;
1388 struct i915_vma *vma;
1389
1390 GEM_BUG_ON(!is_power_of_2(size));
1391 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1392
1393 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1394 if (!ring)
1395 return ERR_PTR(-ENOMEM);
1396
1397 INIT_LIST_HEAD(&ring->request_list);
1398
1399 ring->size = size;
1400 /* Workaround an erratum on the i830 which causes a hang if
1401 * the TAIL pointer points to within the last 2 cachelines
1402 * of the buffer.
1403 */
1404 ring->effective_size = size;
1405 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1406 ring->effective_size -= 2 * CACHELINE_BYTES;
1407
1408 intel_ring_update_space(ring);
1409
1410 vma = intel_ring_create_vma(engine->i915, size);
1411 if (IS_ERR(vma)) {
1412 kfree(ring);
1413 return ERR_CAST(vma);
1414 }
1415 ring->vma = vma;
1416
1417 return ring;
1418}
1419
1420void
1421intel_ring_free(struct intel_ring *ring)
1422{
1423 struct drm_i915_gem_object *obj = ring->vma->obj;
1424
1425 i915_vma_close(ring->vma);
1426 __i915_gem_object_release_unless_active(obj);
1427
1428 kfree(ring);
1429}
1430
1431static int context_pin(struct i915_gem_context *ctx)
1432{
1433 struct i915_vma *vma = ctx->engine[RCS].state;
1434 int ret;
1435
1436 /* Clear this page out of any CPU caches for coherent swap-in/out.
1437 * We only want to do this on the first bind so that we do not stall
1438 * on an active context (which by nature is already on the GPU).
1439 */
1440 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1441 ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
1442 if (ret)
1443 return ret;
1444 }
1445
1446 return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1447 PIN_GLOBAL | PIN_HIGH);
1448}
1449
1450static struct i915_vma *
1451alloc_context_vma(struct intel_engine_cs *engine)
1452{
1453 struct drm_i915_private *i915 = engine->i915;
1454 struct drm_i915_gem_object *obj;
1455 struct i915_vma *vma;
1456
1457 obj = i915_gem_object_create(i915, engine->context_size);
1458 if (IS_ERR(obj))
1459 return ERR_CAST(obj);
1460
1461 /*
1462 * Try to make the context utilize L3 as well as LLC.
1463 *
1464 * On VLV we don't have L3 controls in the PTEs so we
1465 * shouldn't touch the cache level, especially as that
1466 * would make the object snooped which might have a
1467 * negative performance impact.
1468 *
1469 * Snooping is required on non-llc platforms in execlist
1470 * mode, but since all GGTT accesses use PAT entry 0 we
1471 * get snooping anyway regardless of cache_level.
1472 *
1473 * This is only applicable for Ivy Bridge devices since
1474 * later platforms don't have L3 control bits in the PTE.
1475 */
1476 if (IS_IVYBRIDGE(i915)) {
1477 /* Ignore any error, regard it as a simple optimisation */
1478 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1479 }
1480
1481 vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1482 if (IS_ERR(vma))
1483 i915_gem_object_put(obj);
1484
1485 return vma;
1486}
1487
1488static struct intel_ring *
1489intel_ring_context_pin(struct intel_engine_cs *engine,
1490 struct i915_gem_context *ctx)
1491{
1492 struct intel_context *ce = &ctx->engine[engine->id];
1493 int ret;
1494
1495 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1496
1497 if (likely(ce->pin_count++))
1498 goto out;
1499 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1500
1501 if (!ce->state && engine->context_size) {
1502 struct i915_vma *vma;
1503
1504 vma = alloc_context_vma(engine);
1505 if (IS_ERR(vma)) {
1506 ret = PTR_ERR(vma);
1507 goto err;
1508 }
1509
1510 ce->state = vma;
1511 }
1512
1513 if (ce->state) {
1514 ret = context_pin(ctx);
1515 if (ret)
1516 goto err;
1517
1518 ce->state->obj->mm.dirty = true;
1519 }
1520
1521 /* The kernel context is only used as a placeholder for flushing the
1522 * active context. It is never used for submitting user rendering and
1523 * as such never requires the golden render context, and so we can skip
1524 * emitting it when we switch to the kernel context. This is required
1525 * as during eviction we cannot allocate and pin the renderstate in
1526 * order to initialise the context.
