at v4.13 2522 lines 70 kB view raw
1/* 2 * Copyright © 2008,2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * Chris Wilson <chris@chris-wilson.co.uk> 26 * 27 */ 28 29#include <linux/dma_remapping.h> 30#include <linux/reservation.h> 31#include <linux/sync_file.h> 32#include <linux/uaccess.h> 33 34#include <drm/drmP.h> 35#include <drm/i915_drm.h> 36 37#include "i915_drv.h" 38#include "i915_gem_clflush.h" 39#include "i915_trace.h" 40#include "intel_drv.h" 41#include "intel_frontbuffer.h" 42 43enum { 44 FORCE_CPU_RELOC = 1, 45 FORCE_GTT_RELOC, 46 FORCE_GPU_RELOC, 47#define DBG_FORCE_RELOC 0 /* choose one of the above! */ 48}; 49 50#define __EXEC_OBJECT_HAS_REF BIT(31) 51#define __EXEC_OBJECT_HAS_PIN BIT(30) 52#define __EXEC_OBJECT_HAS_FENCE BIT(29) 53#define __EXEC_OBJECT_NEEDS_MAP BIT(28) 54#define __EXEC_OBJECT_NEEDS_BIAS BIT(27) 55#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */ 56#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 57 58#define __EXEC_HAS_RELOC BIT(31) 59#define __EXEC_VALIDATED BIT(30) 60#define UPDATE PIN_OFFSET_FIXED 61 62#define BATCH_OFFSET_BIAS (256*1024) 63 64#define __I915_EXEC_ILLEGAL_FLAGS \ 65 (__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK) 66 67/** 68 * DOC: User command execution 69 * 70 * Userspace submits commands to be executed on the GPU as an instruction 71 * stream within a GEM object we call a batchbuffer. This instructions may 72 * refer to other GEM objects containing auxiliary state such as kernels, 73 * samplers, render targets and even secondary batchbuffers. Userspace does 74 * not know where in the GPU memory these objects reside and so before the 75 * batchbuffer is passed to the GPU for execution, those addresses in the 76 * batchbuffer and auxiliary objects are updated. This is known as relocation, 77 * or patching. To try and avoid having to relocate each object on the next 78 * execution, userspace is told the location of those objects in this pass, 79 * but this remains just a hint as the kernel may choose a new location for 80 * any object in the future. 81 * 82 * Processing an execbuf ioctl is conceptually split up into a few phases. 83 * 84 * 1. Validation - Ensure all the pointers, handles and flags are valid. 85 * 2. Reservation - Assign GPU address space for every object 86 * 3. Relocation - Update any addresses to point to the final locations 87 * 4. Serialisation - Order the request with respect to its dependencies 88 * 5. Construction - Construct a request to execute the batchbuffer 89 * 6. Submission (at some point in the future execution) 90 * 91 * Reserving resources for the execbuf is the most complicated phase. We 92 * neither want to have to migrate the object in the address space, nor do 93 * we want to have to update any relocations pointing to this object. Ideally, 94 * we want to leave the object where it is and for all the existing relocations 95 * to match. If the object is given a new address, or if userspace thinks the 96 * object is elsewhere, we have to parse all the relocation entries and update 97 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 98 * all the target addresses in all of its objects match the value in the 99 * relocation entries and that they all match the presumed offsets given by the 100 * list of execbuffer objects. Using this knowledge, we know that if we haven't 101 * moved any buffers, all the relocation entries are valid and we can skip 102 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 103 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 104 * 105 * The addresses written in the objects must match the corresponding 106 * reloc.presumed_offset which in turn must match the corresponding 107 * execobject.offset. 108 * 109 * Any render targets written to in the batch must be flagged with 110 * EXEC_OBJECT_WRITE. 111 * 112 * To avoid stalling, execobject.offset should match the current 113 * address of that object within the active context. 114 * 115 * The reservation is done is multiple phases. First we try and keep any 116 * object already bound in its current location - so as long as meets the 117 * constraints imposed by the new execbuffer. Any object left unbound after the 118 * first pass is then fitted into any available idle space. If an object does 119 * not fit, all objects are removed from the reservation and the process rerun 120 * after sorting the objects into a priority order (more difficult to fit 121 * objects are tried first). Failing that, the entire VM is cleared and we try 122 * to fit the execbuf once last time before concluding that it simply will not 123 * fit. 124 * 125 * A small complication to all of this is that we allow userspace not only to 126 * specify an alignment and a size for the object in the address space, but 127 * we also allow userspace to specify the exact offset. This objects are 128 * simpler to place (the location is known a priori) all we have to do is make 129 * sure the space is available. 130 * 131 * Once all the objects are in place, patching up the buried pointers to point 132 * to the final locations is a fairly simple job of walking over the relocation 133 * entry arrays, looking up the right address and rewriting the value into 134 * the object. Simple! ... The relocation entries are stored in user memory 135 * and so to access them we have to copy them into a local buffer. That copy 136 * has to avoid taking any pagefaults as they may lead back to a GEM object 137 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 138 * the relocation into multiple passes. First we try to do everything within an 139 * atomic context (avoid the pagefaults) which requires that we never wait. If 140 * we detect that we may wait, or if we need to fault, then we have to fallback 141 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 142 * bells yet?) Dropping the mutex means that we lose all the state we have 143 * built up so far for the execbuf and we must reset any global data. However, 144 * we do leave the objects pinned in their final locations - which is a 145 * potential issue for concurrent execbufs. Once we have left the mutex, we can 146 * allocate and copy all the relocation entries into a large array at our 147 * leisure, reacquire the mutex, reclaim all the objects and other state and 148 * then proceed to update any incorrect addresses with the objects. 149 * 150 * As we process the relocation entries, we maintain a record of whether the 151 * object is being written to. Using NORELOC, we expect userspace to provide 152 * this information instead. We also check whether we can skip the relocation 153 * by comparing the expected value inside the relocation entry with the target's 154 * final address. If they differ, we have to map the current object and rewrite 155 * the 4 or 8 byte pointer within. 156 * 157 * Serialising an execbuf is quite simple according to the rules of the GEM 158 * ABI. Execution within each context is ordered by the order of submission. 159 * Writes to any GEM object are in order of submission and are exclusive. Reads 160 * from a GEM object are unordered with respect to other reads, but ordered by 161 * writes. A write submitted after a read cannot occur before the read, and 162 * similarly any read submitted after a write cannot occur before the write. 163 * Writes are ordered between engines such that only one write occurs at any 164 * time (completing any reads beforehand) - using semaphores where available 165 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 166 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 167 * reads before starting, and any read (either using set-domain or pread) must 168 * flush all GPU writes before starting. (Note we only employ a barrier before, 169 * we currently rely on userspace not concurrently starting a new execution 170 * whilst reading or writing to an object. This may be an advantage or not 171 * depending on how much you trust userspace not to shoot themselves in the 172 * foot.) Serialisation may just result in the request being inserted into 173 * a DAG awaiting its turn, but most simple is to wait on the CPU until 174 * all dependencies are resolved. 