at v4.13 2282 lines 61 kB view raw
1/* 2 * Copyright © 2008-2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * Zou Nan hai <nanhai.zou@intel.com> 26 * Xiang Hai hao<haihao.xiang@intel.com> 27 * 28 */ 29 30#include <linux/log2.h> 31#include <drm/drmP.h> 32#include "i915_drv.h" 33#include <drm/i915_drm.h> 34#include "i915_trace.h" 35#include "intel_drv.h" 36 37/* Rough estimate of the typical request size, performing a flush, 38 * set-context and then emitting the batch. 39 */ 40#define LEGACY_REQUEST_SIZE 200 41 42static unsigned int __intel_ring_space(unsigned int head, 43 unsigned int tail, 44 unsigned int size) 45{ 46 /* 47 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the 48 * same cacheline, the Head Pointer must not be greater than the Tail 49 * Pointer." 50 */ 51 GEM_BUG_ON(!is_power_of_2(size)); 52 return (head - tail - CACHELINE_BYTES) & (size - 1); 53} 54 55unsigned int intel_ring_update_space(struct intel_ring *ring) 56{ 57 unsigned int space; 58 59 space = __intel_ring_space(ring->head, ring->emit, ring->size); 60 61 ring->space = space; 62 return space; 63} 64 65static int 66gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode) 67{ 68 u32 cmd, *cs; 69 70 cmd = MI_FLUSH; 71 72 if (mode & EMIT_INVALIDATE) 73 cmd |= MI_READ_FLUSH; 74 75 cs = intel_ring_begin(req, 2); 76 if (IS_ERR(cs)) 77 return PTR_ERR(cs); 78 79 *cs++ = cmd; 80 *cs++ = MI_NOOP; 81 intel_ring_advance(req, cs); 82 83 return 0; 84} 85 86static int 87gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode) 88{ 89 u32 cmd, *cs; 90 91 /* 92 * read/write caches: 93 * 94 * I915_GEM_DOMAIN_RENDER is always invalidated, but is 95 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is 96 * also flushed at 2d versus 3d pipeline switches. 97 * 98 * read-only caches: 99 * 100 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if 101 * MI_READ_FLUSH is set, and is always flushed on 965. 102 * 103 * I915_GEM_DOMAIN_COMMAND may not exist? 104 * 105 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is 106 * invalidated when MI_EXE_FLUSH is set. 107 * 108 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is 109 * invalidated with every MI_FLUSH. 110 * 111 * TLBs: 112 * 113 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND 114 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and 115 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER 116 * are flushed at any MI_FLUSH. 117 */ 118 119 cmd = MI_FLUSH; 120 if (mode & EMIT_INVALIDATE) { 121 cmd |= MI_EXE_FLUSH; 122 if (IS_G4X(req->i915) || IS_GEN5(req->i915)) 123 cmd |= MI_INVALIDATE_ISP; 124 } 125 126 cs = intel_ring_begin(req, 2); 127 if (IS_ERR(cs)) 128 return PTR_ERR(cs); 129 130 *cs++ = cmd; 131 *cs++ = MI_NOOP; 132 intel_ring_advance(req, cs); 133 134 return 0; 135} 136 137/** 138 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for 139 * implementing two workarounds on gen6. From section 1.4.7.1 140 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1: 141 * 142 * [DevSNB-C+{W/A}] Before any depth stall flush (including those 143 * produced by non-pipelined state commands), software needs to first 144 * send a PIPE_CONTROL with no bits set except Post-Sync Operation != 145 * 0. 146 * 147 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable 148 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required. 149 * 150 * And the workaround for these two requires this workaround first: 151 * 152 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent 153 * BEFORE the pipe-control with a post-sync op and no write-cache 154 * flushes. 155 * 156 * And this last workaround is tricky because of the requirements on 157 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM 158 * volume 2 part 1: 159 * 160 * "1 of the following must also be set: 161 * - Render Target Cache Flush Enable ([12] of DW1) 162 * - Depth Cache Flush Enable ([0] of DW1) 163 * - Stall at Pixel Scoreboard ([1] of DW1) 164 * - Depth Stall ([13] of DW1) 165 * - Post-Sync Operation ([13] of DW1) 166 * - Notify Enable ([8] of DW1)" 167 * 168 * The cache flushes require the workaround flush that triggered this 169 * one, so we can't use it. Depth stall would trigger the same. 170 * Post-sync nonzero is what triggered this second workaround, so we 171 * can't use that one either. Notify enable is IRQs, which aren't 172 * really our business. That leaves only stall at scoreboard. 173 */ 174static int 175intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req) 176{ 177 u32 scratch_addr = 178 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES; 179 u32 *cs; 180 181 cs = intel_ring_begin(req, 6); 182 if (IS_ERR(cs)) 183 return PTR_ERR(cs); 184 185 *cs++ = GFX_OP_PIPE_CONTROL(5); 186 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD; 187 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT; 188 *cs++ = 0; /* low dword */ 189 *cs++ = 0; /* high dword */ 190 *cs++ = MI_NOOP; 191 intel_ring_advance(req, cs); 192 193 cs = intel_ring_begin(req, 6); 194 if (IS_ERR(cs)) 195 return PTR_ERR(cs); 196 197 *cs++ = GFX_OP_PIPE_CONTROL(5); 198 *cs++ = PIPE_CONTROL_QW_WRITE; 199 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT; 200 *cs++ = 0; 201 *cs++ = 0; 202 *cs++ = MI_NOOP; 203 intel_ring_advance(req, cs); 204 205 return 0; 206} 207 208static int 209gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode) 210{ 211 u32 scratch_addr = 212 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES; 213 u32 *cs, flags = 0; 214 int ret; 215 216 /* Force SNB workarounds for PIPE_CONTROL flushes */ 217 ret = intel_emit_post_sync_nonzero_flush(req); 218 if (ret) 219 return ret; 220 221 /* Just flush everything. Experiments have shown that reducing the 222 * number of bits based on the write domains has little performance 223 * impact. 224 */ 225 if (mode & EMIT_FLUSH) { 226 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 227 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 228 /* 229 * Ensure that any following seqno writes only happen 230 * when the render cache is indeed flushed. 231 */ 232 flags |= PIPE_CONTROL_CS_STALL; 233 } 234 if (mode & EMIT_INVALIDATE) { 235 flags |= PIPE_CONTROL_TLB_INVALIDATE; 236 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 237 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 238 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 239 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 240 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 241 /* 242 * TLB invalidate requires a post-sync write. 243 */ 244 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL; 245 } 246 247 cs = intel_ring_begin(req, 4); 248 if (IS_ERR(cs)) 249 return PTR_ERR(cs); 250 251 *cs++ = GFX_OP_PIPE_CONTROL(4); 252 *cs++ = flags; 253 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT; 254 *cs++ = 0; 255 intel_ring_advance(req, cs); 256 257 return 0; 258} 259 260static int 261gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req) 262{ 263 u32 *cs; 264 265 cs = intel_ring_begin(req, 4); 266 if (IS_ERR(cs)) 267 return PTR_ERR(cs); 268 269 *cs++ = GFX_OP_PIPE_CONTROL(4); 270 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD; 271 *cs++ = 0; 272 *cs++ = 0; 273 intel_ring_advance(req, cs); 274 275 return 0; 276} 277 278static int 279gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode) 280{ 281 u32 scratch_addr = 282 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES; 283 u32 *cs, flags = 0; 284 285 /* 286 * Ensure that any following seqno writes only happen when the render 287 * cache is indeed flushed. 288 * 289 * Workaround: 4th PIPE_CONTROL command (except the ones with only 290 * read-cache invalidate bits set) must have the CS_STALL bit set. We 291 * don't try to be clever and just set it unconditionally. 292 */ 293 flags |= PIPE_CONTROL_CS_STALL; 294 295 /* Just flush everything. Experiments have shown that reducing the 296 * number of bits based on the write domains has little performance 297 * impact. 