at v4.13 15 kB view raw
1/* 2 * Copyright 2010 Tilera Corporation. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation, version 2. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 11 * NON INFRINGEMENT. See the GNU General Public License for 12 * more details. 13 */ 14 15#include <linux/sched.h> 16#include <linux/kernel.h> 17#include <linux/errno.h> 18#include <linux/mm.h> 19#include <linux/swap.h> 20#include <linux/highmem.h> 21#include <linux/slab.h> 22#include <linux/pagemap.h> 23#include <linux/spinlock.h> 24#include <linux/cpumask.h> 25#include <linux/module.h> 26#include <linux/io.h> 27#include <linux/vmalloc.h> 28#include <linux/smp.h> 29 30#include <asm/pgtable.h> 31#include <asm/pgalloc.h> 32#include <asm/fixmap.h> 33#include <asm/tlb.h> 34#include <asm/tlbflush.h> 35#include <asm/homecache.h> 36 37#define K(x) ((x) << (PAGE_SHIFT-10)) 38 39/** 40 * shatter_huge_page() - ensure a given address is mapped by a small page. 41 * 42 * This function converts a huge PTE mapping kernel LOWMEM into a bunch 43 * of small PTEs with the same caching. No cache flush required, but we 44 * must do a global TLB flush. 45 * 46 * Any caller that wishes to modify a kernel mapping that might 47 * have been made with a huge page should call this function, 48 * since doing so properly avoids race conditions with installing the 49 * newly-shattered page and then flushing all the TLB entries. 50 * 51 * @addr: Address at which to shatter any existing huge page. 52 */ 53void shatter_huge_page(unsigned long addr) 54{ 55 pgd_t *pgd; 56 pud_t *pud; 57 pmd_t *pmd; 58 unsigned long flags = 0; /* happy compiler */ 59#ifdef __PAGETABLE_PMD_FOLDED 60 struct list_head *pos; 61#endif 62 63 /* Get a pointer to the pmd entry that we need to change. */ 64 addr &= HPAGE_MASK; 65 BUG_ON(pgd_addr_invalid(addr)); 66 BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */ 67 pgd = swapper_pg_dir + pgd_index(addr); 68 pud = pud_offset(pgd, addr); 69 BUG_ON(!pud_present(*pud)); 70 pmd = pmd_offset(pud, addr); 71 BUG_ON(!pmd_present(*pmd)); 72 if (!pmd_huge_page(*pmd)) 73 return; 74 75 spin_lock_irqsave(&init_mm.page_table_lock, flags); 76 if (!pmd_huge_page(*pmd)) { 77 /* Lost the race to convert the huge page. */ 78 spin_unlock_irqrestore(&init_mm.page_table_lock, flags); 79 return; 80 } 81 82 /* Shatter the huge page into the preallocated L2 page table. */ 83 pmd_populate_kernel(&init_mm, pmd, get_prealloc_pte(pmd_pfn(*pmd))); 84 85#ifdef __PAGETABLE_PMD_FOLDED 86 /* Walk every pgd on the system and update the pmd there. */ 87 spin_lock(&pgd_lock); 88 list_for_each(pos, &pgd_list) { 89 pmd_t *copy_pmd; 90 pgd = list_to_pgd(pos) + pgd_index(addr); 91 pud = pud_offset(pgd, addr); 92 copy_pmd = pmd_offset(pud, addr); 93 __set_pmd(copy_pmd, *pmd); 94 } 95 spin_unlock(&pgd_lock); 96#endif 97 98 /* Tell every cpu to notice the change. */ 99 flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE, 100 cpu_possible_mask, NULL, 0); 101 102 /* Hold the lock until the TLB flush is finished to avoid races. */ 103 spin_unlock_irqrestore(&init_mm.page_table_lock, flags); 104} 105 106/* 107 * List of all pgd's needed so it can invalidate entries in both cached 108 * and uncached pgd's. This is essentially codepath-based locking 109 * against pageattr.c; it is the unique case in which a valid change 110 * of kernel pagetables can't be lazily synchronized by vmalloc faults. 111 * vmalloc faults work because attached pagetables are never freed. 112 * 113 * The lock is always taken with interrupts disabled, unlike on x86 114 * and other platforms, because we need to take the lock in 115 * shatter_huge_page(), which may be called from an interrupt context. 116 * We are not at risk from the tlbflush IPI deadlock that was seen on 117 * x86, since we use the flush_remote() API to have the hypervisor do 118 * the TLB flushes regardless of irq disabling. 