at v4.13 945 lines 24 kB view raw
1#ifndef _ASM_X86_PROCESSOR_H 2#define _ASM_X86_PROCESSOR_H 3 4#include <asm/processor-flags.h> 5 6/* Forward declaration, a strange C thing */ 7struct task_struct; 8struct mm_struct; 9struct vm86; 10 11#include <asm/math_emu.h> 12#include <asm/segment.h> 13#include <asm/types.h> 14#include <uapi/asm/sigcontext.h> 15#include <asm/current.h> 16#include <asm/cpufeatures.h> 17#include <asm/page.h> 18#include <asm/pgtable_types.h> 19#include <asm/percpu.h> 20#include <asm/msr.h> 21#include <asm/desc_defs.h> 22#include <asm/nops.h> 23#include <asm/special_insns.h> 24#include <asm/fpu/types.h> 25 26#include <linux/personality.h> 27#include <linux/cache.h> 28#include <linux/threads.h> 29#include <linux/math64.h> 30#include <linux/err.h> 31#include <linux/irqflags.h> 32 33/* 34 * We handle most unaligned accesses in hardware. On the other hand 35 * unaligned DMA can be quite expensive on some Nehalem processors. 36 * 37 * Based on this we disable the IP header alignment in network drivers. 38 */ 39#define NET_IP_ALIGN 0 40 41#define HBP_NUM 4 42/* 43 * Default implementation of macro that returns current 44 * instruction pointer ("program counter"). 45 */ 46static inline void *current_text_addr(void) 47{ 48 void *pc; 49 50 asm volatile("mov $1f, %0; 1:":"=r" (pc)); 51 52 return pc; 53} 54 55/* 56 * These alignment constraints are for performance in the vSMP case, 57 * but in the task_struct case we must also meet hardware imposed 58 * alignment requirements of the FPU state: 59 */ 60#ifdef CONFIG_X86_VSMP 61# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 62# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 63#else 64# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 65# define ARCH_MIN_MMSTRUCT_ALIGN 0 66#endif 67 68enum tlb_infos { 69 ENTRIES, 70 NR_INFO 71}; 72 73extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 74extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 75extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 76extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 77extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 78extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 79extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 80 81/* 82 * CPU type and hardware bug flags. Kept separately for each CPU. 83 * Members of this structure are referenced in head_32.S, so think twice 84 * before touching them. [mj] 85 */ 86 87struct cpuinfo_x86 { 88 __u8 x86; /* CPU family */ 89 __u8 x86_vendor; /* CPU vendor */ 90 __u8 x86_model; 91 __u8 x86_mask; 92#ifdef CONFIG_X86_64 93 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 94 int x86_tlbsize; 95#endif 96 __u8 x86_virt_bits; 97 __u8 x86_phys_bits; 98 /* CPUID returned core id bits: */ 99 __u8 x86_coreid_bits; 100 __u8 cu_id; 101 /* Max extended CPUID function supported: */ 102 __u32 extended_cpuid_level; 103 /* Maximum supported CPUID level, -1=no CPUID: */ 104 int cpuid_level; 105 __u32 x86_capability[NCAPINTS + NBUGINTS]; 106 char x86_vendor_id[16]; 107 char x86_model_id[64]; 108 /* in KB - valid for CPUS which support this call: */ 109 int x86_cache_size; 110 int x86_cache_alignment; /* In bytes */ 111 /* Cache QoS architectural values: */ 112 int x86_cache_max_rmid; /* max index */ 113 int x86_cache_occ_scale; /* scale to bytes */ 114 int x86_power; 115 unsigned long loops_per_jiffy; 116 /* cpuid returned max cores value: */ 117 u16 x86_max_cores; 118 u16 apicid; 119 u16 initial_apicid; 120 u16 x86_clflush_size; 121 /* number of cores as seen by the OS: */ 122 u16 booted_cores; 123 /* Physical processor id: */ 124 u16 phys_proc_id; 125 /* Logical processor id: */ 126 u16 logical_proc_id; 127 /* Core id: */ 128 u16 cpu_core_id; 129 /* Index into