Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * Modified by Cort Dougan and Paul Mackerras.
9 *
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#include <linux/signal.h>
19#include <linux/sched.h>
20#include <linux/sched/task_stack.h>
21#include <linux/kernel.h>
22#include <linux/errno.h>
23#include <linux/string.h>
24#include <linux/types.h>
25#include <linux/ptrace.h>
26#include <linux/mman.h>
27#include <linux/mm.h>
28#include <linux/interrupt.h>
29#include <linux/highmem.h>
30#include <linux/extable.h>
31#include <linux/kprobes.h>
32#include <linux/kdebug.h>
33#include <linux/perf_event.h>
34#include <linux/ratelimit.h>
35#include <linux/context_tracking.h>
36#include <linux/hugetlb.h>
37#include <linux/uaccess.h>
38
39#include <asm/firmware.h>
40#include <asm/page.h>
41#include <asm/pgtable.h>
42#include <asm/mmu.h>
43#include <asm/mmu_context.h>
44#include <asm/tlbflush.h>
45#include <asm/siginfo.h>
46#include <asm/debug.h>
47
48#include "icswx.h"
49
50#ifdef CONFIG_KPROBES
51static inline int notify_page_fault(struct pt_regs *regs)
52{
53 int ret = 0;
54
55 /* kprobe_running() needs smp_processor_id() */
56 if (!user_mode(regs)) {
57 preempt_disable();
58 if (kprobe_running() && kprobe_fault_handler(regs, 11))
59 ret = 1;
60 preempt_enable();
61 }
62
63 return ret;
64}
65#else
66static inline int notify_page_fault(struct pt_regs *regs)
67{
68 return 0;
69}
70#endif
71
72/*
73 * Check whether the instruction at regs->nip is a store using
74 * an update addressing form which will update r1.
75 */
76static int store_updates_sp(struct pt_regs *regs)
77{
78 unsigned int inst;
79
80 if (get_user(inst, (unsigned int __user *)regs->nip))
81 return 0;
82 /* check for 1 in the rA field */
83 if (((inst >> 16) & 0x1f) != 1)
84 return 0;
85 /* check major opcode */
86 switch (inst >> 26) {
87 case 37: /* stwu */
88 case 39: /* stbu */
89 case 45: /* sthu */
90 case 53: /* stfsu */
91 case 55: /* stfdu */
92 return 1;
93 case 62: /* std or stdu */
94 return (inst & 3) == 1;
95 case 31:
96 /* check minor opcode */
97 switch ((inst >> 1) & 0x3ff) {
98 case 181: /* stdux */
99 case 183: /* stwux */
100 case 247: /* stbux */
101 case 439: /* sthux */
102 case 695: /* stfsux */
103 case 759: /* stfdux */
104 return 1;
105 }
106 }
107 return 0;
108}
109/*
110 * do_page_fault error handling helpers
111 */
112
113#define MM_FAULT_RETURN 0
114#define MM_FAULT_CONTINUE -1
115#define MM_FAULT_ERR(sig) (sig)
116
117static int do_sigbus(struct pt_regs *regs, unsigned long address,
118 unsigned int fault)
119{
120 siginfo_t info;
121 unsigned int lsb = 0;
122
123 if (!user_mode(regs))
124 return MM_FAULT_ERR(SIGBUS);
125
126 current->thread.trap_nr = BUS_ADRERR;
127 info.si_signo = SIGBUS;
128 info.si_errno = 0;
129 info.si_code = BUS_ADRERR;
130 info.si_addr = (void __user *)address;
131#ifdef CONFIG_MEMORY_FAILURE
132 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
133 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
134 current->comm, current->pid, address);
135 info.si_code = BUS_MCEERR_AR;
136 }
137
138 if (fault & VM_FAULT_HWPOISON_LARGE)
139 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
140 if (fault & VM_FAULT_HWPOISON)
141 lsb = PAGE_SHIFT;
142#endif
143 info.si_addr_lsb = lsb;
144 force_sig_info(SIGBUS, &info, current);
145 return MM_FAULT_RETURN;
146}
147
148static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
149{
150 /*
151 * Pagefault was interrupted by SIGKILL. We have no reason to
152 * continue the pagefault.
153 */
154 if (fatal_signal_pending(current)) {
155 /* Coming from kernel, we need to deal with uaccess fixups */
156 if (user_mode(regs))
157 return MM_FAULT_RETURN;
158 return MM_FAULT_ERR(SIGKILL);
159 }
160
161 /* No fault: be happy */
162 if (!(fault & VM_FAULT_ERROR))
163 return MM_FAULT_CONTINUE;
164
165 /* Out of memory */
166 if (fault & VM_FAULT_OOM) {
167 /*
168 * We ran out of memory, or some other thing happened to us that
169 * made us unable to handle the page fault gracefully.