119 */ 120DEFINE_SPINLOCK(pgd_lock); 121LIST_HEAD(pgd_list); 122 123static inline void pgd_list_add(pgd_t *pgd) 124{ 125 list_add(pgd_to_list(pgd), &pgd_list); 126} 127 128static inline void pgd_list_del(pgd_t *pgd) 129{ 130 list_del(pgd_to_list(pgd)); 131} 132 133#define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET) 134#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START) 135 136static void pgd_ctor(pgd_t *pgd) 137{ 138 unsigned long flags; 139 140 memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t)); 141 spin_lock_irqsave(&pgd_lock, flags); 142 143#ifndef __tilegx__ 144 /* 145 * Check that the user interrupt vector has no L2. 146 * It never should for the swapper, and new page tables 147 * should always start with an empty user interrupt vector. 148 */ 149 BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0); 150#endif 151 152 memcpy(pgd + KERNEL_PGD_INDEX_START, 153 swapper_pg_dir + KERNEL_PGD_INDEX_START, 154 KERNEL_PGD_PTRS * sizeof(pgd_t)); 155 156 pgd_list_add(pgd); 157 spin_unlock_irqrestore(&pgd_lock, flags); 158} 159 160static void pgd_dtor(pgd_t *pgd) 161{ 162 unsigned long flags; /* can be called from interrupt context */ 163 164 spin_lock_irqsave(&pgd_lock, flags); 165 pgd_list_del(pgd); 166 spin_unlock_irqrestore(&pgd_lock, flags); 167} 168 169pgd_t *pgd_alloc(struct mm_struct *mm) 170{ 171 pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL); 172 if (pgd) 173 pgd_ctor(pgd); 174 return pgd; 175} 176 177void pgd_free(struct mm_struct *mm, pgd_t *pgd) 178{ 179 pgd_dtor(pgd); 180 kmem_cache_free(pgd_cache, pgd); 181} 182 183 184#define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER) 185 186struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address, 187 int order) 188{ 189 gfp_t flags = GFP_KERNEL|__GFP_ZERO; 190 struct page *p; 191 int i; 192 193 p = alloc_pages(flags, L2_USER_PGTABLE_ORDER); 194 if (p == NULL) 195 return NULL; 196 197 if (!pgtable_page_ctor(p)) { 198 __free_pages(p, L2_USER_PGTABLE_ORDER); 199 return NULL; 200 } 201 202 /* 203 * Make every page have a page_count() of one, not just the first. 204 * We don't use __GFP_COMP since it doesn't look like it works 205 * correctly with tlb_remove_page(). 206 */ 207 for (i = 1; i < order; ++i) { 208 init_page_count(p+i); 209 inc_zone_page_state(p+i, NR_PAGETABLE); 210 } 211 212 return p; 213} 214 215/* 216 * Free page immediately (used in __pte_alloc if we raced with another 217 * process). We have to correct whatever pte_alloc_one() did before 218 * returning the pages to the allocator. 219 */ 220void pgtable_free(struct mm_struct *mm, struct page *p, int order) 221{ 222 int i; 223 224 pgtable_page_dtor(p); 225 __free_page(p); 226 227 for (i = 1; i < order; ++i) { 228 __free_page(p+i); 229 dec_zone_page_state(p+i, NR_PAGETABLE); 230 } 231} 232 233void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte, 234 unsigned long address, int order) 235{ 236 int i; 237 238 pgtable_page_dtor(pte); 239 tlb_remove_page(tlb, pte); 240 241 for (i = 1; i < order; ++i) { 242 tlb_remove_page(tlb, pte + i); 243 dec_zone_page_state(pte + i, NR_PAGETABLE); 244 } 245} 246 247#ifndef __tilegx__ 248 249/* 250 * FIXME: needs to be atomic vs hypervisor writes. For now we make the 251 * window of vulnerability a bit smaller by doing an unlocked 8-bit update. 252 */ 253int ptep_test_and_clear_young(struct vm_area_struct *vma, 254 unsigned long addr, pte_t *ptep) 255{ 256#if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16 257# error Code assumes HV_PTE "accessed" bit in second byte 258#endif 259 u8 *tmp = (u8 *)ptep; 260 u8 second_byte = tmp[1]; 261 if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8)))) 262 return 0; 263 tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8)); 264 return 1; 265} 266 267/* 268 * This implementation is atomic vs hypervisor writes, since the hypervisor 269 * always writes the low word (where "accessed" and "dirty" are) and this 270 * routine only writes the high word. 271 */ 272void ptep_set_wrprotect(struct mm_struct *mm, 273 unsigned long addr, pte_t *ptep) 274{ 275#if HV_PTE_INDEX_WRITABLE < 32 276# error Code assumes HV_PTE "writable" bit in high word 277#endif 278 u32 *tmp = (u32 *)ptep; 279 tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32)); 280} 281 282#endif 283 284/* 285 * Return a pointer to the PTE that corresponds to the given 286 * address in the given page table. A NULL page table just uses 287 * the standard kernel page table; the preferred API in this case 288 * is virt_to_kpte(). 