at v4.13-rc4 1058 lines 28 kB view raw
1/* 2 * Stress userfaultfd syscall. 3 * 4 * Copyright (C) 2015 Red Hat, Inc. 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2. See 7 * the COPYING file in the top-level directory. 8 * 9 * This test allocates two virtual areas and bounces the physical 10 * memory across the two virtual areas (from area_src to area_dst) 11 * using userfaultfd. 12 * 13 * There are three threads running per CPU: 14 * 15 * 1) one per-CPU thread takes a per-page pthread_mutex in a random 16 * page of the area_dst (while the physical page may still be in 17 * area_src), and increments a per-page counter in the same page, 18 * and checks its value against a verification region. 19 * 20 * 2) another per-CPU thread handles the userfaults generated by 21 * thread 1 above. userfaultfd blocking reads or poll() modes are 22 * exercised interleaved. 23 * 24 * 3) one last per-CPU thread transfers the memory in the background 25 * at maximum bandwidth (if not already transferred by thread 26 * 2). Each cpu thread takes cares of transferring a portion of the 27 * area. 28 * 29 * When all threads of type 3 completed the transfer, one bounce is 30 * complete. area_src and area_dst are then swapped. All threads are 31 * respawned and so the bounce is immediately restarted in the 32 * opposite direction. 33 * 34 * per-CPU threads 1 by triggering userfaults inside 35 * pthread_mutex_lock will also verify the atomicity of the memory 36 * transfer (UFFDIO_COPY). 37 * 38 * The program takes two parameters: the amounts of physical memory in 39 * megabytes (MiB) of the area and the number of bounces to execute. 40 * 41 * # 100MiB 99999 bounces 42 * ./userfaultfd 100 99999 43 * 44 * # 1GiB 99 bounces 45 * ./userfaultfd 1000 99 46 * 47 * # 10MiB-~6GiB 999 bounces, continue forever unless an error triggers 48 * while ./userfaultfd $[RANDOM % 6000 + 10] 999; do true; done 49 */ 50 51#define _GNU_SOURCE 52#include <stdio.h> 53#include <errno.h> 54#include <unistd.h> 55#include <stdlib.h> 56#include <sys/types.h> 57#include <sys/stat.h> 58#include <fcntl.h> 59#include <time.h> 60#include <signal.h> 61#include <poll.h> 62#include <string.h> 63#include <sys/mman.h> 64#include <sys/syscall.h> 65#include <sys/ioctl.h> 66#include <sys/wait.h> 67#include <pthread.h> 68#include <linux/userfaultfd.h> 69 70#ifdef __NR_userfaultfd 71 72static unsigned long nr_cpus, nr_pages, nr_pages_per_cpu, page_size; 73 74#define BOUNCE_RANDOM (1<<0) 75#define BOUNCE_RACINGFAULTS (1<<1) 76#define BOUNCE_VERIFY (1<<2) 77#define BOUNCE_POLL (1<<3) 78static int bounces; 79 80#define TEST_ANON 1 81#define TEST_HUGETLB 2 82#define TEST_SHMEM 3 83static int test_type; 84 85static int huge_fd; 86static char *huge_fd_off0; 87static unsigned long long *count_verify; 88static int uffd, uffd_flags, finished, *pipefd; 89static char *area_src, *area_dst; 90static char *zeropage; 91pthread_attr_t attr; 92 93/* pthread_mutex_t starts at page offset 0 */ 94#define area_mutex(___area, ___nr) \ 95 ((pthread_mutex_t *) ((___area) + (___nr)*page_size)) 96/* 97 * count is placed in the page after pthread_mutex_t naturally aligned 98 * to avoid non alignment faults on non-x86 archs. 99 */ 100#define area_count(___area, ___nr) \ 101 ((volatile unsigned long long *) ((unsigned long) \ 102 ((___area) + (___nr)*page_size + \ 103 sizeof(pthread_mutex_t) + \ 104 sizeof(unsigned long long) - 1) & \ 105 ~(unsigned long)(sizeof(unsigned long long) \ 106 - 1))) 107 108static int anon_release_pages(char *rel_area) 109{ 110 int ret = 0; 111 112 if (madvise(rel_area, nr_pages * page_size, MADV_DONTNEED)) { 113 perror("madvise"); 114 ret = 1; 115 } 116 117 return ret; 118} 119 120static void anon_allocate_area(void **alloc_area) 121{ 122 if (posix_memalign(alloc_area, page_size, nr_pages * page_size)) { 123 fprintf(stderr, "out of memory\n"); 124 *alloc_area = NULL; 125 } 126} 127 128 129/* HugeTLB memory */ 130static int hugetlb_release_pages(char *rel_area) 131{ 132 int ret = 0; 133 134 if (fallocate(huge_fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 135 rel_area == huge_fd_off0 ? 