per_cpu list: */ 130 u16 cpu_index; 131 u32 microcode; 132} __randomize_layout; 133 134struct cpuid_regs { 135 u32 eax, ebx, ecx, edx; 136}; 137 138enum cpuid_regs_idx { 139 CPUID_EAX = 0, 140 CPUID_EBX, 141 CPUID_ECX, 142 CPUID_EDX, 143}; 144 145#define X86_VENDOR_INTEL 0 146#define X86_VENDOR_CYRIX 1 147#define X86_VENDOR_AMD 2 148#define X86_VENDOR_UMC 3 149#define X86_VENDOR_CENTAUR 5 150#define X86_VENDOR_TRANSMETA 7 151#define X86_VENDOR_NSC 8 152#define X86_VENDOR_NUM 9 153 154#define X86_VENDOR_UNKNOWN 0xff 155 156/* 157 * capabilities of CPUs 158 */ 159extern struct cpuinfo_x86 boot_cpu_data; 160extern struct cpuinfo_x86 new_cpu_data; 161 162extern struct tss_struct doublefault_tss; 163extern __u32 cpu_caps_cleared[NCAPINTS]; 164extern __u32 cpu_caps_set[NCAPINTS]; 165 166#ifdef CONFIG_SMP 167DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 168#define cpu_data(cpu) per_cpu(cpu_info, cpu) 169#else 170#define cpu_info boot_cpu_data 171#define cpu_data(cpu) boot_cpu_data 172#endif 173 174extern const struct seq_operations cpuinfo_op; 175 176#define cache_line_size() (boot_cpu_data.x86_cache_alignment) 177 178extern void cpu_detect(struct cpuinfo_x86 *c); 179 180extern void early_cpu_init(void); 181extern void identify_boot_cpu(void); 182extern void identify_secondary_cpu(struct cpuinfo_x86 *); 183extern void print_cpu_info(struct cpuinfo_x86 *); 184void print_cpu_msr(struct cpuinfo_x86 *); 185extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c); 186extern u32 get_scattered_cpuid_leaf(unsigned int level, 187 unsigned int sub_leaf, 188 enum cpuid_regs_idx reg); 189extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c); 190extern void init_amd_cacheinfo(struct cpuinfo_x86 *c); 191 192extern void detect_extended_topology(struct cpuinfo_x86 *c); 193extern void detect_ht(struct cpuinfo_x86 *c); 194 195#ifdef CONFIG_X86_32 196extern int have_cpuid_p(void); 197#else 198static inline int have_cpuid_p(void) 199{ 200 return 1; 201} 202#endif 203static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 204 unsigned int *ecx, unsigned int *edx) 205{ 206 /* ecx is often an input as well as an output. */ 207 asm volatile("cpuid" 208 : "=a" (*eax), 209 "=b" (*ebx), 210 "=c" (*ecx), 211 "=d" (*edx) 212 : "0" (*eax), "2" (*ecx) 213 : "memory"); 214} 215 216#define native_cpuid_reg(reg) \ 217static inline unsigned int native_cpuid_##reg(unsigned int op) \ 218{ \ 219 unsigned int eax = op, ebx, ecx = 0, edx; \ 220 \ 221 native_cpuid(&eax, &ebx, &ecx, &edx); \ 222 \ 223 return reg; \ 224} 225 226/* 227 * Native CPUID functions returning a single datum. 228 */ 229native_cpuid_reg(eax) 230native_cpuid_reg(ebx) 231native_cpuid_reg(ecx) 232native_cpuid_reg(edx) 233 234/* 235 * Friendlier CR3 helpers. 236 */ 237static inline unsigned long read_cr3_pa(void) 238{ 239 return __read_cr3() & CR3_ADDR_MASK; 240} 241 242static inline void load_cr3(pgd_t *pgdir) 243{ 244 write_cr3(__pa(pgdir)); 245} 246 247#ifdef CONFIG_X86_32 248/* This is the TSS defined by the hardware. */ 249struct x86_hw_tss { 250 unsigned short back_link, __blh; 251 unsigned long sp0; 252 unsigned short ss0, __ss0h; 253 unsigned long sp1; 254 255 /* 256 * We don't use ring 1, so ss1 is a convenient scratch space in 257 * the same cacheline as sp0. We use ss1 to cache the value in 258 * MSR_IA32_SYSENTER_CS. When we context switch 259 * MSR_IA32_SYSENTER_CS, we first check if the new value being 260 * written matches ss1, and, if it's not, then we wrmsr the new 261 * value and update ss1. 