289 * 290 * The returned pointer can point to a huge page in other levels 291 * of the page table than the bottom, if the huge page is present 292 * in the page table. For bottom-level PTEs, the returned pointer 293 * can point to a PTE that is either present or not. 294 */ 295pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr) 296{ 297 pgd_t *pgd; 298 pud_t *pud; 299 pmd_t *pmd; 300 301 if (pgd_addr_invalid(addr)) 302 return NULL; 303 304 pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr); 305 pud = pud_offset(pgd, addr); 306 if (!pud_present(*pud)) 307 return NULL; 308 if (pud_huge_page(*pud)) 309 return (pte_t *)pud; 310 pmd = pmd_offset(pud, addr); 311 if (!pmd_present(*pmd)) 312 return NULL; 313 if (pmd_huge_page(*pmd)) 314 return (pte_t *)pmd; 315 return pte_offset_kernel(pmd, addr); 316} 317EXPORT_SYMBOL(virt_to_pte); 318 319pte_t *virt_to_kpte(unsigned long kaddr) 320{ 321 BUG_ON(kaddr < PAGE_OFFSET); 322 return virt_to_pte(NULL, kaddr); 323} 324EXPORT_SYMBOL(virt_to_kpte); 325 326pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu) 327{ 328 unsigned int width = smp_width; 329 int x = cpu % width; 330 int y = cpu / width; 331 BUG_ON(y >= smp_height); 332 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); 333 BUG_ON(cpu < 0 || cpu >= NR_CPUS); 334 BUG_ON(!cpu_is_valid_lotar(cpu)); 335 return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y)); 336} 337 338int get_remote_cache_cpu(pgprot_t prot) 339{ 340 HV_LOTAR lotar = hv_pte_get_lotar(prot); 341 int x = HV_LOTAR_X(lotar); 342 int y = HV_LOTAR_Y(lotar); 343 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); 344 return x + y * smp_width; 345} 346 347/* 348 * Convert a kernel VA to a PA and homing information. 349 */ 350int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte) 351{ 352 struct page *page = virt_to_page(va); 353 pte_t null_pte = { 0 }; 354 355 *cpa = __pa(va); 356 357 /* Note that this is not writing a page table, just returning a pte. */ 358 *pte = pte_set_home(null_pte, page_home(page)); 359 360 return 0; /* return non-zero if not hfh? */ 361} 362EXPORT_SYMBOL(va_to_cpa_and_pte); 363 364void __set_pte(pte_t *ptep, pte_t pte) 365{ 366#ifdef __tilegx__ 367 *ptep = pte; 368#else 369# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32 370# error Must write the present and migrating bits last 371# endif 372 if (pte_present(pte)) { 373 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); 374 barrier(); 375 ((u32 *)ptep)[0] = (u32)(pte_val(pte)); 376 } else { 377 ((u32 *)ptep)[0] = (u32)(pte_val(pte)); 378 barrier(); 379 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); 380 } 381#endif /* __tilegx__ */ 382} 383 384void set_pte(pte_t *ptep, pte_t pte) 385{ 386 if (pte_present(pte) && 387 (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) { 388 /* The PTE actually references physical memory. */ 389 unsigned long pfn = pte_pfn(pte); 390 if (pfn_valid(pfn)) { 391 /* Update the home of the PTE from the struct page. */ 392 pte = pte_set_home(pte, page_home(pfn_to_page(pfn))); 393 } else if (hv_pte_get_mode(pte) == 0) { 394 /* remap_pfn_range(), etc, must supply PTE mode. */ 395 panic("set_pte(): out-of-range PFN and mode 0\n"); 396 } 397 } 398 399 __set_pte(ptep, pte); 400} 401 402/* Can this mm load a PTE with cached_priority set? */ 403static inline int mm_is_priority_cached(struct mm_struct *mm) 404{ 405 return mm->context.priority_cached != 0; 406} 407 408/* 409 * Add a priority mapping to an mm_context and 410 * notify the hypervisor if this is the first one. 411 */ 412void start_mm_caching(struct mm_struct *mm) 413{ 414 if (!mm_is_priority_cached(mm)) { 415 mm->context.priority_cached = -1UL; 416 hv_set_caching(-1UL); 417 } 418} 419 420/* 421 * Validate and return the priority_cached flag. We know if it's zero 422 * that we don't need to scan, since we immediately set it non-zero 423 * when we first consider a MAP_CACHE_PRIORITY mapping. 