0 : 136 nr_pages * page_size, 137 nr_pages * page_size)) { 138 perror("fallocate"); 139 ret = 1; 140 } 141 142 return ret; 143} 144 145 146static void hugetlb_allocate_area(void **alloc_area) 147{ 148 *alloc_area = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE, 149 MAP_PRIVATE | MAP_HUGETLB, huge_fd, 150 *alloc_area == area_src ? 0 : 151 nr_pages * page_size); 152 if (*alloc_area == MAP_FAILED) { 153 fprintf(stderr, "mmap of hugetlbfs file failed\n"); 154 *alloc_area = NULL; 155 } 156 157 if (*alloc_area == area_src) 158 huge_fd_off0 = *alloc_area; 159} 160 161/* Shared memory */ 162static int shmem_release_pages(char *rel_area) 163{ 164 int ret = 0; 165 166 if (madvise(rel_area, nr_pages * page_size, MADV_REMOVE)) { 167 perror("madvise"); 168 ret = 1; 169 } 170 171 return ret; 172} 173 174static void shmem_allocate_area(void **alloc_area) 175{ 176 *alloc_area = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE, 177 MAP_ANONYMOUS | MAP_SHARED, -1, 0); 178 if (*alloc_area == MAP_FAILED) { 179 fprintf(stderr, "shared memory mmap failed\n"); 180 *alloc_area = NULL; 181 } 182} 183 184struct uffd_test_ops { 185 unsigned long expected_ioctls; 186 void (*allocate_area)(void **alloc_area); 187 int (*release_pages)(char *rel_area); 188}; 189 190#define ANON_EXPECTED_IOCTLS ((1 << _UFFDIO_WAKE) | \ 191 (1 << _UFFDIO_COPY) | \ 192 (1 << _UFFDIO_ZEROPAGE)) 193 194static struct uffd_test_ops anon_uffd_test_ops = { 195 .expected_ioctls = ANON_EXPECTED_IOCTLS, 196 .allocate_area = anon_allocate_area, 197 .release_pages = anon_release_pages, 198}; 199 200static struct uffd_test_ops shmem_uffd_test_ops = { 201 .expected_ioctls = UFFD_API_RANGE_IOCTLS_BASIC, 202 .allocate_area = shmem_allocate_area, 203 .release_pages = shmem_release_pages, 204}; 205 206static struct uffd_test_ops hugetlb_uffd_test_ops = { 207 .expected_ioctls = UFFD_API_RANGE_IOCTLS_BASIC, 208 .allocate_area = hugetlb_allocate_area, 209 .release_pages = hugetlb_release_pages, 210}; 211 212static struct uffd_test_ops *uffd_test_ops; 213 214static int my_bcmp(char *str1, char *str2, size_t n) 215{ 216 unsigned long i; 217 for (i = 0; i < n; i++) 218 if (str1[i] != str2[i]) 219 return 1; 220 return 0; 221} 222 223static void *locking_thread(void *arg) 224{ 225 unsigned long cpu = (unsigned long) arg; 226 struct random_data rand; 227 unsigned long page_nr = *(&(page_nr)); /* uninitialized warning */ 228 int32_t rand_nr; 229 unsigned long long count; 230 char randstate[64]; 231 unsigned int seed; 232 time_t start; 233 234 if (bounces & BOUNCE_RANDOM) { 235 seed = (unsigned int) time(NULL) - bounces; 236 if (!(bounces & BOUNCE_RACINGFAULTS)) 237 seed += cpu; 238 bzero(&rand, sizeof(rand)); 239 bzero(&randstate, sizeof(randstate)); 240 if (initstate_r(seed, randstate, sizeof(randstate), &rand)) 241 fprintf(stderr, "srandom_r error\n"), exit(1); 242 } else { 243 page_nr = -bounces; 244 if (!