298 */ 299 if (mode & EMIT_FLUSH) { 300 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 301 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 302 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 303 flags |= PIPE_CONTROL_FLUSH_ENABLE; 304 } 305 if (mode & EMIT_INVALIDATE) { 306 flags |= PIPE_CONTROL_TLB_INVALIDATE; 307 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 308 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 309 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 310 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 311 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 312 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR; 313 /* 314 * TLB invalidate requires a post-sync write. 315 */ 316 flags |= PIPE_CONTROL_QW_WRITE; 317 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; 318 319 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD; 320 321 /* Workaround: we must issue a pipe_control with CS-stall bit 322 * set before a pipe_control command that has the state cache 323 * invalidate bit set. */ 324 gen7_render_ring_cs_stall_wa(req); 325 } 326 327 cs = intel_ring_begin(req, 4); 328 if (IS_ERR(cs)) 329 return PTR_ERR(cs); 330 331 *cs++ = GFX_OP_PIPE_CONTROL(4); 332 *cs++ = flags; 333 *cs++ = scratch_addr; 334 *cs++ = 0; 335 intel_ring_advance(req, cs); 336 337 return 0; 338} 339 340static int 341gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode) 342{ 343 u32 flags; 344 u32 *cs; 345 346 cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6); 347 if (IS_ERR(cs)) 348 return PTR_ERR(cs); 349 350 flags = PIPE_CONTROL_CS_STALL; 351 352 if (mode & EMIT_FLUSH) { 353 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 354 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 355 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 356 flags |= PIPE_CONTROL_FLUSH_ENABLE; 357 } 358 if (mode & EMIT_INVALIDATE) { 359 flags |= PIPE_CONTROL_TLB_INVALIDATE; 360 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 361 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 362 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 363 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 364 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 365 flags |= PIPE_CONTROL_QW_WRITE; 366 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; 367 368 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */ 369 cs = gen8_emit_pipe_control(cs, 370 PIPE_CONTROL_CS_STALL | 371 PIPE_CONTROL_STALL_AT_SCOREBOARD, 372 0); 373 } 374 375 cs = gen8_emit_pipe_control(cs, flags, 376 i915_ggtt_offset(req->engine->scratch) + 377 2 * CACHELINE_BYTES); 378 379 intel_ring_advance(req, cs); 380 381 return 0; 382} 383 384static void ring_setup_phys_status_page(struct intel_engine_cs *engine) 385{ 386 struct drm_i915_private *dev_priv = engine->i915; 387 u32 addr; 388 389 addr = dev_priv->status_page_dmah->busaddr; 390 if (INTEL_GEN(dev_priv) >= 4) 391 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0; 392 I915_WRITE(HWS_PGA, addr); 393} 394 395static void intel_ring_setup_status_page(struct intel_engine_cs *engine) 396{ 397 struct drm_i915_private *dev_priv = engine->i915; 398 i915_reg_t mmio; 399 400 /* The ring status page addresses are no longer next to the rest of 401 * the ring registers as of gen7. 402 */ 403 if (IS_GEN7(dev_priv)) { 404 switch (engine->id) { 405 case RCS: 406 mmio = RENDER_HWS_PGA_GEN7; 407 break; 408 case BCS: 409 mmio = BLT_HWS_PGA_GEN7; 410 break; 411 /* 412 * VCS2 actually doesn't exist on Gen7. Only shut up 413 * gcc switch check warning 414 */ 415 case VCS2: 416 case VCS: 417 mmio = BSD_HWS_PGA_GEN7; 418 break; 419 case VECS: 420 mmio = VEBOX_HWS_PGA_GEN7; 421 break; 422 } 423 } else if (IS_GEN6(dev_priv)) { 424 mmio = RING_HWS_PGA_GEN6(engine->mmio_base); 425 } else { 426 /* XXX: gen8 returns to sanity */ 427 mmio = RING_HWS_PGA(engine->mmio_base); 428 } 429 430 I915_WRITE(mmio, engine->status_page.ggtt_offset); 431 POSTING_READ(mmio); 432 433 /* 434 * Flush the TLB for this page 435 * 436 * FIXME: These two bits have disappeared on gen8, so a question 437 * arises: do we still need this and if so how should we go about 438 * invalidating the TLB? 439 */ 440 if (IS_GEN(dev_priv, 6, 7)) { 441 i915_reg_t reg = RING_INSTPM(engine->mmio_base); 442 443 /* ring should be idle before issuing a sync flush*/ 444 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0); 445 446 I915_WRITE(reg, 447 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE | 448 INSTPM_SYNC_FLUSH)); 449 if (intel_wait_for_register(dev_priv, 450 reg, INSTPM_SYNC_FLUSH, 0, 451 1000)) 452 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n", 453 engine->name); 454 } 455} 456 457static bool stop_ring(struct intel_engine_cs *engine) 458{ 459 struct drm_i915_private *dev_priv = engine->i915; 460 461 if (INTEL_GEN(dev_priv) > 2) { 462 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING)); 463 if (intel_wait_for_register(dev_priv, 464 RING_MI_MODE(engine->mmio_base), 465 MODE_IDLE, 466 MODE_IDLE, 467 1000)) { 468 DRM_ERROR("%s : timed out trying to stop ring\n", 469 engine->name); 470 /* Sometimes we observe that the idle flag is not 471 * set even though the ring is empty. So double 472 * check before giving up. 473 */ 474 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine)) 475 return false; 476 } 477 } 478 479 I915_WRITE_CTL(engine, 0); 480 I915_WRITE_HEAD(engine, 0); 481 I915_WRITE_TAIL(engine, 0); 482 483 if (INTEL_GEN(dev_priv) > 2) { 484 (void)I915_READ_CTL(engine); 485 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING)); 486 } 487 488 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0; 489} 490 491static int init_ring_common(struct intel_engine_cs *engine) 492{ 493 struct drm_i915_private *dev_priv = engine->i915; 494 struct intel_ring *ring = engine->buffer; 495 int ret = 0; 496 497 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 498 499 if (!stop_ring(engine)) { 500 /* G45 ring initialization often fails to reset head to zero */ 501 DRM_DEBUG_KMS("%s head not reset to zero " 502 "ctl %08x head %08x tail %08x start %08x\n", 503 engine->name, 504 I915_READ_CTL(engine), 505 I915_READ_HEAD(engine), 506 I915_READ_TAIL(engine), 507 I915_READ_START(engine)); 508 509 if (!stop_ring(engine)) { 510 DRM_ERROR("failed to set %s head to zero " 511 "ctl %08x head %08x tail %08x start %08x\n", 512 engine->name, 513 I915_READ_CTL(engine), 514 I915_READ_HEAD(engine), 515 I915_READ_TAIL(engine), 516 I915_READ_START(engine)); 517 ret = -EIO; 518 goto out; 519 } 520 } 521 522 if (HWS_NEEDS_PHYSICAL(dev_priv)) 523 ring_setup_phys_status_page(engine); 524 else 525 intel_ring_setup_status_page(engine); 526 527 intel_engine_reset_breadcrumbs(engine); 528 529 /* Enforce ordering by reading HEAD register back */ 530 I915_READ_HEAD(engine); 531 532 /* Initialize the ring. This must happen _after_ we've cleared the ring 533 * registers with the above sequence (the readback of the HEAD registers 534 * also enforces ordering), otherwise the hw might lose the new ring 535 * register values. */ 536 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma)); 537 538 /* WaClearRingBufHeadRegAtInit:ctg,elk */ 539 if (I915_READ_HEAD(engine)) 540 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n", 541 engine->name, I915_READ_HEAD(engine)); 542 543 intel_ring_update_space(ring); 544 I915_WRITE_HEAD(engine, ring->head); 545 I915_WRITE_TAIL(engine, ring->tail); 546 (void)I915_READ_TAIL(engine); 547 548 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID); 549 550 /* If the head is still not zero, the ring is dead */ 551 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base), 552 RING_VALID, RING_VALID, 553 50)) { 554 DRM_ERROR("%s initialization failed " 555 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n", 556 engine->name, 557 I915_READ_CTL(engine), 558 I915_READ_CTL(engine) & RING_VALID, 559 I915_READ_HEAD(engine), ring->head, 560 I915_READ_TAIL(engine), ring->tail, 561 I915_READ_START(engine), 562 i915_ggtt_offset(ring->vma)); 563 ret = -EIO; 564 goto out; 565 } 566 567 intel_engine_init_hangcheck(engine); 568 569out: 570 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 571 572 return ret; 573} 574 575static void reset_ring_common(struct intel_engine_cs *engine, 576 struct drm_i915_gem_request *request) 577{ 578 /* Try to restore the logical GPU state to match the continuation 579 * of the request queue. If we skip the context/PD restore, then 580 * the next request may try to execute assuming that its context 581 * is valid and loaded on the GPU and so may try to access invalid 582 * memory, prompting repeated GPU hangs. 