424 * 425 * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it, 426 * since we're in an interrupt context (servicing switch_mm) we don't 427 * worry about it and don't unset the "priority_cached" field. 428 * Presumably we'll come back later and have more luck and clear 429 * the value then; for now we'll just keep the cache marked for priority. 430 */ 431static unsigned long update_priority_cached(struct mm_struct *mm) 432{ 433 if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) { 434 struct vm_area_struct *vm; 435 for (vm = mm->mmap; vm; vm = vm->vm_next) { 436 if (hv_pte_get_cached_priority(vm->vm_page_prot)) 437 break; 438 } 439 if (vm == NULL) 440 mm->context.priority_cached = 0; 441 up_write(&mm->mmap_sem); 442 } 443 return mm->context.priority_cached; 444} 445 446/* Set caching correctly for an mm that we are switching to. */ 447void check_mm_caching(struct mm_struct *prev, struct mm_struct *next) 448{ 449 if (!mm_is_priority_cached(next)) { 450 /* 451 * If the new mm doesn't use priority caching, just see if we 452 * need the hv_set_caching(), or can assume it's already zero. 453 */ 454 if (mm_is_priority_cached(prev)) 455 hv_set_caching(0); 456 } else { 457 hv_set_caching(update_priority_cached(next)); 458 } 459} 460 461#if CHIP_HAS_MMIO() 462 463/* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */ 464void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, 465 pgprot_t home) 466{ 467 void *addr; 468 struct vm_struct *area; 469 unsigned long offset, last_addr; 470 pgprot_t pgprot; 471 472 /* Don't allow wraparound or zero size */ 473 last_addr = phys_addr + size - 1; 474 if (!size || last_addr < phys_addr) 475 return NULL; 476 477 /* Create a read/write, MMIO VA mapping homed at the requested shim. */ 478 pgprot = PAGE_KERNEL; 479 pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO); 480 pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home)); 481 482 /* 483 * Mappings have to be page-aligned 484 */ 485 offset = phys_addr & ~PAGE_MASK; 486 phys_addr &= PAGE_MASK; 487 size = PAGE_ALIGN(last_addr+1) - phys_addr; 488 489 /* 490 * Ok, go for it.. 491 */ 492 area = get_vm_area(size, VM_IOREMAP /* | other flags? */); 493 if (!area) 494 return NULL; 495 area->phys_addr = phys_addr; 496 addr = area->addr; 497 if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size, 498 phys_addr, pgprot)) { 499 free_vm_area(area); 500 return NULL; 501 } 502 return (__force void __iomem *) (offset + (char *)addr); 503} 504EXPORT_SYMBOL(ioremap_prot); 505 506#if !defined(CONFIG_PCI) || !defined(CONFIG_TILEGX) 507/* ioremap is conditionally declared in pci_gx.c */ 508 509void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) 510{ 511 return NULL; 512} 513EXPORT_SYMBOL(ioremap); 514 515#endif 516 517/* Unmap an MMIO VA mapping. */ 518void iounmap(volatile void __iomem *addr_in) 519{ 520 volatile void __iomem *addr = (volatile void __iomem *) 521 (PAGE_MASK & (unsigned long __force)addr_in); 522#if 1 523 vunmap((void * __force)addr); 524#else 525 /* x86 uses this complicated flow instead of vunmap(). Is 526 * there any particular reason we should do the same? */ 527 struct vm_struct *p, *o; 528 529 /* Use the vm area unlocked, assuming the caller 530 ensures there isn't another iounmap for the same address 531 in parallel. Reuse of the virtual address is prevented by 532 leaving it in the global lists until we're done with it. 533 cpa takes care of the direct mappings. */ 534 p = find_vm_area((void *)addr); 535 536 if (!p) { 537 pr_err("iounmap: bad address %p\n", addr); 538 dump_stack(); 539 return; 540 } 541 542 /* Finally remove it */ 543 o = remove_vm_area((void *)addr); 544 BUG_ON(p != o || o == NULL); 545 kfree(p); 546#endif 547} 548EXPORT_SYMBOL(iounmap); 549 550#endif /* CHIP_HAS_MMIO() */