1527 */
1528 if (i915_gem_context_is_kernel(ctx))
1529 ce->initialised = true;
1530
1531 i915_gem_context_get(ctx);
1532
1533out:
1534 /* One ringbuffer to rule them all */
1535 return engine->buffer;
1536
1537err:
1538 ce->pin_count = 0;
1539 return ERR_PTR(ret);
1540}
1541
1542static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1543 struct i915_gem_context *ctx)
1544{
1545 struct intel_context *ce = &ctx->engine[engine->id];
1546
1547 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1548 GEM_BUG_ON(ce->pin_count == 0);
1549
1550 if (--ce->pin_count)
1551 return;
1552
1553 if (ce->state)
1554 i915_vma_unpin(ce->state);
1555
1556 i915_gem_context_put(ctx);
1557}
1558
1559static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1560{
1561 struct intel_ring *ring;
1562 int err;
1563
1564 intel_engine_setup_common(engine);
1565
1566 err = intel_engine_init_common(engine);
1567 if (err)
1568 goto err;
1569
1570 if (HWS_NEEDS_PHYSICAL(engine->i915))
1571 err = init_phys_status_page(engine);
1572 else
1573 err = init_status_page(engine);
1574 if (err)
1575 goto err;
1576
1577 ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
1578 if (IS_ERR(ring)) {
1579 err = PTR_ERR(ring);
1580 goto err_hws;
1581 }
1582
1583 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1584 err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1585 if (err)
1586 goto err_ring;
1587
1588 GEM_BUG_ON(engine->buffer);
1589 engine->buffer = ring;
1590
1591 return 0;
1592
1593err_ring:
1594 intel_ring_free(ring);
1595err_hws:
1596 if (HWS_NEEDS_PHYSICAL(engine->i915))
1597 cleanup_phys_status_page(engine);
1598 else
1599 cleanup_status_page(engine);
1600err:
1601 intel_engine_cleanup_common(engine);
1602 return err;
1603}
1604
1605void intel_engine_cleanup(struct intel_engine_cs *engine)
1606{
1607 struct drm_i915_private *dev_priv = engine->i915;
1608
1609 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1610 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1611
1612 intel_ring_unpin(engine->buffer);
1613 intel_ring_free(engine->buffer);
1614
1615 if (engine->cleanup)
1616 engine->cleanup(engine);
1617
1618 if (HWS_NEEDS_PHYSICAL(dev_priv))
1619 cleanup_phys_status_page(engine);
1620 else
1621 cleanup_status_page(engine);
1622
1623 intel_engine_cleanup_common(engine);
1624
1625 dev_priv->engine[engine->id] = NULL;
1626 kfree(engine);
1627}
1628
1629void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1630{
1631 struct intel_engine_cs *engine;
1632 enum intel_engine_id id;
1633
1634 /* Restart from the beginning of the rings for convenience */
1635 for_each_engine(engine, dev_priv, id)
1636 intel_ring_reset(engine->buffer, 0);
1637}
1638
1639static int ring_request_alloc(struct drm_i915_gem_request *request)
1640{
1641 u32 *cs;
1642
1643 GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
1644
1645 /* Flush enough space to reduce the likelihood of waiting after
1646 * we start building the request - in which case we will just
1647 * have to repeat work.