170 */
171 if (!user_mode(regs))
172 return MM_FAULT_ERR(SIGKILL);
173 pagefault_out_of_memory();
174 return MM_FAULT_RETURN;
175 }
176
177 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE))
178 return do_sigbus(regs, addr, fault);
179
180 /* We don't understand the fault code, this is fatal */
181 BUG();
182 return MM_FAULT_CONTINUE;
183}
184
185/*
186 * For 600- and 800-family processors, the error_code parameter is DSISR
187 * for a data fault, SRR1 for an instruction fault. For 400-family processors
188 * the error_code parameter is ESR for a data fault, 0 for an instruction
189 * fault.
190 * For 64-bit processors, the error_code parameter is
191 * - DSISR for a non-SLB data access fault,
192 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
193 * - 0 any SLB fault.
194 *
195 * The return value is 0 if the fault was handled, or the signal
196 * number if this is a kernel fault that can't be handled here.
197 */
198int do_page_fault(struct pt_regs *regs, unsigned long address,
199 unsigned long error_code)
200{
201 enum ctx_state prev_state = exception_enter();
202 struct vm_area_struct * vma;
203 struct mm_struct *mm = current->mm;
204 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
205 int code = SEGV_MAPERR;
206 int is_write = 0;
207 int trap = TRAP(regs);
208 int is_exec = trap == 0x400;
209 int is_user = user_mode(regs);
210 int fault;
211 int rc = 0, store_update_sp = 0;
212
213#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
214 /*
215 * Fortunately the bit assignments in SRR1 for an instruction
216 * fault and DSISR for a data fault are mostly the same for the
217 * bits we are interested in. But there are some bits which
218 * indicate errors in DSISR but can validly be set in SRR1.
219 */
220 if (is_exec)
221 error_code &= 0x48200000;
222 else
223 is_write = error_code & DSISR_ISSTORE;
224#else
225 is_write = error_code & ESR_DST;
226#endif /* CONFIG_4xx || CONFIG_BOOKE */
227
228#ifdef CONFIG_PPC_ICSWX
229 /*
230 * we need to do this early because this "data storage
231 * interrupt" does not update the DAR/DEAR so we don't want to
232 * look at it
233 */
234 if (error_code & ICSWX_DSI_UCT) {
235 rc = acop_handle_fault(regs, address, error_code);
236 if (rc)
237 goto bail;
238 }
239#endif /* CONFIG_PPC_ICSWX */
240
241 if (notify_page_fault(regs))
242 goto bail;
243
244 if (unlikely(debugger_fault_handler(regs)))
245 goto bail;
246
247 /*
248 * The kernel should never take an execute fault nor should it
249 * take a page fault to a kernel address.
250 */
251 if (!is_user && (is_exec || (address >= TASK_SIZE))) {
252 rc = SIGSEGV;
253 goto bail;
254 }
255
256#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
257 defined(CONFIG_PPC_BOOK3S_64) || defined(CONFIG_PPC_8xx))
258 if (error_code & DSISR_DABRMATCH) {
259 /* breakpoint match */
260 do_break(regs, address, error_code);
261 goto bail;
262 }
263#endif
264
265 /* We restore the interrupt state now */
266 if (!arch_irq_disabled_regs(regs))
267 local_irq_enable();
268
269 if (faulthandler_disabled() || mm == NULL) {
270 if (!is_user) {
271 rc = SIGSEGV;
272 goto bail;
273 }
274 /* faulthandler_disabled() in user mode is really bad,
275 as is current->mm == NULL. */
276 printk(KERN_EMERG "Page fault in user mode with "
277 "faulthandler_disabled() = %d mm = %p\n",
278 faulthandler_disabled(), mm);
279 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
280 regs->nip, regs->msr);
281 die("Weird page fault", regs, SIGSEGV);
282 }
283
284 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
285
286 /*
287 * We want to do this outside mmap_sem, because reading code around nip
288 * can result in fault, which will cause a deadlock when called with
289 * mmap_sem held
290 */
291 if (is_write && is_user)
292 store_update_sp = store_updates_sp(regs);
293
294 if (is_user)
295 flags |= FAULT_FLAG_USER;
296
297 /* When running in the kernel we expect faults to occur only to
298 * addresses in user space. All other faults represent errors in the
299 * kernel and should generate an OOPS. Unfortunately, in the case of an
300 * erroneous fault occurring in a code path which already holds mmap_sem
301 * we will deadlock attempting to validate the fault against the
302 * address space. Luckily the kernel only validly references user
303 * space from well defined areas of code, which are listed in the
304 * exceptions table.
