Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_BLKDEV_H
2#define _LINUX_BLKDEV_H
3
4#include <linux/sched.h>
5#include <linux/sched/clock.h>
6
7#ifdef CONFIG_BLOCK
8
9#include <linux/major.h>
10#include <linux/genhd.h>
11#include <linux/list.h>
12#include <linux/llist.h>
13#include <linux/timer.h>
14#include <linux/workqueue.h>
15#include <linux/pagemap.h>
16#include <linux/backing-dev-defs.h>
17#include <linux/wait.h>
18#include <linux/mempool.h>
19#include <linux/pfn.h>
20#include <linux/bio.h>
21#include <linux/stringify.h>
22#include <linux/gfp.h>
23#include <linux/bsg.h>
24#include <linux/smp.h>
25#include <linux/rcupdate.h>
26#include <linux/percpu-refcount.h>
27#include <linux/scatterlist.h>
28#include <linux/blkzoned.h>
29
30struct module;
31struct scsi_ioctl_command;
32
33struct request_queue;
34struct elevator_queue;
35struct blk_trace;
36struct request;
37struct sg_io_hdr;
38struct bsg_job;
39struct blkcg_gq;
40struct blk_flush_queue;
41struct pr_ops;
42struct rq_wb;
43struct blk_queue_stats;
44struct blk_stat_callback;
45
46#define BLKDEV_MIN_RQ 4
47#define BLKDEV_MAX_RQ 128 /* Default maximum */
48
49/* Must be consisitent with blk_mq_poll_stats_bkt() */
50#define BLK_MQ_POLL_STATS_BKTS 16
51
52/*
53 * Maximum number of blkcg policies allowed to be registered concurrently.
54 * Defined here to simplify include dependency.
55 */
56#define BLKCG_MAX_POLS 3
57
58typedef void (rq_end_io_fn)(struct request *, blk_status_t);
59
60#define BLK_RL_SYNCFULL (1U << 0)
61#define BLK_RL_ASYNCFULL (1U << 1)
62
63struct request_list {
64 struct request_queue *q; /* the queue this rl belongs to */
65#ifdef CONFIG_BLK_CGROUP
66 struct blkcg_gq *blkg; /* blkg this request pool belongs to */
67#endif
68 /*
69 * count[], starved[], and wait[] are indexed by
70 * BLK_RW_SYNC/BLK_RW_ASYNC
71 */
72 int count[2];
73 int starved[2];
74 mempool_t *rq_pool;
75 wait_queue_head_t wait[2];
76 unsigned int flags;
77};
78
79/*
80 * request flags */
81typedef __u32 __bitwise req_flags_t;
82
83/* elevator knows about this request */
84#define RQF_SORTED ((__force req_flags_t)(1 << 0))
85/* drive already may have started this one */
86#define RQF_STARTED ((__force req_flags_t)(1 << 1))
87/* uses tagged queueing */
88#define RQF_QUEUED ((__force req_flags_t)(1 << 2))
89/* may not be passed by ioscheduler */
90#define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
91/* request for flush sequence */
92#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
93/* merge of different types, fail separately */
94#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
95/* track inflight for MQ */
96#define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
97/* don't call prep for this one */
98#define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
99/* set for "ide_preempt" requests and also for requests for which the SCSI
100 "quiesce" state must be ignored. */
101#define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
102/* contains copies of user pages */
103#define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
104/* vaguely specified driver internal error. Ignored by the block layer */
105#define RQF_FAILED ((__force req_flags_t)(1 << 10))
106/* don't warn about errors */
107#define RQF_QUIET ((__force req_flags_t)(1 << 11))
108/* elevator private data attached */
109#define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
110/* account I/O stat */
111#define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
112/* request came from our alloc pool */
113#define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
114/* runtime pm request */
115#define RQF_PM ((__force req_flags_t)(1 << 15))
116/* on IO scheduler merge hash */
117#define RQF_HASHED ((__force req_flags_t)(1 << 16))
118/* IO stats tracking on */
119#define RQF_STATS ((__force req_flags_t)(1 << 17))
120/* Look at ->special_vec for the actual data payload instead of the
121 bio chain. */
122#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
123
124/* flags that prevent us from merging requests: */
125#define RQF_NOMERGE_FLAGS \
126 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
127
128/*
129 * Try to put the fields that are referenced together in the same cacheline.
130 *
131 * If you modify this structure, make sure to update blk_rq_init() and
132 * especially blk_mq_rq_ctx_init() to take care of the added fields.
133 */
134struct request {
135 struct list_head queuelist;
136 union {
137 struct call_single_data csd;
138 u64 fifo_time;
139 };
140
141 struct request_queue *q;
142 struct blk_mq_ctx *mq_ctx;
143
144 int cpu;
145 unsigned int cmd_flags; /* op and common flags */
146 req_flags_t rq_flags;
147
148 int internal_tag;
149
150 unsigned long atomic_flags;
151
152 /* the following two fields are internal, NEVER access directly */
153 unsigned int __data_len; /* total data len */
154 int tag;
155 sector_t __sector; /* sector cursor */
156
157 struct bio *bio;
158 struct bio *biotail;
159
160 /*
161 * The hash is used inside the scheduler, and killed once the
162 * request reaches the dispatch list. The ipi_list is only used
163 * to queue the request for softirq completion, which is long
164 * after the request has been unhashed (and even removed from
165 * the dispatch list).
166 */
167 union {
168 struct hlist_node hash; /* merge hash */
169 struct list_head ipi_list;
170 };
171
172 /*
173 * The rb_node is only used inside the io scheduler, requests
174 * are pruned when moved to the dispatch queue. So let the
175 * completion_data share space with the rb_node.
176 */
177 union {
178 struct rb_node rb_node; /* sort/lookup */
179 struct bio_vec special_vec;
180 void *completion_data;
181 int error_count; /* for legacy drivers, don't use */
182 };
183
184 /*
185 * Three pointers are available for the IO schedulers, if they need
186 * more they have to dynamically allocate it. Flush requests are
187 * never put on the IO scheduler. So let the flush fields share
188 * space with the elevator data.
189 */
190 union {
191 struct {
192 struct io_cq *icq;
193 void *priv[2];
194 } elv;
195
196 struct {
197 unsigned int seq;
198 struct list_head list;
199 rq_end_io_fn *saved_end_io;
200 } flush;
201 };
202
203 struct gendisk *rq_disk;
204 struct hd_struct *part;
205 unsigned long start_time;
206 struct blk_issue_stat issue_stat;
207#ifdef CONFIG_BLK_CGROUP
208 struct request_list *rl; /* rl this rq is alloced from */
209 unsigned long long start_time_ns;
210 unsigned long long io_start_time_ns; /* when passed to hardware */
211#endif
212 /* Number of scatter-gather DMA addr+len pairs after
213 * physical address coalescing is performed.
214 */
215 unsigned short nr_phys_segments;
216#if defined(CONFIG_BLK_DEV_INTEGRITY)
217 unsigned short nr_integrity_segments;
218#endif
219
220 unsigned short ioprio;
221
222 unsigned int timeout;
223
224 void *special; /* opaque pointer available for LLD use */
225
226 unsigned int extra_len; /* length of alignment and padding */
227
228 unsigned short write_hint;
229
230 unsigned long deadline;
231 struct list_head timeout_list;
232
233 /*
234 * completion callback.