1648 */
1649 request->reserved_space += LEGACY_REQUEST_SIZE;
1650
1651 cs = intel_ring_begin(request, 0);
1652 if (IS_ERR(cs))
1653 return PTR_ERR(cs);
1654
1655 request->reserved_space -= LEGACY_REQUEST_SIZE;
1656 return 0;
1657}
1658
1659static noinline int wait_for_space(struct drm_i915_gem_request *req,
1660 unsigned int bytes)
1661{
1662 struct intel_ring *ring = req->ring;
1663 struct drm_i915_gem_request *target;
1664 long timeout;
1665
1666 lockdep_assert_held(&req->i915->drm.struct_mutex);
1667
1668 if (intel_ring_update_space(ring) >= bytes)
1669 return 0;
1670
1671 /*
1672 * Space is reserved in the ringbuffer for finalising the request,
1673 * as that cannot be allowed to fail. During request finalisation,
1674 * reserved_space is set to 0 to stop the overallocation and the
1675 * assumption is that then we never need to wait (which has the
1676 * risk of failing with EINTR).
1677 *
1678 * See also i915_gem_request_alloc() and i915_add_request().
1679 */
1680 GEM_BUG_ON(!req->reserved_space);
1681
1682 list_for_each_entry(target, &ring->request_list, ring_link) {
1683 /* Would completion of this request free enough space? */
1684 if (bytes <= __intel_ring_space(target->postfix,
1685 ring->emit, ring->size))
1686 break;
1687 }
1688
1689 if (WARN_ON(&target->ring_link == &ring->request_list))
1690 return -ENOSPC;
1691
1692 timeout = i915_wait_request(target,
1693 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1694 MAX_SCHEDULE_TIMEOUT);
1695 if (timeout < 0)
1696 return timeout;
1697
1698 i915_gem_request_retire_upto(target);
1699
1700 intel_ring_update_space(ring);
1701 GEM_BUG_ON(ring->space < bytes);
1702 return 0;
1703}
1704
1705u32 *intel_ring_begin(struct drm_i915_gem_request *req,
1706 unsigned int num_dwords)
1707{
1708 struct intel_ring *ring = req->ring;
1709 const unsigned int remain_usable = ring->effective_size - ring->emit;
1710 const unsigned int bytes = num_dwords * sizeof(u32);
1711 unsigned int need_wrap = 0;
1712 unsigned int total_bytes;
1713 u32 *cs;
1714
1715 total_bytes = bytes + req->reserved_space;
1716 GEM_BUG_ON(total_bytes > ring->effective_size);
1717
1718 if (unlikely(total_bytes > remain_usable)) {
1719 const int remain_actual = ring->size - ring->emit;
1720
1721 if (bytes > remain_usable) {
1722 /*
1723 * Not enough space for the basic request. So need to
1724 * flush out the remainder and then wait for
1725 * base + reserved.
1726 */
1727 total_bytes += remain_actual;
1728 need_wrap = remain_actual | 1;
1729 } else {
1730 /*
1731 * The base request will fit but the reserved space
1732 * falls off the end. So we don't need an immediate
1733 * wrap and only need to effectively wait for the
1734 * reserved size from the start of ringbuffer.
1735 */
1736 total_bytes = req->reserved_space + remain_actual;
1737 }
1738 }
1739
1740 if (unlikely(total_bytes > ring->space)) {
1741 int ret = wait_for_space(req, total_bytes);
1742 if (unlikely(ret))
1743 return ERR_PTR(ret);
1744 }
1745
1746 if (unlikely(need_wrap)) {
1747 need_wrap &= ~1;
1748 GEM_BUG_ON(need_wrap > ring->space);
1749 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1750
1751 /* Fill the tail with MI_NOOP */
1752 memset(ring->vaddr + ring->emit, 0, need_wrap);
1753 ring->emit = 0;
1754 ring->space -= need_wrap;
1755 }
1756
1757 GEM_BUG_ON(ring->emit > ring->size - bytes);
1758 GEM_BUG_ON(ring->space < bytes);
1759 cs = ring->vaddr + ring->emit;
1760 GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
1761 ring->emit += bytes;
1762 ring->space -= bytes;
1763
1764 return cs;
1765}
1766
1767/* Align the ring tail to a cacheline boundary */
1768int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
1769{
1770 int num_dwords =
1771 (req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1772 u32 *cs;
1773
1774 if (num_dwords == 0)
1775 return 0;
1776
1777 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1778 cs = intel_ring_begin(req, num_dwords);
1779 if (IS_ERR(cs))
1780 return PTR_ERR(cs);
1781
1782 while (num_dwords--)
1783 *cs++ = MI_NOOP;
1784
1785 intel_ring_advance(req, cs);
1786
1787 return 0;
1788}
1789
1790static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
1791{
1792 struct drm_i915_private *dev_priv = request->i915;
1793
1794 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1795
1796 /* Every tail move must follow the sequence below */
1797
1798 /* Disable notification that the ring is IDLE. The GT
1799 * will then assume that it is busy and bring it out of rc6.