175 * 176 * After all of that, is just a matter of closing the request and handing it to 177 * the hardware (well, leaving it in a queue to be executed). However, we also 178 * offer the ability for batchbuffers to be run with elevated privileges so 179 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 180 * Before any batch is given extra privileges we first must check that it 181 * contains no nefarious instructions, we check that each instruction is from 182 * our whitelist and all registers are also from an allowed list. We first 183 * copy the user's batchbuffer to a shadow (so that the user doesn't have 184 * access to it, either by the CPU or GPU as we scan it) and then parse each 185 * instruction. If everything is ok, we set a flag telling the hardware to run 186 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 187 */ 188 189struct i915_execbuffer { 190 struct drm_i915_private *i915; /** i915 backpointer */ 191 struct drm_file *file; /** per-file lookup tables and limits */ 192 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 193 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 194 195 struct intel_engine_cs *engine; /** engine to queue the request to */ 196 struct i915_gem_context *ctx; /** context for building the request */ 197 struct i915_address_space *vm; /** GTT and vma for the request */ 198 199 struct drm_i915_gem_request *request; /** our request to build */ 200 struct i915_vma *batch; /** identity of the batch obj/vma */ 201 202 /** actual size of execobj[] as we may extend it for the cmdparser */ 203 unsigned int buffer_count; 204 205 /** list of vma not yet bound during reservation phase */ 206 struct list_head unbound; 207 208 /** list of vma that have execobj.relocation_count */ 209 struct list_head relocs; 210 211 /** 212 * Track the most recently used object for relocations, as we 213 * frequently have to perform multiple relocations within the same 214 * obj/page 215 */ 216 struct reloc_cache { 217 struct drm_mm_node node; /** temporary GTT binding */ 218 unsigned long vaddr; /** Current kmap address */ 219 unsigned long page; /** Currently mapped page index */ 220 unsigned int gen; /** Cached value of INTEL_GEN */ 221 bool use_64bit_reloc : 1; 222 bool has_llc : 1; 223 bool has_fence : 1; 224 bool needs_unfenced : 1; 225 226 struct drm_i915_gem_request *rq; 227 u32 *rq_cmd; 228 unsigned int rq_size; 229 } reloc_cache; 230 231 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 232 u32 context_flags; /** Set of execobj.flags to insert from the ctx */ 233 234 u32 batch_start_offset; /** Location within object of batch */ 235 u32 batch_len; /** Length of batch within object */ 236 u32 batch_flags; /** Flags composed for emit_bb_start() */ 237 238 /** 239 * Indicate either the size of the hastable used to resolve 240 * relocation handles, or if negative that we are using a direct 241 * index into the execobj[]. 242 */ 243 int lut_size; 244 struct hlist_head *buckets; /** ht for relocation handles */ 245}; 246 247/* 248 * As an alternative to creating a hashtable of handle-to-vma for a batch, 249 * we used the last available reserved field in the execobject[] and stash 250 * a link from the execobj to its vma. 251 */ 252#define __exec_to_vma(ee) (ee)->rsvd2 253#define exec_to_vma(ee) u64_to_ptr(struct i915_vma, __exec_to_vma(ee)) 254 255/* 256 * Used to convert any address to canonical form. 257 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS, 258 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the 259 * addresses to be in a canonical form: 260 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct 261 * canonical form [63:48] == [47]." 262 */ 263#define GEN8_HIGH_ADDRESS_BIT 47 264static inline u64 gen8_canonical_addr(u64 address) 265{ 266 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT); 267} 268 269static inline u64 gen8_noncanonical_addr(u64 address) 270{ 271 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0); 272} 273 274static int eb_create(struct i915_execbuffer *eb) 275{ 276 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 277 unsigned int size = 1 + ilog2(eb->buffer_count); 278 279 /* 280 * Without a 1:1 association between relocation handles and 281 * the execobject[] index, we instead create a hashtable. 282 * We size it dynamically based on available memory, starting 283 * first with 1:1 assocative hash and scaling back until 284 * the allocation succeeds. 285 * 286 * Later on we use a positive lut_size to indicate we are 287 * using this hashtable, and a negative value to indicate a 288 * direct lookup. 289 */ 290 do { 291 unsigned int flags; 292 293 /* While we can still reduce the allocation size, don't 294 * raise a warning and allow the allocation to fail. 295 * On the last pass though, we want to try as hard 296 * as possible to perform the allocation and warn 297 * if it fails. 298 */ 299 flags = GFP_TEMPORARY; 300 if (size > 1) 301 flags |= __GFP_NORETRY | __GFP_NOWARN; 302 303 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 304 flags); 305 if (eb->buckets) 306 break; 307 } while (--size); 308 309 if (unlikely(!size)) 310 return -ENOMEM; 311 312 eb->lut_size = size; 313 } else { 314 eb->lut_size = -eb->buffer_count; 315 } 316 317 return 0; 318} 319 320static bool 321eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 322 const struct i915_vma *vma) 323{ 324 if (!(entry->flags & __EXEC_OBJECT_HAS_PIN)) 325 return true; 326 327 if (vma->node.size < entry->pad_to_size) 328 return true; 329 330 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 331 return true; 332 333 if (entry->flags & EXEC_OBJECT_PINNED && 334 vma->node.start != entry->offset) 335 return true; 336 337 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS && 338 vma->node.start < BATCH_OFFSET_BIAS) 339 return true; 340 341 if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 342 (vma->node.start + vma->node.size - 1) >> 32) 343 return true; 344 345 return false; 346} 347 348static inline void 349eb_pin_vma(struct i915_execbuffer *eb, 350 struct drm_i915_gem_exec_object2 *entry, 351 struct i915_vma *vma) 352{ 353 u64 flags; 354 355 if (vma->node.size) 356 flags = vma->node.start; 357 else 358 flags = entry->offset & PIN_OFFSET_MASK; 359 360 flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 361 if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_GTT)) 362 flags |= PIN_GLOBAL; 363 364 if (unlikely(i915_vma_pin(vma, 0, 0, flags))) 365 return; 366 367 if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) { 368 if (unlikely(i915_vma_get_fence(vma))) { 369 i915_vma_unpin(vma); 370 return; 371 } 372 373 if (i915_vma_pin_fence(vma)) 374 entry->flags |= __EXEC_OBJECT_HAS_FENCE; 375 } 376 377 entry->flags |= __EXEC_OBJECT_HAS_PIN; 378} 379 380static inline void 381__eb_unreserve_vma(struct i915_vma *vma, 382 const struct drm_i915_gem_exec_object2 *entry) 383{ 384 GEM_BUG_ON(!(entry->flags & __EXEC_OBJECT_HAS_PIN)); 385 386 if (unlikely(entry->flags & __EXEC_OBJECT_HAS_FENCE)) 387 i915_vma_unpin_fence(vma); 388 389 __i915_vma_unpin(vma); 390} 391 392static inline void 393eb_unreserve_vma(struct i915_vma *vma, 394 struct drm_i915_gem_exec_object2 *entry) 395{ 396 if (!(entry->flags & __EXEC_OBJECT_HAS_PIN)) 397 return; 398 399 __eb_unreserve_vma(vma, entry); 400 entry->flags &= ~__EXEC_OBJECT_RESERVED; 401} 402 403static int 404eb_validate_vma(struct i915_execbuffer *eb, 405 struct drm_i915_gem_exec_object2 *entry, 406 struct i915_vma *vma) 407{ 408 if (unlikely(entry->flags & eb->invalid_flags)) 409 return -EINVAL; 410 411 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment))) 412 return -EINVAL; 413 414 /* 415 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 416 * any non-page-aligned or non-canonical addresses. 417 */ 418 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 419 entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK))) 420 return -EINVAL; 421 422 /* pad_to_size was once a reserved field, so sanitize it */ 423 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 424 if (unlikely(offset_in_page(entry->pad_to_size))) 425 return -EINVAL; 426 } else { 427 entry->pad_to_size = 0; 428 } 429 430 if (unlikely(vma->exec_entry)) { 431 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n", 432 entry->handle, (int)(entry - eb->exec)); 433 return -EINVAL; 434 } 435 436 /* 437 * From drm_mm perspective address space is continuous, 438 * so from this point we're always using non-canonical 439 * form internally. 440 */ 441 entry->offset = gen8_noncanonical_addr(entry->offset); 442 443 return 0; 444} 445 446static int 447eb_add_vma(struct i915_execbuffer *eb, 448 struct drm_i915_gem_exec_object2 *entry, 449 struct i915_vma *vma) 450{ 451 int err; 452 453 GEM_BUG_ON(i915_vma_is_closed(vma)); 454 455 if (!(eb->args->flags & __EXEC_VALIDATED)) { 456 err = eb_validate_vma(eb, entry, vma); 457 if (unlikely(err)) 458 return err; 459 } 460 461 if (eb->lut_size > 0) { 462 vma->exec_handle = entry->handle; 463 hlist_add_head(&vma->exec_node, 464 &eb->buckets[hash_32(entry->handle, 465 eb->lut_size)]); 466 } 467 468 if (entry->relocation_count) 469 list_add_tail(&vma->reloc_link, &eb->relocs); 470 471 if (!eb->reloc_cache.has_fence) { 472 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 473 } else { 474 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 475 eb->reloc_cache.needs_unfenced) && 476 i915_gem_object_is_tiled(vma->obj)) 477 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 478 } 479 480 if (!(entry->flags & EXEC_OBJECT_PINNED)) 481 entry->flags |= eb->context_flags; 482 483 /* 484 * Stash a pointer from the vma to execobj, so we can query its flags, 485 * size, alignment etc as provided by the user. Also we stash a pointer 486 * to the vma inside the execobj so that we can use a direct lookup 487 * to find the right target VMA when doing relocations. 488 */ 489 vma->exec_entry = entry; 490 __exec_to_vma(entry) = (uintptr_t)vma; 491 492 err = 0; 493 eb_pin_vma(eb, entry, vma); 494 if (eb_vma_misplaced(entry, vma)) { 495 eb_unreserve_vma(vma, entry); 496 497 list_add_tail(&vma->exec_link, &eb->unbound); 498 if (drm_mm_node_allocated(&vma->node)) 499 err = i915_vma_unbind(vma); 500 } else { 501 if (entry->offset != vma->node.start) { 502 entry->offset = vma->node.start | UPDATE; 503 eb->args->flags |= __EXEC_HAS_RELOC; 504 } 505 } 506 return err; 507} 508 509static inline int use_cpu_reloc(const struct reloc_cache *cache, 510 const struct drm_i915_gem_object *obj) 511{ 512 if (!i915_gem_object_has_struct_page(obj)) 513 return false; 514 515 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 516 return true; 517 518 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 519 return false; 520 521 return (cache->has_llc || 522 obj->cache_dirty || 523 obj->cache_level != I915_CACHE_NONE); 524} 525 526static int eb_reserve_vma(const struct i915_execbuffer *eb, 527 struct i915_vma *vma) 528{ 529 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry; 530 u64 flags; 531 int err; 532 533 flags = PIN_USER | PIN_NONBLOCK; 534 if (entry->flags & EXEC_OBJECT_NEEDS_GTT) 535 flags |= PIN_GLOBAL; 536 537 /* 538 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 539 * limit address to the first 4GBs for unflagged objects. 