235 */
236 rq_end_io_fn *end_io;
237 void *end_io_data;
238
239 /* for bidi */
240 struct request *next_rq;
241};
242
243static inline bool blk_rq_is_scsi(struct request *rq)
244{
245 return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT;
246}
247
248static inline bool blk_rq_is_private(struct request *rq)
249{
250 return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT;
251}
252
253static inline bool blk_rq_is_passthrough(struct request *rq)
254{
255 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
256}
257
258static inline unsigned short req_get_ioprio(struct request *req)
259{
260 return req->ioprio;
261}
262
263#include <linux/elevator.h>
264
265struct blk_queue_ctx;
266
267typedef void (request_fn_proc) (struct request_queue *q);
268typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
269typedef int (prep_rq_fn) (struct request_queue *, struct request *);
270typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
271
272struct bio_vec;
273typedef void (softirq_done_fn)(struct request *);
274typedef int (dma_drain_needed_fn)(struct request *);
275typedef int (lld_busy_fn) (struct request_queue *q);
276typedef int (bsg_job_fn) (struct bsg_job *);
277typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
278typedef void (exit_rq_fn)(struct request_queue *, struct request *);
279
280enum blk_eh_timer_return {
281 BLK_EH_NOT_HANDLED,
282 BLK_EH_HANDLED,
283 BLK_EH_RESET_TIMER,
284};
285
286typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
287
288enum blk_queue_state {
289 Queue_down,
290 Queue_up,
291};
292
293struct blk_queue_tag {
294 struct request **tag_index; /* map of busy tags */
295 unsigned long *tag_map; /* bit map of free/busy tags */
296 int max_depth; /* what we will send to device */
297 int real_max_depth; /* what the array can hold */
298 atomic_t refcnt; /* map can be shared */
299 int alloc_policy; /* tag allocation policy */
300 int next_tag; /* next tag */
301};
302#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
303#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
304
305#define BLK_SCSI_MAX_CMDS (256)
306#define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
307
308/*
309 * Zoned block device models (zoned limit).
310 */
311enum blk_zoned_model {
312 BLK_ZONED_NONE, /* Regular block device */
313 BLK_ZONED_HA, /* Host-aware zoned block device */
314 BLK_ZONED_HM, /* Host-managed zoned block device */
315};
316
317struct queue_limits {
318 unsigned long bounce_pfn;
319 unsigned long seg_boundary_mask;
320 unsigned long virt_boundary_mask;
321
322 unsigned int max_hw_sectors;
323 unsigned int max_dev_sectors;
324 unsigned int chunk_sectors;
325 unsigned int max_sectors;
326 unsigned int max_segment_size;
327 unsigned int physical_block_size;
328 unsigned int alignment_offset;
329 unsigned int io_min;
330 unsigned int io_opt;
331 unsigned int max_discard_sectors;
332 unsigned int max_hw_discard_sectors;
333 unsigned int max_write_same_sectors;
334 unsigned int max_write_zeroes_sectors;
335 unsigned int discard_granularity;
336 unsigned int discard_alignment;
337
338 unsigned short logical_block_size;
339 unsigned short max_segments;
340 unsigned short max_integrity_segments;
341 unsigned short max_discard_segments;
342
343 unsigned char misaligned;
344 unsigned char discard_misaligned;
345 unsigned char cluster;
346 unsigned char raid_partial_stripes_expensive;
347 enum blk_zoned_model zoned;
348};
349
350#ifdef CONFIG_BLK_DEV_ZONED
351
352struct blk_zone_report_hdr {
353 unsigned int nr_zones;
354 u8 padding[60];
355};
356
357extern int blkdev_report_zones(struct block_device *bdev,
358 sector_t sector, struct blk_zone *zones,
359 unsigned int *nr_zones, gfp_t gfp_mask);
360extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
361 sector_t nr_sectors, gfp_t gfp_mask);
362
363extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
364 unsigned int cmd, unsigned long arg);
365extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
366 unsigned int cmd, unsigned long arg);
367
368#else /* CONFIG_BLK_DEV_ZONED */
369
370static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
371 fmode_t mode, unsigned int cmd,
372 unsigned long arg)
373{
374 return -ENOTTY;
375}
376
377static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
378 fmode_t mode, unsigned int cmd,
379 unsigned long arg)
380{
381 return -ENOTTY;
382}
383
384#endif /* CONFIG_BLK_DEV_ZONED */
385
386struct request_queue {
387 /*
388 * Together with queue_head for cacheline sharing
389 */
390 struct list_head queue_head;
391 struct request *last_merge;
392 struct elevator_queue *elevator;
393 int nr_rqs[2]; /* # allocated [a]sync rqs */
394 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */
395
396 atomic_t shared_hctx_restart;
397
398 struct blk_queue_stats *stats;
399 struct rq_wb *rq_wb;
400
401 /*
402 * If blkcg is not used, @q->root_rl serves all requests. If blkcg
403 * is used, root blkg allocates from @q->root_rl and all other
404 * blkgs from their own blkg->rl. Which one to use should be
405 * determined using bio_request_list().
406 */
407 struct request_list root_rl;
408
409 request_fn_proc *request_fn;
410 make_request_fn *make_request_fn;
411 prep_rq_fn *prep_rq_fn;
412 unprep_rq_fn *unprep_rq_fn;
413 softirq_done_fn *softirq_done_fn;
414 rq_timed_out_fn *rq_timed_out_fn;
415 dma_drain_needed_fn *dma_drain_needed;
416 lld_busy_fn *lld_busy_fn;
417 /* Called just after a request is allocated */
418 init_rq_fn *init_rq_fn;
419 /* Called just before a request is freed */
420 exit_rq_fn *exit_rq_fn;
421 /* Called from inside blk_get_request() */
422 void (*initialize_rq_fn)(struct request *rq);
423
424 const struct blk_mq_ops *mq_ops;
425
426 unsigned int *mq_map;
427
428 /* sw queues */
429 struct blk_mq_ctx __percpu *queue_ctx;
430 unsigned int nr_queues;
431
432 unsigned int queue_depth;
433
434 /* hw dispatch queues */
435 struct blk_mq_hw_ctx **queue_hw_ctx;
436 unsigned int nr_hw_queues;
437
438 /*
439 * Dispatch queue sorting
440 */
441 sector_t end_sector;
442 struct request *boundary_rq;
443
444 /*
445 * Delayed queue handling
446 */
447 struct delayed_work delay_work;
448
449 struct backing_dev_info *backing_dev_info;
450
451 /*
452 * The queue owner gets to use this for whatever they like.
453 * ll_rw_blk doesn't touch it.
454 */
455 void *queuedata;
456
457 /*
458 * various queue flags, see QUEUE_* below
459 */
460 unsigned long queue_flags;
461
462 /*
463 * ida allocated id for this queue. Used to index queues from
464 * ioctx.
465 */
466 int id;
467
468 /*
469 * queue needs bounce pages for pages above this limit
470 */
471 gfp_t bounce_gfp;
472
473 /*
474 * protects queue structures from reentrancy. ->__queue_lock should
475 * _never_ be used directly, it is queue private. always use
476 * ->queue_lock.