1800 */
1801 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1802 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1803
1804 /* Clear the context id. Here be magic! */
1805 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1806
1807 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1808 if (__intel_wait_for_register_fw(dev_priv,
1809 GEN6_BSD_SLEEP_PSMI_CONTROL,
1810 GEN6_BSD_SLEEP_INDICATOR,
1811 0,
1812 1000, 0, NULL))
1813 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1814
1815 /* Now that the ring is fully powered up, update the tail */
1816 i9xx_submit_request(request);
1817
1818 /* Let the ring send IDLE messages to the GT again,
1819 * and so let it sleep to conserve power when idle.
1820 */
1821 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1822 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1823
1824 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1825}
1826
1827static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1828{
1829 u32 cmd, *cs;
1830
1831 cs = intel_ring_begin(req, 4);
1832 if (IS_ERR(cs))
1833 return PTR_ERR(cs);
1834
1835 cmd = MI_FLUSH_DW;
1836 if (INTEL_GEN(req->i915) >= 8)
1837 cmd += 1;
1838
1839 /* We always require a command barrier so that subsequent
1840 * commands, such as breadcrumb interrupts, are strictly ordered
1841 * wrt the contents of the write cache being flushed to memory
1842 * (and thus being coherent from the CPU).
1843 */
1844 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1845
1846 /*
1847 * Bspec vol 1c.5 - video engine command streamer:
1848 * "If ENABLED, all TLBs will be invalidated once the flush
1849 * operation is complete. This bit is only valid when the
1850 * Post-Sync Operation field is a value of 1h or 3h."
1851 */
1852 if (mode & EMIT_INVALIDATE)
1853 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1854
1855 *cs++ = cmd;
1856 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1857 if (INTEL_GEN(req->i915) >= 8) {
1858 *cs++ = 0; /* upper addr */
1859 *cs++ = 0; /* value */
1860 } else {
1861 *cs++ = 0;
1862 *cs++ = MI_NOOP;
1863 }
1864 intel_ring_advance(req, cs);
1865 return 0;
1866}
1867
1868static int
1869gen8_emit_bb_start(struct drm_i915_gem_request *req,
1870 u64 offset, u32 len,
1871 unsigned int dispatch_flags)
1872{
1873 bool ppgtt = USES_PPGTT(req->i915) &&
1874 !(dispatch_flags & I915_DISPATCH_SECURE);
1875 u32 *cs;
1876
1877 cs = intel_ring_begin(req, 4);
1878 if (IS_ERR(cs))
1879 return PTR_ERR(cs);
1880
1881 /* FIXME(BDW): Address space and security selectors. */
1882 *cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
1883 I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1884 *cs++ = lower_32_bits(offset);
1885 *cs++ = upper_32_bits(offset);
1886 *cs++ = MI_NOOP;
1887 intel_ring_advance(req, cs);
1888
1889 return 0;
1890}
1891
1892static int
1893hsw_emit_bb_start(struct drm_i915_gem_request *req,
1894 u64 offset, u32 len,
1895 unsigned int dispatch_flags)
1896{
1897 u32 *cs;
1898
1899 cs = intel_ring_begin(req, 2);
1900 if (IS_ERR(cs))
1901 return PTR_ERR(cs);
1902
1903 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1904 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1905 (dispatch_flags & I915_DISPATCH_RS ?