262 * 263 * The only reason we context switch MSR_IA32_SYSENTER_CS is 264 * that we set it to zero in vm86 tasks to avoid corrupting the 265 * stack if we were to go through the sysenter path from vm86 266 * mode. 267 */ 268 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 269 270 unsigned short __ss1h; 271 unsigned long sp2; 272 unsigned short ss2, __ss2h; 273 unsigned long __cr3; 274 unsigned long ip; 275 unsigned long flags; 276 unsigned long ax; 277 unsigned long cx; 278 unsigned long dx; 279 unsigned long bx; 280 unsigned long sp; 281 unsigned long bp; 282 unsigned long si; 283 unsigned long di; 284 unsigned short es, __esh; 285 unsigned short cs, __csh; 286 unsigned short ss, __ssh; 287 unsigned short ds, __dsh; 288 unsigned short fs, __fsh; 289 unsigned short gs, __gsh; 290 unsigned short ldt, __ldth; 291 unsigned short trace; 292 unsigned short io_bitmap_base; 293 294} __attribute__((packed)); 295#else 296struct x86_hw_tss { 297 u32 reserved1; 298 u64 sp0; 299 u64 sp1; 300 u64 sp2; 301 u64 reserved2; 302 u64 ist[7]; 303 u32 reserved3; 304 u32 reserved4; 305 u16 reserved5; 306 u16 io_bitmap_base; 307 308} __attribute__((packed)); 309#endif 310 311/* 312 * IO-bitmap sizes: 313 */ 314#define IO_BITMAP_BITS 65536 315#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8) 316#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long)) 317#define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap) 318#define INVALID_IO_BITMAP_OFFSET 0x8000 319 320struct tss_struct { 321 /* 322 * The hardware state: 323 */ 324 struct x86_hw_tss x86_tss; 325 326 /* 327 * The extra 1 is there because the CPU will access an 328 * additional byte beyond the end of the IO permission 329 * bitmap. The extra byte must be all 1 bits, and must 330 * be within the limit. 331 */ 332 unsigned long io_bitmap[IO_BITMAP_LONGS + 1]; 333 334#ifdef CONFIG_X86_32 335 /* 336 * Space for the temporary SYSENTER stack. 337 */ 338 unsigned long SYSENTER_stack_canary; 339 unsigned long SYSENTER_stack[64]; 340#endif 341 342} ____cacheline_aligned; 343 344DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss); 345 346/* 347 * sizeof(unsigned long) coming from an extra "long" at the end 348 * of the iobitmap. 349 * 350 * -1? seg base+limit should be pointing to the address of the 351 * last valid byte 352 */ 353#define __KERNEL_TSS_LIMIT \ 354 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1) 355 356#ifdef CONFIG_X86_32 357DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 358#endif 359 360/* 361 * Save the original ist values for checking stack pointers during debugging 362 */ 363struct orig_ist { 364 unsigned long ist[7]; 365}; 366 367#ifdef CONFIG_X86_64 368DECLARE_PER_CPU(struct orig_ist, orig_ist); 369 370union irq_stack_union { 371 char irq_stack[IRQ_STACK_SIZE]; 372 /* 373 * GCC hardcodes the stack canary as %gs:40. Since the 374 * irq_stack is the object at %gs:0, we reserve the bottom 375 * 48 bytes of the irq stack for the canary. 376 */ 377 struct { 378 char gs_base[40]; 379 unsigned long stack_canary; 380 }; 381}; 382 383DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible; 384DECLARE_INIT_PER_CPU(irq_stack_union); 385 386DECLARE_PER_CPU(char *, irq_stack_ptr); 387DECLARE_PER_CPU(unsigned int, irq_count); 388extern asmlinkage void ignore_sysret(void); 389#else /* X86_64 */ 390#ifdef CONFIG_CC_STACKPROTECTOR 391/* 392 * Make sure stack canary segment base is cached-aligned: 393 * "For Intel Atom processors, avoid non zero segment base address 394 * that is not aligned to cache line boundary at all cost." 395 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 396 */ 397struct stack_canary { 398 char __pad[20]; /* canary at %gs:20 */ 399 unsigned long canary; 400}; 401DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 402#endif 403/* 404 * per-CPU IRQ handling stacks 405 */ 406struct irq_stack { 407 u32 stack[THREAD_SIZE/sizeof(u32)]; 408} __aligned(THREAD_SIZE); 409 410DECLARE_PER_CPU(struct irq_stack *, hardirq_stack); 411DECLARE_PER_CPU(struct irq_stack *, softirq_stack); 412#endif /* X86_64 */ 413 414extern unsigned int fpu_kernel_xstate_size; 415extern unsigned int fpu_user_xstate_size; 416 417struct perf_event; 418 419typedef struct { 420 unsigned long seg; 421} mm_segment_t; 422 423struct thread_struct { 424 /* Cached TLS descriptors: */ 425 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 426 unsigned long sp0; 427 unsigned long sp; 428#ifdef CONFIG_X86_32 429 unsigned long sysenter_cs; 430#else 431 unsigned short es; 432 unsigned short ds; 433 unsigned short fsindex; 434 unsigned short gsindex; 435#endif 436 437 u32 status; /* thread synchronous flags */ 438 439#ifdef CONFIG_X86_64 440 unsigned long fsbase; 441 unsigned long gsbase; 442#else 443 /* 444 * XXX: this could presumably be unsigned short. Alternatively, 445 * 32-bit kernels could be taught to use fsindex instead. 446 */ 447 unsigned long fs; 448 unsigned long gs; 449#endif 450 451 /* Save middle states of ptrace breakpoints */ 452 struct perf_event *ptrace_bps[HBP_NUM]; 453 /* Debug status used for traps, single steps, etc... */ 454 unsigned long debugreg6; 455 /* Keep track of the exact dr7 value set by the user */ 456 unsigned long ptrace_dr7; 457 /* Fault info: */ 458 unsigned long cr2; 459 unsigned long trap_nr; 460 unsigned long error_code; 461#ifdef CONFIG_VM86 462 /* Virtual 86 mode info */ 463 struct vm86 *vm86; 464#endif 465 /* IO permissions: */ 466 unsigned long *io_bitmap_ptr; 467 unsigned long iopl; 468 /* Max allowed port in the bitmap, in bytes: */ 469 unsigned io_bitmap_max; 470 471 mm_segment_t addr_limit; 472 473 unsigned int sig_on_uaccess_err:1; 474 unsigned int uaccess_err:1; /* uaccess failed */ 475 476 /* Floating point and extended processor state */ 477 struct fpu fpu; 478 /* 479 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 480 * the end. 481 */ 482}; 483 484/* 485 * Thread-synchronous status. 486 * 487 * This is different from the flags in that nobody else 488 * ever touches our thread-synchronous status, so we don't 489 * have to worry about atomic accesses. 490 */ 491#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 492 493/* 494 * Set IOPL bits in EFLAGS from given mask 495 */ 496static inline void native_set_iopl_mask(unsigned mask) 497{ 498#ifdef CONFIG_X86_32 499 unsigned int reg; 500 501 asm volatile ("pushfl;" 502 "popl %0;" 503 "andl %1, %0;" 504 "orl %2, %0;" 505 "pushl %0;" 506 "popfl" 507 : "=&r" (reg) 508 : "i" (~X86_EFLAGS_IOPL), "r" (mask)); 509#endif 510} 511 512static inline void 513native_load_sp0(struct tss_struct *tss, struct thread_struct *thread) 514{ 515 tss->x86_tss.sp0 = thread->sp0; 516#ifdef CONFIG_X86_32 517 /* Only happens when SEP is enabled, no need to test "SEP"arately: */ 518 if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) { 519 tss->x86_tss.ss1 = thread->sysenter_cs; 520 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0); 521 } 522#endif 523} 524 525static inline void native_swapgs(void) 526{ 527#ifdef CONFIG_X86_64 528 asm volatile("swapgs" ::: "memory"); 529#endif 530} 531 532static inline unsigned long current_top_of_stack(void) 533{ 534#ifdef CONFIG_X86_64 535 return this_cpu_read_stable(cpu_tss.x86_tss.sp0); 536#else 537 /* sp0 on x86_32 is special in and around vm86 mode. */ 538 return this_cpu_read_stable(cpu_current_top_of_stack); 539#endif 540} 541 542#ifdef CONFIG_PARAVIRT 543#include <asm/paravirt.h> 544#else 545#define __cpuid native_cpuid 546 547static inline void load_sp0(struct tss_struct *tss, 548 struct thread_struct *thread) 549{ 550 native_load_sp0(tss, thread); 551} 552 553#define set_iopl_mask native_set_iopl_mask 554#endif /* CONFIG_PARAVIRT */ 555 556/* Free all resources held by a thread. */ 557extern void release_thread(struct task_struct *); 558 559unsigned long get_wchan(struct task_struct *p); 560 561/* 562 * Generic CPUID function 563 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 564 * resulting in stale register contents being returned. 