(bounces & BOUNCE_RACINGFAULTS)) 245 page_nr += cpu * nr_pages_per_cpu; 246 } 247 248 while (!finished) { 249 if (bounces & BOUNCE_RANDOM) { 250 if (random_r(&rand, &rand_nr)) 251 fprintf(stderr, "random_r 1 error\n"), exit(1); 252 page_nr = rand_nr; 253 if (sizeof(page_nr) > sizeof(rand_nr)) { 254 if (random_r(&rand, &rand_nr)) 255 fprintf(stderr, "random_r 2 error\n"), exit(1); 256 page_nr |= (((unsigned long) rand_nr) << 16) << 257 16; 258 } 259 } else 260 page_nr += 1; 261 page_nr %= nr_pages; 262 263 start = time(NULL); 264 if (bounces & BOUNCE_VERIFY) { 265 count = *area_count(area_dst, page_nr); 266 if (!count) 267 fprintf(stderr, 268 "page_nr %lu wrong count %Lu %Lu\n", 269 page_nr, count, 270 count_verify[page_nr]), exit(1); 271 272 273 /* 274 * We can't use bcmp (or memcmp) because that 275 * returns 0 erroneously if the memory is 276 * changing under it (even if the end of the 277 * page is never changing and always 278 * different). 279 */ 280#if 1 281 if (!my_bcmp(area_dst + page_nr * page_size, zeropage, 282 page_size)) 283 fprintf(stderr, 284 "my_bcmp page_nr %lu wrong count %Lu %Lu\n", 285 page_nr, count, 286 count_verify[page_nr]), exit(1); 287#else 288 unsigned long loops; 289 290 loops = 0; 291 /* uncomment the below line to test with mutex */ 292 /* pthread_mutex_lock(area_mutex(area_dst, page_nr)); */ 293 while (!bcmp(area_dst + page_nr * page_size, zeropage, 294 page_size)) { 295 loops += 1; 296 if (loops > 10) 297 break; 298 } 299 /* uncomment below line to test with mutex */ 300 /* pthread_mutex_unlock(area_mutex(area_dst, page_nr)); */ 301 if (loops) { 302 fprintf(stderr, 303 "page_nr %lu all zero thread %lu %p %lu\n", 304 page_nr, cpu, area_dst + page_nr * page_size, 305 loops); 306 if (loops > 10) 307 exit(1); 308 } 309#endif 310 } 311 312 pthread_mutex_lock(area_mutex(area_dst, page_nr)); 313 count = *area_count(area_dst, page_nr); 314 if (count != count_verify[page_nr]) { 315 fprintf(stderr, 316 "page_nr %lu memory corruption %Lu %Lu\n", 317 page_nr, count, 318 count_verify[page_nr]), exit(1); 319 } 320 count++; 321 *area_count(area_dst, page_nr) = count_verify[page_nr] = count; 322 pthread_mutex_unlock(area_mutex(area_dst, page_nr)); 323 324 if (time(NULL) - start > 1) 325 fprintf(stderr, 326 "userfault too slow %ld " 327 "possible false positive with overcommit\n", 328 time(NULL) - start); 329 } 330 331 return NULL; 332} 333 334static int copy_page(int ufd, unsigned long offset) 335{ 336 struct uffdio_copy uffdio_copy; 337 338 if (offset >= nr_pages * page_size) 339 fprintf(stderr, "unexpected offset %lu\n", 340 offset), exit(1); 341 uffdio_copy.dst = (unsigned long) area_dst + offset; 342 uffdio_copy.src = (unsigned long) area_src + offset; 343 uffdio_copy.len = page_size; 344 uffdio_copy.mode = 0; 345 uffdio_copy.copy = 0; 346 if (ioctl(ufd, UFFDIO_COPY, &uffdio_copy)) { 347 /* real retval in ufdio_copy.copy */ 348 if (uffdio_copy.copy != -EEXIST) 349 fprintf(stderr, "UFFDIO_COPY error %Ld\n", 350 uffdio_copy.copy), exit(1); 351 } else if (uffdio_copy.copy != page_size) { 352 fprintf(stderr, "UFFDIO_COPY unexpected copy %Ld\n", 353 uffdio_copy.copy), exit(1); 354 } else 355 return 1; 356 return 0; 357} 358 359static void *uffd_poll_thread(void *arg) 360{ 361 unsigned long cpu = (unsigned long) arg; 362 struct pollfd pollfd[2]; 363 struct uffd_msg msg; 364 struct uffdio_register uffd_reg; 365 int ret; 366 unsigned long offset; 367 char tmp_chr; 368 unsigned long userfaults = 0; 369 370 pollfd[0].fd = uffd; 371 pollfd[0].events = POLLIN; 372 pollfd[1].fd = pipefd[cpu*2]; 373 pollfd[1].events = POLLIN; 374 375 for (;;) { 376 ret = poll(pollfd, 2, -1); 377 if (!ret) 378 fprintf(stderr, "poll error %d\n", ret), exit(1); 379 if (ret < 0) 380 perror("poll"), exit(1); 381 if (pollfd[1].revents & POLLIN) { 382 if (read(pollfd[1].fd, &tmp_chr, 1) != 1) 383 fprintf(stderr, "read pipefd error\n"), 384 exit(1); 385 break; 386 } 387 if (!