583 * 584 * If the request was guilty, we still restore the logical state 585 * in case the next request requires it (e.g. the aliasing ppgtt), 586 * but skip over the hung batch. 587 * 588 * If the request was innocent, we try to replay the request with 589 * the restored context. 590 */ 591 if (request) { 592 struct drm_i915_private *dev_priv = request->i915; 593 struct intel_context *ce = &request->ctx->engine[engine->id]; 594 struct i915_hw_ppgtt *ppgtt; 595 596 /* FIXME consider gen8 reset */ 597 598 if (ce->state) { 599 I915_WRITE(CCID, 600 i915_ggtt_offset(ce->state) | 601 BIT(8) /* must be set! */ | 602 CCID_EXTENDED_STATE_SAVE | 603 CCID_EXTENDED_STATE_RESTORE | 604 CCID_EN); 605 } 606 607 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt; 608 if (ppgtt) { 609 u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10; 610 611 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G); 612 I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset); 613 614 /* Wait for the PD reload to complete */ 615 if (intel_wait_for_register(dev_priv, 616 RING_PP_DIR_BASE(engine), 617 BIT(0), 0, 618 10)) 619 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n"); 620 621 ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine); 622 } 623 624 /* If the rq hung, jump to its breadcrumb and skip the batch */ 625 if (request->fence.error == -EIO) 626 request->ring->head = request->postfix; 627 } else { 628 engine->legacy_active_context = NULL; 629 } 630} 631 632static int intel_rcs_ctx_init(struct drm_i915_gem_request *req) 633{ 634 int ret; 635 636 ret = intel_ring_workarounds_emit(req); 637 if (ret != 0) 638 return ret; 639 640 ret = i915_gem_render_state_emit(req); 641 if (ret) 642 return ret; 643 644 return 0; 645} 646 647static int init_render_ring(struct intel_engine_cs *engine) 648{ 649 struct drm_i915_private *dev_priv = engine->i915; 650 int ret = init_ring_common(engine); 651 if (ret) 652 return ret; 653 654 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */ 655 if (IS_GEN(dev_priv, 4, 6)) 656 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH)); 657 658 /* We need to disable the AsyncFlip performance optimisations in order 659 * to use MI_WAIT_FOR_EVENT within the CS. It should already be 660 * programmed to '1' on all products. 661 * 662 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv 663 */ 664 if (IS_GEN(dev_priv, 6, 7)) 665 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE)); 666 667 /* Required for the hardware to program scanline values for waiting */ 668 /* WaEnableFlushTlbInvalidationMode:snb */ 669 if (IS_GEN6(dev_priv)) 670 I915_WRITE(GFX_MODE, 671 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT)); 672 673 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */ 674 if (IS_GEN7(dev_priv)) 675 I915_WRITE(GFX_MODE_GEN7, 676 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) | 677 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE)); 678 679 if (IS_GEN6(dev_priv)) { 680 /* From the Sandybridge PRM, volume 1 part 3, page 24: 681 * "If this bit is set, STCunit will have LRA as replacement 682 * policy. [...] This bit must be reset. LRA replacement 683 * policy is not supported." 684 */ 685 I915_WRITE(CACHE_MODE_0, 686 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB)); 687 } 688 689 if (IS_GEN(dev_priv, 6, 7)) 690 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING)); 691 692 if (INTEL_INFO(dev_priv)->gen >= 6) 693 I915_WRITE_IMR(engine, ~engine->irq_keep_mask); 694 695 return init_workarounds_ring(engine); 696} 697 698static void render_ring_cleanup(struct intel_engine_cs *engine) 699{ 700 struct drm_i915_private *dev_priv = engine->i915; 701 702 i915_vma_unpin_and_release(&dev_priv->semaphore); 703} 704 705static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs) 706{ 707 struct drm_i915_private *dev_priv = req->i915; 708 struct intel_engine_cs *waiter; 709 enum intel_engine_id id; 710 711 for_each_engine(waiter, dev_priv, id) { 712 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id]; 713 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID) 714 continue; 715 716 *cs++ = GFX_OP_PIPE_CONTROL(6); 717 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE | 718 PIPE_CONTROL_CS_STALL; 719 *cs++ = lower_32_bits(gtt_offset); 720 *cs++ = upper_32_bits(gtt_offset); 721 *cs++ = req->global_seqno; 722 *cs++ = 0; 723 *cs++ = MI_SEMAPHORE_SIGNAL | 724 MI_SEMAPHORE_TARGET(waiter->hw_id); 725 *cs++ = 0; 726 } 727 728 return cs; 729} 730 731static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs) 732{ 733 struct drm_i915_private *dev_priv = req->i915; 734 struct intel_engine_cs *waiter; 735 enum intel_engine_id id; 736 737 for_each_engine(waiter, dev_priv, id) { 738 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id]; 739 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID) 740 continue; 741 742 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW; 743 *cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT; 744 *cs++ = upper_32_bits(gtt_offset); 745 *cs++ = req->global_seqno; 746 *cs++ = MI_SEMAPHORE_SIGNAL | 747 MI_SEMAPHORE_TARGET(waiter->hw_id); 748 *cs++ = 0; 749 } 750 751 return cs; 752} 753 754static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs) 755{ 756 struct drm_i915_private *dev_priv = req->i915; 757 struct intel_engine_cs *engine; 758 enum intel_engine_id id; 759 int num_rings = 0; 760 761 for_each_engine(engine, dev_priv, id) { 762 i915_reg_t mbox_reg; 763 764 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK)) 765 continue; 766 767 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id]; 768 if (i915_mmio_reg_valid(mbox_reg)) { 769 *cs++ = MI_LOAD_REGISTER_IMM(1); 770 *cs++ = i915_mmio_reg_offset(mbox_reg); 771 *cs++ = req->global_seqno; 772 num_rings++; 773 } 774 } 775 if (num_rings & 1) 776 *cs++ = MI_NOOP; 777 778 return cs; 779} 780 781static void i9xx_submit_request(struct drm_i915_gem_request *request) 782{ 783 struct drm_i915_private *dev_priv = request->i915; 784 785 i915_gem_request_submit(request); 786 787 I915_WRITE_TAIL(request->engine, 788 intel_ring_set_tail(request->ring, request->tail)); 789} 790 791static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs) 792{ 793 *cs++ = MI_STORE_DWORD_INDEX; 794 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT; 795 *cs++ = req->global_seqno; 796 *cs++ = MI_USER_INTERRUPT; 797 798 req->tail = intel_ring_offset(req, cs); 799 assert_ring_tail_valid(req->ring, req->tail); 800} 801 802static const int i9xx_emit_breadcrumb_sz = 4; 803 804/** 805 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers 806 * 807 * @request - request to write to the ring 808 * 809 * Update the mailbox registers in the *other* rings with the current seqno. 810 * This acts like a signal in the canonical semaphore. 811 */ 812static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs) 813{ 814 return i9xx_emit_breadcrumb(req, 815 req->engine->semaphore.signal(req, cs)); 816} 817 818static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req, 819 u32 *cs) 820{ 821 struct intel_engine_cs *engine = req->engine; 822 823 if (engine->semaphore.signal) 824 cs = engine->semaphore.signal(req, cs); 825 826 *cs++ = GFX_OP_PIPE_CONTROL(6); 827 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL | 828 PIPE_CONTROL_QW_WRITE; 829 *cs++ = intel_hws_seqno_address(engine); 830 *cs++ = 0; 831 *cs++ = req->global_seqno; 832 /* We're thrashing one dword of HWS. */ 833 *cs++ = 0; 834 *cs++ = MI_USER_INTERRUPT; 835 *cs++ = MI_NOOP; 836 837 req->tail = intel_ring_offset(req, cs); 838 assert_ring_tail_valid(req->ring, req->tail); 839} 840 841static const int gen8_render_emit_breadcrumb_sz = 8; 842 843/** 844 * intel_ring_sync - sync the waiter to the signaller on seqno 845 * 846 * @waiter - ring that is waiting 847 * @signaller - ring which has, or will signal 848 * @seqno - seqno which the waiter will block on 849 */ 850 851static int 852gen8_ring_sync_to(struct drm_i915_gem_request *req, 853 struct drm_i915_gem_request *signal) 854{ 855 struct drm_i915_private *dev_priv = req->i915; 856 u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id); 857 struct i915_hw_ppgtt *ppgtt; 858 u32 *cs; 859 860 cs = intel_ring_begin(req, 4); 861 if (IS_ERR(cs)) 862 return PTR_ERR(cs); 863 864 *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | 865 MI_SEMAPHORE_SAD_GTE_SDD; 866 *cs++ = signal->global_seqno; 867 *cs++ = lower_32_bits(offset); 868 *cs++ = upper_32_bits(offset); 869 intel_ring_advance(req, cs); 870 871 /* When the !RCS engines idle waiting upon a semaphore, they lose their 872 * pagetables and we must reload them before executing the batch. 