540 */ 541 if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 542 flags |= PIN_ZONE_4G; 543 544 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP) 545 flags |= PIN_MAPPABLE; 546 547 if (entry->flags & EXEC_OBJECT_PINNED) { 548 flags |= entry->offset | PIN_OFFSET_FIXED; 549 flags &= ~PIN_NONBLOCK; /* force overlapping PINNED checks */ 550 } else if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS) { 551 flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 552 } 553 554 err = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, flags); 555 if (err) 556 return err; 557 558 if (entry->offset != vma->node.start) { 559 entry->offset = vma->node.start | UPDATE; 560 eb->args->flags |= __EXEC_HAS_RELOC; 561 } 562 563 if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) { 564 err = i915_vma_get_fence(vma); 565 if (unlikely(err)) { 566 i915_vma_unpin(vma); 567 return err; 568 } 569 570 if (i915_vma_pin_fence(vma)) 571 entry->flags |= __EXEC_OBJECT_HAS_FENCE; 572 } 573 574 entry->flags |= __EXEC_OBJECT_HAS_PIN; 575 GEM_BUG_ON(eb_vma_misplaced(entry, vma)); 576 577 return 0; 578} 579 580static int eb_reserve(struct i915_execbuffer *eb) 581{ 582 const unsigned int count = eb->buffer_count; 583 struct list_head last; 584 struct i915_vma *vma; 585 unsigned int i, pass; 586 int err; 587 588 /* 589 * Attempt to pin all of the buffers into the GTT. 590 * This is done in 3 phases: 591 * 592 * 1a. Unbind all objects that do not match the GTT constraints for 593 * the execbuffer (fenceable, mappable, alignment etc). 594 * 1b. Increment pin count for already bound objects. 595 * 2. Bind new objects. 596 * 3. Decrement pin count. 597 * 598 * This avoid unnecessary unbinding of later objects in order to make 599 * room for the earlier objects *unless* we need to defragment. 600 */ 601 602 pass = 0; 603 err = 0; 604 do { 605 list_for_each_entry(vma, &eb->unbound, exec_link) { 606 err = eb_reserve_vma(eb, vma); 607 if (err) 608 break; 609 } 610 if (err != -ENOSPC) 611 return err; 612 613 /* Resort *all* the objects into priority order */ 614 INIT_LIST_HEAD(&eb->unbound); 615 INIT_LIST_HEAD(&last); 616 for (i = 0; i < count; i++) { 617 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 618 619 if (entry->flags & EXEC_OBJECT_PINNED && 620 entry->flags & __EXEC_OBJECT_HAS_PIN) 621 continue; 622 623 vma = exec_to_vma(entry); 624 eb_unreserve_vma(vma, entry); 625 626 if (entry->flags & EXEC_OBJECT_PINNED) 627 list_add(&vma->exec_link, &eb->unbound); 628 else if (entry->flags & __EXEC_OBJECT_NEEDS_MAP) 629 list_add_tail(&vma->exec_link, &eb->unbound); 630 else 631 list_add_tail(&vma->exec_link, &last); 632 } 633 list_splice_tail(&last, &eb->unbound); 634 635 switch (pass++) { 636 case 0: 637 break; 638 639 case 1: 640 /* Too fragmented, unbind everything and retry */ 641 err = i915_gem_evict_vm(eb->vm); 642 if (err) 643 return err; 644 break; 645 646 default: 647 return -ENOSPC; 648 } 649 } while (1); 650} 651 652static inline struct hlist_head * 653ht_head(const struct i915_gem_context_vma_lut *lut, u32 handle) 654{ 655 return &lut->ht[hash_32(handle, lut->ht_bits)]; 656} 657 658static inline bool 659ht_needs_resize(const struct i915_gem_context_vma_lut *lut) 660{ 661 return (4*lut->ht_count > 3*lut->ht_size || 662 4*lut->ht_count + 1 < lut->ht_size); 663} 664 665static unsigned int eb_batch_index(const struct i915_execbuffer *eb) 666{ 667 if (eb->args->flags & I915_EXEC_BATCH_FIRST) 668 return 0; 669 else 670 return eb->buffer_count - 1; 671} 672 673static int eb_select_context(struct i915_execbuffer *eb) 674{ 675 struct i915_gem_context *ctx; 676 677 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 678 if (unlikely(IS_ERR(ctx))) 679 return PTR_ERR(ctx); 680 681 if (unlikely(i915_gem_context_is_banned(ctx))) { 682 DRM_DEBUG("Context %u tried to submit while banned\n", 683 ctx->user_handle); 684 return -EIO; 685 } 686 687 eb->ctx = i915_gem_context_get(ctx); 688 eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base; 689 690 eb->context_flags = 0; 691 if (ctx->flags & CONTEXT_NO_ZEROMAP) 692 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; 693 694 return 0; 695} 696 697static int eb_lookup_vmas(struct i915_execbuffer *eb) 698{ 699#define INTERMEDIATE BIT(0) 700 const unsigned int count = eb->buffer_count; 701 struct i915_gem_context_vma_lut *lut = &eb->ctx->vma_lut; 702 struct i915_vma *vma; 703 struct idr *idr; 704 unsigned int i; 705 int slow_pass = -1; 706 int err; 707 708 INIT_LIST_HEAD(&eb->relocs); 709 INIT_LIST_HEAD(&eb->unbound); 710 711 if (unlikely(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS)) 712 flush_work(&lut->resize); 713 GEM_BUG_ON(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS); 714 715 for (i = 0; i < count; i++) { 716 __exec_to_vma(&eb->exec[i]) = 0; 717 718 hlist_for_each_entry(vma, 719 ht_head(lut, eb->exec[i].handle), 720 ctx_node) { 721 if (vma->ctx_handle != eb->exec[i].handle) 722 continue; 723 724 err = eb_add_vma(eb, &eb->exec[i], vma); 725 if (unlikely(err)) 726 return err; 727 728 goto next_vma; 729 } 730 731 if (slow_pass < 0) 732 slow_pass = i; 733next_vma: ; 734 } 735 736 if (slow_pass < 0) 737 goto out; 738 739 spin_lock(&eb->file->table_lock); 740 /* 741 * Grab a reference to the object and release the lock so we can lookup 742 * or create the VMA without using GFP_ATOMIC 743 */ 744 idr = &eb->file->object_idr; 745 for (i = slow_pass; i < count; i++) { 746 struct drm_i915_gem_object *obj; 747 748 if (__exec_to_vma(&eb->exec[i])) 749 continue; 750 751 obj = to_intel_bo(idr_find(idr, eb->exec[i].handle)); 752 if (unlikely(!obj)) { 753 spin_unlock(&eb->file->table_lock); 754 DRM_DEBUG("Invalid object handle %d at index %d\n", 755 eb->exec[i].handle, i); 756 err = -ENOENT; 757 goto err; 758 } 759 760 __exec_to_vma(&eb->exec[i]) = INTERMEDIATE | (uintptr_t)obj; 761 } 762 spin_unlock(&eb->file->table_lock); 763 764 for (i = slow_pass; i < count; i++) { 765 struct drm_i915_gem_object *obj; 766 767 if (!(__exec_to_vma(&eb->exec[i]) & INTERMEDIATE)) 768 continue; 769 770 /* 771 * NOTE: We can leak any vmas created here when something fails 772 * later on. But that's no issue since vma_unbind can deal with 773 * vmas which are not actually bound. And since only 774 * lookup_or_create exists as an interface to get at the vma 775 * from the (obj, vm) we don't run the risk of creating 776 * duplicated vmas for the same vm. 777 */ 778 obj = u64_to_ptr(typeof(*obj), 779 __exec_to_vma(&eb->exec[i]) & ~INTERMEDIATE); 780 vma = i915_vma_instance(obj, eb->vm, NULL); 781 if (unlikely(IS_ERR(vma))) { 782 DRM_DEBUG("Failed to lookup VMA\n"); 783 err = PTR_ERR(vma); 784 goto err; 785 } 786 787 /* First come, first served */ 788 if (!vma->ctx) { 789 vma->ctx = eb->ctx; 790 vma->ctx_handle = eb->exec[i].handle; 791 hlist_add_head(&vma->ctx_node, 792 ht_head(lut, eb->exec[i].handle)); 793 lut->ht_count++; 794 lut->ht_size |= I915_CTX_RESIZE_IN_PROGRESS; 795 if (i915_vma_is_ggtt(vma)) { 796 GEM_BUG_ON(obj->vma_hashed); 797 obj->vma_hashed = vma; 798 } 799 800 i915_vma_get(vma); 801 } 802 803 err = eb_add_vma(eb, &eb->exec[i], vma); 804 if (unlikely(err)) 805 goto err; 806 807 /* Only after we validated the user didn't use our bits */ 808 if (vma->ctx != eb->ctx) { 809 i915_vma_get(vma); 810 eb->exec[i].flags |= __EXEC_OBJECT_HAS_REF; 811 } 812 } 813 814 if (lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS) { 815 if (ht_needs_resize(lut)) 816 queue_work(system_highpri_wq, &lut->resize); 817 else 818 lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS; 819 } 820 821out: 822 /* take note of the batch buffer before we might reorder the lists */ 823 i = eb_batch_index(eb); 824 eb->batch = exec_to_vma(&eb->exec[i]); 825 826 /* 827 * SNA is doing fancy tricks with compressing batch buffers, which leads 828 * to negative relocation deltas. Usually that works out ok since the 829 * relocate address is still positive, except when the batch is placed 830 * very low in the GTT. Ensure this doesn't happen. 831 * 832 * Note that actual hangs have only been observed on gen7, but for 833 * paranoia do it everywhere. 834 */ 835 if (!