Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * This file contains ioremap and related functions for 64-bit machines.
3 *
4 * Derived from arch/ppc64/mm/init.c
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 *
7 * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
9 * Copyright (C) 1996 Paul Mackerras
10 *
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 *
14 * Dave Engebretsen <engebret@us.ibm.com>
15 * Rework for PPC64 port.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License
19 * as published by the Free Software Foundation; either version
20 * 2 of the License, or (at your option) any later version.
21 *
22 */
23
24#include <linux/signal.h>
25#include <linux/sched.h>
26#include <linux/kernel.h>
27#include <linux/errno.h>
28#include <linux/string.h>
29#include <linux/export.h>
30#include <linux/types.h>
31#include <linux/mman.h>
32#include <linux/mm.h>
33#include <linux/swap.h>
34#include <linux/stddef.h>
35#include <linux/vmalloc.h>
36#include <linux/memblock.h>
37#include <linux/slab.h>
38#include <linux/hugetlb.h>
39
40#include <asm/pgalloc.h>
41#include <asm/page.h>
42#include <asm/prom.h>
43#include <asm/io.h>
44#include <asm/mmu_context.h>
45#include <asm/pgtable.h>
46#include <asm/mmu.h>
47#include <asm/smp.h>
48#include <asm/machdep.h>
49#include <asm/tlb.h>
50#include <asm/trace.h>
51#include <asm/processor.h>
52#include <asm/cputable.h>
53#include <asm/sections.h>
54#include <asm/firmware.h>
55#include <asm/dma.h>
56#include <asm/powernv.h>
57
58#include "mmu_decl.h"
59
60#ifdef CONFIG_PPC_STD_MMU_64
61#if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
62#error TASK_SIZE_USER64 exceeds user VSID range
63#endif
64#endif
65
66#ifdef CONFIG_PPC_BOOK3S_64
67/*
68 * partition table and process table for ISA 3.0
69 */
70struct prtb_entry *process_tb;
71struct patb_entry *partition_tb;
72/*
73 * page table size
74 */
75unsigned long __pte_index_size;
76EXPORT_SYMBOL(__pte_index_size);
77unsigned long __pmd_index_size;
78EXPORT_SYMBOL(__pmd_index_size);
79unsigned long __pud_index_size;
80EXPORT_SYMBOL(__pud_index_size);
81unsigned long __pgd_index_size;
82EXPORT_SYMBOL(__pgd_index_size);
83unsigned long __pmd_cache_index;
84EXPORT_SYMBOL(__pmd_cache_index);
85unsigned long __pte_table_size;
86EXPORT_SYMBOL(__pte_table_size);
87unsigned long __pmd_table_size;
88EXPORT_SYMBOL(__pmd_table_size);
89unsigned long __pud_table_size;
90EXPORT_SYMBOL(__pud_table_size);
91unsigned long __pgd_table_size;
92EXPORT_SYMBOL(__pgd_table_size);
93unsigned long __pmd_val_bits;
94EXPORT_SYMBOL(__pmd_val_bits);
95unsigned long __pud_val_bits;
96EXPORT_SYMBOL(__pud_val_bits);
97unsigned long __pgd_val_bits;
98EXPORT_SYMBOL(__pgd_val_bits);
99unsigned long __kernel_virt_start;
100EXPORT_SYMBOL(__kernel_virt_start);
101unsigned long __kernel_virt_size;
102EXPORT_SYMBOL(__kernel_virt_size);
103unsigned long __vmalloc_start;
104EXPORT_SYMBOL(__vmalloc_start);
105unsigned long __vmalloc_end;
106EXPORT_SYMBOL(__vmalloc_end);
107struct page *vmemmap;
108EXPORT_SYMBOL(vmemmap);
109unsigned long __pte_frag_nr;
110EXPORT_SYMBOL(__pte_frag_nr);
111unsigned long __pte_frag_size_shift;
112EXPORT_SYMBOL(__pte_frag_size_shift);
113unsigned long ioremap_bot;
114#else /* !CONFIG_PPC_BOOK3S_64 */
115unsigned long ioremap_bot = IOREMAP_BASE;
116#endif
117
118/**
119 * __ioremap_at - Low level function to establish the page tables
120 * for an IO mapping
121 */
122void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
123 unsigned long flags)
124{
125 unsigned long i;
126
127 /* Make sure we have the base flags */
128 if ((flags & _PAGE_PRESENT) == 0)
129 flags |= pgprot_val(PAGE_KERNEL);
130
131 /* We don't support the 4K PFN hack with ioremap */
132 if (flags & H_PAGE_4K_PFN)
133 return NULL;
134
135 WARN_ON(pa & ~PAGE_MASK);
136 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
137 WARN_ON(size & ~PAGE_MASK);
138
139 for (i = 0; i < size; i += PAGE_SIZE)
140 if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
141 return NULL;
142
143 return (void __iomem *)ea;
144}
145
146/**
147 * __iounmap_from - Low level function to tear down the page tables
148 * for an IO mapping. This is used for mappings that
149 * are manipulated manually, like partial unmapping of
150 * PCI IOs or ISA space.