477 */
478 spinlock_t __queue_lock;
479 spinlock_t *queue_lock;
480
481 /*
482 * queue kobject
483 */
484 struct kobject kobj;
485
486 /*
487 * mq queue kobject
488 */
489 struct kobject mq_kobj;
490
491#ifdef CONFIG_BLK_DEV_INTEGRITY
492 struct blk_integrity integrity;
493#endif /* CONFIG_BLK_DEV_INTEGRITY */
494
495#ifdef CONFIG_PM
496 struct device *dev;
497 int rpm_status;
498 unsigned int nr_pending;
499#endif
500
501 /*
502 * queue settings
503 */
504 unsigned long nr_requests; /* Max # of requests */
505 unsigned int nr_congestion_on;
506 unsigned int nr_congestion_off;
507 unsigned int nr_batching;
508
509 unsigned int dma_drain_size;
510 void *dma_drain_buffer;
511 unsigned int dma_pad_mask;
512 unsigned int dma_alignment;
513
514 struct blk_queue_tag *queue_tags;
515 struct list_head tag_busy_list;
516
517 unsigned int nr_sorted;
518 unsigned int in_flight[2];
519
520 /*
521 * Number of active block driver functions for which blk_drain_queue()
522 * must wait. Must be incremented around functions that unlock the
523 * queue_lock internally, e.g. scsi_request_fn().
524 */
525 unsigned int request_fn_active;
526
527 unsigned int rq_timeout;
528 int poll_nsec;
529
530 struct blk_stat_callback *poll_cb;
531 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
532
533 struct timer_list timeout;
534 struct work_struct timeout_work;
535 struct list_head timeout_list;
536
537 struct list_head icq_list;
538#ifdef CONFIG_BLK_CGROUP
539 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
540 struct blkcg_gq *root_blkg;
541 struct list_head blkg_list;
542#endif
543
544 struct queue_limits limits;
545
546 /*
547 * sg stuff
548 */
549 unsigned int sg_timeout;
550 unsigned int sg_reserved_size;
551 int node;
552#ifdef CONFIG_BLK_DEV_IO_TRACE
553 struct blk_trace *blk_trace;
554#endif
555 /*
556 * for flush operations
557 */
558 struct blk_flush_queue *fq;
559
560 struct list_head requeue_list;
561 spinlock_t requeue_lock;
562 struct delayed_work requeue_work;
563
564 struct mutex sysfs_lock;
565
566 int bypass_depth;
567 atomic_t mq_freeze_depth;
568
569#if defined(CONFIG_BLK_DEV_BSG)
570 bsg_job_fn *bsg_job_fn;
571 int bsg_job_size;
572 struct bsg_class_device bsg_dev;
573#endif
574
575#ifdef CONFIG_BLK_DEV_THROTTLING
576 /* Throttle data */
577 struct throtl_data *td;
578#endif
579 struct rcu_head rcu_head;
580 wait_queue_head_t mq_freeze_wq;
581 struct percpu_ref q_usage_counter;
582 struct list_head all_q_node;
583
584 struct blk_mq_tag_set *tag_set;
585 struct list_head tag_set_list;
586 struct bio_set *bio_split;
587
588#ifdef CONFIG_BLK_DEBUG_FS
589 struct dentry *debugfs_dir;
590 struct dentry *sched_debugfs_dir;
591#endif
592
593 bool mq_sysfs_init_done;
594
595 size_t cmd_size;
596 void *rq_alloc_data;
597
598 struct work_struct release_work;
599
600#define BLK_MAX_WRITE_HINTS 5
601 u64 write_hints[BLK_MAX_WRITE_HINTS];
602};
603
604#define QUEUE_FLAG_QUEUED 1 /* uses generic tag queueing */
605#define QUEUE_FLAG_STOPPED 2 /* queue is stopped */
606#define QUEUE_FLAG_SYNCFULL 3 /* read queue has been filled */
607#define QUEUE_FLAG_ASYNCFULL 4 /* write queue has been filled */
608#define QUEUE_FLAG_DYING 5 /* queue being torn down */
609#define QUEUE_FLAG_BYPASS 6 /* act as dumb FIFO queue */
610#define QUEUE_FLAG_BIDI 7 /* queue supports bidi requests */
611#define QUEUE_FLAG_NOMERGES 8 /* disable merge attempts */
612#define QUEUE_FLAG_SAME_COMP 9 /* complete on same CPU-group */
613#define QUEUE_FLAG_FAIL_IO 10 /* fake timeout */
614#define QUEUE_FLAG_STACKABLE 11 /* supports request stacking */
615#define QUEUE_FLAG_NONROT 12 /* non-rotational device (SSD) */
616#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
617#define QUEUE_FLAG_IO_STAT 13 /* do IO stats */
618#define QUEUE_FLAG_DISCARD 14 /* supports DISCARD */
619#define QUEUE_FLAG_NOXMERGES 15 /* No extended merges */
620#define QUEUE_FLAG_ADD_RANDOM 16 /* Contributes to random pool */
621#define QUEUE_FLAG_SECERASE 17 /* supports secure erase */
622#define QUEUE_FLAG_SAME_FORCE 18 /* force complete on same CPU */
623#define QUEUE_FLAG_DEAD 19 /* queue tear-down finished */
624#define QUEUE_FLAG_INIT_DONE 20 /* queue is initialized */
625#define QUEUE_FLAG_NO_SG_MERGE 21 /* don't attempt to merge SG segments*/
626#define QUEUE_FLAG_POLL 22 /* IO polling enabled if set */
627#define QUEUE_FLAG_WC 23 /* Write back caching */
628#define QUEUE_FLAG_FUA 24 /* device supports FUA writes */
629#define QUEUE_FLAG_FLUSH_NQ 25 /* flush not queueuable */
630#define QUEUE_FLAG_DAX 26 /* device supports DAX */
631#define QUEUE_FLAG_STATS 27 /* track rq completion times */
632#define QUEUE_FLAG_POLL_STATS 28 /* collecting stats for hybrid polling */
633#define QUEUE_FLAG_REGISTERED 29 /* queue has been registered to a disk */
634#define QUEUE_FLAG_SCSI_PASSTHROUGH 30 /* queue supports SCSI commands */
635#define QUEUE_FLAG_QUIESCED 31 /* queue has been quiesced */
636
637#define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
638 (1 << QUEUE_FLAG_STACKABLE) | \
639 (1 << QUEUE_FLAG_SAME_COMP) | \
640 (1 << QUEUE_FLAG_ADD_RANDOM))
641
642#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
643 (1 << QUEUE_FLAG_STACKABLE) | \
644 (1 << QUEUE_FLAG_SAME_COMP) | \
645 (1 << QUEUE_FLAG_POLL))
646
647/*
648 * @q->queue_lock is set while a queue is being initialized. Since we know
649 * that no other threads access the queue object before @q->queue_lock has
650 * been set, it is safe to manipulate queue flags without holding the
651 * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and
652 * blk_init_allocated_queue().