(pollfd[0].revents & POLLIN)) 388 fprintf(stderr, "pollfd[0].revents %d\n", 389 pollfd[0].revents), exit(1); 390 ret = read(uffd, &msg, sizeof(msg)); 391 if (ret < 0) { 392 if (errno == EAGAIN) 393 continue; 394 perror("nonblocking read error"), exit(1); 395 } 396 switch (msg.event) { 397 default: 398 fprintf(stderr, "unexpected msg event %u\n", 399 msg.event), exit(1); 400 break; 401 case UFFD_EVENT_PAGEFAULT: 402 if (msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE) 403 fprintf(stderr, "unexpected write fault\n"), exit(1); 404 offset = (char *)(unsigned long)msg.arg.pagefault.address - 405 area_dst; 406 offset &= ~(page_size-1); 407 if (copy_page(uffd, offset)) 408 userfaults++; 409 break; 410 case UFFD_EVENT_FORK: 411 uffd = msg.arg.fork.ufd; 412 pollfd[0].fd = uffd; 413 break; 414 case UFFD_EVENT_REMOVE: 415 uffd_reg.range.start = msg.arg.remove.start; 416 uffd_reg.range.len = msg.arg.remove.end - 417 msg.arg.remove.start; 418 if (ioctl(uffd, UFFDIO_UNREGISTER, &uffd_reg.range)) 419 fprintf(stderr, "remove failure\n"), exit(1); 420 break; 421 case UFFD_EVENT_REMAP: 422 area_dst = (char *)(unsigned long)msg.arg.remap.to; 423 break; 424 } 425 } 426 return (void *)userfaults; 427} 428 429pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER; 430 431static void *uffd_read_thread(void *arg) 432{ 433 unsigned long *this_cpu_userfaults; 434 struct uffd_msg msg; 435 unsigned long offset; 436 int ret; 437 438 this_cpu_userfaults = (unsigned long *) arg; 439 *this_cpu_userfaults = 0; 440 441 pthread_mutex_unlock(&uffd_read_mutex); 442 /* from here cancellation is ok */ 443 444 for (;;) { 445 ret = read(uffd, &msg, sizeof(msg)); 446 if (ret != sizeof(msg)) { 447 if (ret < 0) 448 perror("blocking read error"), exit(1); 449 else 450 fprintf(stderr, "short read\n"), exit(1); 451 } 452 if (msg.event != UFFD_EVENT_PAGEFAULT) 453 fprintf(stderr, "unexpected msg event %u\n", 454 msg.event), exit(1); 455 if (bounces & BOUNCE_VERIFY && 456 msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE) 457 fprintf(stderr, "unexpected write fault\n"), exit(1); 458 offset = (char *)(unsigned long)msg.arg.pagefault.address - 459 area_dst; 460 offset &= ~(page_size-1); 461 if (copy_page(uffd, offset)) 462 (*this_cpu_userfaults)++; 463 } 464 return (void *)NULL; 465} 466 467static void *background_thread(void *arg) 468{ 469 unsigned long cpu = (unsigned long) arg; 470 unsigned long page_nr; 471 472 for (page_nr = cpu * nr_pages_per_cpu; 473 page_nr < (cpu+1) * nr_pages_per_cpu; 474 page_nr++) 475 copy_page(uffd, page_nr * page_size); 476 477 return NULL; 478} 479 480static int stress(unsigned long *userfaults) 481{ 482 unsigned long cpu; 483 pthread_t locking_threads[nr_cpus]; 484 pthread_t uffd_threads[nr_cpus]; 485 pthread_t background_threads[nr_cpus]; 486 void **_userfaults = (void **) userfaults; 487 488 finished = 0; 489 for (cpu = 0; cpu < nr_cpus; cpu++) { 490 if (pthread_create(&locking_threads[cpu], &attr, 491 locking_thread, (void *)cpu)) 492 return 1; 493 if (bounces & BOUNCE_POLL) { 494 if (pthread_create(&uffd_threads[cpu], &attr, 495 uffd_poll_thread, (void *)cpu)) 496 return 1; 497 } else { 498 if (pthread_create(&uffd_threads[cpu], &attr, 499 uffd_read_thread, 500 &_userfaults[cpu])) 501 return 1; 502 pthread_mutex_lock(&uffd_read_mutex); 503 } 504 if (pthread_create(&background_threads[cpu], &attr, 505 background_thread, (void *)cpu)) 506 return 1; 507 } 508 for (cpu = 0; cpu < nr_cpus; cpu++) 509 if (pthread_join(background_threads[cpu], NULL)) 510 return 1; 511 512 /* 513 * Be strict and immediately zap area_src, the whole area has 514 * been transferred already by the background treads. The 515 * area_src could then be faulted in in a racy way by still 516 * running uffdio_threads reading zeropages after we zapped 517 * area_src (but they're guaranteed to get -EEXIST from 518 * UFFDIO_COPY without writing zero pages into area_dst 519 * because the background threads already completed). 