(eb->exec[i].flags & EXEC_OBJECT_PINNED)) 836 eb->exec[i].flags |= __EXEC_OBJECT_NEEDS_BIAS; 837 if (eb->reloc_cache.has_fence) 838 eb->exec[i].flags |= EXEC_OBJECT_NEEDS_FENCE; 839 840 eb->args->flags |= __EXEC_VALIDATED; 841 return eb_reserve(eb); 842 843err: 844 for (i = slow_pass; i < count; i++) { 845 if (__exec_to_vma(&eb->exec[i]) & INTERMEDIATE) 846 __exec_to_vma(&eb->exec[i]) = 0; 847 } 848 lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS; 849 return err; 850#undef INTERMEDIATE 851} 852 853static struct i915_vma * 854eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 855{ 856 if (eb->lut_size < 0) { 857 if (handle >= -eb->lut_size) 858 return NULL; 859 return exec_to_vma(&eb->exec[handle]); 860 } else { 861 struct hlist_head *head; 862 struct i915_vma *vma; 863 864 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 865 hlist_for_each_entry(vma, head, exec_node) { 866 if (vma->exec_handle == handle) 867 return vma; 868 } 869 return NULL; 870 } 871} 872 873static void eb_release_vmas(const struct i915_execbuffer *eb) 874{ 875 const unsigned int count = eb->buffer_count; 876 unsigned int i; 877 878 for (i = 0; i < count; i++) { 879 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 880 struct i915_vma *vma = exec_to_vma(entry); 881 882 if (!vma) 883 continue; 884 885 GEM_BUG_ON(vma->exec_entry != entry); 886 vma->exec_entry = NULL; 887 __exec_to_vma(entry) = 0; 888 889 if (entry->flags & __EXEC_OBJECT_HAS_PIN) 890 __eb_unreserve_vma(vma, entry); 891 892 if (entry->flags & __EXEC_OBJECT_HAS_REF) 893 i915_vma_put(vma); 894 895 entry->flags &= 896 ~(__EXEC_OBJECT_RESERVED | __EXEC_OBJECT_HAS_REF); 897 } 898} 899 900static void eb_reset_vmas(const struct i915_execbuffer *eb) 901{ 902 eb_release_vmas(eb); 903 if (eb->lut_size > 0) 904 memset(eb->buckets, 0, 905 sizeof(struct hlist_head) << eb->lut_size); 906} 907 908static void eb_destroy(const struct i915_execbuffer *eb) 909{ 910 GEM_BUG_ON(eb->reloc_cache.rq); 911 912 if (eb->lut_size > 0) 913 kfree(eb->buckets); 914} 915 916static inline u64 917relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 918 const struct i915_vma *target) 919{ 920 return gen8_canonical_addr((int)reloc->delta + target->node.start); 921} 922 923static void reloc_cache_init(struct reloc_cache *cache, 924 struct drm_i915_private *i915) 925{ 926 cache->page = -1; 927 cache->vaddr = 0; 928 /* Must be a variable in the struct to allow GCC to unroll. */ 929 cache->gen = INTEL_GEN(i915); 930 cache->has_llc = HAS_LLC(i915); 931 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 932 cache->has_fence = cache->gen < 4; 933 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 934 cache->node.allocated = false; 935 cache->rq = NULL; 936 cache->rq_size = 0; 937} 938 939static inline void *unmask_page(unsigned long p) 940{ 941 return (void *)(uintptr_t)(p & PAGE_MASK); 942} 943 944static inline unsigned int unmask_flags(unsigned long p) 945{ 946 return p & ~PAGE_MASK; 947} 948 949#define KMAP 0x4 /* after CLFLUSH_FLAGS */ 950 951static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 952{ 953 struct drm_i915_private *i915 = 954 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 955 return &i915->ggtt; 956} 957 958static void reloc_gpu_flush(struct reloc_cache *cache) 959{ 960 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32)); 961 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END; 962 i915_gem_object_unpin_map(cache->rq->batch->obj); 963 i915_gem_chipset_flush(cache->rq->i915); 964 965 __i915_add_request(cache->rq, true); 966 cache->rq = NULL; 967} 968 969static void reloc_cache_reset(struct reloc_cache *cache) 970{ 971 void *vaddr; 972 973 if (cache->rq) 974 reloc_gpu_flush(cache); 975 976 if (!cache->vaddr) 977 return; 978 979 vaddr = unmask_page(cache->vaddr); 980 if (cache->vaddr & KMAP) { 981 if (cache->vaddr & CLFLUSH_AFTER) 982 mb(); 983 984 kunmap_atomic(vaddr); 985 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm); 986 } else { 987 wmb(); 988 io_mapping_unmap_atomic((void __iomem *)vaddr); 989 if (cache->node.allocated) { 990 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 991 992 ggtt->base.clear_range(&ggtt->base, 993 cache->node.start, 994 cache->node.size); 995 drm_mm_remove_node(&cache->node); 996 } else { 997 i915_vma_unpin((struct i915_vma *)cache->node.mm); 998 } 999 } 1000 1001 cache->vaddr = 0; 1002 cache->page = -1; 1003} 1004 1005static void *reloc_kmap(struct drm_i915_gem_object *obj, 1006 struct reloc_cache *cache, 1007 unsigned long page) 1008{ 1009 void *vaddr; 1010 1011 if (cache->vaddr) { 1012 kunmap_atomic(unmask_page(cache->vaddr)); 1013 } else { 1014 unsigned int flushes; 1015 int err; 1016 1017 err = i915_gem_obj_prepare_shmem_write(obj, &flushes); 1018 if (err) 1019 return ERR_PTR(err); 1020 1021 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1022 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1023 1024 cache->vaddr = flushes | KMAP; 1025 cache->node.mm = (void *)obj; 1026 if (flushes) 1027 mb(); 1028 } 1029 1030 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page)); 1031 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1032 cache->page = page; 1033 1034 return vaddr; 1035} 1036 1037static void *reloc_iomap(struct drm_i915_gem_object *obj, 1038 struct reloc_cache *cache, 1039 unsigned long page) 1040{ 1041 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1042 unsigned long offset; 1043 void *vaddr; 1044 1045 if (cache->vaddr) { 1046 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1047 } else { 1048 struct i915_vma *vma; 1049 int err; 1050 1051 if (use_cpu_reloc(cache, obj)) 1052 return NULL; 1053 1054 err = i915_gem_object_set_to_gtt_domain(obj, true); 1055 if (err) 1056 return ERR_PTR(err); 1057 1058 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1059 PIN_MAPPABLE | PIN_NONBLOCK); 1060 if (IS_ERR(vma)) { 1061 memset(&cache->node, 0, sizeof(cache->node)); 1062 err = drm_mm_insert_node_in_range 1063 (&ggtt->base.mm, &cache->node, 1064 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1065 0, ggtt->mappable_end, 1066 DRM_MM_INSERT_LOW); 1067 if (err) /* no inactive aperture space, use cpu reloc */ 1068 return NULL; 1069 } else { 1070 err = i915_vma_put_fence(vma); 1071 if (err) { 1072 i915_vma_unpin(vma); 1073 return ERR_PTR(err); 1074 } 1075 1076 cache->node.start = vma->node.start; 1077 cache->node.mm = (void *)vma; 1078 } 1079 } 1080 1081 offset = cache->node.start; 1082 if (cache->node.allocated) { 1083 wmb(); 1084 ggtt->base.insert_page(&ggtt->base, 1085 i915_gem_object_get_dma_address(obj, page), 1086 offset, I915_CACHE_NONE, 0); 1087 } else { 1088 offset += page << PAGE_SHIFT; 1089 } 1090 1091 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable, 1092 offset); 1093 cache->page = page; 1094 cache->vaddr = (unsigned long)vaddr; 1095 1096 return vaddr; 1097} 1098 1099static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1100 struct reloc_cache *cache, 1101 unsigned long page) 1102{ 1103 void *vaddr; 1104 1105 if (cache->page == page) { 1106 vaddr = unmask_page(cache->vaddr); 1107 } else { 1108 vaddr = NULL; 1109 if ((cache->vaddr & KMAP) == 0) 1110 vaddr = reloc_iomap(obj, cache, page); 1111 if (!vaddr) 1112 vaddr = reloc_kmap(obj, cache, page); 1113 } 1114 1115 return vaddr; 1116} 1117 1118static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1119{ 1120 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1121 if (flushes & CLFLUSH_BEFORE) { 1122 clflushopt(addr); 1123 mb(); 1124 } 1125 1126 *addr = value; 1127 1128 /* 1129 * Writes to the same cacheline are serialised by the CPU 1130 * (including clflush). On the write path, we only require 1131 * that it hits memory in an orderly fashion and place 1132 * mb barriers at the start and end of the relocation phase 1133 * to ensure ordering of clflush wrt to the system. 1134 */ 1135 if (flushes & CLFLUSH_AFTER) 1136 clflushopt(addr); 1137 } else 1138 *addr = value; 1139} 1140 1141static int __reloc_gpu_alloc(struct i915_execbuffer *eb, 1142 struct i915_vma *vma, 1143 unsigned int len) 1144{ 1145 struct reloc_cache *cache = &eb->reloc_cache; 1146 struct drm_i915_gem_object *obj; 1147 struct drm_i915_gem_request *rq; 1148 struct i915_vma *batch; 1149 u32 *cmd; 1150 int err; 1151 1152 GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU); 1153 1154 obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE); 1155 if (IS_ERR(obj)) 1156 return PTR_ERR(obj); 1157 1158 cmd = i915_gem_object_pin_map(obj, 1159 cache->has_llc ? I915_MAP_WB : I915_MAP_WC); 1160 i915_gem_object_unpin_pages(obj); 1161 if (IS_ERR(cmd)) 1162 return PTR_ERR(cmd); 1163 1164 err = i915_gem_object_set_to_wc_domain(obj, false); 1165 if (err) 1166 goto err_unmap; 1167 1168 batch = i915_vma_instance(obj, vma->vm, NULL); 1169 if (IS_ERR(batch)) { 1170 err = PTR_ERR(batch); 1171 goto err_unmap; 1172 } 1173 1174 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK); 1175 if (err) 1176 goto err_unmap; 1177 1178 rq = i915_gem_request_alloc(eb->engine, eb->ctx); 1179 if (IS_ERR(rq)) { 1180 err = PTR_ERR(rq); 1181 goto err_unpin; 1182 } 1183 1184 err = i915_gem_request_await_object(rq, vma->obj, true); 1185 if (err) 1186 goto err_request; 1187 1188 err = eb->engine->emit_flush(rq, EMIT_INVALIDATE); 1189 if (err) 1190 goto err_request; 1191 1192 err = i915_switch_context(rq); 1193 if (err) 1194 goto err_request; 1195 1196 err = eb->engine->emit_bb_start(rq, 1197 batch->node.start, PAGE_SIZE, 1198 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE); 1199 if (err) 1200 goto err_request; 1201 1202 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true)); 1203 i915_vma_move_to_active(batch, rq, 0); 1204 reservation_object_lock(batch->resv, NULL); 1205 reservation_object_add_excl_fence(batch->resv, &rq->fence); 1206 reservation_object_unlock(batch->resv); 1207 i915_vma_unpin(batch); 1208 1209 i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 1210 reservation_object_lock(vma->resv, NULL); 1211 reservation_object_add_excl_fence(vma->resv, &rq->fence); 1212 reservation_object_unlock(vma->resv); 1213 1214 rq->batch = batch; 1215 1216 cache->rq = rq; 1217 cache->rq_cmd = cmd; 1218 cache->rq_size = 0; 1219 1220 /* Return with batch mapping (cmd) still pinned */ 1221 return 0; 1222 1223err_request: 1224 i915_add_request(rq); 1225err_unpin: 1226 i915_vma_unpin(batch); 1227err_unmap: 1228 i915_gem_object_unpin_map(obj); 1229 return err; 1230} 1231 1232static u32 *reloc_gpu(struct i915_execbuffer *eb, 1233 struct i915_vma *vma, 1234 unsigned int len) 1235{ 1236 struct reloc_cache *cache = &eb->reloc_cache; 1237 u32 *cmd; 1238 1239 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1)) 1240 reloc_gpu_flush(cache); 1241 1242 if (unlikely(!cache->rq)) { 1243 int err; 1244 1245 err = __reloc_gpu_alloc(eb, vma, len); 1246 if (unlikely(err)) 1247 return ERR_PTR(err); 1248 } 1249 1250 cmd = cache->rq_cmd + cache->rq_size; 1251 cache->rq_size += len; 1252 1253 return cmd; 1254} 1255 1256static u64 1257relocate_entry(struct i915_vma *vma, 1258 const struct drm_i915_gem_relocation_entry *reloc, 1259 struct i915_execbuffer *eb, 1260 const struct i915_vma *target) 1261{ 1262 u64 offset = reloc->offset; 1263 u64 target_offset = relocation_target(reloc, target); 1264 bool wide = eb->reloc_cache.use_64bit_reloc; 1265 void *vaddr; 1266 1267 if (!eb->reloc_cache.vaddr && 1268 (DBG_FORCE_RELOC == FORCE_GPU_RELOC || 1269 !reservation_object_test_signaled_rcu(vma->resv, true))) { 1270 const unsigned int gen = eb->reloc_cache.gen; 1271 unsigned int len; 1272 u32 *batch; 1273 u64 addr; 1274 1275 if (wide) 1276 len = offset & 7 ? 