at v4.12 683 lines 19 kB view raw
1/* 2 * Copyright (C) 2012 ARM Ltd. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19#include <linux/cpu.h> 20#include <linux/kvm.h> 21#include <linux/kvm_host.h> 22#include <linux/interrupt.h> 23#include <linux/irq.h> 24 25#include <clocksource/arm_arch_timer.h> 26#include <asm/arch_timer.h> 27#include <asm/kvm_hyp.h> 28 29#include <kvm/arm_vgic.h> 30#include <kvm/arm_arch_timer.h> 31 32#include "trace.h" 33 34static struct timecounter *timecounter; 35static unsigned int host_vtimer_irq; 36static u32 host_vtimer_irq_flags; 37 38void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu) 39{ 40 vcpu_vtimer(vcpu)->active_cleared_last = false; 41} 42 43u64 kvm_phys_timer_read(void) 44{ 45 return timecounter->cc->read(timecounter->cc); 46} 47 48static bool timer_is_armed(struct arch_timer_cpu *timer) 49{ 50 return timer->armed; 51} 52 53/* timer_arm: as in "arm the timer", not as in ARM the company */ 54static void timer_arm(struct arch_timer_cpu *timer, u64 ns) 55{ 56 timer->armed = true; 57 hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns), 58 HRTIMER_MODE_ABS); 59} 60 61static void timer_disarm(struct arch_timer_cpu *timer) 62{ 63 if (timer_is_armed(timer)) { 64 hrtimer_cancel(&timer->timer); 65 cancel_work_sync(&timer->expired); 66 timer->armed = false; 67 } 68} 69 70static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id) 71{ 72 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id; 73 74 /* 75 * We disable the timer in the world switch and let it be 76 * handled by kvm_timer_sync_hwstate(). Getting a timer 77 * interrupt at this point is a sure sign of some major 78 * breakage. 79 */ 80 pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu); 81 return IRQ_HANDLED; 82} 83 84/* 85 * Work function for handling the backup timer that we schedule when a vcpu is 86 * no longer running, but had a timer programmed to fire in the future. 87 */ 88static void kvm_timer_inject_irq_work(struct work_struct *work) 89{ 90 struct kvm_vcpu *vcpu; 91 92 vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired); 93 94 /* 95 * If the vcpu is blocked we want to wake it up so that it will see 96 * the timer has expired when entering the guest. 97 */ 98 kvm_vcpu_kick(vcpu); 99} 100 101static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx) 102{ 103 u64 cval, now; 104 105 cval = timer_ctx->cnt_cval; 106 now = kvm_phys_timer_read() - timer_ctx->cntvoff; 107 108 if (now < cval) { 109 u64 ns; 110 111 ns = cyclecounter_cyc2ns(timecounter->cc, 112 cval - now, 113 timecounter->mask, 114 &timecounter->frac); 115 return ns; 116 } 117 118 return 0; 119} 120 121static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx) 122{ 123 return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) && 124 (timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE); 125} 126 127/* 128 * Returns the earliest expiration time in ns among guest timers. 129 * Note that it will return 0 if none of timers can fire. 130 */ 131static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu) 132{ 133 u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX; 134 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 135 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 136 137 if (kvm_timer_irq_can_fire(vtimer)) 138 min_virt = kvm_timer_compute_delta(vtimer); 139 140 if (kvm_timer_irq_can_fire(ptimer)) 141 min_phys = kvm_timer_compute_delta(ptimer); 142 143 /* If none of timers can fire, then return 0 */ 144 if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX)) 145 return 0; 146 147 return min(min_virt, min_phys); 148} 149 150static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt) 151{ 152 struct arch_timer_cpu *timer; 153 struct kvm_vcpu *vcpu; 154 u64 ns; 155 156 timer = container_of(hrt, struct arch_timer_cpu, timer); 157 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu); 158 159 /* 160 * Check that the timer has really expired from the guest's 161 * PoV (NTP on the host may have forced it to expire 