151 */
152void __iounmap_at(void *ea, unsigned long size)
153{
154 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
155 WARN_ON(size & ~PAGE_MASK);
156
157 unmap_kernel_range((unsigned long)ea, size);
158}
159
160void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
161 unsigned long flags, void *caller)
162{
163 phys_addr_t paligned;
164 void __iomem *ret;
165
166 /*
167 * Choose an address to map it to.
168 * Once the imalloc system is running, we use it.
169 * Before that, we map using addresses going
170 * up from ioremap_bot. imalloc will use
171 * the addresses from ioremap_bot through
172 * IMALLOC_END
173 *
174 */
175 paligned = addr & PAGE_MASK;
176 size = PAGE_ALIGN(addr + size) - paligned;
177
178 if ((size == 0) || (paligned == 0))
179 return NULL;
180
181 if (slab_is_available()) {
182 struct vm_struct *area;
183
184 area = __get_vm_area_caller(size, VM_IOREMAP,
185 ioremap_bot, IOREMAP_END,
186 caller);
187 if (area == NULL)
188 return NULL;
189
190 area->phys_addr = paligned;
191 ret = __ioremap_at(paligned, area->addr, size, flags);
192 if (!ret)
193 vunmap(area->addr);
194 } else {
195 ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
196 if (ret)
197 ioremap_bot += size;
198 }
199
200 if (ret)
201 ret += addr & ~PAGE_MASK;
202 return ret;
203}
204
205void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
206 unsigned long flags)
207{
208 return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
209}
210
211void __iomem * ioremap(phys_addr_t addr, unsigned long size)
212{
213 unsigned long flags = pgprot_val(pgprot_noncached(__pgprot(0)));
214 void *caller = __builtin_return_address(0);
215
216 if (ppc_md.ioremap)
217 return ppc_md.ioremap(addr, size, flags, caller);
218 return __ioremap_caller(addr, size, flags, caller);
219}
220
221void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
222{
223 unsigned long flags = pgprot_val(pgprot_noncached_wc(__pgprot(0)));
224 void *caller = __builtin_return_address(0);
225
226 if (ppc_md.ioremap)
227 return ppc_md.ioremap(addr, size, flags, caller);
228 return __ioremap_caller(addr, size, flags, caller);
229}
230
231void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
232 unsigned long flags)
233{
234 void *caller = __builtin_return_address(0);
235
236 /* writeable implies dirty for kernel addresses */
237 if (flags & _PAGE_WRITE)
238 flags |= _PAGE_DIRTY;
239
240 /* we don't want to let _PAGE_EXEC leak out */
241 flags &= ~_PAGE_EXEC;
242 /*
243 * Force kernel mapping.
244 */
245#if defined(CONFIG_PPC_BOOK3S_64)
246 flags |= _PAGE_PRIVILEGED;
247#else
248 flags &= ~_PAGE_USER;
249#endif
250
251
252#ifdef _PAGE_BAP_SR
253 /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
254 * which means that we just cleared supervisor access... oops ;-) This
255 * restores it
256 */
257 flags |= _PAGE_BAP_SR;
258#endif
259
260 if (ppc_md.ioremap)
261 return ppc_md.ioremap(addr, size, flags, caller);
262 return __ioremap_caller(addr, size, flags, caller);
263}
264
265
266/*
267 * Unmap an IO region and remove it from imalloc'd list.
268 * Access to IO memory should be serialized by driver.
269 */
270void __iounmap(volatile void __iomem *token)
271{
272 void *addr;
273
274 if (!slab_is_available())
275 return;
276
277 addr = (void *) ((unsigned long __force)
278 PCI_FIX_ADDR(token) & PAGE_MASK);
279 if ((unsigned long)addr < ioremap_bot) {
280 printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
281 " at 0x%p\n", addr);
282 return;
283 }
284 vunmap(addr);
285}
286
287void iounmap(volatile void __iomem *token)
288{
289 if (ppc_md.iounmap)
290 ppc_md.iounmap(token);
291 else
292 __iounmap(token);
293}
294
295EXPORT_SYMBOL(ioremap);
296EXPORT_SYMBOL(ioremap_wc);
297EXPORT_SYMBOL(ioremap_prot);
298EXPORT_SYMBOL(__ioremap);
299EXPORT_SYMBOL(__ioremap_at);
300EXPORT_SYMBOL(iounmap);
301EXPORT_SYMBOL(__iounmap);
302EXPORT_SYMBOL(__iounmap_at);
303
304#ifndef __PAGETABLE_PUD_FOLDED
305/* 4 level page table */
306struct page *pgd_page(pgd_t pgd)
307{
308 if (pgd_huge(pgd))
309 return pte_page(pgd_pte(pgd));
310 return virt_to_page(pgd_page_vaddr(pgd));
311}
312#endif
313
314struct page *pud_page(pud_t pud)
315{
316 if (pud_huge(pud))
317 return pte_page(pud_pte(pud));
318 return virt_to_page(pud_page_vaddr(pud));
319}
320
321/*
322 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
323 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
324 */
325struct page *pmd_page(pmd_t pmd)
326{
327 if (pmd_trans_huge(pmd) || pmd_huge(pmd) || pmd_devmap(pmd))
328 return pte_page(pmd_pte(pmd));
329 return virt_to_page(pmd_page_vaddr(pmd));
330}
331
332#ifdef CONFIG_PPC_64K_PAGES
333static pte_t *get_from_cache(struct mm_struct *mm)
334{
335 void *pte_frag, *ret;
336
337 spin_lock(&mm->page_table_lock);
338 ret = mm->context.pte_frag;
339 if (ret) {
340 pte_frag = ret + PTE_FRAG_SIZE;
341 /*
342 * If we have taken up all the fragments mark PTE page NULL
343 */
344 if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
345 pte_frag = NULL;
346 mm->context.pte_frag = pte_frag;
347 }
348 spin_unlock(&mm->page_table_lock);
349 return (pte_t *)ret;
350}
351
352static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
353{
354 void *ret = NULL;
355 struct page *page;
356
357 if (!kernel) {
358 page = alloc_page(PGALLOC_GFP | __GFP_ACCOUNT);
359 if (!page)
360 return NULL;
361 if (!pgtable_page_ctor(page)) {
362 __free_page(page);
363 return NULL;
364 }
365 } else {
366 page = alloc_page(PGALLOC_GFP);
367 if (!page)
368 return NULL;
369 }
370
371 ret = page_address(page);
372 spin_lock(&mm->page_table_lock);
373 /*
374 * If we find pgtable_page set, we return
375 * the allocated page with single fragement
376 * count.