873 * We do this on the i915_switch_context() following the wait and 874 * before the dispatch. 875 */ 876 ppgtt = req->ctx->ppgtt; 877 if (ppgtt && req->engine->id != RCS) 878 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine); 879 return 0; 880} 881 882static int 883gen6_ring_sync_to(struct drm_i915_gem_request *req, 884 struct drm_i915_gem_request *signal) 885{ 886 u32 dw1 = MI_SEMAPHORE_MBOX | 887 MI_SEMAPHORE_COMPARE | 888 MI_SEMAPHORE_REGISTER; 889 u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id]; 890 u32 *cs; 891 892 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID); 893 894 cs = intel_ring_begin(req, 4); 895 if (IS_ERR(cs)) 896 return PTR_ERR(cs); 897 898 *cs++ = dw1 | wait_mbox; 899 /* Throughout all of the GEM code, seqno passed implies our current 900 * seqno is >= the last seqno executed. However for hardware the 901 * comparison is strictly greater than. 902 */ 903 *cs++ = signal->global_seqno - 1; 904 *cs++ = 0; 905 *cs++ = MI_NOOP; 906 intel_ring_advance(req, cs); 907 908 return 0; 909} 910 911static void 912gen5_seqno_barrier(struct intel_engine_cs *engine) 913{ 914 /* MI_STORE are internally buffered by the GPU and not flushed 915 * either by MI_FLUSH or SyncFlush or any other combination of 916 * MI commands. 917 * 918 * "Only the submission of the store operation is guaranteed. 919 * The write result will be complete (coherent) some time later 920 * (this is practically a finite period but there is no guaranteed 921 * latency)." 922 * 923 * Empirically, we observe that we need a delay of at least 75us to 924 * be sure that the seqno write is visible by the CPU. 925 */ 926 usleep_range(125, 250); 927} 928 929static void 930gen6_seqno_barrier(struct intel_engine_cs *engine) 931{ 932 struct drm_i915_private *dev_priv = engine->i915; 933 934 /* Workaround to force correct ordering between irq and seqno writes on 935 * ivb (and maybe also on snb) by reading from a CS register (like 936 * ACTHD) before reading the status page. 937 * 938 * Note that this effectively stalls the read by the time it takes to 939 * do a memory transaction, which more or less ensures that the write 940 * from the GPU has sufficient time to invalidate the CPU cacheline. 941 * Alternatively we could delay the interrupt from the CS ring to give 942 * the write time to land, but that would incur a delay after every 943 * batch i.e. much more frequent than a delay when waiting for the 944 * interrupt (with the same net latency). 945 * 946 * Also note that to prevent whole machine hangs on gen7, we have to 947 * take the spinlock to guard against concurrent cacheline access. 948 */ 949 spin_lock_irq(&dev_priv->uncore.lock); 950 POSTING_READ_FW(RING_ACTHD(engine->mmio_base)); 951 spin_unlock_irq(&dev_priv->uncore.lock); 952} 953 954static void 955gen5_irq_enable(struct intel_engine_cs *engine) 956{ 957 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask); 958} 959 960static void 961gen5_irq_disable(struct intel_engine_cs *engine) 962{ 963 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask); 964} 965 966static void 967i9xx_irq_enable(struct intel_engine_cs *engine) 968{ 969 struct drm_i915_private *dev_priv = engine->i915; 970 971 dev_priv->irq_mask &= ~engine->irq_enable_mask; 972 I915_WRITE(IMR, dev_priv->irq_mask); 973 POSTING_READ_FW(RING_IMR(engine->mmio_base)); 974} 975 976static void 977i9xx_irq_disable(struct intel_engine_cs *engine) 978{ 979 struct drm_i915_private *dev_priv = engine->i915; 980 981 dev_priv->irq_mask |= engine->irq_enable_mask; 982 I915_WRITE(IMR, dev_priv->irq_mask); 983} 984 985static void 986i8xx_irq_enable(struct intel_engine_cs *engine) 987{ 988 struct drm_i915_private *dev_priv = engine->i915; 989 990 dev_priv->irq_mask &= ~engine->irq_enable_mask; 991 I915_WRITE16(IMR, dev_priv->irq_mask); 992 POSTING_READ16(RING_IMR(engine->mmio_base)); 993} 994 995static void 996i8xx_irq_disable(struct intel_engine_cs *engine) 997{ 998 struct drm_i915_private *dev_priv = engine->i915; 999 1000 dev_priv->irq_mask |= engine->irq_enable_mask; 1001 I915_WRITE16(IMR, dev_priv->irq_mask); 1002} 1003 1004static int 1005bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode) 1006{ 1007 u32 *cs; 1008 1009 cs = intel_ring_begin(req, 2); 1010 if (IS_ERR(cs)) 1011 return PTR_ERR(cs); 1012 1013 *cs++ = MI_FLUSH; 1014 *cs++ = MI_NOOP; 1015 intel_ring_advance(req, cs); 1016 return 0; 1017} 1018 1019static void 1020gen6_irq_enable(struct intel_engine_cs *engine) 1021{ 1022 struct drm_i915_private *dev_priv = engine->i915; 1023 1024 I915_WRITE_IMR(engine, 1025 ~(engine->irq_enable_mask | 1026 engine->irq_keep_mask)); 1027 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask); 1028} 1029 1030static void 1031gen6_irq_disable(struct intel_engine_cs *engine) 1032{ 1033 struct drm_i915_private *dev_priv = engine->i915; 1034 1035 I915_WRITE_IMR(engine, ~engine->irq_keep_mask); 1036 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask); 1037} 1038 1039static void 1040hsw_vebox_irq_enable(struct intel_engine_cs *engine) 1041{ 1042 struct drm_i915_private *dev_priv = engine->i915; 1043 1044 I915_WRITE_IMR(engine, ~engine->irq_enable_mask); 1045 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask); 1046} 1047 1048static void 1049hsw_vebox_irq_disable(struct intel_engine_cs *engine) 1050{ 1051 struct drm_i915_private *dev_priv = engine->i915; 1052 1053 I915_WRITE_IMR(engine, ~0); 1054 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask); 1055} 1056 1057static void 1058gen8_irq_enable(struct intel_engine_cs *engine) 1059{ 1060 struct drm_i915_private *dev_priv = engine->i915; 1061 1062 I915_WRITE_IMR(engine, 1063 ~(engine->irq_enable_mask | 1064 engine->irq_keep_mask)); 1065 POSTING_READ_FW(RING_IMR(engine->mmio_base)); 1066} 1067 1068static void 1069gen8_irq_disable(struct intel_engine_cs *engine) 1070{ 1071 struct drm_i915_private *dev_priv = engine->i915; 1072 1073 I915_WRITE_IMR(engine, ~engine->irq_keep_mask); 1074} 1075 1076static int 1077i965_emit_bb_start(struct drm_i915_gem_request *req, 1078 u64 offset, u32 length, 1079 unsigned int dispatch_flags) 1080{ 1081 u32 *cs; 1082 1083 cs = intel_ring_begin(req, 2); 1084 if (IS_ERR(cs)) 1085 return PTR_ERR(cs); 1086 1087 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags & 1088 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965); 1089 *cs++ = offset; 1090 intel_ring_advance(req, cs); 1091 1092 return 0; 1093} 1094 1095/* Just userspace ABI convention to limit the wa batch bo to a resonable size */ 1096#define I830_BATCH_LIMIT (256*1024) 1097#define I830_TLB_ENTRIES (2) 1098#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT) 1099static int 1100i830_emit_bb_start(struct drm_i915_gem_request *req, 1101 u64 offset, u32 len, 1102 unsigned int dispatch_flags) 1103{ 1104 u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch); 1105 1106 cs = intel_ring_begin(req, 6); 1107 if (IS_ERR(cs)) 1108 return PTR_ERR(cs); 1109 1110 /* Evict the invalid PTE TLBs */ 1111 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA; 1112 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096; 1113 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */ 1114 *cs++ = cs_offset; 1115 *cs++ = 0xdeadbeef; 1116 *cs++ = MI_NOOP; 1117 intel_ring_advance(req, cs); 1118 1119 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) { 1120 if (len > I830_BATCH_LIMIT) 1121 return -ENOSPC; 1122 1123 cs = intel_ring_begin(req, 6 + 2); 1124 if (IS_ERR(cs)) 1125 return PTR_ERR(cs); 1126 1127 /* Blit the batch (which has now all relocs applied) to the 1128 * stable batch scratch bo area (so that the CS never 1129 * stumbles over its tlb invalidation bug) ... 