565 */ 566static inline void cpuid(unsigned int op, 567 unsigned int *eax, unsigned int *ebx, 568 unsigned int *ecx, unsigned int *edx) 569{ 570 *eax = op; 571 *ecx = 0; 572 __cpuid(eax, ebx, ecx, edx); 573} 574 575/* Some CPUID calls want 'count' to be placed in ecx */ 576static inline void cpuid_count(unsigned int op, int count, 577 unsigned int *eax, unsigned int *ebx, 578 unsigned int *ecx, unsigned int *edx) 579{ 580 *eax = op; 581 *ecx = count; 582 __cpuid(eax, ebx, ecx, edx); 583} 584 585/* 586 * CPUID functions returning a single datum 587 */ 588static inline unsigned int cpuid_eax(unsigned int op) 589{ 590 unsigned int eax, ebx, ecx, edx; 591 592 cpuid(op, &eax, &ebx, &ecx, &edx); 593 594 return eax; 595} 596 597static inline unsigned int cpuid_ebx(unsigned int op) 598{ 599 unsigned int eax, ebx, ecx, edx; 600 601 cpuid(op, &eax, &ebx, &ecx, &edx); 602 603 return ebx; 604} 605 606static inline unsigned int cpuid_ecx(unsigned int op) 607{ 608 unsigned int eax, ebx, ecx, edx; 609 610 cpuid(op, &eax, &ebx, &ecx, &edx); 611 612 return ecx; 613} 614 615static inline unsigned int cpuid_edx(unsigned int op) 616{ 617 unsigned int eax, ebx, ecx, edx; 618 619 cpuid(op, &eax, &ebx, &ecx, &edx); 620 621 return edx; 622} 623 624/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ 625static __always_inline void rep_nop(void) 626{ 627 asm volatile("rep; nop" ::: "memory"); 628} 629 630static __always_inline void cpu_relax(void) 631{ 632 rep_nop(); 633} 634 635/* 636 * This function forces the icache and prefetched instruction stream to 637 * catch up with reality in two very specific cases: 638 * 639 * a) Text was modified using one virtual address and is about to be executed 640 * from the same physical page at a different virtual address. 641 * 642 * b) Text was modified on a different CPU, may subsequently be 643 * executed on this CPU, and you want to make sure the new version 644 * gets executed. This generally means you're calling this in a IPI. 645 * 646 * If you're calling this for a different reason, you're probably doing 647 * it wrong. 648 */ 649static inline void sync_core(void) 650{ 651 /* 652 * There are quite a few ways to do this. IRET-to-self is nice 653 * because it works on every CPU, at any CPL (so it's compatible 654 * with paravirtualization), and it never exits to a hypervisor. 655 * The only down sides are that it's a bit slow (it seems to be 656 * a bit more than 2x slower than the fastest options) and that 657 * it unmasks NMIs. The "push %cs" is needed because, in 658 * paravirtual environments, __KERNEL_CS may not be a valid CS 659 * value when we do IRET directly. 660 * 661 * In case NMI unmasking or performance ever becomes a problem, 662 * the next best option appears to be MOV-to-CR2 and an 663 * unconditional jump. That sequence also works on all CPUs, 664 * but it will fault at CPL3 (i.e. Xen PV and lguest). 665 * 666 * CPUID is the conventional way, but it's nasty: it doesn't 667 * exist on some 486-like CPUs, and it usually exits to a 668 * hypervisor. 