653 */
654static inline void queue_lockdep_assert_held(struct request_queue *q)
655{
656 if (q->queue_lock)
657 lockdep_assert_held(q->queue_lock);
658}
659
660static inline void queue_flag_set_unlocked(unsigned int flag,
661 struct request_queue *q)
662{
663 __set_bit(flag, &q->queue_flags);
664}
665
666static inline int queue_flag_test_and_clear(unsigned int flag,
667 struct request_queue *q)
668{
669 queue_lockdep_assert_held(q);
670
671 if (test_bit(flag, &q->queue_flags)) {
672 __clear_bit(flag, &q->queue_flags);
673 return 1;
674 }
675
676 return 0;
677}
678
679static inline int queue_flag_test_and_set(unsigned int flag,
680 struct request_queue *q)
681{
682 queue_lockdep_assert_held(q);
683
684 if (!test_bit(flag, &q->queue_flags)) {
685 __set_bit(flag, &q->queue_flags);
686 return 0;
687 }
688
689 return 1;
690}
691
692static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
693{
694 queue_lockdep_assert_held(q);
695 __set_bit(flag, &q->queue_flags);
696}
697
698static inline void queue_flag_clear_unlocked(unsigned int flag,
699 struct request_queue *q)
700{
701 __clear_bit(flag, &q->queue_flags);
702}
703
704static inline int queue_in_flight(struct request_queue *q)
705{
706 return q->in_flight[0] + q->in_flight[1];
707}
708
709static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
710{
711 queue_lockdep_assert_held(q);
712 __clear_bit(flag, &q->queue_flags);
713}
714
715#define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
716#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
717#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
718#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
719#define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
720#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
721#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
722#define blk_queue_noxmerges(q) \
723 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
724#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
725#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
726#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
727#define blk_queue_stackable(q) \
728 test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags)
729#define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
730#define blk_queue_secure_erase(q) \
731 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
732#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
733#define blk_queue_scsi_passthrough(q) \
734 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
735
736#define blk_noretry_request(rq) \
737 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
738 REQ_FAILFAST_DRIVER))
739#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
740
741static inline bool blk_account_rq(struct request *rq)
742{
743 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
744}
745
746#define blk_rq_cpu_valid(rq) ((rq)->cpu != -1)
747#define blk_bidi_rq(rq) ((rq)->next_rq != NULL)
748/* rq->queuelist of dequeued request must be list_empty() */
749#define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist))
750
751#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
752
753#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
754
755/*
756 * Driver can handle struct request, if it either has an old style
757 * request_fn defined, or is blk-mq based.
758 */
759static inline bool queue_is_rq_based(struct request_queue *q)
760{
761 return q->request_fn || q->mq_ops;
762}
763
764static inline unsigned int blk_queue_cluster(struct request_queue *q)
765{
766 return q->limits.cluster;
767}
768
769static inline enum blk_zoned_model
770blk_queue_zoned_model(struct request_queue *q)
771{
772 return q->limits.zoned;
773}
774
775static inline bool blk_queue_is_zoned(struct request_queue *q)
776{
777 switch (blk_queue_zoned_model(q)) {
778 case BLK_ZONED_HA:
779 case BLK_ZONED_HM:
780 return true;
781 default:
782 return false;
783 }
784}
785
786static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
787{
788 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
789}
790
791static inline bool rq_is_sync(struct request *rq)
792{
793 return op_is_sync(rq->cmd_flags);
794}
795
796static inline bool blk_rl_full(struct request_list *rl, bool sync)
797{
798 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
799
800 return rl->flags & flag;
801}
802
803static inline void blk_set_rl_full(struct request_list *rl, bool sync)
804{
805 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
806
807 rl->flags |= flag;
808}
809
810static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
811{
812 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
813
814 rl->flags &= ~flag;
815}
816
817static inline bool rq_mergeable(struct request *rq)
818{
819 if (blk_rq_is_passthrough(rq))
820 return false;
821
822 if (req_op(rq) == REQ_OP_FLUSH)
823 return false;
824
825 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
826 return false;
827
828 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
829 return false;
830 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
831 return false;
832
833 return true;
834}
835
836static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
837{
838 if (bio_page(a) == bio_page(b) &&
839 bio_offset(a) == bio_offset(b))
840 return true;
841
842 return false;
843}
844
845static inline unsigned int blk_queue_depth(struct request_queue *q)
846{
847 if (q->queue_depth)
848 return q->queue_depth;
849
850 return q->nr_requests;
851}
852
853/*
854 * q->prep_rq_fn return values
855 */
856enum {
857 BLKPREP_OK, /* serve it */
858 BLKPREP_KILL, /* fatal error, kill, return -EIO */
859 BLKPREP_DEFER, /* leave on queue */
860 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */
861};
862
863extern unsigned long blk_max_low_pfn, blk_max_pfn;
864
865/*
866 * standard bounce addresses:
867 *
868 * BLK_BOUNCE_HIGH : bounce all highmem pages
869 * BLK_BOUNCE_ANY : don't bounce anything
870 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
871 */
872
873#if BITS_PER_LONG == 32
874#define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
875#else
876#define BLK_BOUNCE_HIGH -1ULL
877#endif
878#define BLK_BOUNCE_ANY (-1ULL)
879#define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
880
881/*
882 * default timeout for SG_IO if none specified
883 */
884#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
885#define BLK_MIN_SG_TIMEOUT (7 * HZ)
886
887struct rq_map_data {
888 struct page **pages;
889 int page_order;
890 int nr_entries;
891 unsigned long offset;
892 int null_mapped;
893 int from_user;
894};
895
896struct req_iterator {
897 struct bvec_iter iter;
898 struct bio *bio;
899};
900
901/* This should not be used directly - use rq_for_each_segment */
902#define for_each_bio(_bio) \
903 for (; _bio; _bio = _bio->bi_next)
904#define __rq_for_each_bio(_bio, rq) \
905 if ((rq->bio)) \
906 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
907
908#define rq_for_each_segment(bvl, _rq, _iter) \
909 __rq_for_each_bio(_iter.bio, _rq) \
910 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
911
912#define rq_iter_last(bvec, _iter) \
913 (_iter.bio->bi_next == NULL && \
914 bio_iter_last(bvec, _iter.iter))
915
916#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
917# error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
918#endif
919#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
920extern void rq_flush_dcache_pages(struct request *rq);
921#else
922static inline void rq_flush_dcache_pages(struct request *rq)
923{
924}
925#endif
926
927#ifdef CONFIG_PRINTK
928#define vfs_msg(sb, level, fmt, ...) \
929 __vfs_msg(sb, level, fmt, ##__VA_ARGS__)
930#else
931#define vfs_msg(sb, level, fmt, ...) \
932do { \
933 no_printk(fmt, ##__VA_ARGS__); \
934 __vfs_msg(sb, "", " "); \
935} while (0)
936#endif
937
938extern int blk_register_queue(struct gendisk *disk);
939extern void blk_unregister_queue(struct gendisk *disk);
940extern blk_qc_t generic_make_request(struct bio *bio);
941extern void blk_rq_init(struct request_queue *q, struct request *rq);
942extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
943extern void blk_put_request(struct request *);
944extern void __blk_put_request(struct request_queue *, struct request *);
945extern struct request *blk_get_request(struct request_queue *, unsigned int op,
946 gfp_t gfp_mask);
947extern void blk_requeue_request(struct request_queue *, struct request *);
948extern int blk_lld_busy(struct request_queue *q);
949extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
950 struct bio_set *bs, gfp_t gfp_mask,
951 int (*bio_ctr)(struct bio *, struct bio *, void *),
952 void *data);
953extern void blk_rq_unprep_clone(struct request *rq);
954extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
955 struct request *rq);
956extern int blk_rq_append_bio(struct request *rq, struct bio *bio);
957extern void blk_delay_queue(struct request_queue *, unsigned long);
958extern void blk_queue_split(struct request_queue *, struct bio **);
959extern void blk_recount_segments(struct request_queue *, struct bio *);
960extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
961extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
962 unsigned int, void __user *);
963extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
964 unsigned int, void __user *);
965extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