162 * early). If we should have slept longer, restart it. 163 */ 164 ns = kvm_timer_earliest_exp(vcpu); 165 if (unlikely(ns)) { 166 hrtimer_forward_now(hrt, ns_to_ktime(ns)); 167 return HRTIMER_RESTART; 168 } 169 170 schedule_work(&timer->expired); 171 return HRTIMER_NORESTART; 172} 173 174bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx) 175{ 176 u64 cval, now; 177 178 if (!kvm_timer_irq_can_fire(timer_ctx)) 179 return false; 180 181 cval = timer_ctx->cnt_cval; 182 now = kvm_phys_timer_read() - timer_ctx->cntvoff; 183 184 return cval <= now; 185} 186 187/* 188 * Reflect the timer output level into the kvm_run structure 189 */ 190void kvm_timer_update_run(struct kvm_vcpu *vcpu) 191{ 192 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 193 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 194 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 195 196 /* Populate the device bitmap with the timer states */ 197 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER | 198 KVM_ARM_DEV_EL1_PTIMER); 199 if (vtimer->irq.level) 200 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER; 201 if (ptimer->irq.level) 202 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER; 203} 204 205static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, 206 struct arch_timer_context *timer_ctx) 207{ 208 int ret; 209 210 timer_ctx->active_cleared_last = false; 211 timer_ctx->irq.level = new_level; 212 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq, 213 timer_ctx->irq.level); 214 215 if (likely(irqchip_in_kernel(vcpu->kvm))) { 216 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, 217 timer_ctx->irq.irq, 218 timer_ctx->irq.level); 219 WARN_ON(ret); 220 } 221} 222 223/* 224 * Check if there was a change in the timer state (should we raise or lower 225 * the line level to the GIC). 226 */ 227static void kvm_timer_update_state(struct kvm_vcpu *vcpu) 228{ 229 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 230 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 231 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 232 233 /* 234 * If userspace modified the timer registers via SET_ONE_REG before 235 * the vgic was initialized, we mustn't set the vtimer->irq.level value 236 * because the guest would never see the interrupt. Instead wait 237 * until we call this function from kvm_timer_flush_hwstate. 238 */ 239 if (unlikely(!timer->enabled)) 240 return; 241 242 if (kvm_timer_should_fire(vtimer) != vtimer->irq.level) 243 kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer); 244 245 if (kvm_timer_should_fire(ptimer) != ptimer->irq.level) 246 kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer); 247} 248 249/* Schedule the background timer for the emulated timer. */ 250static void kvm_timer_emulate(struct kvm_vcpu *vcpu, 251 struct arch_timer_context *timer_ctx) 252{ 253 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 254 255 if (kvm_timer_should_fire(timer_ctx)) 256 return; 257 258 if (!kvm_timer_irq_can_fire(timer_ctx)) 259 return; 260 261 /* The timer has not yet expired, schedule a background timer */ 262 timer_arm(timer, kvm_timer_compute_delta(timer_ctx)); 263} 264 265/* 266 * Schedule the background timer before calling kvm_vcpu_block, so that this 267 * thread is removed from its waitqueue and made runnable when there's a timer 268 * interrupt to handle. 269 */ 270void kvm_timer_schedule(struct kvm_vcpu *vcpu) 271{ 272 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 273 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 274 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 275 276 BUG_ON(timer_is_armed(timer)); 277 278 /* 279 * No need to schedule a background timer if any guest timer has 280 * already expired, because kvm_vcpu_block will return before putting 281 * the thread to sleep. 282 */ 283 if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer)) 284 return; 285 286 /* 287 * If both timers are not capable of raising interrupts (disabled or 288 * masked), then there's no more work for us to do. 289 */ 290 if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer)) 291 return; 292 293 /* 294 * The guest timers have not yet expired, schedule a background timer. 