1130 */ 1131 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA; 1132 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096; 1133 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096; 1134 *cs++ = cs_offset; 1135 *cs++ = 4096; 1136 *cs++ = offset; 1137 1138 *cs++ = MI_FLUSH; 1139 *cs++ = MI_NOOP; 1140 intel_ring_advance(req, cs); 1141 1142 /* ... and execute it. */ 1143 offset = cs_offset; 1144 } 1145 1146 cs = intel_ring_begin(req, 2); 1147 if (IS_ERR(cs)) 1148 return PTR_ERR(cs); 1149 1150 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT; 1151 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : 1152 MI_BATCH_NON_SECURE); 1153 intel_ring_advance(req, cs); 1154 1155 return 0; 1156} 1157 1158static int 1159i915_emit_bb_start(struct drm_i915_gem_request *req, 1160 u64 offset, u32 len, 1161 unsigned int dispatch_flags) 1162{ 1163 u32 *cs; 1164 1165 cs = intel_ring_begin(req, 2); 1166 if (IS_ERR(cs)) 1167 return PTR_ERR(cs); 1168 1169 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT; 1170 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : 1171 MI_BATCH_NON_SECURE); 1172 intel_ring_advance(req, cs); 1173 1174 return 0; 1175} 1176 1177static void cleanup_phys_status_page(struct intel_engine_cs *engine) 1178{ 1179 struct drm_i915_private *dev_priv = engine->i915; 1180 1181 if (!dev_priv->status_page_dmah) 1182 return; 1183 1184 drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah); 1185 engine->status_page.page_addr = NULL; 1186} 1187 1188static void cleanup_status_page(struct intel_engine_cs *engine) 1189{ 1190 struct i915_vma *vma; 1191 struct drm_i915_gem_object *obj; 1192 1193 vma = fetch_and_zero(&engine->status_page.vma); 1194 if (!vma) 1195 return; 1196 1197 obj = vma->obj; 1198 1199 i915_vma_unpin(vma); 1200 i915_vma_close(vma); 1201 1202 i915_gem_object_unpin_map(obj); 1203 __i915_gem_object_release_unless_active(obj); 1204} 1205 1206static int init_status_page(struct intel_engine_cs *engine) 1207{ 1208 struct drm_i915_gem_object *obj; 1209 struct i915_vma *vma; 1210 unsigned int flags; 1211 void *vaddr; 1212 int ret; 1213 1214 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); 1215 if (IS_ERR(obj)) { 1216 DRM_ERROR("Failed to allocate status page\n"); 1217 return PTR_ERR(obj); 1218 } 1219 1220 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC); 1221 if (ret) 1222 goto err; 1223 1224 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL); 1225 if (IS_ERR(vma)) { 1226 ret = PTR_ERR(vma); 1227 goto err; 1228 } 1229 1230 flags = PIN_GLOBAL; 1231 if (!HAS_LLC(engine->i915)) 1232 /* On g33, we cannot place HWS above 256MiB, so 1233 * restrict its pinning to the low mappable arena. 1234 * Though this restriction is not documented for 1235 * gen4, gen5, or byt, they also behave similarly 1236 * and hang if the HWS is placed at the top of the 1237 * GTT. To generalise, it appears that all !llc 1238 * platforms have issues with us placing the HWS 1239 * above the mappable region (even though we never 1240 * actualy map it). 1241 */ 1242 flags |= PIN_MAPPABLE; 1243 ret = i915_vma_pin(vma, 0, 4096, flags); 1244 if (ret) 1245 goto err; 1246 1247 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 1248 if (IS_ERR(vaddr)) { 1249 ret = PTR_ERR(vaddr); 1250 goto err_unpin; 1251 } 1252 1253 engine->status_page.vma = vma; 1254 engine->status_page.ggtt_offset = i915_ggtt_offset(vma); 1255 engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE); 1256 1257 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n", 1258 engine->name, i915_ggtt_offset(vma)); 1259 return 0; 1260 1261err_unpin: 1262 i915_vma_unpin(vma); 1263err: 1264 i915_gem_object_put(obj); 1265 return ret; 1266} 1267 1268static int init_phys_status_page(struct intel_engine_cs *engine) 1269{ 1270 struct drm_i915_private *dev_priv = engine->i915; 1271 1272 GEM_BUG_ON(engine->id != RCS); 1273 1274 dev_priv->status_page_dmah = 1275 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE); 1276 if (!dev_priv->status_page_dmah) 1277 return -ENOMEM; 1278 1279 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr; 1280 memset(engine->status_page.page_addr, 0, PAGE_SIZE); 1281 1282 return 0; 1283} 1284 1285int intel_ring_pin(struct intel_ring *ring, 1286 struct drm_i915_private *i915, 1287 unsigned int offset_bias) 1288{ 1289 enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC; 1290 struct i915_vma *vma = ring->vma; 1291 unsigned int flags; 1292 void *addr; 1293 int ret; 1294 1295 GEM_BUG_ON(ring->vaddr); 1296 1297 1298 flags = PIN_GLOBAL; 1299 if (offset_bias) 1300 flags |= PIN_OFFSET_BIAS | offset_bias; 1301 if (vma->obj->stolen) 1302 flags |= PIN_MAPPABLE; 1303 1304 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) { 1305 if (flags & PIN_MAPPABLE || map == I915_MAP_WC) 1306 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true); 1307 else 1308 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true); 1309 if (unlikely(ret)) 1310 return ret; 1311 } 1312 1313 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags); 1314 if (unlikely(ret)) 1315 return ret; 1316 1317 if (i915_vma_is_map_and_fenceable(vma)) 1318 addr = (void __force *)i915_vma_pin_iomap(vma); 1319 else 1320 addr = i915_gem_object_pin_map(vma->obj, map); 1321 if (IS_ERR(addr)) 1322 goto err; 1323 1324 ring->vaddr = addr; 1325 return 0; 1326 1327err: 1328 i915_vma_unpin(vma); 1329 return PTR_ERR(addr); 1330} 1331 1332void intel_ring_reset(struct intel_ring *ring, u32 tail) 1333{ 1334 GEM_BUG_ON(!list_empty(&ring->request_list)); 1335 ring->tail = tail; 1336 ring->head = tail; 1337 ring->emit = tail; 1338 intel_ring_update_space(ring); 1339} 1340 1341void intel_ring_unpin(struct intel_ring *ring) 1342{ 1343 GEM_BUG_ON(!ring->vma); 1344 GEM_BUG_ON(!ring->vaddr); 1345 1346 /* Discard any unused bytes beyond that submitted to hw. */ 1347 intel_ring_reset(ring, ring->tail); 1348 1349 if (i915_vma_is_map_and_fenceable(ring->vma)) 1350 i915_vma_unpin_iomap(ring->vma); 1351 else 1352 i915_gem_object_unpin_map(ring->vma->obj); 1353 ring->vaddr = NULL; 1354 1355 i915_vma_unpin(ring->vma); 1356} 1357 1358static struct i915_vma * 1359intel_ring_create_vma(struct drm_i915_private *dev_priv, int size) 1360{ 1361 struct drm_i915_gem_object *obj; 1362 struct i915_vma *vma; 1363 1364 obj = i915_gem_object_create_stolen(dev_priv, size); 1365 if (!obj) 1366 obj = i915_gem_object_create_internal(dev_priv, size); 1367 if (IS_ERR(obj)) 1368 return ERR_CAST(obj); 1369 1370 /* mark ring buffers as read-only from GPU side by default */ 1371 obj->gt_ro = 1; 1372 1373 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL); 1374 if (IS_ERR(vma)) 1375 goto err; 1376 1377 return vma; 1378 1379err: 1380 i915_gem_object_put(obj); 1381 return vma; 1382} 1383 1384struct intel_ring * 1385intel_engine_create_ring(struct intel_engine_cs *engine, int size) 1386{ 1387 struct intel_ring *ring; 1388 struct i915_vma *vma; 1389 1390 GEM_BUG_ON(!is_power_of_2(size)); 1391 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES); 1392 1393 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1394 if (!ring) 1395 return ERR_PTR(-ENOMEM); 1396 1397 INIT_LIST_HEAD(&ring->request_list); 1398 1399 ring->size = size; 1400 /* Workaround an erratum on the i830 which causes a hang if 1401 * the TAIL pointer points to within the last 2 cachelines 1402 * of the buffer. 1403 */ 1404 ring->effective_size = size; 1405 if (IS_I830(engine->i915) || IS_I845G(engine->i915)) 1406 ring->effective_size -= 2 * CACHELINE_BYTES; 1407 1408 intel_ring_update_space(ring); 1409 1410 vma = intel_ring_create_vma(engine->i915, size); 1411 if (IS_ERR(vma)) { 1412 kfree(ring); 1413 return ERR_CAST(vma); 1414 } 1415 ring->vma = vma; 1416 1417 return ring; 1418} 1419 1420void 1421intel_ring_free(struct intel_ring *ring) 1422{ 1423 struct drm_i915_gem_object *obj = ring->vma->obj; 1424 1425 i915_vma_close(ring->vma); 1426 __i915_gem_object_release_unless_active(obj); 1427 1428 kfree(ring); 1429} 1430 1431static int context_pin(struct i915_gem_context *ctx) 1432{ 1433 struct i915_vma *vma = ctx->engine[RCS].state; 1434 int ret; 1435 1436 /* Clear this page out of any CPU caches for coherent swap-in/out. 1437 * We only want to do this on the first bind so that we do not stall 1438 * on an active context (which by nature is already on the GPU). 