966 struct scsi_ioctl_command __user *);
967
968extern int blk_queue_enter(struct request_queue *q, bool nowait);
969extern void blk_queue_exit(struct request_queue *q);
970extern void blk_start_queue(struct request_queue *q);
971extern void blk_start_queue_async(struct request_queue *q);
972extern void blk_stop_queue(struct request_queue *q);
973extern void blk_sync_queue(struct request_queue *q);
974extern void __blk_stop_queue(struct request_queue *q);
975extern void __blk_run_queue(struct request_queue *q);
976extern void __blk_run_queue_uncond(struct request_queue *q);
977extern void blk_run_queue(struct request_queue *);
978extern void blk_run_queue_async(struct request_queue *q);
979extern int blk_rq_map_user(struct request_queue *, struct request *,
980 struct rq_map_data *, void __user *, unsigned long,
981 gfp_t);
982extern int blk_rq_unmap_user(struct bio *);
983extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
984extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
985 struct rq_map_data *, const struct iov_iter *,
986 gfp_t);
987extern void blk_execute_rq(struct request_queue *, struct gendisk *,
988 struct request *, int);
989extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
990 struct request *, int, rq_end_io_fn *);
991
992int blk_status_to_errno(blk_status_t status);
993blk_status_t errno_to_blk_status(int errno);
994
995bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
996
997static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
998{
999 return bdev->bd_disk->queue; /* this is never NULL */
1000}
1001
1002/*
1003 * blk_rq_pos() : the current sector
1004 * blk_rq_bytes() : bytes left in the entire request
1005 * blk_rq_cur_bytes() : bytes left in the current segment
1006 * blk_rq_err_bytes() : bytes left till the next error boundary
1007 * blk_rq_sectors() : sectors left in the entire request
1008 * blk_rq_cur_sectors() : sectors left in the current segment
1009 */
1010static inline sector_t blk_rq_pos(const struct request *rq)
1011{
1012 return rq->__sector;
1013}
1014
1015static inline unsigned int blk_rq_bytes(const struct request *rq)
1016{
1017 return rq->__data_len;
1018}
1019
1020static inline int blk_rq_cur_bytes(const struct request *rq)
1021{
1022 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1023}
1024
1025extern unsigned int blk_rq_err_bytes(const struct request *rq);
1026
1027static inline unsigned int blk_rq_sectors(const struct request *rq)
1028{
1029 return blk_rq_bytes(rq) >> 9;
1030}
1031
1032static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1033{
1034 return blk_rq_cur_bytes(rq) >> 9;
1035}
1036
1037/*
1038 * Some commands like WRITE SAME have a payload or data transfer size which
1039 * is different from the size of the request. Any driver that supports such
1040 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1041 * calculate the data transfer size.
1042 */
1043static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1044{
1045 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1046 return rq->special_vec.bv_len;
1047 return blk_rq_bytes(rq);
1048}
1049
1050static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1051 int op)
1052{
1053 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1054 return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
1055
1056 if (unlikely(op == REQ_OP_WRITE_SAME))
1057 return q->limits.max_write_same_sectors;
1058
1059 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1060 return q->limits.max_write_zeroes_sectors;
1061
1062 return q->limits.max_sectors;
1063}
1064
1065/*
1066 * Return maximum size of a request at given offset. Only valid for
1067 * file system requests.
1068 */
1069static inline unsigned int blk_max_size_offset(struct request_queue *q,
1070 sector_t offset)
1071{
1072 if (!q->limits.chunk_sectors)
1073 return q->limits.max_sectors;
1074
1075 return q->limits.chunk_sectors -
1076 (offset & (q->limits.chunk_sectors - 1));
1077}
1078
1079static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1080 sector_t offset)
1081{
1082 struct request_queue *q = rq->q;
1083
1084 if (blk_rq_is_passthrough(rq))
1085 return q->limits.max_hw_sectors;
1086
1087 if (!q->limits.chunk_sectors ||
1088 req_op(rq) == REQ_OP_DISCARD ||
1089 req_op(rq) == REQ_OP_SECURE_ERASE)
1090 return blk_queue_get_max_sectors(q, req_op(rq));
1091
1092 return min(blk_max_size_offset(q, offset),
1093 blk_queue_get_max_sectors(q, req_op(rq)));
1094}
1095
1096static inline unsigned int blk_rq_count_bios(struct request *rq)
1097{
1098 unsigned int nr_bios = 0;
1099 struct bio *bio;
1100
1101 __rq_for_each_bio(bio, rq)
1102 nr_bios++;
1103
1104 return nr_bios;
1105}
1106
1107/*
1108 * Request issue related functions.
1109 */
1110extern struct request *blk_peek_request(struct request_queue *q);
1111extern void blk_start_request(struct request *rq);
1112extern struct request *blk_fetch_request(struct request_queue *q);
1113
1114/*
1115 * Request completion related functions.
1116 *
1117 * blk_update_request() completes given number of bytes and updates
1118 * the request without completing it.
1119 *
1120 * blk_end_request() and friends. __blk_end_request() must be called
1121 * with the request queue spinlock acquired.
1122 *
1123 * Several drivers define their own end_request and call
1124 * blk_end_request() for parts of the original function.
1125 * This prevents code duplication in drivers.
1126 */
1127extern bool blk_update_request(struct request *rq, blk_status_t error,
1128 unsigned int nr_bytes);
1129extern void blk_finish_request(struct request *rq, blk_status_t error);
1130extern bool blk_end_request(struct request *rq, blk_status_t error,
1131 unsigned int nr_bytes);
1132extern void blk_end_request_all(struct request *rq, blk_status_t error);
1133extern bool __blk_end_request(struct request *rq, blk_status_t error,
1134 unsigned int nr_bytes);
1135extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1136extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1137
1138extern void blk_complete_request(struct request *);
1139extern void __blk_complete_request(struct request *);
1140extern void blk_abort_request(struct request *);
1141extern void blk_unprep_request(struct request *);
1142
1143/*
1144 * Access functions for manipulating queue properties
1145 */
1146extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1147 spinlock_t *lock, int node_id);
1148extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1149extern int blk_init_allocated_queue(struct request_queue *);
1150extern void blk_cleanup_queue(struct request_queue *);
1151extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1152extern void blk_queue_bounce_limit(struct request_queue *, u64);
1153extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1154extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1155extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1156extern void blk_queue_max_discard_segments(struct request_queue *,
1157 unsigned short);
1158extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1159extern void blk_queue_max_discard_sectors(struct request_queue *q,
1160 unsigned int max_discard_sectors);
1161extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1162 unsigned int max_write_same_sectors);
1163extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1164 unsigned int max_write_same_sectors);
1165extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1166extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1167extern void blk_queue_alignment_offset(struct request_queue *q,
1168 unsigned int alignment);
1169extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1170extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1171extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1172extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1173extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1174extern void blk_set_default_limits(struct queue_limits *lim);
1175extern void blk_set_stacking_limits(struct queue_limits *lim);
1176extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1177 sector_t offset);
1178extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1179 sector_t offset);
1180extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1181 sector_t offset);
1182extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1183extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1184extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1185extern int blk_queue_dma_drain(struct request_queue *q,
1186 dma_drain_needed_fn *dma_drain_needed,
1187 void *buf, unsigned int size);
1188extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1189extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1190extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1191extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1192extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1193extern void blk_queue_dma_alignment(struct request_queue *, int);
1194extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1195extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1196extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1197extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1198extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1199extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1200
1201/*
1202 * Number of physical segments as sent to the device.