8 : 5; 1277 else if (gen >= 4) 1278 len = 4; 1279 else if (gen >= 3) 1280 len = 3; 1281 else /* On gen2 MI_STORE_DWORD_IMM uses a physical address */ 1282 goto repeat; 1283 1284 batch = reloc_gpu(eb, vma, len); 1285 if (IS_ERR(batch)) 1286 goto repeat; 1287 1288 addr = gen8_canonical_addr(vma->node.start + offset); 1289 if (wide) { 1290 if (offset & 7) { 1291 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1292 *batch++ = lower_32_bits(addr); 1293 *batch++ = upper_32_bits(addr); 1294 *batch++ = lower_32_bits(target_offset); 1295 1296 addr = gen8_canonical_addr(addr + 4); 1297 1298 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1299 *batch++ = lower_32_bits(addr); 1300 *batch++ = upper_32_bits(addr); 1301 *batch++ = upper_32_bits(target_offset); 1302 } else { 1303 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; 1304 *batch++ = lower_32_bits(addr); 1305 *batch++ = upper_32_bits(addr); 1306 *batch++ = lower_32_bits(target_offset); 1307 *batch++ = upper_32_bits(target_offset); 1308 } 1309 } else if (gen >= 6) { 1310 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1311 *batch++ = 0; 1312 *batch++ = addr; 1313 *batch++ = target_offset; 1314 } else if (gen >= 4) { 1315 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1316 *batch++ = 0; 1317 *batch++ = addr; 1318 *batch++ = target_offset; 1319 } else { 1320 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; 1321 *batch++ = addr; 1322 *batch++ = target_offset; 1323 } 1324 1325 goto out; 1326 } 1327 1328repeat: 1329 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT); 1330 if (IS_ERR(vaddr)) 1331 return PTR_ERR(vaddr); 1332 1333 clflush_write32(vaddr + offset_in_page(offset), 1334 lower_32_bits(target_offset), 1335 eb->reloc_cache.vaddr); 1336 1337 if (wide) { 1338 offset += sizeof(u32); 1339 target_offset >>= 32; 1340 wide = false; 1341 goto repeat; 1342 } 1343 1344out: 1345 return target->node.start | UPDATE; 1346} 1347 1348static u64 1349eb_relocate_entry(struct i915_execbuffer *eb, 1350 struct i915_vma *vma, 1351 const struct drm_i915_gem_relocation_entry *reloc) 1352{ 1353 struct i915_vma *target; 1354 int err; 1355 1356 /* we've already hold a reference to all valid objects */ 1357 target = eb_get_vma(eb, reloc->target_handle); 1358 if (unlikely(!target)) 1359 return -ENOENT; 1360 1361 /* Validate that the target is in a valid r/w GPU domain */ 1362 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1363 DRM_DEBUG("reloc with multiple write domains: " 1364 "target %d offset %d " 1365 "read %08x write %08x", 1366 reloc->target_handle, 1367 (int) reloc->offset, 1368 reloc->read_domains, 1369 reloc->write_domain); 1370 return -EINVAL; 1371 } 1372 if (unlikely((reloc->write_domain | reloc->read_domains) 1373 & ~I915_GEM_GPU_DOMAINS)) { 1374 DRM_DEBUG("reloc with read/write non-GPU domains: " 1375 "target %d offset %d " 1376 "read %08x write %08x", 1377 reloc->target_handle, 1378 (int) reloc->offset, 1379 reloc->read_domains, 1380 reloc->write_domain); 1381 return -EINVAL; 1382 } 1383 1384 if (reloc->write_domain) { 1385 target->exec_entry->flags |= EXEC_OBJECT_WRITE; 1386 1387 /* 1388 * Sandybridge PPGTT errata: We need a global gtt mapping 1389 * for MI and pipe_control writes because the gpu doesn't 1390 * properly redirect them through the ppgtt for non_secure 1391 * batchbuffers. 1392 */ 1393 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1394 IS_GEN6(eb->i915)) { 1395 err = i915_vma_bind(target, target->obj->cache_level, 1396 PIN_GLOBAL); 1397 if (WARN_ONCE(err, 1398 "Unexpected failure to bind target VMA!")) 1399 return err; 1400 } 1401 } 1402 1403 /* 1404 * If the relocation already has the right value in it, no 1405 * more work needs to be done. 1406 */ 1407 if (!DBG_FORCE_RELOC && 1408 gen8_canonical_addr(target->node.start) == reloc->presumed_offset) 1409 return 0; 1410 1411 /* Check that the relocation address is valid... */ 1412 if (unlikely(reloc->offset > 1413 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1414 DRM_DEBUG("Relocation beyond object bounds: " 1415 "target %d offset %d size %d.\n", 1416 reloc->target_handle, 1417 (int)reloc->offset, 1418 (int)vma->size); 1419 return -EINVAL; 1420 } 1421 if (unlikely(reloc->offset & 3)) { 1422 DRM_DEBUG("Relocation not 4-byte aligned: " 1423 "target %d offset %d.\n", 1424 reloc->target_handle, 1425 (int)reloc->offset); 1426 return -EINVAL; 1427 } 1428 1429 /* 1430 * If we write into the object, we need to force the synchronisation 1431 * barrier, either with an asynchronous clflush or if we executed the 1432 * patching using the GPU (though that should be serialised by the 1433 * timeline). To be completely sure, and since we are required to 1434 * do relocations we are already stalling, disable the user's opt 1435 * of our synchronisation. 1436 */ 1437 vma->exec_entry->flags &= ~EXEC_OBJECT_ASYNC; 1438 1439 /* and update the user's relocation entry */ 1440 return relocate_entry(vma, reloc, eb, target); 1441} 1442 1443static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma) 1444{ 1445#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1446 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1447 struct drm_i915_gem_relocation_entry __user *urelocs; 1448 const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry; 1449 unsigned int remain; 1450 1451 urelocs = u64_to_user_ptr(entry->relocs_ptr); 1452 remain = entry->relocation_count; 1453 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1454 return -EINVAL; 1455 1456 /* 1457 * We must check that the entire relocation array is safe 1458 * to read. However, if the array is not writable the user loses 1459 * the updated relocation values. 1460 */ 1461 if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs)))) 1462 return -EFAULT; 1463 1464 do { 1465 struct drm_i915_gem_relocation_entry *r = stack; 1466 unsigned int count = 1467 min_t(unsigned int, remain, ARRAY_SIZE(stack)); 1468 unsigned int copied; 1469 1470 /* 1471 * This is the fast path and we cannot handle a pagefault 1472 * whilst holding the struct mutex lest the user pass in the 1473 * relocations contained within a mmaped bo. For in such a case 1474 * we, the page fault handler would call i915_gem_fault() and 1475 * we would try to acquire the struct mutex again. Obviously 1476 * this is bad and so lockdep complains vehemently. 1477 */ 1478 pagefault_disable(); 1479 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1480 pagefault_enable(); 1481 if (unlikely(copied)) { 1482 remain = -EFAULT; 1483 goto out; 1484 } 1485 1486 remain -= count; 1487 do { 1488 u64 offset = eb_relocate_entry(eb, vma, r); 1489 1490 if (likely(offset == 0)) { 1491 } else if ((s64)offset < 0) { 1492 remain = (int)offset; 1493 goto out; 1494 } else { 1495 /* 1496 * Note that reporting an error now 1497 * leaves everything in an inconsistent 1498 * state as we have *already* changed 1499 * the relocation value inside the 1500 * object. As we have not changed the 1501 * reloc.presumed_offset or will not 1502 * change the execobject.offset, on the 1503 * call we may not rewrite the value 1504 * inside the object, leaving it 1505 * dangling and causing a GPU hang. Unless 1506 * userspace dynamically rebuilds the 1507 * relocations on each execbuf rather than 1508 * presume a static tree. 1509 * 1510 * We did previously check if the relocations 1511 * were writable (access_ok), an error now 1512 * would be a strange race with mprotect, 1513 * having already demonstrated that we 1514 * can read from this userspace address. 