295 * Set the earliest expiration time among the guest timers. 296 */ 297 timer_arm(timer, kvm_timer_earliest_exp(vcpu)); 298} 299 300void kvm_timer_unschedule(struct kvm_vcpu *vcpu) 301{ 302 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 303 timer_disarm(timer); 304} 305 306static void kvm_timer_flush_hwstate_vgic(struct kvm_vcpu *vcpu) 307{ 308 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 309 bool phys_active; 310 int ret; 311 312 /* 313 * If we enter the guest with the virtual input level to the VGIC 314 * asserted, then we have already told the VGIC what we need to, and 315 * we don't need to exit from the guest until the guest deactivates 316 * the already injected interrupt, so therefore we should set the 317 * hardware active state to prevent unnecessary exits from the guest. 318 * 319 * Also, if we enter the guest with the virtual timer interrupt active, 320 * then it must be active on the physical distributor, because we set 321 * the HW bit and the guest must be able to deactivate the virtual and 322 * physical interrupt at the same time. 323 * 324 * Conversely, if the virtual input level is deasserted and the virtual 325 * interrupt is not active, then always clear the hardware active state 326 * to ensure that hardware interrupts from the timer triggers a guest 327 * exit. 328 */ 329 phys_active = vtimer->irq.level || 330 kvm_vgic_map_is_active(vcpu, vtimer->irq.irq); 331 332 /* 333 * We want to avoid hitting the (re)distributor as much as 334 * possible, as this is a potentially expensive MMIO access 335 * (not to mention locks in the irq layer), and a solution for 336 * this is to cache the "active" state in memory. 337 * 338 * Things to consider: we cannot cache an "active set" state, 339 * because the HW can change this behind our back (it becomes 340 * "clear" in the HW). We must then restrict the caching to 341 * the "clear" state. 342 * 343 * The cache is invalidated on: 344 * - vcpu put, indicating that the HW cannot be trusted to be 345 * in a sane state on the next vcpu load, 346 * - any change in the interrupt state 347 * 348 * Usage conditions: 349 * - cached value is "active clear" 350 * - value to be programmed is "active clear" 351 */ 352 if (vtimer->active_cleared_last && !phys_active) 353 return; 354 355 ret = irq_set_irqchip_state(host_vtimer_irq, 356 IRQCHIP_STATE_ACTIVE, 357 phys_active); 358 WARN_ON(ret); 359 360 vtimer->active_cleared_last = !phys_active; 361} 362 363bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu) 364{ 365 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 366 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 367 struct kvm_sync_regs *sregs = &vcpu->run->s.regs; 368 bool vlevel, plevel; 369 370 if (likely(irqchip_in_kernel(vcpu->kvm))) 371 return false; 372 373 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER; 374 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER; 375 376 return vtimer->irq.level != vlevel || 377 ptimer->irq.level != plevel; 378} 379 380static void kvm_timer_flush_hwstate_user(struct kvm_vcpu *vcpu) 381{ 382 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 383 384 /* 385 * To prevent continuously exiting from the guest, we mask the 386 * physical interrupt such that the guest can make forward progress. 387 * Once we detect the output level being deasserted, we unmask the 388 * interrupt again so that we exit from the guest when the timer 389 * fires. 390 */ 391 if (vtimer->irq.level) 392 disable_percpu_irq(host_vtimer_irq); 393 else 394 enable_percpu_irq(host_vtimer_irq, 0); 395} 396 397/** 398 * kvm_timer_flush_hwstate - prepare timers before running the vcpu 399 * @vcpu: The vcpu pointer 400 * 401 * Check if the virtual timer has expired while we were running in the host, 402 * and inject an interrupt if that was the case, making sure the timer is 403 * masked or disabled on the host so that we keep executing. Also schedule a 404 * software timer for the physical timer if it is enabled. 