1203 *
1204 * Normally this is the number of discontiguous data segments sent by the
1205 * submitter. But for data-less command like discard we might have no
1206 * actual data segments submitted, but the driver might have to add it's
1207 * own special payload. In that case we still return 1 here so that this
1208 * special payload will be mapped.
1209 */
1210static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1211{
1212 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1213 return 1;
1214 return rq->nr_phys_segments;
1215}
1216
1217/*
1218 * Number of discard segments (or ranges) the driver needs to fill in.
1219 * Each discard bio merged into a request is counted as one segment.
1220 */
1221static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1222{
1223 return max_t(unsigned short, rq->nr_phys_segments, 1);
1224}
1225
1226extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1227extern void blk_dump_rq_flags(struct request *, char *);
1228extern long nr_blockdev_pages(void);
1229
1230bool __must_check blk_get_queue(struct request_queue *);
1231struct request_queue *blk_alloc_queue(gfp_t);
1232struct request_queue *blk_alloc_queue_node(gfp_t, int);
1233extern void blk_put_queue(struct request_queue *);
1234extern void blk_set_queue_dying(struct request_queue *);
1235
1236/*
1237 * block layer runtime pm functions
1238 */
1239#ifdef CONFIG_PM
1240extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1241extern int blk_pre_runtime_suspend(struct request_queue *q);
1242extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1243extern void blk_pre_runtime_resume(struct request_queue *q);
1244extern void blk_post_runtime_resume(struct request_queue *q, int err);
1245extern void blk_set_runtime_active(struct request_queue *q);
1246#else
1247static inline void blk_pm_runtime_init(struct request_queue *q,
1248 struct device *dev) {}
1249static inline int blk_pre_runtime_suspend(struct request_queue *q)
1250{
1251 return -ENOSYS;
1252}
1253static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1254static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1255static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1256static inline void blk_set_runtime_active(struct request_queue *q) {}
1257#endif
1258
1259/*
1260 * blk_plug permits building a queue of related requests by holding the I/O
1261 * fragments for a short period. This allows merging of sequential requests
1262 * into single larger request. As the requests are moved from a per-task list to
1263 * the device's request_queue in a batch, this results in improved scalability
1264 * as the lock contention for request_queue lock is reduced.
1265 *
1266 * It is ok not to disable preemption when adding the request to the plug list
1267 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1268 * the plug list when the task sleeps by itself. For details, please see
1269 * schedule() where blk_schedule_flush_plug() is called.
1270 */
1271struct blk_plug {
1272 struct list_head list; /* requests */
1273 struct list_head mq_list; /* blk-mq requests */
1274 struct list_head cb_list; /* md requires an unplug callback */
1275};
1276#define BLK_MAX_REQUEST_COUNT 16
1277#define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1278
1279struct blk_plug_cb;
1280typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1281struct blk_plug_cb {
1282 struct list_head list;
1283 blk_plug_cb_fn callback;
1284 void *data;
1285};
1286extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1287 void *data, int size);
1288extern void blk_start_plug(struct blk_plug *);
1289extern void blk_finish_plug(struct blk_plug *);
1290extern void blk_flush_plug_list(struct blk_plug *, bool);
1291
1292static inline void blk_flush_plug(struct task_struct *tsk)
1293{
1294 struct blk_plug *plug = tsk->plug;
1295
1296 if (plug)
1297 blk_flush_plug_list(plug, false);
1298}
1299
1300static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1301{
1302 struct blk_plug *plug = tsk->plug;
1303
1304 if (plug)
1305 blk_flush_plug_list(plug, true);
1306}
1307
1308static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1309{
1310 struct blk_plug *plug = tsk->plug;
1311
1312 return plug &&
1313 (!list_empty(&plug->list) ||
1314 !list_empty(&plug->mq_list) ||
1315 !list_empty(&plug->cb_list));
1316}
1317
1318/*
1319 * tag stuff
1320 */
1321extern int blk_queue_start_tag(struct request_queue *, struct request *);
1322extern struct request *blk_queue_find_tag(struct request_queue *, int);
1323extern void blk_queue_end_tag(struct request_queue *, struct request *);
1324extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1325extern void blk_queue_free_tags(struct request_queue *);
1326extern int blk_queue_resize_tags(struct request_queue *, int);
1327extern void blk_queue_invalidate_tags(struct request_queue *);
1328extern struct blk_queue_tag *blk_init_tags(int, int);
1329extern void blk_free_tags(struct blk_queue_tag *);
1330
1331static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1332 int tag)
1333{
1334 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1335 return NULL;
1336 return bqt->tag_index[tag];
1337}
1338
1339extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1340extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1341 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1342
1343#define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1344
1345extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1346 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1347extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1348 sector_t nr_sects, gfp_t gfp_mask, int flags,
1349 struct bio **biop);
1350
1351#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1352#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1353
1354extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1355 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1356 unsigned flags);
1357extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1358 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1359
1360static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1361 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1362{
1363 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
1364 nr_blocks << (sb->s_blocksize_bits - 9),
1365 gfp_mask, flags);
1366}
1367static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1368 sector_t nr_blocks, gfp_t gfp_mask)
1369{
1370 return blkdev_issue_zeroout(sb->s_bdev,
1371 block << (sb->s_blocksize_bits - 9),
1372 nr_blocks << (sb->s_blocksize_bits - 9),
1373 gfp_mask, 0);
1374}
1375
1376extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm);
1377
1378enum blk_default_limits {
1379 BLK_MAX_SEGMENTS = 128,
1380 BLK_SAFE_MAX_SECTORS = 255,
1381 BLK_DEF_MAX_SECTORS = 2560,
1382 BLK_MAX_SEGMENT_SIZE = 65536,
1383 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1384};
1385
1386#define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1387
1388static inline unsigned long queue_segment_boundary(struct request_queue *q)
1389{
1390 return q->limits.seg_boundary_mask;
1391}
1392
1393static inline unsigned long queue_virt_boundary(struct request_queue *q)
1394{
1395 return q->limits.virt_boundary_mask;
1396}
1397
1398static inline unsigned int queue_max_sectors(struct request_queue *q)
1399{
1400 return q->limits.max_sectors;
1401}
1402
1403static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1404{
1405 return q->limits.max_hw_sectors;
1406}
1407
1408static inline unsigned short queue_max_segments(struct request_queue *q)
1409{
1410 return q->limits.max_segments;
1411}
1412
1413static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1414{
1415 return q->limits.max_discard_segments;
1416}
1417
1418static inline unsigned int queue_max_segment_size(struct request_queue *q)
1419{
1420 return q->limits.max_segment_size;
1421}
1422
1423static inline unsigned short queue_logical_block_size(struct request_queue *q)
1424{
1425 int retval = 512;
1426
1427 if (q && q->limits.logical_block_size)
1428 retval = q->limits.logical_block_size;
1429
1430 return retval;
1431}
1432
1433static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1434{