1439 */ 1440 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) { 1441 ret = i915_gem_object_set_to_gtt_domain(vma->obj, false); 1442 if (ret) 1443 return ret; 1444 } 1445 1446 return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT, 1447 PIN_GLOBAL | PIN_HIGH); 1448} 1449 1450static struct i915_vma * 1451alloc_context_vma(struct intel_engine_cs *engine) 1452{ 1453 struct drm_i915_private *i915 = engine->i915; 1454 struct drm_i915_gem_object *obj; 1455 struct i915_vma *vma; 1456 1457 obj = i915_gem_object_create(i915, engine->context_size); 1458 if (IS_ERR(obj)) 1459 return ERR_CAST(obj); 1460 1461 /* 1462 * Try to make the context utilize L3 as well as LLC. 1463 * 1464 * On VLV we don't have L3 controls in the PTEs so we 1465 * shouldn't touch the cache level, especially as that 1466 * would make the object snooped which might have a 1467 * negative performance impact. 1468 * 1469 * Snooping is required on non-llc platforms in execlist 1470 * mode, but since all GGTT accesses use PAT entry 0 we 1471 * get snooping anyway regardless of cache_level. 1472 * 1473 * This is only applicable for Ivy Bridge devices since 1474 * later platforms don't have L3 control bits in the PTE. 1475 */ 1476 if (IS_IVYBRIDGE(i915)) { 1477 /* Ignore any error, regard it as a simple optimisation */ 1478 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC); 1479 } 1480 1481 vma = i915_vma_instance(obj, &i915->ggtt.base, NULL); 1482 if (IS_ERR(vma)) 1483 i915_gem_object_put(obj); 1484 1485 return vma; 1486} 1487 1488static struct intel_ring * 1489intel_ring_context_pin(struct intel_engine_cs *engine, 1490 struct i915_gem_context *ctx) 1491{ 1492 struct intel_context *ce = &ctx->engine[engine->id]; 1493 int ret; 1494 1495 lockdep_assert_held(&ctx->i915->drm.struct_mutex); 1496 1497 if (likely(ce->pin_count++)) 1498 goto out; 1499 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */ 1500 1501 if (!ce->state && engine->context_size) { 1502 struct i915_vma *vma; 1503 1504 vma = alloc_context_vma(engine); 1505 if (IS_ERR(vma)) { 1506 ret = PTR_ERR(vma); 1507 goto err; 1508 } 1509 1510 ce->state = vma; 1511 } 1512 1513 if (ce->state) { 1514 ret = context_pin(ctx); 1515 if (ret) 1516 goto err; 1517 1518 ce->state->obj->mm.dirty = true; 1519 } 1520 1521 /* The kernel context is only used as a placeholder for flushing the 1522 * active context. It is never used for submitting user rendering and 1523 * as such never requires the golden render context, and so we can skip 1524 * emitting it when we switch to the kernel context. This is required 1525 * as during eviction we cannot allocate and pin the renderstate in 1526 * order to initialise the context. 1527 */ 1528 if (i915_gem_context_is_kernel(ctx)) 1529 ce->initialised = true; 1530 1531 i915_gem_context_get(ctx); 1532 1533out: 1534 /* One ringbuffer to rule them all */ 1535 return engine->buffer; 1536 1537err: 1538 ce->pin_count = 0; 1539 return ERR_PTR(ret); 1540} 1541 1542static void intel_ring_context_unpin(struct intel_engine_cs *engine, 1543 struct i915_gem_context *ctx) 1544{ 1545 struct intel_context *ce = &ctx->engine[engine->id]; 1546 1547 lockdep_assert_held(&ctx->i915->drm.struct_mutex); 1548 GEM_BUG_ON(ce->pin_count == 0); 1549 1550 if (--ce->pin_count) 1551 return; 1552 1553 if (ce->state) 1554 i915_vma_unpin(ce->state); 1555 1556 i915_gem_context_put(ctx); 1557} 1558 1559static int intel_init_ring_buffer(struct intel_engine_cs *engine) 1560{ 1561 struct intel_ring *ring; 1562 int err; 1563 1564 intel_engine_setup_common(engine); 1565 1566 err = intel_engine_init_common(engine); 1567 if (err) 1568 goto err; 1569 1570 if (HWS_NEEDS_PHYSICAL(engine->i915)) 1571 err = init_phys_status_page(engine); 1572 else 1573 err = init_status_page(engine); 1574 if (err) 1575 goto err; 1576 1577 ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE); 1578 if (IS_ERR(ring)) { 1579 err = PTR_ERR(ring); 1580 goto err_hws; 1581 } 1582 1583 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */ 1584 err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE); 1585 if (err) 1586 goto err_ring; 1587 1588 GEM_BUG_ON(engine->buffer); 1589 engine->buffer = ring; 1590 1591 return 0; 1592 1593err_ring: 1594 intel_ring_free(ring); 1595err_hws: 1596 if (HWS_NEEDS_PHYSICAL(engine->i915)) 1597 cleanup_phys_status_page(engine); 1598 else 1599 cleanup_status_page(engine); 1600err: 1601 intel_engine_cleanup_common(engine); 1602 return err; 1603} 1604 1605void intel_engine_cleanup(struct intel_engine_cs *engine) 1606{ 1607 struct drm_i915_private *dev_priv = engine->i915; 1608 1609 WARN_ON(INTEL_GEN(dev_priv) > 2 && 1610 (I915_READ_MODE(engine) & MODE_IDLE) == 0); 1611 1612 intel_ring_unpin(engine->buffer); 1613 intel_ring_free(engine->buffer); 1614 1615 if (engine->cleanup) 1616 engine->cleanup(engine); 1617 1618 if (HWS_NEEDS_PHYSICAL(dev_priv)) 1619 cleanup_phys_status_page(engine); 1620 else 1621 cleanup_status_page(engine); 1622 1623 intel_engine_cleanup_common(engine); 1624 1625 dev_priv->engine[engine->id] = NULL; 1626 kfree(engine); 1627} 1628 1629void intel_legacy_submission_resume(struct drm_i915_private *dev_priv) 1630{ 1631 struct intel_engine_cs *engine; 1632 enum intel_engine_id id; 1633 1634 /* Restart from the beginning of the rings for convenience */ 1635 for_each_engine(engine, dev_priv, id) 1636 intel_ring_reset(engine->buffer, 0); 1637} 1638 1639static int ring_request_alloc(struct drm_i915_gem_request *request) 1640{ 1641 u32 *cs; 1642 1643 GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count); 1644 1645 /* Flush enough space to reduce the likelihood of waiting after 1646 * we start building the request - in which case we will just 1647 * have to repeat work. 1648 */ 1649 request->reserved_space += LEGACY_REQUEST_SIZE; 1650 1651 cs = intel_ring_begin(request, 0); 1652 if (IS_ERR(cs)) 1653 return PTR_ERR(cs); 1654 1655 request->reserved_space -= LEGACY_REQUEST_SIZE; 1656 return 0; 1657} 1658 1659static noinline int wait_for_space(struct drm_i915_gem_request *req, 1660 unsigned int bytes) 1661{ 1662 struct intel_ring *ring = req->ring; 1663 struct drm_i915_gem_request *target; 1664 long timeout; 1665 1666 lockdep_assert_held(&req->i915->drm.struct_mutex); 1667 1668 if (intel_ring_update_space(ring) >= bytes) 1669 return 0; 1670 1671 /* 1672 * Space is reserved in the ringbuffer for finalising the request, 1673 * as that cannot be allowed to fail. During request finalisation, 1674 * reserved_space is set to 0 to stop the overallocation and the 1675 * assumption is that then we never need to wait (which has the 1676 * risk of failing with EINTR). 1677 * 1678 * See also i915_gem_request_alloc() and i915_add_request(). 1679 */ 1680 GEM_BUG_ON(!req->reserved_space); 1681 1682 list_for_each_entry(target, &ring->request_list, ring_link) { 1683 /* Would completion of this request free enough space? */ 1684 if (bytes <= __intel_ring_space(target->postfix, 1685 ring->emit, ring->size)) 1686 break; 1687 } 1688 1689 if (WARN_ON(&target->ring_link == &ring->request_list)) 1690 return -ENOSPC; 1691 1692 timeout = i915_wait_request(target, 1693 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED, 1694 MAX_SCHEDULE_TIMEOUT); 1695 if (timeout < 0) 1696 return timeout; 1697 1698 i915_gem_request_retire_upto(target); 1699 1700 intel_ring_update_space(ring); 1701 GEM_BUG_ON(ring->space < bytes); 1702 return 0; 1703} 1704 1705u32 *intel_ring_begin(struct drm_i915_gem_request *req, 1706 unsigned int num_dwords) 1707{ 1708 struct intel_ring *ring = req->ring; 1709 const unsigned int remain_usable = ring->effective_size - ring->emit; 1710 const unsigned int bytes = num_dwords * sizeof(u32); 1711 unsigned int need_wrap = 0; 1712 unsigned int total_bytes; 1713 u32 *cs; 1714 1715 total_bytes = bytes + req->reserved_space; 1716 GEM_BUG_ON(total_bytes > ring->effective_size); 1717 1718 if (unlikely(total_bytes > remain_usable)) { 1719 const int remain_actual = ring->size - ring->emit; 1720 1721 if (bytes > remain_usable) { 1722 /* 1723 * Not enough space for the basic request. So need to 1724 * flush out the remainder and then wait for 1725 * base + reserved. 1726 */ 1727 total_bytes += remain_actual; 1728 need_wrap = remain_actual | 1; 1729 } else { 1730 /* 1731 * The base request will fit but the reserved space 1732 * falls off the end. So we don't need an immediate 1733 * wrap and only need to effectively wait for the 1734 * reserved size from the start of ringbuffer. 