305 *
306 * As the vast majority of faults will be valid we will only perform
307 * the source reference check when there is a possibility of a deadlock.
308 * Attempt to lock the address space, if we cannot we then validate the
309 * source. If this is invalid we can skip the address space check,
310 * thus avoiding the deadlock.
311 */
312 if (!down_read_trylock(&mm->mmap_sem)) {
313 if (!is_user && !search_exception_tables(regs->nip))
314 goto bad_area_nosemaphore;
315
316retry:
317 down_read(&mm->mmap_sem);
318 } else {
319 /*
320 * The above down_read_trylock() might have succeeded in
321 * which case we'll have missed the might_sleep() from
322 * down_read():
323 */
324 might_sleep();
325 }
326
327 vma = find_vma(mm, address);
328 if (!vma)
329 goto bad_area;
330 if (vma->vm_start <= address)
331 goto good_area;
332 if (!(vma->vm_flags & VM_GROWSDOWN))
333 goto bad_area;
334
335 /*
336 * N.B. The POWER/Open ABI allows programs to access up to
337 * 288 bytes below the stack pointer.
338 * The kernel signal delivery code writes up to about 1.5kB
339 * below the stack pointer (r1) before decrementing it.
340 * The exec code can write slightly over 640kB to the stack
341 * before setting the user r1. Thus we allow the stack to
342 * expand to 1MB without further checks.
343 */
344 if (address + 0x100000 < vma->vm_end) {
345 /* get user regs even if this fault is in kernel mode */
346 struct pt_regs *uregs = current->thread.regs;
347 if (uregs == NULL)
348 goto bad_area;
349
350 /*
351 * A user-mode access to an address a long way below
352 * the stack pointer is only valid if the instruction
353 * is one which would update the stack pointer to the
354 * address accessed if the instruction completed,
355 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
356 * (or the byte, halfword, float or double forms).
357 *
358 * If we don't check this then any write to the area
359 * between the last mapped region and the stack will
360 * expand the stack rather than segfaulting.
361 */
362 if (address + 2048 < uregs->gpr[1] && !store_update_sp)
363 goto bad_area;
364 }
365 if (expand_stack(vma, address))
366 goto bad_area;
367
368good_area:
369 code = SEGV_ACCERR;
370#if defined(CONFIG_6xx)
371 if (error_code & 0x95700000)
372 /* an error such as lwarx to I/O controller space,
373 address matching DABR, eciwx, etc. */
374 goto bad_area;
375#endif /* CONFIG_6xx */
376#if defined(CONFIG_8xx)
377 /* The MPC8xx seems to always set 0x80000000, which is
378 * "undefined". Of those that can be set, this is the only
379 * one which seems bad.
380 */
381 if (error_code & 0x10000000)
382 /* Guarded storage error. */
383 goto bad_area;
384#endif /* CONFIG_8xx */
385
386 if (is_exec) {
387 /*
388 * Allow execution from readable areas if the MMU does not
389 * provide separate controls over reading and executing.
390 *
391 * Note: That code used to not be enabled for 4xx/BookE.
392 * It is now as I/D cache coherency for these is done at
393 * set_pte_at() time and I see no reason why the test
394 * below wouldn't be valid on those processors. This -may-
395 * break programs compiled with a really old ABI though.
396 */
397 if (!(vma->vm_flags & VM_EXEC) &&
398 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
399 !(vma->vm_flags & (VM_READ | VM_WRITE))))
400 goto bad_area;
401 /* a write */
402 } else if (is_write) {
403 if (!(vma->vm_flags & VM_WRITE))
404 goto bad_area;
405 flags |= FAULT_FLAG_WRITE;
406 /* a read */
407 } else {
408 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
409 goto bad_area;
410 }
411#ifdef CONFIG_PPC_STD_MMU
412 /*
413 * For hash translation mode, we should never get a
414 * PROTFAULT. Any update to pte to reduce access will result in us
415 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
416 * fault instead of DSISR_PROTFAULT.
417 *
418 * A pte update to relax the access will not result in a hash page table
419 * entry invalidate and hence can result in DSISR_PROTFAULT.
420 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
421 * the special !is_write in the below conditional.
422 *
423 * For platforms that doesn't supports coherent icache and do support
424 * per page noexec bit, we do setup things such that we do the
425 * sync between D/I cache via fault. But that is handled via low level
426 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
427 * here in such case.