405 */ 406void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu) 407{ 408 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 409 410 if (unlikely(!timer->enabled)) 411 return; 412 413 kvm_timer_update_state(vcpu); 414 415 /* Set the background timer for the physical timer emulation. */ 416 kvm_timer_emulate(vcpu, vcpu_ptimer(vcpu)); 417 418 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 419 kvm_timer_flush_hwstate_user(vcpu); 420 else 421 kvm_timer_flush_hwstate_vgic(vcpu); 422} 423 424/** 425 * kvm_timer_sync_hwstate - sync timer state from cpu 426 * @vcpu: The vcpu pointer 427 * 428 * Check if any of the timers have expired while we were running in the guest, 429 * and inject an interrupt if that was the case. 430 */ 431void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu) 432{ 433 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 434 435 /* 436 * This is to cancel the background timer for the physical timer 437 * emulation if it is set. 438 */ 439 timer_disarm(timer); 440 441 /* 442 * The guest could have modified the timer registers or the timer 443 * could have expired, update the timer state. 444 */ 445 kvm_timer_update_state(vcpu); 446} 447 448int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu, 449 const struct kvm_irq_level *virt_irq, 450 const struct kvm_irq_level *phys_irq) 451{ 452 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 453 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 454 455 /* 456 * The vcpu timer irq number cannot be determined in 457 * kvm_timer_vcpu_init() because it is called much before 458 * kvm_vcpu_set_target(). To handle this, we determine 459 * vcpu timer irq number when the vcpu is reset. 460 */ 461 vtimer->irq.irq = virt_irq->irq; 462 ptimer->irq.irq = phys_irq->irq; 463 464 /* 465 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8 466 * and to 0 for ARMv7. We provide an implementation that always 467 * resets the timer to be disabled and unmasked and is compliant with 468 * the ARMv7 architecture. 469 */ 470 vtimer->cnt_ctl = 0; 471 ptimer->cnt_ctl = 0; 472 kvm_timer_update_state(vcpu); 473 474 return 0; 475} 476 477/* Make the updates of cntvoff for all vtimer contexts atomic */ 478static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff) 479{ 480 int i; 481 struct kvm *kvm = vcpu->kvm; 482 struct kvm_vcpu *tmp; 483 484 mutex_lock(&kvm->lock); 485 kvm_for_each_vcpu(i, tmp, kvm) 486 vcpu_vtimer(tmp)->cntvoff = cntvoff; 487 488 /* 489 * When called from the vcpu create path, the CPU being created is not 490 * included in the loop above, so we just set it here as well. 491 */ 492 vcpu_vtimer(vcpu)->cntvoff = cntvoff; 493 mutex_unlock(&kvm->lock); 494} 495 496void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu) 497{ 498 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 499 500 /* Synchronize cntvoff across all vtimers of a VM. */ 501 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read()); 502 vcpu_ptimer(vcpu)->cntvoff = 0; 503 504 INIT_WORK(&timer->expired, kvm_timer_inject_irq_work); 505 hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 506 timer->timer.function = kvm_timer_expire; 507} 508 509static void kvm_timer_init_interrupt(void *info) 510{ 511 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); 512} 513 514int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value) 515{ 516 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 517 518 switch (regid) { 519 case KVM_REG_ARM_TIMER_CTL: 520 vtimer->cnt_ctl = value; 521 break; 522 case KVM_REG_ARM_TIMER_CNT: 523 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value); 524 break; 525 case KVM_REG_ARM_TIMER_CVAL: 526 vtimer->cnt_cval = value; 527 break; 528 default: 529 return -1; 530 } 531 532 kvm_timer_update_state(vcpu); 533 return 0; 534} 535 536u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid) 