520 */ 521 if (uffd_test_ops->release_pages(area_src)) 522 return 1; 523 524 for (cpu = 0; cpu < nr_cpus; cpu++) { 525 char c; 526 if (bounces & BOUNCE_POLL) { 527 if (write(pipefd[cpu*2+1], &c, 1) != 1) { 528 fprintf(stderr, "pipefd write error\n"); 529 return 1; 530 } 531 if (pthread_join(uffd_threads[cpu], &_userfaults[cpu])) 532 return 1; 533 } else { 534 if (pthread_cancel(uffd_threads[cpu])) 535 return 1; 536 if (pthread_join(uffd_threads[cpu], NULL)) 537 return 1; 538 } 539 } 540 541 finished = 1; 542 for (cpu = 0; cpu < nr_cpus; cpu++) 543 if (pthread_join(locking_threads[cpu], NULL)) 544 return 1; 545 546 return 0; 547} 548 549static int userfaultfd_open(int features) 550{ 551 struct uffdio_api uffdio_api; 552 553 uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 554 if (uffd < 0) { 555 fprintf(stderr, 556 "userfaultfd syscall not available in this kernel\n"); 557 return 1; 558 } 559 uffd_flags = fcntl(uffd, F_GETFD, NULL); 560 561 uffdio_api.api = UFFD_API; 562 uffdio_api.features = features; 563 if (ioctl(uffd, UFFDIO_API, &uffdio_api)) { 564 fprintf(stderr, "UFFDIO_API\n"); 565 return 1; 566 } 567 if (uffdio_api.api != UFFD_API) { 568 fprintf(stderr, "UFFDIO_API error %Lu\n", uffdio_api.api); 569 return 1; 570 } 571 572 return 0; 573} 574 575/* 576 * For non-cooperative userfaultfd test we fork() a process that will 577 * generate pagefaults, will mremap the area monitored by the 578 * userfaultfd and at last this process will release the monitored 579 * area. 580 * For the anonymous and shared memory the area is divided into two 581 * parts, the first part is accessed before mremap, and the second 582 * part is accessed after mremap. Since hugetlbfs does not support 583 * mremap, the entire monitored area is accessed in a single pass for 584 * HUGETLB_TEST. 585 * The release of the pages currently generates event for shmem and 586 * anonymous memory (UFFD_EVENT_REMOVE), hence it is not checked 587 * for hugetlb. 588 */ 589static int faulting_process(void) 590{ 591 unsigned long nr; 592 unsigned long long count; 593 unsigned long split_nr_pages; 594 595 if (test_type != TEST_HUGETLB) 596 split_nr_pages = (nr_pages + 1) / 2; 597 else 598 split_nr_pages = nr_pages; 599 600 for (nr = 0; nr < split_nr_pages; nr++) { 601 count = *area_count(area_dst, nr); 602 if (count != count_verify[nr]) { 603 fprintf(stderr, 604 "nr %lu memory corruption %Lu %Lu\n", 605 nr, count, 606 count_verify[nr]), exit(1); 607 } 608 } 609 610 if (test_type == TEST_HUGETLB) 611 return 0; 612 613 area_dst = mremap(area_dst, nr_pages * page_size, nr_pages * page_size, 614 MREMAP_MAYMOVE | MREMAP_FIXED, area_src); 615 if (area_dst == MAP_FAILED) 616 perror("mremap"), exit(1); 617 618 for (; nr < nr_pages; nr++) { 619 count = *area_count(area_dst, nr); 620 if (count != count_verify[nr]) { 621 fprintf(stderr, 622 "nr %lu memory corruption %Lu %Lu\n", 623 nr, count, 624 count_verify[nr]), exit(1); 625 } 626 } 627 628 if (uffd_test_ops->release_pages(area_dst)) 629 return 1; 630 631 for (nr = 0; nr < nr_pages; nr++) { 632 if (my_bcmp(area_dst + nr * page_size, zeropage, page_size)) 633 fprintf(stderr, "nr %lu is not zero\n", nr), exit(1); 634 } 635 636 return 0; 637} 638 639static int uffdio_zeropage(int ufd, unsigned long offset) 640{ 641 struct uffdio_zeropage uffdio_zeropage; 642 int ret; 643 unsigned long has_zeropage; 644 645 has_zeropage = uffd_test_ops->expected_ioctls & (1 << _UFFDIO_ZEROPAGE); 646 647 if (offset >= nr_pages * page_size) 648 fprintf(stderr, "unexpected offset %lu\n", 649 offset), exit(1); 650 uffdio_zeropage.range.start = (unsigned long) area_dst + offset; 651 uffdio_zeropage.range.len = page_size; 652 uffdio_zeropage.mode = 0; 653 ret = ioctl(ufd, UFFDIO_ZEROPAGE, &uffdio_zeropage); 654 if (ret) { 655 /* real retval in ufdio_zeropage.zeropage */ 656 if (has_zeropage) { 657 if (uffdio_zeropage.zeropage == -EEXIST) 658 fprintf(stderr, "UFFDIO_ZEROPAGE -EEXIST\n"), 659 exit(1); 660 else 661 fprintf(stderr, "UFFDIO_ZEROPAGE error %Ld\n", 662 uffdio_zeropage.zeropage), exit(1); 663 } else { 664 if (uffdio_zeropage.zeropage != -EINVAL) 665 fprintf(stderr, 666 "UFFDIO_ZEROPAGE not -EINVAL %Ld\n", 667 uffdio_zeropage.zeropage), exit(1); 668 } 669 } else if (has_zeropage) { 670 if (uffdio_zeropage.zeropage != page_size) { 671 fprintf(stderr, "UFFDIO_ZEROPAGE unexpected %Ld\n", 672 uffdio_zeropage.zeropage), exit(1); 673 } else 674 return 1; 675 } else { 676 fprintf(stderr, 677 "UFFDIO_ZEROPAGE succeeded %Ld\n", 678 uffdio_zeropage.zeropage), exit(1); 679 } 680 681 return 0; 682} 683 684/* exercise UFFDIO_ZEROPAGE */ 685static int userfaultfd_zeropage_test(void) 686{ 687 struct uffdio_register uffdio_register; 688 unsigned long expected_ioctls; 689 690 printf("testing UFFDIO_ZEROPAGE: "); 691 fflush(stdout); 692 693 if (uffd_test_ops->release_pages(area_dst)) 694 return 1; 695 696 if (userfaultfd_open(0) < 0) 697 return 1; 698 uffdio_register.range.start = (unsigned long) area_dst; 699 uffdio_register.range.len = nr_pages * page_size; 700 uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; 701 if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) 702 fprintf(stderr, "register failure\n"), exit(1); 703 704 expected_ioctls = uffd_test_ops->expected_ioctls; 705 if ((uffdio_register.ioctls & expected_ioctls) != 706 expected_ioctls) 707 fprintf(stderr, 708 "unexpected missing ioctl for anon memory\n"), 709 exit(1); 710 711 if (uffdio_zeropage(uffd, 0)) { 712 if (my_bcmp(area_dst, zeropage, page_size)) 713 fprintf(stderr, "zeropage is not zero\n"), exit(1); 714 } 715 716 close(uffd); 717 printf("done.\n"); 718 return 0; 719} 720 721static int userfaultfd_events_test(void) 722{ 723 struct uffdio_register uffdio_register; 724 unsigned long expected_ioctls; 725 unsigned long userfaults; 726 pthread_t uffd_mon; 727 int err, features; 728 pid_t pid; 729 char c; 730 731 printf("testing events (fork, remap, remove): "); 732 fflush(stdout); 733 734 if (uffd_test_ops->release_pages(area_dst)) 735 return 1; 736 737 features = UFFD_FEATURE_EVENT_FORK | UFFD_FEATURE_EVENT_REMAP | 738 UFFD_FEATURE_EVENT_REMOVE; 739 if (userfaultfd_open(features) < 0) 740 return 1; 741 fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); 742 743 uffdio_register.range.start = (unsigned long) area_dst; 744 uffdio_register.range.len = nr_pages * page_size; 745 uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; 746 if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) 747 fprintf(stderr, "register failure\n"), exit(1); 748 749 expected_ioctls = uffd_test_ops->expected_ioctls; 750 if ((uffdio_register.ioctls & expected_ioctls) != 751 expected_ioctls) 752 fprintf(stderr, 753 "unexpected missing ioctl for anon memory\n"), 754 exit(1); 755 756 if (pthread_create(&uffd_mon, &attr, uffd_poll_thread, NULL)) 757 perror("uffd_poll_thread create"), exit(1); 758 759 pid = fork(); 760 if (pid < 0) 761 perror("fork"), exit(1); 762 763 if (!pid) 764 return faulting_process(); 765 766 waitpid(pid, &err, 0); 767 if (err) 768 fprintf(stderr, "faulting process failed\n"), exit(1); 769 770 if (write(pipefd[1], &c, sizeof(c)) != sizeof(c)) 771 perror("pipe write"), exit(1); 772 if (pthread_join(uffd_mon, (void **)&userfaults)) 773 return 1; 774 775 close(uffd); 776 printf("userfaults: %ld\n", userfaults); 777 778 return userfaults != nr_pages; 779} 780 781static int userfaultfd_stress(void) 782{ 783 void *area; 784 char *tmp_area; 785 unsigned long nr; 786 struct uffdio_register uffdio_register; 787 unsigned long