1515 */ 1516 offset = gen8_canonical_addr(offset & ~UPDATE); 1517 __put_user(offset, 1518 &urelocs[r-stack].presumed_offset); 1519 } 1520 } while (r++, --count); 1521 urelocs += ARRAY_SIZE(stack); 1522 } while (remain); 1523out: 1524 reloc_cache_reset(&eb->reloc_cache); 1525 return remain; 1526} 1527 1528static int 1529eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma) 1530{ 1531 const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry; 1532 struct drm_i915_gem_relocation_entry *relocs = 1533 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1534 unsigned int i; 1535 int err; 1536 1537 for (i = 0; i < entry->relocation_count; i++) { 1538 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]); 1539 1540 if ((s64)offset < 0) { 1541 err = (int)offset; 1542 goto err; 1543 } 1544 } 1545 err = 0; 1546err: 1547 reloc_cache_reset(&eb->reloc_cache); 1548 return err; 1549} 1550 1551static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1552{ 1553 const char __user *addr, *end; 1554 unsigned long size; 1555 char __maybe_unused c; 1556 1557 size = entry->relocation_count; 1558 if (size == 0) 1559 return 0; 1560 1561 if (size > N_RELOC(ULONG_MAX)) 1562 return -EINVAL; 1563 1564 addr = u64_to_user_ptr(entry->relocs_ptr); 1565 size *= sizeof(struct drm_i915_gem_relocation_entry); 1566 if (!access_ok(VERIFY_READ, addr, size)) 1567 return -EFAULT; 1568 1569 end = addr + size; 1570 for (; addr < end; addr += PAGE_SIZE) { 1571 int err = __get_user(c, addr); 1572 if (err) 1573 return err; 1574 } 1575 return __get_user(c, end - 1); 1576} 1577 1578static int eb_copy_relocations(const struct i915_execbuffer *eb) 1579{ 1580 const unsigned int count = eb->buffer_count; 1581 unsigned int i; 1582 int err; 1583 1584 for (i = 0; i < count; i++) { 1585 const unsigned int nreloc = eb->exec[i].relocation_count; 1586 struct drm_i915_gem_relocation_entry __user *urelocs; 1587 struct drm_i915_gem_relocation_entry *relocs; 1588 unsigned long size; 1589 unsigned long copied; 1590 1591 if (nreloc == 0) 1592 continue; 1593 1594 err = check_relocations(&eb->exec[i]); 1595 if (err) 1596 goto err; 1597 1598 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1599 size = nreloc * sizeof(*relocs); 1600 1601 relocs = kvmalloc_array(size, 1, GFP_TEMPORARY); 1602 if (!relocs) { 1603 kvfree(relocs); 1604 err = -ENOMEM; 1605 goto err; 1606 } 1607 1608 /* copy_from_user is limited to < 4GiB */ 1609 copied = 0; 1610 do { 1611 unsigned int len = 1612 min_t(u64, BIT_ULL(31), size - copied); 1613 1614 if (__copy_from_user((char *)relocs + copied, 1615 (char *)urelocs + copied, 1616 len)) { 1617 kvfree(relocs); 1618 err = -EFAULT; 1619 goto err; 1620 } 1621 1622 copied += len; 1623 } while (copied < size); 1624 1625 /* 1626 * As we do not update the known relocation offsets after 1627 * relocating (due to the complexities in lock handling), 1628 * we need to mark them as invalid now so that we force the 1629 * relocation processing next time. Just in case the target 1630 * object is evicted and then rebound into its old 1631 * presumed_offset before the next execbuffer - if that 1632 * happened we would make the mistake of assuming that the 1633 * relocations were valid. 1634 */ 1635 user_access_begin(); 1636 for (copied = 0; copied < nreloc; copied++) 1637 unsafe_put_user(-1, 1638 &urelocs[copied].presumed_offset, 1639 end_user); 1640end_user: 1641 user_access_end(); 1642 1643 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1644 } 1645 1646 return 0; 1647 1648err: 1649 while (i--) { 1650 struct drm_i915_gem_relocation_entry *relocs = 1651 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1652 if (eb->exec[i].relocation_count) 1653 kvfree(relocs); 1654 } 1655 return err; 1656} 1657 1658static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1659{ 1660 const unsigned int count = eb->buffer_count; 1661 unsigned int i; 1662 1663 if (unlikely(i915.prefault_disable)) 1664 return 0; 1665 1666 for (i = 0; i < count; i++) { 1667 int err; 1668 1669 err = check_relocations(&eb->exec[i]); 1670 if (err) 1671 return err; 1672 } 1673 1674 return 0; 1675} 1676 1677static noinline int eb_relocate_slow(struct i915_execbuffer *eb) 1678{ 1679 struct drm_device *dev = &eb->i915->drm; 1680 bool have_copy = false; 1681 struct i915_vma *vma; 1682 int err = 0; 1683 1684repeat: 1685 if (signal_pending(current)) { 1686 err = -ERESTARTSYS; 1687 goto out; 1688 } 1689 1690 /* We may process another execbuffer during the unlock... */ 1691 eb_reset_vmas(eb); 1692 mutex_unlock(&dev->struct_mutex); 1693 1694 /* 1695 * We take 3 passes through the slowpatch. 1696 * 1697 * 1 - we try to just prefault all the user relocation entries and 1698 * then attempt to reuse the atomic pagefault disabled fast path again. 1699 * 1700 * 2 - we copy the user entries to a local buffer here outside of the 1701 * local and allow ourselves to wait upon any rendering before 1702 * relocations 1703 * 1704 * 3 - we already have a local copy of the relocation entries, but 1705 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1706 */ 1707 if (!err) { 1708 err = eb_prefault_relocations(eb); 1709 } else if (!have_copy) { 1710 err = eb_copy_relocations(eb); 1711 have_copy = err == 0; 1712 } else { 1713 cond_resched(); 1714 err = 0; 1715 } 1716 if (err) { 1717 mutex_lock(&dev->struct_mutex); 1718 goto out; 1719 } 1720 1721 /* A frequent cause for EAGAIN are currently unavailable client pages */ 1722 flush_workqueue(eb->i915->mm.userptr_wq); 1723 1724 err = i915_mutex_lock_interruptible(dev); 1725 if (err) { 1726 mutex_lock(&dev->struct_mutex); 1727 goto out; 1728 } 1729 1730 /* reacquire the objects */ 1731 err = eb_lookup_vmas(eb); 1732 if (err) 1733 goto err; 1734 1735 list_for_each_entry(vma, &eb->relocs, reloc_link) { 1736 if (!have_copy) { 1737 pagefault_disable(); 1738 err = eb_relocate_vma(eb, vma); 1739 pagefault_enable(); 1740 if (err) 1741 goto repeat; 1742 } else { 1743 err = eb_relocate_vma_slow(eb, vma); 1744 if (err) 1745 goto err; 1746 } 1747 } 1748 1749 /* 1750 * Leave the user relocations as are, this is the painfully slow path, 1751 * and we want to avoid the complication of dropping the lock whilst 1752 * having buffers reserved in the aperture and so causing spurious 1753 * ENOSPC for random operations. 1754 */ 1755 1756err: 1757 if (err == -EAGAIN) 1758 goto repeat; 1759 1760out: 1761 if (have_copy) { 1762 const unsigned int count = eb->buffer_count; 1763 unsigned int i; 1764 1765 for (i = 0; i < count; i++) { 1766 const struct drm_i915_gem_exec_object2 *entry = 1767 &eb->exec[i]; 1768 struct drm_i915_gem_relocation_entry *relocs; 1769 1770 if (!entry->relocation_count) 1771 continue; 1772 1773 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1774 kvfree(relocs); 1775 } 1776 } 1777 1778 return err; 1779} 1780 1781static int eb_relocate(struct i915_execbuffer *eb) 1782{ 1783 if (eb_lookup_vmas(eb)) 1784 goto slow; 1785 1786 /* The objects are in their final locations, apply the relocations. */ 1787 if (eb->args->flags & __EXEC_HAS_RELOC) { 1788 struct i915_vma *vma; 1789 1790 list_for_each_entry(vma, &eb->relocs, reloc_link) { 1791 if (eb_relocate_vma(eb, vma)) 1792 goto slow; 1793 } 1794 } 1795 1796 return 0; 1797 1798slow: 1799 return eb_relocate_slow(eb); 1800} 1801 1802static void eb_export_fence(struct i915_vma *vma, 1803 struct drm_i915_gem_request *req, 1804 unsigned int flags) 1805{ 1806 struct reservation_object *resv = vma->resv; 1807 1808 /* 1809 * Ignore errors from failing to allocate the new fence, we can't 1810 * handle an error right now. Worst case should be missed 1811 * synchronisation leading to rendering corruption. 1812 */ 1813 reservation_object_lock(resv, NULL); 1814 if (flags & EXEC_OBJECT_WRITE) 1815 reservation_object_add_excl_fence(resv, &req->fence); 1816 else if (reservation_object_reserve_shared(resv) == 0) 1817 reservation_object_add_shared_fence(resv, &req->fence); 1818 reservation_object_unlock(resv); 1819} 1820 1821static int eb_move_to_gpu(struct i915_execbuffer *eb) 1822{ 1823 const unsigned int count = eb->buffer_count; 1824 unsigned int i; 1825 int err; 1826 1827 for (i = 0; i < count; i++) { 1828 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 1829 struct i915_vma *vma = exec_to_vma(entry); 1830 struct drm_i915_gem_object *obj = vma->obj; 1831 1832 if (entry->flags & EXEC_OBJECT_CAPTURE) { 1833 struct i915_gem_capture_list *capture; 1834 1835 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1836 if (unlikely(!capture)) 1837 return -ENOMEM; 1838 1839 capture->next = eb->request->capture_list; 1840 capture->vma = vma; 1841 eb->request->capture_list = capture; 1842 } 1843 1844 if (unlikely(obj->cache_dirty && !obj->cache_coherent)) { 1845 if (i915_gem_clflush_object(obj, 0)) 1846 entry->flags &= ~EXEC_OBJECT_ASYNC; 1847 } 1848 1849 if (entry->flags & EXEC_OBJECT_ASYNC) 1850 goto skip_flushes; 1851 1852 err = i915_gem_request_await_object 1853 (eb->request, obj, entry->flags & EXEC_OBJECT_WRITE); 1854 if (err) 1855 return err; 1856 1857skip_flushes: 1858 i915_vma_move_to_active(vma, eb->request, entry->flags); 1859 __eb_unreserve_vma(vma, entry); 1860 vma->exec_entry = NULL; 1861 } 1862 1863 for (i = 0; i < count; i++) { 1864 const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 1865 struct i915_vma *vma = exec_to_vma(entry); 1866 1867 eb_export_fence(vma, eb->request, entry->flags); 1868 if (unlikely(entry->flags & __EXEC_OBJECT_HAS_REF)) 1869 i915_vma_put(vma); 1870 } 1871 eb->exec = NULL; 1872 1873 /* Unconditionally flush any chipset caches (for streaming writes). */ 1874 i915_gem_chipset_flush(eb->i915); 1875 1876 /* Unconditionally invalidate GPU caches and TLBs. */ 1877 return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE); 1878} 1879 1880static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 1881{ 1882 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 1883 return false; 1884 1885 /* Kernel clipping was a DRI1 misfeature */ 1886 if (exec->num_cliprects || exec->cliprects_ptr) 1887 return false; 1888 1889 if (exec->DR4 == 0xffffffff) { 1890 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 1891 exec->DR4 = 0; 1892 } 1893 if (exec->DR1 || exec->DR4) 1894 return false; 1895 1896 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 1897 return false; 1898 1899 return true; 1900} 1901 1902void i915_vma_move_to_active(struct i915_vma *vma, 1903 struct drm_i915_gem_request *req, 1904 unsigned int flags) 1905{ 1906 struct drm_i915_gem_object *obj = vma->obj; 1907 const unsigned int idx = req->engine->id; 1908 1909 lockdep_assert_held(&req->i915->drm.struct_mutex); 1910 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 1911 1912 /* 1913 * Add a reference if we're newly entering the active list. 1914 * The order in which we add operations to the retirement queue is 1915 * vital here: mark_active adds to the start of the callback list, 1916 * such that subsequent callbacks are called first. Therefore we 1917 * add the active reference first and queue for it to be dropped 1918 * *last*. 