1435 return queue_logical_block_size(bdev_get_queue(bdev));
1436}
1437
1438static inline unsigned int queue_physical_block_size(struct request_queue *q)
1439{
1440 return q->limits.physical_block_size;
1441}
1442
1443static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1444{
1445 return queue_physical_block_size(bdev_get_queue(bdev));
1446}
1447
1448static inline unsigned int queue_io_min(struct request_queue *q)
1449{
1450 return q->limits.io_min;
1451}
1452
1453static inline int bdev_io_min(struct block_device *bdev)
1454{
1455 return queue_io_min(bdev_get_queue(bdev));
1456}
1457
1458static inline unsigned int queue_io_opt(struct request_queue *q)
1459{
1460 return q->limits.io_opt;
1461}
1462
1463static inline int bdev_io_opt(struct block_device *bdev)
1464{
1465 return queue_io_opt(bdev_get_queue(bdev));
1466}
1467
1468static inline int queue_alignment_offset(struct request_queue *q)
1469{
1470 if (q->limits.misaligned)
1471 return -1;
1472
1473 return q->limits.alignment_offset;
1474}
1475
1476static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1477{
1478 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1479 unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
1480
1481 return (granularity + lim->alignment_offset - alignment) % granularity;
1482}
1483
1484static inline int bdev_alignment_offset(struct block_device *bdev)
1485{
1486 struct request_queue *q = bdev_get_queue(bdev);
1487
1488 if (q->limits.misaligned)
1489 return -1;
1490
1491 if (bdev != bdev->bd_contains)
1492 return bdev->bd_part->alignment_offset;
1493
1494 return q->limits.alignment_offset;
1495}
1496
1497static inline int queue_discard_alignment(struct request_queue *q)
1498{
1499 if (q->limits.discard_misaligned)
1500 return -1;
1501
1502 return q->limits.discard_alignment;
1503}
1504
1505static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1506{
1507 unsigned int alignment, granularity, offset;
1508
1509 if (!lim->max_discard_sectors)
1510 return 0;
1511
1512 /* Why are these in bytes, not sectors? */
1513 alignment = lim->discard_alignment >> 9;
1514 granularity = lim->discard_granularity >> 9;
1515 if (!granularity)
1516 return 0;
1517
1518 /* Offset of the partition start in 'granularity' sectors */
1519 offset = sector_div(sector, granularity);
1520
1521 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1522 offset = (granularity + alignment - offset) % granularity;
1523
1524 /* Turn it back into bytes, gaah */
1525 return offset << 9;
1526}
1527
1528static inline int bdev_discard_alignment(struct block_device *bdev)
1529{
1530 struct request_queue *q = bdev_get_queue(bdev);
1531
1532 if (bdev != bdev->bd_contains)
1533 return bdev->bd_part->discard_alignment;
1534
1535 return q->limits.discard_alignment;
1536}
1537
1538static inline unsigned int bdev_write_same(struct block_device *bdev)
1539{
1540 struct request_queue *q = bdev_get_queue(bdev);
1541
1542 if (q)
1543 return q->limits.max_write_same_sectors;
1544
1545 return 0;
1546}
1547
1548static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1549{
1550 struct request_queue *q = bdev_get_queue(bdev);
1551
1552 if (q)
1553 return q->limits.max_write_zeroes_sectors;
1554
1555 return 0;
1556}
1557
1558static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1559{
1560 struct request_queue *q = bdev_get_queue(bdev);
1561
1562 if (q)
1563 return blk_queue_zoned_model(q);
1564
1565 return BLK_ZONED_NONE;
1566}
1567
1568static inline bool bdev_is_zoned(struct block_device *bdev)
1569{
1570 struct request_queue *q = bdev_get_queue(bdev);
1571
1572 if (q)
1573 return blk_queue_is_zoned(q);
1574
1575 return false;
1576}
1577
1578static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1579{
1580 struct request_queue *q = bdev_get_queue(bdev);
1581
1582 if (q)
1583 return blk_queue_zone_sectors(q);
1584
1585 return 0;
1586}
1587
1588static inline int queue_dma_alignment(struct request_queue *q)
1589{
1590 return q ? q->dma_alignment : 511;
1591}
1592
1593static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1594 unsigned int len)
1595{
1596 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1597 return !(addr & alignment) && !(len & alignment);
1598}
1599
1600/* assumes size > 256 */
1601static inline unsigned int blksize_bits(unsigned int size)
1602{
1603 unsigned int bits = 8;
1604 do {
1605 bits++;
1606 size >>= 1;
1607 } while (size > 256);
1608 return bits;
1609}
1610
1611static inline unsigned int block_size(struct block_device *bdev)
1612{
1613 return bdev->bd_block_size;
1614}
1615
1616static inline bool queue_flush_queueable(struct request_queue *q)
1617{
1618 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1619}
1620
1621typedef struct {struct page *v;} Sector;
1622
1623unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1624
1625static inline void put_dev_sector(Sector p)
1626{
1627 put_page(p.v);
1628}
1629
1630static inline bool __bvec_gap_to_prev(struct request_queue *q,
1631 struct bio_vec *bprv, unsigned int offset)
1632{
1633 return offset ||
1634 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1635}
1636
1637/*
1638 * Check if adding a bio_vec after bprv with offset would create a gap in
1639 * the SG list. Most drivers don't care about this, but some do.
1640 */
1641static inline bool bvec_gap_to_prev(struct request_queue *q,
1642 struct bio_vec *bprv, unsigned int offset)
1643{
1644 if (!queue_virt_boundary(q))
1645 return false;
1646 return __bvec_gap_to_prev(q, bprv, offset);
1647}
1648
1649/*
1650 * Check if the two bvecs from two bios can be merged to one segment.
1651 * If yes, no need to check gap between the two bios since the 1st bio
1652 * and the 1st bvec in the 2nd bio can be handled in one segment.
1653 */
1654static inline bool bios_segs_mergeable(struct request_queue *q,
1655 struct bio *prev, struct bio_vec *prev_last_bv,
1656 struct bio_vec *next_first_bv)
1657{
1658 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1659 return false;
1660 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1661 return false;
1662 if (prev->bi_seg_back_size + next_first_bv->bv_len >
1663 queue_max_segment_size(q))
1664 return false;
1665 return true;
1666}
1667
1668static inline bool bio_will_gap(struct request_queue *q,
1669 struct request *prev_rq,
1670 struct bio *prev,
1671 struct bio *next)
1672{
1673 if (bio_has_data(prev) && queue_virt_boundary(q)) {
1674 struct bio_vec pb, nb;
1675
1676 /*
1677 * don't merge if the 1st bio starts with non-zero
1678 * offset, otherwise it is quite difficult to respect
1679 * sg gap limit. We work hard to merge a huge number of small
1680 * single bios in case of mkfs.
1681 */
1682 if (prev_rq)
1683 bio_get_first_bvec(prev_rq->bio, &pb);
1684 else
1685 bio_get_first_bvec(prev, &pb);
1686 if (pb.bv_offset)
1687 return true;
1688
1689 /*
1690 * We don't need to worry about the situation that the
1691 * merged segment ends in unaligned virt boundary:
1692 *
1693 * - if 'pb' ends aligned, the merged segment ends aligned
1694 * - if 'pb' ends unaligned, the next bio must include
1695 * one single bvec of 'nb', otherwise the 'nb' can't
1696 * merge with 'pb'
1697 */
1698 bio_get_last_bvec(prev, &pb);
1699 bio_get_first_bvec(next, &nb);
1700
1701 if (!bios_segs_mergeable(q, prev, &pb, &nb))
1702 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1703 }
1704
1705 return false;
1706}
1707
1708static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1709{
1710 return bio_will_gap(req->q, req, req->biotail, bio);
1711}
1712
1713static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1714{
1715 return bio_will_gap(req->q, NULL, bio, req->bio);
1716}
1717
1718int kblockd_schedule_work(struct work_struct *work);
1719int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1720int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay);
1721int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1722int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1723
1724#ifdef CONFIG_BLK_CGROUP
1725/*
1726 * This should not be using sched_clock(). A real patch is in progress
1727 * to fix this up, until that is in place we need to disable preemption
1728 * around sched_clock() in this function and set_io_start_time_ns().