669 * 670 * Like all of Linux's memory ordering operations, this is a 671 * compiler barrier as well. 672 */ 673 register void *__sp asm(_ASM_SP); 674 675#ifdef CONFIG_X86_32 676 asm volatile ( 677 "pushfl\n\t" 678 "pushl %%cs\n\t" 679 "pushl $1f\n\t" 680 "iret\n\t" 681 "1:" 682 : "+r" (__sp) : : "memory"); 683#else 684 unsigned int tmp; 685 686 asm volatile ( 687 "mov %%ss, %0\n\t" 688 "pushq %q0\n\t" 689 "pushq %%rsp\n\t" 690 "addq $8, (%%rsp)\n\t" 691 "pushfq\n\t" 692 "mov %%cs, %0\n\t" 693 "pushq %q0\n\t" 694 "pushq $1f\n\t" 695 "iretq\n\t" 696 "1:" 697 : "=&r" (tmp), "+r" (__sp) : : "cc", "memory"); 698#endif 699} 700 701extern void select_idle_routine(const struct cpuinfo_x86 *c); 702extern void amd_e400_c1e_apic_setup(void); 703 704extern unsigned long boot_option_idle_override; 705 706enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 707 IDLE_POLL}; 708 709extern void enable_sep_cpu(void); 710extern int sysenter_setup(void); 711 712extern void early_trap_init(void); 713void early_trap_pf_init(void); 714 715/* Defined in head.S */ 716extern struct desc_ptr early_gdt_descr; 717 718extern void cpu_set_gdt(int); 719extern void switch_to_new_gdt(int); 720extern void load_direct_gdt(int); 721extern void load_fixmap_gdt(int); 722extern void load_percpu_segment(int); 723extern void cpu_init(void); 724 725static inline unsigned long get_debugctlmsr(void) 726{ 727 unsigned long debugctlmsr = 0; 728 729#ifndef CONFIG_X86_DEBUGCTLMSR 730 if (boot_cpu_data.x86 < 6) 731 return 0; 732#endif 733 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 734 735 return debugctlmsr; 736} 737 738static inline void update_debugctlmsr(unsigned long debugctlmsr) 739{ 740#ifndef CONFIG_X86_DEBUGCTLMSR 741 if (boot_cpu_data.x86 < 6) 742 return; 743#endif 744 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 745} 746 747extern void set_task_blockstep(struct task_struct *task, bool on); 748 749/* Boot loader type from the setup header: */ 750extern int bootloader_type; 751extern int bootloader_version; 752 753extern char ignore_fpu_irq; 754 755#define HAVE_ARCH_PICK_MMAP_LAYOUT 1 756#define ARCH_HAS_PREFETCHW 757#define ARCH_HAS_SPINLOCK_PREFETCH 758 759#ifdef CONFIG_X86_32 760# define BASE_PREFETCH "" 761# define ARCH_HAS_PREFETCH 762#else 763# define BASE_PREFETCH "prefetcht0 %P1" 764#endif 765 766/* 767 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 768 * 769 * It's not worth to care about 3dnow prefetches for the K6 770 * because they are microcoded there and very slow. 771 */ 772static inline void prefetch(const void *x) 773{ 774 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 775 X86_FEATURE_XMM, 776 "m" (*(const char *)x)); 777} 778 779/* 780 * 3dnow prefetch to get an exclusive cache line. 781 * Useful for spinlocks to avoid one state transition in the 782 * cache coherency protocol: 783 */ 784static inline void prefetchw(const void *x) 785{ 786 alternative_input(BASE_PREFETCH, "prefetchw %P1", 787 X86_FEATURE_3DNOWPREFETCH, 788 "m" (*(const char *)x)); 789} 790 791static inline void spin_lock_prefetch(const void *x) 792{ 793 prefetchw(x); 794} 795 796#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 797 TOP_OF_KERNEL_STACK_PADDING) 798 799#ifdef CONFIG_X86_32 800/* 801 * User space process size: 3GB (default). 802 */ 803#define IA32_PAGE_OFFSET PAGE_OFFSET 804#define TASK_SIZE PAGE_OFFSET 805#define TASK_SIZE_MAX TASK_SIZE 806#define STACK_TOP TASK_SIZE 807#define STACK_TOP_MAX STACK_TOP 808 809#define INIT_THREAD { \ 810 .sp0 = TOP_OF_INIT_STACK, \ 811 .sysenter_cs = __KERNEL_CS, \ 812 .io_bitmap_ptr = NULL, \ 813 .addr_limit = KERNEL_DS, \ 814} 815 816/* 817 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack. 818 * This is necessary to guarantee that the entire "struct pt_regs" 819 * is accessible even if the CPU haven't stored the SS/ESP registers 820 * on the stack (interrupt gate does not save these registers 821 * when switching to the same priv ring). 822 * Therefore beware: accessing the ss/esp fields of the 823 * "struct pt_regs" is possible, but they may contain the 824 * completely wrong values. 