1906 MI_BATCH_RESOURCE_STREAMER : 0);
1907 /* bit0-7 is the length on GEN6+ */
1908 *cs++ = offset;
1909 intel_ring_advance(req, cs);
1910
1911 return 0;
1912}
1913
1914static int
1915gen6_emit_bb_start(struct drm_i915_gem_request *req,
1916 u64 offset, u32 len,
1917 unsigned int dispatch_flags)
1918{
1919 u32 *cs;
1920
1921 cs = intel_ring_begin(req, 2);
1922 if (IS_ERR(cs))
1923 return PTR_ERR(cs);
1924
1925 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1926 0 : MI_BATCH_NON_SECURE_I965);
1927 /* bit0-7 is the length on GEN6+ */
1928 *cs++ = offset;
1929 intel_ring_advance(req, cs);
1930
1931 return 0;
1932}
1933
1934/* Blitter support (SandyBridge+) */
1935
1936static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1937{
1938 u32 cmd, *cs;
1939
1940 cs = intel_ring_begin(req, 4);
1941 if (IS_ERR(cs))
1942 return PTR_ERR(cs);
1943
1944 cmd = MI_FLUSH_DW;
1945 if (INTEL_GEN(req->i915) >= 8)
1946 cmd += 1;
1947
1948 /* We always require a command barrier so that subsequent
1949 * commands, such as breadcrumb interrupts, are strictly ordered
1950 * wrt the contents of the write cache being flushed to memory
1951 * (and thus being coherent from the CPU).
1952 */
1953 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1954
1955 /*
1956 * Bspec vol 1c.3 - blitter engine command streamer:
1957 * "If ENABLED, all TLBs will be invalidated once the flush
1958 * operation is complete. This bit is only valid when the
1959 * Post-Sync Operation field is a value of 1h or 3h."
1960 */
1961 if (mode & EMIT_INVALIDATE)
1962 cmd |= MI_INVALIDATE_TLB;
1963 *cs++ = cmd;
1964 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1965 if (INTEL_GEN(req->i915) >= 8) {
1966 *cs++ = 0; /* upper addr */
1967 *cs++ = 0; /* value */
1968 } else {
1969 *cs++ = 0;
1970 *cs++ = MI_NOOP;
1971 }
1972 intel_ring_advance(req, cs);
1973
1974 return 0;
1975}
1976
1977static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1978 struct intel_engine_cs *engine)
1979{
1980 struct drm_i915_gem_object *obj;
1981 int ret, i;
1982
1983 if (!i915.semaphores)
1984 return;
1985
1986 if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
1987 struct i915_vma *vma;
1988
1989 obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
1990 if (IS_ERR(obj))
1991 goto err;
1992
1993 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1994 if (IS_ERR(vma))
1995 goto err_obj;
1996
1997 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1998 if (ret)
1999 goto err_obj;
2000
2001 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2002 if (ret)
2003 goto err_obj;
2004
2005 dev_priv->semaphore = vma;
2006 }
2007
2008 if (INTEL_GEN(dev_priv) >= 8) {
2009 u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2010
2011 engine->semaphore.sync_to = gen8_ring_sync_to;
2012 engine->semaphore.signal = gen8_xcs_signal;
2013
2014 for (i = 0; i < I915_NUM_ENGINES; i++) {
2015 u32 ring_offset;
2016
2017 if (i != engine->id)
2018 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2019 else
2020 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2021
2022 engine->semaphore.signal_ggtt[i] = ring_offset;
2023 }
2024 } else if (INTEL_GEN(dev_priv) >= 6) {
2025 engine->semaphore.sync_to = gen6_ring_sync_to;
2026 engine->semaphore.signal = gen6_signal;
2027
2028 /*
2029 * The current semaphore is only applied on pre-gen8
2030 * platform. And there is no VCS2 ring on the pre-gen8
2031 * platform. So the semaphore between RCS and VCS2 is
2032 * initialized as INVALID. Gen8 will initialize the
2033 * sema between VCS2 and RCS later.