1735 */ 1736 total_bytes = req->reserved_space + remain_actual; 1737 } 1738 } 1739 1740 if (unlikely(total_bytes > ring->space)) { 1741 int ret = wait_for_space(req, total_bytes); 1742 if (unlikely(ret)) 1743 return ERR_PTR(ret); 1744 } 1745 1746 if (unlikely(need_wrap)) { 1747 need_wrap &= ~1; 1748 GEM_BUG_ON(need_wrap > ring->space); 1749 GEM_BUG_ON(ring->emit + need_wrap > ring->size); 1750 1751 /* Fill the tail with MI_NOOP */ 1752 memset(ring->vaddr + ring->emit, 0, need_wrap); 1753 ring->emit = 0; 1754 ring->space -= need_wrap; 1755 } 1756 1757 GEM_BUG_ON(ring->emit > ring->size - bytes); 1758 GEM_BUG_ON(ring->space < bytes); 1759 cs = ring->vaddr + ring->emit; 1760 GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes)); 1761 ring->emit += bytes; 1762 ring->space -= bytes; 1763 1764 return cs; 1765} 1766 1767/* Align the ring tail to a cacheline boundary */ 1768int intel_ring_cacheline_align(struct drm_i915_gem_request *req) 1769{ 1770 int num_dwords = 1771 (req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t); 1772 u32 *cs; 1773 1774 if (num_dwords == 0) 1775 return 0; 1776 1777 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords; 1778 cs = intel_ring_begin(req, num_dwords); 1779 if (IS_ERR(cs)) 1780 return PTR_ERR(cs); 1781 1782 while (num_dwords--) 1783 *cs++ = MI_NOOP; 1784 1785 intel_ring_advance(req, cs); 1786 1787 return 0; 1788} 1789 1790static void gen6_bsd_submit_request(struct drm_i915_gem_request *request) 1791{ 1792 struct drm_i915_private *dev_priv = request->i915; 1793 1794 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 1795 1796 /* Every tail move must follow the sequence below */ 1797 1798 /* Disable notification that the ring is IDLE. The GT 1799 * will then assume that it is busy and bring it out of rc6. 1800 */ 1801 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL, 1802 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE)); 1803 1804 /* Clear the context id. Here be magic! */ 1805 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0); 1806 1807 /* Wait for the ring not to be idle, i.e. for it to wake up. */ 1808 if (__intel_wait_for_register_fw(dev_priv, 1809 GEN6_BSD_SLEEP_PSMI_CONTROL, 1810 GEN6_BSD_SLEEP_INDICATOR, 1811 0, 1812 1000, 0, NULL)) 1813 DRM_ERROR("timed out waiting for the BSD ring to wake up\n"); 1814 1815 /* Now that the ring is fully powered up, update the tail */ 1816 i9xx_submit_request(request); 1817 1818 /* Let the ring send IDLE messages to the GT again, 1819 * and so let it sleep to conserve power when idle. 1820 */ 1821 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL, 1822 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE)); 1823 1824 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 1825} 1826 1827static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode) 1828{ 1829 u32 cmd, *cs; 1830 1831 cs = intel_ring_begin(req, 4); 1832 if (IS_ERR(cs)) 1833 return PTR_ERR(cs); 1834 1835 cmd = MI_FLUSH_DW; 1836 if (INTEL_GEN(req->i915) >= 8) 1837 cmd += 1; 1838 1839 /* We always require a command barrier so that subsequent 1840 * commands, such as breadcrumb interrupts, are strictly ordered 1841 * wrt the contents of the write cache being flushed to memory 1842 * (and thus being coherent from the CPU). 1843 */ 1844 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; 1845 1846 /* 1847 * Bspec vol 1c.5 - video engine command streamer: 1848 * "If ENABLED, all TLBs will be invalidated once the flush 1849 * operation is complete. This bit is only valid when the 1850 * Post-Sync Operation field is a value of 1h or 3h." 1851 */ 1852 if (mode & EMIT_INVALIDATE) 1853 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD; 1854 1855 *cs++ = cmd; 1856 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT; 1857 if (INTEL_GEN(req->i915) >= 8) { 1858 *cs++ = 0; /* upper addr */ 1859 *cs++ = 0; /* value */ 1860 } else { 1861 *cs++ = 0; 1862 *cs++ = MI_NOOP; 1863 } 1864 intel_ring_advance(req, cs); 1865 return 0; 1866} 1867 1868static int 1869gen8_emit_bb_start(struct drm_i915_gem_request *req, 1870 u64 offset, u32 len, 1871 unsigned int dispatch_flags) 1872{ 1873 bool ppgtt = USES_PPGTT(req->i915) && 1874 !(dispatch_flags & I915_DISPATCH_SECURE); 1875 u32 *cs; 1876 1877 cs = intel_ring_begin(req, 4); 1878 if (IS_ERR(cs)) 1879 return PTR_ERR(cs); 1880 1881 /* FIXME(BDW): Address space and security selectors. */ 1882 *cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags & 1883 I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0); 1884 *cs++ = lower_32_bits(offset); 1885 *cs++ = upper_32_bits(offset); 1886 *cs++ = MI_NOOP; 1887 intel_ring_advance(req, cs); 1888 1889 return 0; 1890} 1891 1892static int 1893hsw_emit_bb_start(struct drm_i915_gem_request *req, 1894 u64 offset, u32 len, 1895 unsigned int dispatch_flags) 1896{ 1897 u32 *cs; 1898 1899 cs = intel_ring_begin(req, 2); 1900 if (IS_ERR(cs)) 1901 return PTR_ERR(cs); 1902 1903 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ? 1904 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) | 1905 (dispatch_flags & I915_DISPATCH_RS ? 1906 MI_BATCH_RESOURCE_STREAMER : 0); 1907 /* bit0-7 is the length on GEN6+ */ 1908 *cs++ = offset; 1909 intel_ring_advance(req, cs); 1910 1911 return 0; 1912} 1913 1914static int 1915gen6_emit_bb_start(struct drm_i915_gem_request *req, 1916 u64 offset, u32 len, 1917 unsigned int dispatch_flags) 1918{ 1919 u32 *cs; 1920 1921 cs = intel_ring_begin(req, 2); 1922 if (IS_ERR(cs)) 1923 return PTR_ERR(cs); 1924 1925 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ? 1926 0 : MI_BATCH_NON_SECURE_I965); 1927 /* bit0-7 is the length on GEN6+ */ 1928 *cs++ = offset; 1929 intel_ring_advance(req, cs); 1930 1931 return 0; 1932} 1933 1934/* Blitter support (SandyBridge+) */ 1935 1936static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode) 1937{ 1938 u32 cmd, *cs; 1939 1940 cs = intel_ring_begin(req, 4); 1941 if (IS_ERR(cs)) 1942 return PTR_ERR(cs); 1943 1944 cmd = MI_FLUSH_DW; 1945 if (INTEL_GEN(req->i915) >= 8) 1946 cmd += 1; 1947 1948 /* We always require a command barrier so that subsequent 1949 * commands, such as breadcrumb interrupts, are strictly ordered 1950 * wrt the contents of the write cache being flushed to memory 1951 * (and thus being coherent from the CPU). 1952 */ 1953 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; 1954 1955 /* 1956 * Bspec vol 1c.3 - blitter engine command streamer: 1957 * "If ENABLED, all TLBs will be invalidated once the flush 1958 * operation is complete. This bit is only valid when the 1959 * Post-Sync Operation field is a value of 1h or 3h." 1960 */ 1961 if (mode & EMIT_INVALIDATE) 1962 cmd |= MI_INVALIDATE_TLB; 1963 *cs++ = cmd; 1964 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT; 1965 if (INTEL_GEN(req->i915) >= 8) { 1966 *cs++ = 0; /* upper addr */ 1967 *cs++ = 0; /* value */ 1968 } else { 1969 *cs++ = 0; 1970 *cs++ = MI_NOOP; 1971 } 1972 intel_ring_advance(req, cs); 1973 1974 return 0; 1975} 1976 1977static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv, 1978 struct intel_engine_cs *engine) 1979{ 1980 struct drm_i915_gem_object *obj; 1981 int ret, i; 1982 1983 if (!i915.semaphores) 1984 return; 1985 1986 if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) { 1987 struct i915_vma *vma; 1988 1989 obj = i915_gem_object_create(dev_priv, PAGE_SIZE); 1990 if (IS_ERR(obj)) 1991 goto err; 1992 1993 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL); 1994 if (IS_ERR(vma)) 1995 goto err_obj; 1996 1997 ret = i915_gem_object_set_to_gtt_domain(obj, false); 1998 if (ret) 1999 goto err_obj; 2000 2001 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); 2002 if (ret) 2003 goto err_obj; 2004 2005 dev_priv->semaphore = vma; 2006 } 2007 2008 if (INTEL_GEN(dev_priv) >= 8) { 2009 u32 offset = i915_ggtt_offset(dev_priv->semaphore); 2010 2011 engine->semaphore.sync_to = gen8_ring_sync_to; 2012 engine->semaphore.signal = gen8_xcs_signal; 2013 2014 for (i = 0; i < I915_NUM_ENGINES; i++) { 2015 u32 ring_offset; 2016 2017 if (i != engine->id) 2018 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i); 2019 else 2020 ring_offset = MI_SEMAPHORE_SYNC_INVALID; 2021 2022 engine->semaphore.signal_ggtt[i] = ring_offset; 2023 } 2024 } else if (INTEL_GEN(dev_priv) >= 6) { 2025 engine->semaphore.sync_to = gen6_ring_sync_to; 2026 engine->semaphore.signal = gen6_signal; 2027 2028 /* 2029 * The current semaphore is only applied on pre-gen8 2030 * platform. And there is no VCS2 ring on the pre-gen8 2031 * platform. So the semaphore between RCS and VCS2 is 2032 * initialized as INVALID. Gen8 will initialize the 2033 * sema between VCS2 and RCS later. 