825 */ 826#define task_pt_regs(task) \ 827({ \ 828 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 829 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 830 ((struct pt_regs *)__ptr) - 1; \ 831}) 832 833#define KSTK_ESP(task) (task_pt_regs(task)->sp) 834 835#else 836/* 837 * User space process size. 47bits minus one guard page. The guard 838 * page is necessary on Intel CPUs: if a SYSCALL instruction is at 839 * the highest possible canonical userspace address, then that 840 * syscall will enter the kernel with a non-canonical return 841 * address, and SYSRET will explode dangerously. We avoid this 842 * particular problem by preventing anything from being mapped 843 * at the maximum canonical address. 844 */ 845#define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE) 846 847/* This decides where the kernel will search for a free chunk of vm 848 * space during mmap's. 849 */ 850#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 851 0xc0000000 : 0xFFFFe000) 852 853#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 854 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 855#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 856 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 857 858#define STACK_TOP TASK_SIZE 859#define STACK_TOP_MAX TASK_SIZE_MAX 860 861#define INIT_THREAD { \ 862 .sp0 = TOP_OF_INIT_STACK, \ 863 .addr_limit = KERNEL_DS, \ 864} 865 866#define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1) 867extern unsigned long KSTK_ESP(struct task_struct *task); 868 869#endif /* CONFIG_X86_64 */ 870 871extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 872 unsigned long new_sp); 873 874/* 875 * This decides where the kernel will search for a free chunk of vm 876 * space during mmap's. 877 */ 878#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 879#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE) 880 881#define KSTK_EIP(task) (task_pt_regs(task)->ip) 882 883/* Get/set a process' ability to use the timestamp counter instruction */ 884#define GET_TSC_CTL(adr) get_tsc_mode((adr)) 885#define SET_TSC_CTL(val) set_tsc_mode((val)) 886 887extern int get_tsc_mode(unsigned long adr); 888extern int set_tsc_mode(unsigned int val); 889 890DECLARE_PER_CPU(u64, msr_misc_features_shadow); 891 892/* Register/unregister a process' MPX related resource */ 893#define MPX_ENABLE_MANAGEMENT() mpx_enable_management() 894#define MPX_DISABLE_MANAGEMENT() mpx_disable_management() 895 896#ifdef CONFIG_X86_INTEL_MPX 897extern int mpx_enable_management(void); 898extern int mpx_disable_management(void); 899#else 900static inline int mpx_enable_management(void) 901{ 902 return -EINVAL; 903} 904static inline int mpx_disable_management(void) 905{ 906 return -EINVAL; 907} 908#endif /* CONFIG_X86_INTEL_MPX */ 909 910#ifdef CONFIG_CPU_SUP_AMD 911extern u16 amd_get_nb_id(int cpu); 912extern u32 amd_get_nodes_per_socket(void); 913#else 914static inline u16 amd_get_nb_id(int cpu) { return 0; } 915static inline u32 amd_get_nodes_per_socket(void) { return 0; } 916#endif 917 918static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 919{ 920 uint32_t base, eax, signature[3]; 921 922 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 923 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 924 925 if (!memcmp(sig, signature, 12) && 926 (leaves == 0 || ((eax - base) >= leaves))) 927 return base; 928 } 929 930 return 0; 931} 932 933extern unsigned long arch_align_stack(unsigned long sp); 934extern void free_init_pages(char *what, unsigned long begin, unsigned long end); 935 936void default_idle(void); 937#ifdef CONFIG_XEN 938bool xen_set_default_idle(void); 939#else 940#define xen_set_default_idle 0 941#endif 942 943void stop_this_cpu(void *dummy); 944void df_debug(struct pt_regs *regs, long error_code); 945#endif /* _ASM_X86_PROCESSOR_H */