cpu; 788 int err; 789 unsigned long userfaults[nr_cpus]; 790 791 uffd_test_ops->allocate_area((void **)&area_src); 792 if (!area_src) 793 return 1; 794 uffd_test_ops->allocate_area((void **)&area_dst); 795 if (!area_dst) 796 return 1; 797 798 if (userfaultfd_open(0) < 0) 799 return 1; 800 801 count_verify = malloc(nr_pages * sizeof(unsigned long long)); 802 if (!count_verify) { 803 perror("count_verify"); 804 return 1; 805 } 806 807 for (nr = 0; nr < nr_pages; nr++) { 808 *area_mutex(area_src, nr) = (pthread_mutex_t) 809 PTHREAD_MUTEX_INITIALIZER; 810 count_verify[nr] = *area_count(area_src, nr) = 1; 811 /* 812 * In the transition between 255 to 256, powerpc will 813 * read out of order in my_bcmp and see both bytes as 814 * zero, so leave a placeholder below always non-zero 815 * after the count, to avoid my_bcmp to trigger false 816 * positives. 817 */ 818 *(area_count(area_src, nr) + 1) = 1; 819 } 820 821 pipefd = malloc(sizeof(int) * nr_cpus * 2); 822 if (!pipefd) { 823 perror("pipefd"); 824 return 1; 825 } 826 for (cpu = 0; cpu < nr_cpus; cpu++) { 827 if (pipe2(&pipefd[cpu*2], O_CLOEXEC | O_NONBLOCK)) { 828 perror("pipe"); 829 return 1; 830 } 831 } 832 833 if (posix_memalign(&area, page_size, page_size)) { 834 fprintf(stderr, "out of memory\n"); 835 return 1; 836 } 837 zeropage = area; 838 bzero(zeropage, page_size); 839 840 pthread_mutex_lock(&uffd_read_mutex); 841 842 pthread_attr_init(&attr); 843 pthread_attr_setstacksize(&attr, 16*1024*1024); 844 845 err = 0; 846 while (bounces--) { 847 unsigned long expected_ioctls; 848 849 printf("bounces: %d, mode:", bounces); 850 if (bounces & BOUNCE_RANDOM) 851 printf(" rnd"); 852 if (bounces & BOUNCE_RACINGFAULTS) 853 printf(" racing"); 854 if (bounces & BOUNCE_VERIFY) 855 printf(" ver"); 856 if (bounces & BOUNCE_POLL) 857 printf(" poll"); 858 printf(", "); 859 fflush(stdout); 860 861 if (bounces & BOUNCE_POLL) 862 fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); 863 else 864 fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK); 865 866 /* register */ 867 uffdio_register.range.start = (unsigned long) area_dst; 868 uffdio_register.range.len = nr_pages * page_size; 869 uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; 870 if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) { 871 fprintf(stderr, "register failure\n"); 872 return 1; 873 } 874 expected_ioctls = uffd_test_ops->expected_ioctls; 875 if ((uffdio_register.ioctls & expected_ioctls) != 876 expected_ioctls) { 877 fprintf(stderr, 878 "unexpected missing ioctl for anon memory\n"); 879 return 1; 880 } 881 882 /* 883 * The madvise done previously isn't enough: some 884 * uffd_thread could have read userfaults (one of 885 * those already resolved by the background thread) 886 * and it may be in the process of calling 887 * UFFDIO_COPY. UFFDIO_COPY will read the zapped 888 * area_src and it would map a zero page in it (of 889 * course such a UFFDIO_COPY is perfectly safe as it'd 890 * return -EEXIST). The problem comes at the next 891 * bounce though: that racing UFFDIO_COPY would 892 * generate zeropages in the area_src, so invalidating 893 * the previous MADV_DONTNEED. Without this additional 894 * MADV_DONTNEED those zeropages leftovers in the 895 * area_src would lead to -EEXIST failure during the 896 * next bounce, effectively leaving a zeropage in the 897 * area_dst. 898 * 899 * Try to comment this out madvise to see the memory 900 * corruption being caught pretty quick. 