537{ 538 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 539 540 switch (regid) { 541 case KVM_REG_ARM_TIMER_CTL: 542 return vtimer->cnt_ctl; 543 case KVM_REG_ARM_TIMER_CNT: 544 return kvm_phys_timer_read() - vtimer->cntvoff; 545 case KVM_REG_ARM_TIMER_CVAL: 546 return vtimer->cnt_cval; 547 } 548 return (u64)-1; 549} 550 551static int kvm_timer_starting_cpu(unsigned int cpu) 552{ 553 kvm_timer_init_interrupt(NULL); 554 return 0; 555} 556 557static int kvm_timer_dying_cpu(unsigned int cpu) 558{ 559 disable_percpu_irq(host_vtimer_irq); 560 return 0; 561} 562 563int kvm_timer_hyp_init(void) 564{ 565 struct arch_timer_kvm_info *info; 566 int err; 567 568 info = arch_timer_get_kvm_info(); 569 timecounter = &info->timecounter; 570 571 if (!timecounter->cc) { 572 kvm_err("kvm_arch_timer: uninitialized timecounter\n"); 573 return -ENODEV; 574 } 575 576 if (info->virtual_irq <= 0) { 577 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n", 578 info->virtual_irq); 579 return -ENODEV; 580 } 581 host_vtimer_irq = info->virtual_irq; 582 583 host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq); 584 if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH && 585 host_vtimer_irq_flags != IRQF_TRIGGER_LOW) { 586 kvm_err("Invalid trigger for IRQ%d, assuming level low\n", 587 host_vtimer_irq); 588 host_vtimer_irq_flags = IRQF_TRIGGER_LOW; 589 } 590 591 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler, 592 "kvm guest timer", kvm_get_running_vcpus()); 593 if (err) { 594 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n", 595 host_vtimer_irq, err); 596 return err; 597 } 598 599 kvm_info("virtual timer IRQ%d\n", host_vtimer_irq); 600 601 cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING, 602 "kvm/arm/timer:starting", kvm_timer_starting_cpu, 603 kvm_timer_dying_cpu); 604 return err; 605} 606 607void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu) 608{ 609 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 610 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 611 612 timer_disarm(timer); 613 kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq); 614} 615 616int kvm_timer_enable(struct kvm_vcpu *vcpu) 617{ 618 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 619 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 620 struct irq_desc *desc; 621 struct irq_data *data; 622 int phys_irq; 623 int ret; 624 625 if (timer->enabled) 626 return 0; 627 628 /* Without a VGIC we do not map virtual IRQs to physical IRQs */ 629 if (!irqchip_in_kernel(vcpu->kvm)) 630 goto no_vgic; 631 632 if (!vgic_initialized(vcpu->kvm)) 633 return -ENODEV; 634 635 /* 636 * Find the physical IRQ number corresponding to the host_vtimer_irq 637 */ 638 desc = irq_to_desc(host_vtimer_irq); 639 if (!desc) { 640 kvm_err("%s: no interrupt descriptor\n", __func__); 641 return -EINVAL; 642 } 643 644 data = irq_desc_get_irq_data(desc); 645 while (data->parent_data) 646 data = data->parent_data; 647 648 phys_irq = data->hwirq; 649 650 /* 651 * Tell the VGIC that the virtual interrupt is tied to a 652 * physical interrupt. We do that once per VCPU. 653 */ 654 ret = kvm_vgic_map_phys_irq(vcpu, vtimer->irq.irq, phys_irq); 655 if (ret) 656 return ret; 657 658no_vgic: 659 timer->enabled = 1; 660 return 0; 661} 662 663/* 664 * On VHE system, we only need to configure trap on physical timer and counter 665 * accesses in EL0 and EL1 once, not for every world switch. 666 * The host kernel runs at EL2 with HCR_EL2.TGE == 1, 667 * and this makes those bits have no effect for the host kernel execution. 668 */ 669void kvm_timer_init_vhe(void) 670{ 671 /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */ 672 u32 cnthctl_shift = 10; 673 u64 val; 674 675 /* 676 * Disallow physical timer access for the guest. 677 * Physical counter access is allowed. 678 */ 679 val = read_sysreg(cnthctl_el2); 680 val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift); 681 val |= (CNTHCTL_EL1PCTEN << cnthctl_shift); 682 write_sysreg(val, cnthctl_el2); 683}