428 *
429 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
430 * check should handle those and hence we should fall to the bad_area
431 * handling correctly.
432 *
433 * For embedded with per page exec support that doesn't support coherent
434 * icache we do get PROTFAULT and we handle that D/I cache sync in
435 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
436 * is conditional for server MMU.
437 *
438 * For radix, we can get prot fault for autonuma case, because radix
439 * page table will have them marked noaccess for user.
440 */
441 if (!radix_enabled() && !is_write)
442 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
443#endif /* CONFIG_PPC_STD_MMU */
444
445 /*
446 * If for any reason at all we couldn't handle the fault,
447 * make sure we exit gracefully rather than endlessly redo
448 * the fault.
449 */
450 fault = handle_mm_fault(vma, address, flags);
451
452 /*
453 * Handle the retry right now, the mmap_sem has been released in that
454 * case.
455 */
456 if (unlikely(fault & VM_FAULT_RETRY)) {
457 /* We retry only once */
458 if (flags & FAULT_FLAG_ALLOW_RETRY) {
459 /*
460 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
461 * of starvation.
462 */
463 flags &= ~FAULT_FLAG_ALLOW_RETRY;
464 flags |= FAULT_FLAG_TRIED;
465 if (!fatal_signal_pending(current))
466 goto retry;
467 }
468 /* We will enter mm_fault_error() below */
469 } else
470 up_read(¤t->mm->mmap_sem);
471
472 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
473 if (fault & VM_FAULT_SIGSEGV)
474 goto bad_area_nosemaphore;
475 rc = mm_fault_error(regs, address, fault);
476 if (rc >= MM_FAULT_RETURN)
477 goto bail;
478 else
479 rc = 0;
480 }
481
482 /*
483 * Major/minor page fault accounting.
484 */
485 if (fault & VM_FAULT_MAJOR) {
486 current->maj_flt++;
487 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
488 regs, address);
489#ifdef CONFIG_PPC_SMLPAR
490 if (firmware_has_feature(FW_FEATURE_CMO)) {
491 u32 page_ins;
492
493 preempt_disable();
494 page_ins = be32_to_cpu(get_lppaca()->page_ins);
495 page_ins += 1 << PAGE_FACTOR;
496 get_lppaca()->page_ins = cpu_to_be32(page_ins);
497 preempt_enable();
498 }
499#endif /* CONFIG_PPC_SMLPAR */
500 } else {
501 current->min_flt++;
502 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
503 regs, address);
504 }
505
506 goto bail;
507
508bad_area:
509 up_read(&mm->mmap_sem);
510
511bad_area_nosemaphore:
512 /* User mode accesses cause a SIGSEGV */
513 if (is_user) {
514 _exception(SIGSEGV, regs, code, address);
515 goto bail;
516 }
517
518 if (is_exec && (error_code & DSISR_PROTFAULT))
519 printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
520 " page (%lx) - exploit attempt? (uid: %d)\n",
521 address, from_kuid(&init_user_ns, current_uid()));
522
523 rc = SIGSEGV;
524
525bail:
526 exception_exit(prev_state);
527 return rc;
528}
529NOKPROBE_SYMBOL(do_page_fault);
530
531/*
532 * bad_page_fault is called when we have a bad access from the kernel.
533 * It is called from the DSI and ISI handlers in head.S and from some
534 * of the procedures in traps.c.
535 */
536void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
537{
538 const struct exception_table_entry *entry;
539
540 /* Are we prepared to handle this fault? */
541 if ((entry = search_exception_tables(regs->nip)) != NULL) {
542 regs->nip = extable_fixup(entry);
543 return;
544 }
545
546 /* kernel has accessed a bad area */
547
548 switch (regs->trap) {
549 case 0x300:
550 case 0x380:
551 printk(KERN_ALERT "Unable to handle kernel paging request for "
552 "data at address 0x%08lx\n", regs->dar);
553 break;
554 case 0x400:
555 case 0x480:
556 printk(KERN_ALERT "Unable to handle kernel paging request for "
557 "instruction fetch\n");
558 break;
559 case 0x600:
560 printk(KERN_ALERT "Unable to handle kernel paging request for "
561 "unaligned access at address 0x%08lx\n", regs->dar);
562 break;
563 default:
564 printk(KERN_ALERT "Unable to handle kernel paging request for "
565 "unknown fault\n");
566 break;
567 }
568 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
569 regs->nip);
570
571 if (task_stack_end_corrupted(current))
572 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
573
574 die("Kernel access of bad area", regs, sig);
575}