901 * 902 * khugepaged is also inhibited to collapse THP after 903 * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's 904 * required to MADV_DONTNEED here. 905 */ 906 if (uffd_test_ops->release_pages(area_dst)) 907 return 1; 908 909 /* bounce pass */ 910 if (stress(userfaults)) 911 return 1; 912 913 /* unregister */ 914 if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) { 915 fprintf(stderr, "register failure\n"); 916 return 1; 917 } 918 919 /* verification */ 920 if (bounces & BOUNCE_VERIFY) { 921 for (nr = 0; nr < nr_pages; nr++) { 922 if (*area_count(area_dst, nr) != count_verify[nr]) { 923 fprintf(stderr, 924 "error area_count %Lu %Lu %lu\n", 925 *area_count(area_src, nr), 926 count_verify[nr], 927 nr); 928 err = 1; 929 bounces = 0; 930 } 931 } 932 } 933 934 /* prepare next bounce */ 935 tmp_area = area_src; 936 area_src = area_dst; 937 area_dst = tmp_area; 938 939 printf("userfaults:"); 940 for (cpu = 0; cpu < nr_cpus; cpu++) 941 printf(" %lu", userfaults[cpu]); 942 printf("\n"); 943 } 944 945 if (err) 946 return err; 947 948 close(uffd); 949 return userfaultfd_zeropage_test() || userfaultfd_events_test(); 950} 951 952/* 953 * Copied from mlock2-tests.c 954 */ 955unsigned long default_huge_page_size(void) 956{ 957 unsigned long hps = 0; 958 char *line = NULL; 959 size_t linelen = 0; 960 FILE *f = fopen("/proc/meminfo", "r"); 961 962 if (!f) 963 return 0; 964 while (getline(&line, &linelen, f) > 0) { 965 if (sscanf(line, "Hugepagesize: %lu kB", &hps) == 1) { 966 hps <<= 10; 967 break; 968 } 969 } 970 971 free(line); 972 fclose(f); 973 return hps; 974} 975 976static void set_test_type(const char *type) 977{ 978 if (!strcmp(type, "anon")) { 979 test_type = TEST_ANON; 980 uffd_test_ops = &anon_uffd_test_ops; 981 } else if (!strcmp(type, "hugetlb")) { 982 test_type = TEST_HUGETLB; 983 uffd_test_ops = &hugetlb_uffd_test_ops; 984 } else if (!strcmp(type, "shmem")) { 985 test_type = TEST_SHMEM; 986 uffd_test_ops = &shmem_uffd_test_ops; 987 } else { 988 fprintf(stderr, "Unknown test type: %s\n", type), exit(1); 989 } 990 991 if (test_type == TEST_HUGETLB) 992 page_size = default_huge_page_size(); 993 else 994 page_size = sysconf(_SC_PAGE_SIZE); 995 996 if (!page_size) 997 fprintf(stderr, "Unable to determine page size\n"), 998 exit(2); 999 if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) * 2 1000 > page_size) 1001 fprintf(stderr, "Impossible to run this test\n"), exit(2); 1002} 1003 1004int main(int argc, char **argv) 1005{ 1006 if (argc < 4) 1007 fprintf(stderr, "Usage: <test type> <MiB> <bounces> [hugetlbfs_file]\n"), 1008 exit(1); 1009 1010 set_test_type(argv[1]); 1011 1012 nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); 1013 nr_pages_per_cpu = atol(argv[2]) * 1024*1024 / page_size / 1014 nr_cpus; 1015 if (!nr_pages_per_cpu) { 1016 fprintf(stderr, "invalid MiB\n"); 1017 fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1); 1018 } 1019 1020 bounces = atoi(argv[3]); 1021 if (bounces <= 0) { 1022 fprintf(stderr, "invalid bounces\n"); 1023 fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1); 1024 } 1025 nr_pages = nr_pages_per_cpu * nr_cpus; 1026 1027 if (test_type == TEST_HUGETLB) { 1028 if (argc < 5) 1029 fprintf(stderr, "Usage: hugetlb <MiB> <bounces> <hugetlbfs_file>\n"), 1030 exit(1); 1031 huge_fd = open(argv[4], O_CREAT | O_RDWR, 0755); 1032 if (huge_fd < 0) { 1033 fprintf(stderr, "Open of %s failed", argv[3]); 1034 perror("open"); 1035 exit(1); 1036 } 1037 if (ftruncate(huge_fd, 0)) { 1038 fprintf(stderr, "ftruncate %s to size 0 failed", argv[3]); 1039 perror("ftruncate"); 1040 exit(1); 1041 } 1042 } 1043 printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n", 1044 nr_pages, nr_pages_per_cpu); 1045 return userfaultfd_stress(); 1046} 1047 1048#else /* __NR_userfaultfd */ 1049 1050#warning "missing __NR_userfaultfd definition" 1051 1052int main(void) 1053{ 1054 printf("skip: Skipping userfaultfd test (missing __NR_userfaultfd)\n"); 1055 return 0; 1056} 1057 1058#endif /* __NR_userfaultfd */