377 */
378 if (likely(!mm->context.pte_frag)) {
379 set_page_count(page, PTE_FRAG_NR);
380 mm->context.pte_frag = ret + PTE_FRAG_SIZE;
381 }
382 spin_unlock(&mm->page_table_lock);
383
384 return (pte_t *)ret;
385}
386
387pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
388{
389 pte_t *pte;
390
391 pte = get_from_cache(mm);
392 if (pte)
393 return pte;
394
395 return __alloc_for_cache(mm, kernel);
396}
397#endif /* CONFIG_PPC_64K_PAGES */
398
399void pte_fragment_free(unsigned long *table, int kernel)
400{
401 struct page *page = virt_to_page(table);
402 if (put_page_testzero(page)) {
403 if (!kernel)
404 pgtable_page_dtor(page);
405 free_hot_cold_page(page, 0);
406 }
407}
408
409#ifdef CONFIG_SMP
410void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
411{
412 unsigned long pgf = (unsigned long)table;
413
414 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
415 pgf |= shift;
416 tlb_remove_table(tlb, (void *)pgf);
417}
418
419void __tlb_remove_table(void *_table)
420{
421 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
422 unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
423
424 if (!shift)
425 /* PTE page needs special handling */
426 pte_fragment_free(table, 0);
427 else {
428 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
429 kmem_cache_free(PGT_CACHE(shift), table);
430 }
431}
432#else
433void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
434{
435 if (!shift) {
436 /* PTE page needs special handling */
437 pte_fragment_free(table, 0);
438 } else {
439 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
440 kmem_cache_free(PGT_CACHE(shift), table);
441 }
442}
443#endif
444
445#ifdef CONFIG_PPC_BOOK3S_64
446void __init mmu_partition_table_init(void)
447{
448 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
449 unsigned long ptcr;
450
451 BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
452 partition_tb = __va(memblock_alloc_base(patb_size, patb_size,
453 MEMBLOCK_ALLOC_ANYWHERE));
454
455 /* Initialize the Partition Table with no entries */
456 memset((void *)partition_tb, 0, patb_size);
457
458 /*
459 * update partition table control register,
460 * 64 K size.
461 */
462 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
463 mtspr(SPRN_PTCR, ptcr);
464 powernv_set_nmmu_ptcr(ptcr);
465}
466
467void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
468 unsigned long dw1)
469{
470 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
471
472 partition_tb[lpid].patb0 = cpu_to_be64(dw0);
473 partition_tb[lpid].patb1 = cpu_to_be64(dw1);
474
475 /*
476 * Global flush of TLBs and partition table caches for this lpid.
477 * The type of flush (hash or radix) depends on what the previous
478 * use of this partition ID was, not the new use.
479 */
480 asm volatile("ptesync" : : : "memory");
481 if (old & PATB_HR) {
482 asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
483 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
484 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1);
485 } else {
486 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
487 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
488 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
489 }
490 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
491}
492EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
493#endif /* CONFIG_PPC_BOOK3S_64 */
494
495#ifdef CONFIG_STRICT_KERNEL_RWX
496void mark_rodata_ro(void)
497{
498 if (!mmu_has_feature(MMU_FTR_KERNEL_RO)) {
499 pr_warn("Warning: Unable to mark rodata read only on this CPU.\n");
500 return;
501 }
502
503 if (radix_enabled())
504 radix__mark_rodata_ro();
505 else
506 hash__mark_rodata_ro();
507}
508
509void mark_initmem_nx(void)
510{
511 if (radix_enabled())
512 radix__mark_initmem_nx();
513 else
514 hash__mark_initmem_nx();
515}
516#endif