1919 */ 1920 if (!i915_vma_is_active(vma)) 1921 obj->active_count++; 1922 i915_vma_set_active(vma, idx); 1923 i915_gem_active_set(&vma->last_read[idx], req); 1924 list_move_tail(&vma->vm_link, &vma->vm->active_list); 1925 1926 obj->base.write_domain = 0; 1927 if (flags & EXEC_OBJECT_WRITE) { 1928 obj->base.write_domain = I915_GEM_DOMAIN_RENDER; 1929 1930 if (intel_fb_obj_invalidate(obj, ORIGIN_CS)) 1931 i915_gem_active_set(&obj->frontbuffer_write, req); 1932 1933 obj->base.read_domains = 0; 1934 } 1935 obj->base.read_domains |= I915_GEM_GPU_DOMAINS; 1936 1937 if (flags & EXEC_OBJECT_NEEDS_FENCE) 1938 i915_gem_active_set(&vma->last_fence, req); 1939} 1940 1941static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req) 1942{ 1943 u32 *cs; 1944 int i; 1945 1946 if (!IS_GEN7(req->i915) || req->engine->id != RCS) { 1947 DRM_DEBUG("sol reset is gen7/rcs only\n"); 1948 return -EINVAL; 1949 } 1950 1951 cs = intel_ring_begin(req, 4 * 2 + 2); 1952 if (IS_ERR(cs)) 1953 return PTR_ERR(cs); 1954 1955 *cs++ = MI_LOAD_REGISTER_IMM(4); 1956 for (i = 0; i < 4; i++) { 1957 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 1958 *cs++ = 0; 1959 } 1960 *cs++ = MI_NOOP; 1961 intel_ring_advance(req, cs); 1962 1963 return 0; 1964} 1965 1966static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master) 1967{ 1968 struct drm_i915_gem_object *shadow_batch_obj; 1969 struct i915_vma *vma; 1970 int err; 1971 1972 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, 1973 PAGE_ALIGN(eb->batch_len)); 1974 if (IS_ERR(shadow_batch_obj)) 1975 return ERR_CAST(shadow_batch_obj); 1976 1977 err = intel_engine_cmd_parser(eb->engine, 1978 eb->batch->obj, 1979 shadow_batch_obj, 1980 eb->batch_start_offset, 1981 eb->batch_len, 1982 is_master); 1983 if (err) { 1984 if (err == -EACCES) /* unhandled chained batch */ 1985 vma = NULL; 1986 else 1987 vma = ERR_PTR(err); 1988 goto out; 1989 } 1990 1991 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0); 1992 if (IS_ERR(vma)) 1993 goto out; 1994 1995 vma->exec_entry = 1996 memset(&eb->exec[eb->buffer_count++], 1997 0, sizeof(*vma->exec_entry)); 1998 vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF; 1999 __exec_to_vma(vma->exec_entry) = (uintptr_t)i915_vma_get(vma); 2000 2001out: 2002 i915_gem_object_unpin_pages(shadow_batch_obj); 2003 return vma; 2004} 2005 2006static void 2007add_to_client(struct drm_i915_gem_request *req, struct drm_file *file) 2008{ 2009 req->file_priv = file->driver_priv; 2010 list_add_tail(&req->client_link, &req->file_priv->mm.request_list); 2011} 2012 2013static int eb_submit(struct i915_execbuffer *eb) 2014{ 2015 int err; 2016 2017 err = eb_move_to_gpu(eb); 2018 if (err) 2019 return err; 2020 2021 err = i915_switch_context(eb->request); 2022 if (err) 2023 return err; 2024 2025 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2026 err = i915_reset_gen7_sol_offsets(eb->request); 2027 if (err) 2028 return err; 2029 } 2030 2031 err = eb->engine->emit_bb_start(eb->request, 2032 eb->batch->node.start + 2033 eb->batch_start_offset, 2034 eb->batch_len, 2035 eb->batch_flags); 2036 if (err) 2037 return err; 2038 2039 return 0; 2040} 2041 2042/** 2043 * Find one BSD ring to dispatch the corresponding BSD command. 2044 * The engine index is returned. 2045 */ 2046static unsigned int 2047gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2048 struct drm_file *file) 2049{ 2050 struct drm_i915_file_private *file_priv = file->driver_priv; 2051 2052 /* Check whether the file_priv has already selected one ring. */ 2053 if ((int)file_priv->bsd_engine < 0) 2054 file_priv->bsd_engine = atomic_fetch_xor(1, 2055 &dev_priv->mm.bsd_engine_dispatch_index); 2056 2057 return file_priv->bsd_engine; 2058} 2059 2060#define I915_USER_RINGS (4) 2061 2062static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = { 2063 [I915_EXEC_DEFAULT] = RCS, 2064 [I915_EXEC_RENDER] = RCS, 2065 [I915_EXEC_BLT] = BCS, 2066 [I915_EXEC_BSD] = VCS, 2067 [I915_EXEC_VEBOX] = VECS 2068}; 2069 2070static struct intel_engine_cs * 2071eb_select_engine(struct drm_i915_private *dev_priv, 2072 struct drm_file *file, 2073 struct drm_i915_gem_execbuffer2 *args) 2074{ 2075 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2076 struct intel_engine_cs *engine; 2077 2078 if (user_ring_id > I915_USER_RINGS) { 2079 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id); 2080 return NULL; 2081 } 2082 2083 if ((user_ring_id != I915_EXEC_BSD) && 2084 ((args->flags & I915_EXEC_BSD_MASK) != 0)) { 2085 DRM_DEBUG("execbuf with non bsd ring but with invalid " 2086 "bsd dispatch flags: %d\n", (int)(args->flags)); 2087 return NULL; 2088 } 2089 2090 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) { 2091 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2092 2093 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2094 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file); 2095 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2096 bsd_idx <= I915_EXEC_BSD_RING2) { 2097 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2098 bsd_idx--; 2099 } else { 2100 DRM_DEBUG("execbuf with unknown bsd ring: %u\n", 2101 bsd_idx); 2102 return NULL; 2103 } 2104 2105 engine = dev_priv->engine[_VCS(bsd_idx)]; 2106 } else { 2107 engine = dev_priv->engine[user_ring_map[user_ring_id]]; 2108 } 2109 2110 if (!engine) { 2111 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id); 2112 return NULL; 2113 } 2114 2115 return engine; 2116} 2117 2118static int 2119i915_gem_do_execbuffer(struct drm_device *dev, 2120 struct drm_file *file, 2121 struct drm_i915_gem_execbuffer2 *args, 2122 struct drm_i915_gem_exec_object2 *exec) 2123{ 2124 struct i915_execbuffer eb; 2125 struct dma_fence *in_fence = NULL; 2126 struct sync_file *out_fence = NULL; 2127 int out_fence_fd = -1; 2128 int err; 2129 2130 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 2131 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 2132 2133 eb.i915 = to_i915(dev); 2134 eb.file = file; 2135 eb.args = args; 2136 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 2137 args->flags |= __EXEC_HAS_RELOC; 2138 eb.exec = exec; 2139 eb.ctx = NULL; 2140 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 2141 if (USES_FULL_PPGTT(eb.i915)) 2142 eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 2143 reloc_cache_init(&eb.reloc_cache, eb.i915); 2144 2145 eb.buffer_count = args->buffer_count; 2146 eb.batch_start_offset = args->batch_start_offset; 2147 eb.batch_len = args->batch_len; 2148 2149 eb.batch_flags = 0; 2150 if (args->flags & I915_EXEC_SECURE) { 2151 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 2152 return -EPERM; 2153 2154 eb.batch_flags |= I915_DISPATCH_SECURE; 2155 } 2156 if (args->flags & I915_EXEC_IS_PINNED) 2157 eb.batch_flags |= I915_DISPATCH_PINNED; 2158 2159 eb.engine = eb_select_engine(eb.i915, file, args); 2160 if (!eb.engine) 2161 return -EINVAL; 2162 2163 if (args->flags & I915_EXEC_RESOURCE_STREAMER) { 2164 if (!HAS_RESOURCE_STREAMER(eb.i915)) { 2165 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n"); 2166 return -EINVAL; 2167 } 2168 if (eb.engine->id != RCS) { 2169 DRM_DEBUG("RS is not available on %s\n", 2170 eb.engine->name); 2171 return -EINVAL; 2172 } 2173 2174 eb.batch_flags |= I915_DISPATCH_RS; 2175 } 2176 2177 if (args->flags & I915_EXEC_FENCE_IN) { 2178 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2179 if (!in_fence) 2180 return -EINVAL; 2181 } 2182 2183 if (args->flags & I915_EXEC_FENCE_OUT) { 2184 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 2185 if (out_fence_fd < 0) { 2186 err = out_fence_fd; 2187 goto err_in_fence; 2188 } 2189 } 2190 2191 err = eb_create(&eb); 2192 if (err) 2193 goto err_out_fence; 2194 2195 GEM_BUG_ON(!eb.lut_size); 2196 2197 /* 2198 * Take a local wakeref for preparing to dispatch the execbuf as 2199 * we expect to access the hardware fairly frequently in the 2200 * process. Upon first dispatch, we acquire another prolonged 2201 * wakeref that we hold until the GPU has been idle for at least 2202 * 100ms. 2203 */ 2204 intel_runtime_pm_get(eb.i915); 2205 err = i915_mutex_lock_interruptible(dev); 2206 if (err) 2207 goto err_rpm; 2208 2209 err = eb_select_context(&eb); 2210 if (unlikely(err)) 2211 goto err_unlock; 2212 2213 err = eb_relocate(&eb); 2214 if (err) { 2215 /* 2216 * If the user expects the execobject.offset and 2217 * reloc.presumed_offset to be an exact match, 2218 * as for using NO_RELOC, then we cannot update 2219 * the execobject.offset until we have completed 2220 * relocation. 