2034 */
2035 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2036 static const struct {
2037 u32 wait_mbox;
2038 i915_reg_t mbox_reg;
2039 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2040 [RCS_HW] = {
2041 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2042 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2043 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2044 },
2045 [VCS_HW] = {
2046 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2047 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2048 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2049 },
2050 [BCS_HW] = {
2051 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2052 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2053 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2054 },
2055 [VECS_HW] = {
2056 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2057 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2058 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2059 },
2060 };
2061 u32 wait_mbox;
2062 i915_reg_t mbox_reg;
2063
2064 if (i == engine->hw_id) {
2065 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2066 mbox_reg = GEN6_NOSYNC;
2067 } else {
2068 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2069 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2070 }
2071
2072 engine->semaphore.mbox.wait[i] = wait_mbox;
2073 engine->semaphore.mbox.signal[i] = mbox_reg;
2074 }
2075 }
2076
2077 return;
2078
2079err_obj:
2080 i915_gem_object_put(obj);
2081err:
2082 DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2083 i915.semaphores = 0;
2084}
2085
2086static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2087 struct intel_engine_cs *engine)
2088{
2089 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2090
2091 if (INTEL_GEN(dev_priv) >= 8) {
2092 engine->irq_enable = gen8_irq_enable;
2093 engine->irq_disable = gen8_irq_disable;
2094 engine->irq_seqno_barrier = gen6_seqno_barrier;
2095 } else if (INTEL_GEN(dev_priv) >= 6) {
2096 engine->irq_enable = gen6_irq_enable;
2097 engine->irq_disable = gen6_irq_disable;
2098 engine->irq_seqno_barrier = gen6_seqno_barrier;
2099 } else if (INTEL_GEN(dev_priv) >= 5) {
2100 engine->irq_enable = gen5_irq_enable;
2101 engine->irq_disable = gen5_irq_disable;
2102 engine->irq_seqno_barrier = gen5_seqno_barrier;
2103 } else if (INTEL_GEN(dev_priv) >= 3) {
2104 engine->irq_enable = i9xx_irq_enable;
2105 engine->irq_disable = i9xx_irq_disable;
2106 } else {
2107 engine->irq_enable = i8xx_irq_enable;
2108 engine->irq_disable = i8xx_irq_disable;
2109 }
2110}
2111
2112static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2113{
2114 engine->submit_request = i9xx_submit_request;
2115}
2116
2117static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2118{
2119 engine->submit_request = gen6_bsd_submit_request;
2120}
2121
2122static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2123 struct intel_engine_cs *engine)
2124{
2125 intel_ring_init_irq(dev_priv, engine);
2126 intel_ring_init_semaphores(dev_priv, engine);
2127
2128 engine->init_hw = init_ring_common;
2129 engine->reset_hw = reset_ring_common;
2130
2131 engine->context_pin = intel_ring_context_pin;
2132 engine->context_unpin = intel_ring_context_unpin;
2133
2134 engine->request_alloc = ring_request_alloc;
2135
2136 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2137 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2138 if (i915.semaphores) {
2139 int num_rings;
2140
2141 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2142
2143 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2144 if (INTEL_GEN(dev_priv) >= 8) {
2145 engine->emit_breadcrumb_sz += num_rings * 6;
2146 } else {
2147 engine->emit_breadcrumb_sz += num_rings * 3;
2148 if (num_rings & 1)
2149 engine->emit_breadcrumb_sz++;
2150 }
2151 }
2152
2153 engine->set_default_submission = i9xx_set_default_submission;
2154
2155 if (INTEL_GEN(dev_priv) >= 8)