2034 */ 2035 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) { 2036 static const struct { 2037 u32 wait_mbox; 2038 i915_reg_t mbox_reg; 2039 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = { 2040 [RCS_HW] = { 2041 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC }, 2042 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC }, 2043 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC }, 2044 }, 2045 [VCS_HW] = { 2046 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC }, 2047 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC }, 2048 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC }, 2049 }, 2050 [BCS_HW] = { 2051 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC }, 2052 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC }, 2053 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC }, 2054 }, 2055 [VECS_HW] = { 2056 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC }, 2057 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC }, 2058 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC }, 2059 }, 2060 }; 2061 u32 wait_mbox; 2062 i915_reg_t mbox_reg; 2063 2064 if (i == engine->hw_id) { 2065 wait_mbox = MI_SEMAPHORE_SYNC_INVALID; 2066 mbox_reg = GEN6_NOSYNC; 2067 } else { 2068 wait_mbox = sem_data[engine->hw_id][i].wait_mbox; 2069 mbox_reg = sem_data[engine->hw_id][i].mbox_reg; 2070 } 2071 2072 engine->semaphore.mbox.wait[i] = wait_mbox; 2073 engine->semaphore.mbox.signal[i] = mbox_reg; 2074 } 2075 } 2076 2077 return; 2078 2079err_obj: 2080 i915_gem_object_put(obj); 2081err: 2082 DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n"); 2083 i915.semaphores = 0; 2084} 2085 2086static void intel_ring_init_irq(struct drm_i915_private *dev_priv, 2087 struct intel_engine_cs *engine) 2088{ 2089 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift; 2090 2091 if (INTEL_GEN(dev_priv) >= 8) { 2092 engine->irq_enable = gen8_irq_enable; 2093 engine->irq_disable = gen8_irq_disable; 2094 engine->irq_seqno_barrier = gen6_seqno_barrier; 2095 } else if (INTEL_GEN(dev_priv) >= 6) { 2096 engine->irq_enable = gen6_irq_enable; 2097 engine->irq_disable = gen6_irq_disable; 2098 engine->irq_seqno_barrier = gen6_seqno_barrier; 2099 } else if (INTEL_GEN(dev_priv) >= 5) { 2100 engine->irq_enable = gen5_irq_enable; 2101 engine->irq_disable = gen5_irq_disable; 2102 engine->irq_seqno_barrier = gen5_seqno_barrier; 2103 } else if (INTEL_GEN(dev_priv) >= 3) { 2104 engine->irq_enable = i9xx_irq_enable; 2105 engine->irq_disable = i9xx_irq_disable; 2106 } else { 2107 engine->irq_enable = i8xx_irq_enable; 2108 engine->irq_disable = i8xx_irq_disable; 2109 } 2110} 2111 2112static void i9xx_set_default_submission(struct intel_engine_cs *engine) 2113{ 2114 engine->submit_request = i9xx_submit_request; 2115} 2116 2117static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine) 2118{ 2119 engine->submit_request = gen6_bsd_submit_request; 2120} 2121 2122static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv, 2123 struct intel_engine_cs *engine) 2124{ 2125 intel_ring_init_irq(dev_priv, engine); 2126 intel_ring_init_semaphores(dev_priv, engine); 2127 2128 engine->init_hw = init_ring_common; 2129 engine->reset_hw = reset_ring_common; 2130 2131 engine->context_pin = intel_ring_context_pin; 2132 engine->context_unpin = intel_ring_context_unpin; 2133 2134 engine->request_alloc = ring_request_alloc; 2135 2136 engine->emit_breadcrumb = i9xx_emit_breadcrumb; 2137 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz; 2138 if (i915.semaphores) { 2139 int num_rings; 2140 2141 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb; 2142 2143 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1; 2144 if (INTEL_GEN(dev_priv) >= 8) { 2145 engine->emit_breadcrumb_sz += num_rings * 6; 2146 } else { 2147 engine->emit_breadcrumb_sz += num_rings * 3; 2148 if (num_rings & 1) 2149 engine->emit_breadcrumb_sz++; 2150 } 2151 } 2152 2153 engine->set_default_submission = i9xx_set_default_submission; 2154 2155 if (INTEL_GEN(dev_priv) >= 8) 2156 engine->emit_bb_start = gen8_emit_bb_start; 2157 else if (INTEL_GEN(dev_priv) >= 6) 2158 engine->emit_bb_start = gen6_emit_bb_start; 2159 else if (INTEL_GEN(dev_priv) >= 4) 2160 engine->emit_bb_start = i965_emit_bb_start; 2161 else if (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2162 engine->emit_bb_start = i830_emit_bb_start; 2163 else 2164 engine->emit_bb_start = i915_emit_bb_start; 2165} 2166 2167int intel_init_render_ring_buffer(struct intel_engine_cs *engine) 2168{ 2169 struct drm_i915_private *dev_priv = engine->i915; 2170 int ret; 2171 2172 intel_ring_default_vfuncs(dev_priv, engine); 2173 2174 if (HAS_L3_DPF(dev_priv)) 2175 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT; 2176 2177 if (INTEL_GEN(dev_priv) >= 8) { 2178 engine->init_context = intel_rcs_ctx_init; 2179 engine->emit_breadcrumb = gen8_render_emit_breadcrumb; 2180 engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz; 2181 engine->emit_flush = gen8_render_ring_flush; 2182 if (i915.semaphores) { 2183 int num_rings; 2184 2185 engine->semaphore.signal = gen8_rcs_signal; 2186 2187 num_rings = 2188 hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1; 2189 engine->emit_breadcrumb_sz += num_rings * 8; 2190 } 2191 } else if (INTEL_GEN(dev_priv) >= 6) { 2192 engine->init_context = intel_rcs_ctx_init; 2193 engine->emit_flush = gen7_render_ring_flush; 2194 if (IS_GEN6(dev_priv)) 2195 engine->emit_flush = gen6_render_ring_flush; 2196 } else if (IS_GEN5(dev_priv)) { 2197 engine->emit_flush = gen4_render_ring_flush; 2198 } else { 2199 if (INTEL_GEN(dev_priv) < 4) 2200 engine->emit_flush = gen2_render_ring_flush; 2201 else 2202 engine->emit_flush = gen4_render_ring_flush; 2203 engine->irq_enable_mask = I915_USER_INTERRUPT; 2204 } 2205 2206 if (IS_HASWELL(dev_priv)) 2207 engine->emit_bb_start = hsw_emit_bb_start; 2208 2209 engine->init_hw = init_render_ring; 2210 engine->cleanup = render_ring_cleanup; 2211 2212 ret = intel_init_ring_buffer(engine); 2213 if (ret) 2214 return ret; 2215 2216 if (INTEL_GEN(dev_priv) >= 6) { 2217 ret = intel_engine_create_scratch(engine, PAGE_SIZE); 2218 if (ret) 2219 return ret; 2220 } else if (HAS_BROKEN_CS_TLB(dev_priv)) { 2221 ret = intel_engine_create_scratch(engine, I830_WA_SIZE); 2222 if (ret) 2223 return ret; 2224 } 2225 2226 return 0; 2227} 2228 2229int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine) 2230{ 2231 struct drm_i915_private *dev_priv = engine->i915; 2232 2233 intel_ring_default_vfuncs(dev_priv, engine); 2234 2235 if (INTEL_GEN(dev_priv) >= 6) { 2236 /* gen6 bsd needs a special wa for tail updates */ 2237 if (IS_GEN6(dev_priv)) 2238 engine->set_default_submission = gen6_bsd_set_default_submission; 2239 engine->emit_flush = gen6_bsd_ring_flush; 2240 if (INTEL_GEN(dev_priv) < 8) 2241 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT; 2242 } else { 2243 engine->mmio_base = BSD_RING_BASE; 2244 engine->emit_flush = bsd_ring_flush; 2245 if (IS_GEN5(dev_priv)) 2246 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT; 2247 else 2248 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT; 2249 } 2250 2251 return intel_init_ring_buffer(engine); 2252} 2253 2254int intel_init_blt_ring_buffer(struct intel_engine_cs *engine) 2255{ 2256 struct drm_i915_private *dev_priv = engine->i915; 2257 2258 intel_ring_default_vfuncs(dev_priv, engine); 2259 2260 engine->emit_flush = gen6_ring_flush; 2261 if (INTEL_GEN(dev_priv) < 8) 2262 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT; 2263 2264 return intel_init_ring_buffer(engine); 2265} 2266 2267int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine) 2268{ 2269 struct drm_i915_private *dev_priv = engine->i915; 2270 2271 intel_ring_default_vfuncs(dev_priv, engine); 2272 2273 engine->emit_flush = gen6_ring_flush; 2274 2275 if (INTEL_GEN(dev_priv) < 8) { 2276 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT; 2277 engine->irq_enable = hsw_vebox_irq_enable; 2278 engine->irq_disable = hsw_vebox_irq_disable; 2279 } 2280 2281 return intel_init_ring_buffer(engine); 2282}