1729 */
1730static inline void set_start_time_ns(struct request *req)
1731{
1732 preempt_disable();
1733 req->start_time_ns = sched_clock();
1734 preempt_enable();
1735}
1736
1737static inline void set_io_start_time_ns(struct request *req)
1738{
1739 preempt_disable();
1740 req->io_start_time_ns = sched_clock();
1741 preempt_enable();
1742}
1743
1744static inline uint64_t rq_start_time_ns(struct request *req)
1745{
1746 return req->start_time_ns;
1747}
1748
1749static inline uint64_t rq_io_start_time_ns(struct request *req)
1750{
1751 return req->io_start_time_ns;
1752}
1753#else
1754static inline void set_start_time_ns(struct request *req) {}
1755static inline void set_io_start_time_ns(struct request *req) {}
1756static inline uint64_t rq_start_time_ns(struct request *req)
1757{
1758 return 0;
1759}
1760static inline uint64_t rq_io_start_time_ns(struct request *req)
1761{
1762 return 0;
1763}
1764#endif
1765
1766#define MODULE_ALIAS_BLOCKDEV(major,minor) \
1767 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1768#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1769 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1770
1771#if defined(CONFIG_BLK_DEV_INTEGRITY)
1772
1773enum blk_integrity_flags {
1774 BLK_INTEGRITY_VERIFY = 1 << 0,
1775 BLK_INTEGRITY_GENERATE = 1 << 1,
1776 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1777 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1778};
1779
1780struct blk_integrity_iter {
1781 void *prot_buf;
1782 void *data_buf;
1783 sector_t seed;
1784 unsigned int data_size;
1785 unsigned short interval;
1786 const char *disk_name;
1787};
1788
1789typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1790
1791struct blk_integrity_profile {
1792 integrity_processing_fn *generate_fn;
1793 integrity_processing_fn *verify_fn;
1794 const char *name;
1795};
1796
1797extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1798extern void blk_integrity_unregister(struct gendisk *);
1799extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1800extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1801 struct scatterlist *);
1802extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1803extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1804 struct request *);
1805extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1806 struct bio *);
1807
1808static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1809{
1810 struct blk_integrity *bi = &disk->queue->integrity;
1811
1812 if (!bi->profile)
1813 return NULL;
1814
1815 return bi;
1816}
1817
1818static inline
1819struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1820{
1821 return blk_get_integrity(bdev->bd_disk);
1822}
1823
1824static inline bool blk_integrity_rq(struct request *rq)
1825{
1826 return rq->cmd_flags & REQ_INTEGRITY;
1827}
1828
1829static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1830 unsigned int segs)
1831{
1832 q->limits.max_integrity_segments = segs;
1833}
1834
1835static inline unsigned short
1836queue_max_integrity_segments(struct request_queue *q)
1837{
1838 return q->limits.max_integrity_segments;
1839}
1840
1841static inline bool integrity_req_gap_back_merge(struct request *req,
1842 struct bio *next)
1843{
1844 struct bio_integrity_payload *bip = bio_integrity(req->bio);
1845 struct bio_integrity_payload *bip_next = bio_integrity(next);
1846
1847 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1848 bip_next->bip_vec[0].bv_offset);
1849}
1850
1851static inline bool integrity_req_gap_front_merge(struct request *req,
1852 struct bio *bio)
1853{
1854 struct bio_integrity_payload *bip = bio_integrity(bio);
1855 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1856
1857 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1858 bip_next->bip_vec[0].bv_offset);
1859}
1860
1861#else /* CONFIG_BLK_DEV_INTEGRITY */
1862
1863struct bio;
1864struct block_device;
1865struct gendisk;
1866struct blk_integrity;
1867
1868static inline int blk_integrity_rq(struct request *rq)
1869{
1870 return 0;
1871}
1872static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1873 struct bio *b)
1874{
1875 return 0;
1876}
1877static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1878 struct bio *b,
1879 struct scatterlist *s)
1880{
1881 return 0;
1882}
1883static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1884{
1885 return NULL;
1886}
1887static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1888{
1889 return NULL;
1890}
1891static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1892{
1893 return 0;
1894}
1895static inline void blk_integrity_register(struct gendisk *d,
1896 struct blk_integrity *b)
1897{
1898}
1899static inline void blk_integrity_unregister(struct gendisk *d)
1900{
1901}
1902static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1903 unsigned int segs)
1904{
1905}
1906static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1907{
1908 return 0;
1909}
1910static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1911 struct request *r1,
1912 struct request *r2)
1913{
1914 return true;
1915}
1916static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1917 struct request *r,
1918 struct bio *b)
1919{
1920 return true;
1921}
1922
1923static inline bool integrity_req_gap_back_merge(struct request *req,
1924 struct bio *next)
1925{
1926 return false;
1927}
1928static inline bool integrity_req_gap_front_merge(struct request *req,
1929 struct bio *bio)
1930{
1931 return false;
1932}
1933
1934#endif /* CONFIG_BLK_DEV_INTEGRITY */
1935
1936struct block_device_operations {
1937 int (*open) (struct block_device *, fmode_t);
1938 void (*release) (struct gendisk *, fmode_t);
1939 int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1940 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1941 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1942 unsigned int (*check_events) (struct gendisk *disk,
1943 unsigned int clearing);
1944 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
1945 int (*media_changed) (struct gendisk *);
1946 void (*unlock_native_capacity) (struct gendisk *);
1947 int (*revalidate_disk) (struct gendisk *);
1948 int (*getgeo)(struct block_device *, struct hd_geometry *);
1949 /* this callback is with swap_lock and sometimes page table lock held */
1950 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1951 struct module *owner;
1952 const struct pr_ops *pr_ops;
1953};
1954
1955extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1956 unsigned long);
1957extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1958extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1959 struct writeback_control *);
1960#else /* CONFIG_BLOCK */
1961
1962struct block_device;
1963
1964/*
1965 * stubs for when the block layer is configured out
1966 */
1967#define buffer_heads_over_limit 0
1968
1969static inline long nr_blockdev_pages(void)
1970{
1971 return 0;
1972}
1973
1974struct blk_plug {
1975};
1976
1977static inline void blk_start_plug(struct blk_plug *plug)
1978{
1979}
1980
1981static inline void blk_finish_plug(struct blk_plug *plug)
1982{
1983}
1984
1985static inline void blk_flush_plug(struct task_struct *task)
1986{
1987}
1988
1989static inline void blk_schedule_flush_plug(struct task_struct *task)
1990{
1991}
1992
1993
1994static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1995{
1996 return false;
1997}
1998
1999static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
2000 sector_t *error_sector)
2001{
2002 return 0;
2003}
2004
2005#endif /* CONFIG_BLOCK */
2006
2007#endif