2156 engine->emit_bb_start = gen8_emit_bb_start;
2157 else if (INTEL_GEN(dev_priv) >= 6)
2158 engine->emit_bb_start = gen6_emit_bb_start;
2159 else if (INTEL_GEN(dev_priv) >= 4)
2160 engine->emit_bb_start = i965_emit_bb_start;
2161 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2162 engine->emit_bb_start = i830_emit_bb_start;
2163 else
2164 engine->emit_bb_start = i915_emit_bb_start;
2165}
2166
2167int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2168{
2169 struct drm_i915_private *dev_priv = engine->i915;
2170 int ret;
2171
2172 intel_ring_default_vfuncs(dev_priv, engine);
2173
2174 if (HAS_L3_DPF(dev_priv))
2175 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2176
2177 if (INTEL_GEN(dev_priv) >= 8) {
2178 engine->init_context = intel_rcs_ctx_init;
2179 engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2180 engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2181 engine->emit_flush = gen8_render_ring_flush;
2182 if (i915.semaphores) {
2183 int num_rings;
2184
2185 engine->semaphore.signal = gen8_rcs_signal;
2186
2187 num_rings =
2188 hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2189 engine->emit_breadcrumb_sz += num_rings * 8;
2190 }
2191 } else if (INTEL_GEN(dev_priv) >= 6) {
2192 engine->init_context = intel_rcs_ctx_init;
2193 engine->emit_flush = gen7_render_ring_flush;
2194 if (IS_GEN6(dev_priv))
2195 engine->emit_flush = gen6_render_ring_flush;
2196 } else if (IS_GEN5(dev_priv)) {
2197 engine->emit_flush = gen4_render_ring_flush;
2198 } else {
2199 if (INTEL_GEN(dev_priv) < 4)
2200 engine->emit_flush = gen2_render_ring_flush;
2201 else
2202 engine->emit_flush = gen4_render_ring_flush;
2203 engine->irq_enable_mask = I915_USER_INTERRUPT;
2204 }
2205
2206 if (IS_HASWELL(dev_priv))
2207 engine->emit_bb_start = hsw_emit_bb_start;
2208
2209 engine->init_hw = init_render_ring;
2210 engine->cleanup = render_ring_cleanup;
2211
2212 ret = intel_init_ring_buffer(engine);
2213 if (ret)
2214 return ret;
2215
2216 if (INTEL_GEN(dev_priv) >= 6) {
2217 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2218 if (ret)
2219 return ret;
2220 } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2221 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2222 if (ret)
2223 return ret;
2224 }
2225
2226 return 0;
2227}
2228
2229int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2230{
2231 struct drm_i915_private *dev_priv = engine->i915;
2232
2233 intel_ring_default_vfuncs(dev_priv, engine);
2234
2235 if (INTEL_GEN(dev_priv) >= 6) {
2236 /* gen6 bsd needs a special wa for tail updates */
2237 if (IS_GEN6(dev_priv))
2238 engine->set_default_submission = gen6_bsd_set_default_submission;
2239 engine->emit_flush = gen6_bsd_ring_flush;
2240 if (INTEL_GEN(dev_priv) < 8)
2241 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2242 } else {
2243 engine->mmio_base = BSD_RING_BASE;
2244 engine->emit_flush = bsd_ring_flush;
2245 if (IS_GEN5(dev_priv))
2246 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2247 else
2248 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2249 }
2250
2251 return intel_init_ring_buffer(engine);
2252}
2253
2254int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2255{
2256 struct drm_i915_private *dev_priv = engine->i915;
2257
2258 intel_ring_default_vfuncs(dev_priv, engine);
2259
2260 engine->emit_flush = gen6_ring_flush;
2261 if (INTEL_GEN(dev_priv) < 8)
2262 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2263
2264 return intel_init_ring_buffer(engine);
2265}
2266
2267int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2268{
2269 struct drm_i915_private *dev_priv = engine->i915;
2270
2271 intel_ring_default_vfuncs(dev_priv, engine);
2272
2273 engine->emit_flush = gen6_ring_flush;
2274
2275 if (INTEL_GEN(dev_priv) < 8) {
2276 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2277 engine->irq_enable = hsw_vebox_irq_enable;
2278 engine->irq_disable = hsw_vebox_irq_disable;
2279 }
2280
2281 return intel_init_ring_buffer(engine);
2282}