2221 */ 2222 args->flags &= ~__EXEC_HAS_RELOC; 2223 goto err_vma; 2224 } 2225 2226 if (unlikely(eb.batch->exec_entry->flags & EXEC_OBJECT_WRITE)) { 2227 DRM_DEBUG("Attempting to use self-modifying batch buffer\n"); 2228 err = -EINVAL; 2229 goto err_vma; 2230 } 2231 if (eb.batch_start_offset > eb.batch->size || 2232 eb.batch_len > eb.batch->size - eb.batch_start_offset) { 2233 DRM_DEBUG("Attempting to use out-of-bounds batch\n"); 2234 err = -EINVAL; 2235 goto err_vma; 2236 } 2237 2238 if (eb.engine->needs_cmd_parser && eb.batch_len) { 2239 struct i915_vma *vma; 2240 2241 vma = eb_parse(&eb, drm_is_current_master(file)); 2242 if (IS_ERR(vma)) { 2243 err = PTR_ERR(vma); 2244 goto err_vma; 2245 } 2246 2247 if (vma) { 2248 /* 2249 * Batch parsed and accepted: 2250 * 2251 * Set the DISPATCH_SECURE bit to remove the NON_SECURE 2252 * bit from MI_BATCH_BUFFER_START commands issued in 2253 * the dispatch_execbuffer implementations. We 2254 * specifically don't want that set on batches the 2255 * command parser has accepted. 2256 */ 2257 eb.batch_flags |= I915_DISPATCH_SECURE; 2258 eb.batch_start_offset = 0; 2259 eb.batch = vma; 2260 } 2261 } 2262 2263 if (eb.batch_len == 0) 2264 eb.batch_len = eb.batch->size - eb.batch_start_offset; 2265 2266 /* 2267 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2268 * batch" bit. Hence we need to pin secure batches into the global gtt. 2269 * hsw should have this fixed, but bdw mucks it up again. */ 2270 if (eb.batch_flags & I915_DISPATCH_SECURE) { 2271 struct i915_vma *vma; 2272 2273 /* 2274 * So on first glance it looks freaky that we pin the batch here 2275 * outside of the reservation loop. But: 2276 * - The batch is already pinned into the relevant ppgtt, so we 2277 * already have the backing storage fully allocated. 2278 * - No other BO uses the global gtt (well contexts, but meh), 2279 * so we don't really have issues with multiple objects not 2280 * fitting due to fragmentation. 2281 * So this is actually safe. 2282 */ 2283 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0); 2284 if (IS_ERR(vma)) { 2285 err = PTR_ERR(vma); 2286 goto err_vma; 2287 } 2288 2289 eb.batch = vma; 2290 } 2291 2292 /* All GPU relocation batches must be submitted prior to the user rq */ 2293 GEM_BUG_ON(eb.reloc_cache.rq); 2294 2295 /* Allocate a request for this batch buffer nice and early. */ 2296 eb.request = i915_gem_request_alloc(eb.engine, eb.ctx); 2297 if (IS_ERR(eb.request)) { 2298 err = PTR_ERR(eb.request); 2299 goto err_batch_unpin; 2300 } 2301 2302 if (in_fence) { 2303 err = i915_gem_request_await_dma_fence(eb.request, in_fence); 2304 if (err < 0) 2305 goto err_request; 2306 } 2307 2308 if (out_fence_fd != -1) { 2309 out_fence = sync_file_create(&eb.request->fence); 2310 if (!out_fence) { 2311 err = -ENOMEM; 2312 goto err_request; 2313 } 2314 } 2315 2316 /* 2317 * Whilst this request exists, batch_obj will be on the 2318 * active_list, and so will hold the active reference. Only when this 2319 * request is retired will the the batch_obj be moved onto the 2320 * inactive_list and lose its active reference. Hence we do not need 2321 * to explicitly hold another reference here. 2322 */ 2323 eb.request->batch = eb.batch; 2324 2325 trace_i915_gem_request_queue(eb.request, eb.batch_flags); 2326 err = eb_submit(&eb); 2327err_request: 2328 __i915_add_request(eb.request, err == 0); 2329 add_to_client(eb.request, file); 2330 2331 if (out_fence) { 2332 if (err == 0) { 2333 fd_install(out_fence_fd, out_fence->file); 2334 args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */ 2335 args->rsvd2 |= (u64)out_fence_fd << 32; 2336 out_fence_fd = -1; 2337 } else { 2338 fput(out_fence->file); 2339 } 2340 } 2341 2342err_batch_unpin: 2343 if (eb.batch_flags & I915_DISPATCH_SECURE) 2344 i915_vma_unpin(eb.batch); 2345err_vma: 2346 if (eb.exec) 2347 eb_release_vmas(&eb); 2348 i915_gem_context_put(eb.ctx); 2349err_unlock: 2350 mutex_unlock(&dev->struct_mutex); 2351err_rpm: 2352 intel_runtime_pm_put(eb.i915); 2353 eb_destroy(&eb); 2354err_out_fence: 2355 if (out_fence_fd != -1) 2356 put_unused_fd(out_fence_fd); 2357err_in_fence: 2358 dma_fence_put(in_fence); 2359 return err; 2360} 2361 2362/* 2363 * Legacy execbuffer just creates an exec2 list from the original exec object 2364 * list array and passes it to the real function. 2365 */ 2366int 2367i915_gem_execbuffer(struct drm_device *dev, void *data, 2368 struct drm_file *file) 2369{ 2370 const size_t sz = sizeof(struct drm_i915_gem_exec_object2); 2371 struct drm_i915_gem_execbuffer *args = data; 2372 struct drm_i915_gem_execbuffer2 exec2; 2373 struct drm_i915_gem_exec_object *exec_list = NULL; 2374 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 2375 unsigned int i; 2376 int err; 2377 2378 if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) { 2379 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count); 2380 return -EINVAL; 2381 } 2382 2383 exec2.buffers_ptr = args->buffers_ptr; 2384 exec2.buffer_count = args->buffer_count; 2385 exec2.batch_start_offset = args->batch_start_offset; 2386 exec2.batch_len = args->batch_len; 2387 exec2.DR1 = args->DR1; 2388 exec2.DR4 = args->DR4; 2389 exec2.num_cliprects = args->num_cliprects; 2390 exec2.cliprects_ptr = args->cliprects_ptr; 2391 exec2.flags = I915_EXEC_RENDER; 2392 i915_execbuffer2_set_context_id(exec2, 0); 2393 2394 if (!i915_gem_check_execbuffer(&exec2)) 2395 return -EINVAL; 2396 2397 /* Copy in the exec list from userland */ 2398 exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list), 2399 __GFP_NOWARN | GFP_TEMPORARY); 2400 exec2_list = kvmalloc_array(args->buffer_count + 1, sz, 2401 __GFP_NOWARN | GFP_TEMPORARY); 2402 if (exec_list == NULL || exec2_list == NULL) { 2403 DRM_DEBUG("Failed to allocate exec list for %d buffers\n", 2404 args->buffer_count); 2405 kvfree(exec_list); 2406 kvfree(exec2_list); 2407 return -ENOMEM; 2408 } 2409 err = copy_from_user(exec_list, 2410 u64_to_user_ptr(args->buffers_ptr), 2411 sizeof(*exec_list) * args->buffer_count); 2412 if (err) { 2413 DRM_DEBUG("copy %d exec entries failed %d\n", 2414 args->buffer_count, err); 2415 kvfree(exec_list); 2416 kvfree(exec2_list); 2417 return -EFAULT; 2418 } 2419 2420 for (i = 0; i < args->buffer_count; i++) { 2421 exec2_list[i].handle = exec_list[i].handle; 2422 exec2_list[i].relocation_count = exec_list[i].relocation_count; 2423 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 2424 exec2_list[i].alignment = exec_list[i].alignment; 2425 exec2_list[i].offset = exec_list[i].offset; 2426 if (INTEL_GEN(to_i915(dev)) < 4) 2427 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 2428 else 2429 exec2_list[i].flags = 0; 2430 } 2431 2432 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list); 2433 if (exec2.flags & __EXEC_HAS_RELOC) { 2434 struct drm_i915_gem_exec_object __user *user_exec_list = 2435 u64_to_user_ptr(args->buffers_ptr); 2436 2437 /* Copy the new buffer offsets back to the user's exec list. */ 2438 for (i = 0; i < args->buffer_count; i++) { 2439 if (!(exec2_list[i].offset & UPDATE)) 2440 continue; 2441 2442 exec2_list[i].offset = 2443 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2444 exec2_list[i].offset &= PIN_OFFSET_MASK; 2445 if (__copy_to_user(&user_exec_list[i].offset, 2446 &exec2_list[i].offset, 2447 sizeof(user_exec_list[i].offset))) 2448 break; 2449 } 2450 } 2451 2452 kvfree(exec_list); 2453 kvfree(exec2_list); 2454 return err; 2455} 2456 2457int 2458i915_gem_execbuffer2(struct drm_device *dev, void *data, 2459 struct drm_file *file) 2460{ 2461 const size_t sz = sizeof(struct drm_i915_gem_exec_object2); 2462 struct drm_i915_gem_execbuffer2 *args = data; 2463 struct drm_i915_gem_exec_object2 *exec2_list; 2464 int err; 2465 2466 if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) { 2467 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count); 2468 return -EINVAL; 2469 } 2470 2471 if (!i915_gem_check_execbuffer(args)) 2472 return -EINVAL; 2473 2474 /* Allocate an extra slot for use by the command parser */ 2475 exec2_list = kvmalloc_array(args->buffer_count + 1, sz, 2476 __GFP_NOWARN | GFP_TEMPORARY); 2477 if (exec2_list == NULL) { 2478 DRM_DEBUG("Failed to allocate exec list for %d buffers\n", 2479 args->buffer_count); 2480 return -ENOMEM; 2481 } 2482 if (copy_from_user(exec2_list, 2483 u64_to_user_ptr(args->buffers_ptr), 2484 sizeof(*exec2_list) * args->buffer_count)) { 2485 DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count); 2486 kvfree(exec2_list); 2487 return -EFAULT; 2488 } 2489 2490 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 2491 2492 /* 2493 * Now that we have begun execution of the batchbuffer, we ignore 2494 * any new error after this point. Also given that we have already 2495 * updated the associated relocations, we try to write out the current 2496 * object locations irrespective of any error. 2497 */ 2498 if (args->flags & __EXEC_HAS_RELOC) { 2499 struct drm_i915_gem_exec_object2 __user *user_exec_list = 2500 u64_to_user_ptr(args->buffers_ptr); 2501 unsigned int i; 2502 2503 /* Copy the new buffer offsets back to the user's exec list. */ 2504 user_access_begin(); 2505 for (i = 0; i < args->buffer_count; i++) { 2506 if (!(exec2_list[i].offset & UPDATE)) 2507 continue; 2508 2509 exec2_list[i].offset = 2510 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2511 unsafe_put_user(exec2_list[i].offset, 2512 &user_exec_list[i].offset, 2513 end_user); 2514 } 2515end_user: 2516 user_access_end(); 2517 } 2518 2519 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 2520 kvfree(exec2_list); 2521 return err; 2522}