Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/sched/mm.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <linux/bpf.h>
99#include <linux/bpf_trace.h>
100#include <net/net_namespace.h>
101#include <net/sock.h>
102#include <net/busy_poll.h>
103#include <linux/rtnetlink.h>
104#include <linux/stat.h>
105#include <net/dst.h>
106#include <net/dst_metadata.h>
107#include <net/pkt_sched.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <linux/pci.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_ingress.h>
144#include <linux/crash_dump.h>
145
146#include "net-sysfs.h"
147
148/* Instead of increasing this, you should create a hash table. */
149#define MAX_GRO_SKBS 8
150
151/* This should be increased if a protocol with a bigger head is added. */
152#define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154static DEFINE_SPINLOCK(ptype_lock);
155static DEFINE_SPINLOCK(offload_lock);
156struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157struct list_head ptype_all __read_mostly; /* Taps */
158static struct list_head offload_base __read_mostly;
159
160static int netif_rx_internal(struct sk_buff *skb);
161static int call_netdevice_notifiers_info(unsigned long val,
162 struct net_device *dev,
163 struct netdev_notifier_info *info);
164
165/*
166 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
167 * semaphore.
168 *
169 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
170 *
171 * Writers must hold the rtnl semaphore while they loop through the
172 * dev_base_head list, and hold dev_base_lock for writing when they do the
173 * actual updates. This allows pure readers to access the list even
174 * while a writer is preparing to update it.
175 *
176 * To put it another way, dev_base_lock is held for writing only to
177 * protect against pure readers; the rtnl semaphore provides the
178 * protection against other writers.
179 *
180 * See, for example usages, register_netdevice() and
181 * unregister_netdevice(), which must be called with the rtnl
182 * semaphore held.
183 */
184DEFINE_RWLOCK(dev_base_lock);
185EXPORT_SYMBOL(dev_base_lock);
186
187/* protects napi_hash addition/deletion and napi_gen_id */
188static DEFINE_SPINLOCK(napi_hash_lock);
189
190static unsigned int napi_gen_id = NR_CPUS;
191static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
192
193static seqcount_t devnet_rename_seq;
194
195static inline void dev_base_seq_inc(struct net *net)
196{
197 while (++net->dev_base_seq == 0)
198 ;
199}
200
201static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202{
203 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
204
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206}
207
208static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209{
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211}
212
213static inline void rps_lock(struct softnet_data *sd)
214{
215#ifdef CONFIG_RPS
216 spin_lock(&sd->input_pkt_queue.lock);
217#endif
218}
219
220static inline void rps_unlock(struct softnet_data *sd)
221{
222#ifdef CONFIG_RPS
223 spin_unlock(&sd->input_pkt_queue.lock);
224#endif
225}
226
227/* Device list insertion */
228static void list_netdevice(struct net_device *dev)
229{
230 struct net *net = dev_net(dev);
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
240
241 dev_base_seq_inc(net);
242}
243
244/* Device list removal
245 * caller must respect a RCU grace period before freeing/reusing dev
246 */
247static void unlist_netdevice(struct net_device *dev)
248{
249 ASSERT_RTNL();
250
251 /* Unlink dev from the device chain */
252 write_lock_bh(&dev_base_lock);
253 list_del_rcu(&dev->dev_list);
254 hlist_del_rcu(&dev->name_hlist);
255 hlist_del_rcu(&dev->index_hlist);
256 write_unlock_bh(&dev_base_lock);
257
258 dev_base_seq_inc(dev_net(dev));
259}
260
261/*
262 * Our notifier list
263 */
264
265static RAW_NOTIFIER_HEAD(netdev_chain);
266
267/*
268 * Device drivers call our routines to queue packets here. We empty the
269 * queue in the local softnet handler.
270 */
271
272DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
273EXPORT_PER_CPU_SYMBOL(softnet_data);
274
275#ifdef CONFIG_LOCKDEP
276/*
277 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
278 * according to dev->type
279 */
280static const unsigned short netdev_lock_type[] = {
281 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
282 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
283 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
284 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
285 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
286 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
287 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
288 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
289 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
290 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
291 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
292 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
293 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
294 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
295 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
296
297static const char *const netdev_lock_name[] = {
298 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
299 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
300 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
301 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
302 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
303 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
304 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
305 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
306 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
307 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
308 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
309 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
310 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
311 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
312 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
313
314static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
315static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
316
317static inline unsigned short netdev_lock_pos(unsigned short dev_type)
318{
319 int i;
320
321 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
322 if (netdev_lock_type[i] == dev_type)
323 return i;
324 /* the last key is used by default */
325 return ARRAY_SIZE(netdev_lock_type) - 1;
326}
327
328static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
329 unsigned short dev_type)
330{
331 int i;
332
333 i = netdev_lock_pos(dev_type);
334 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
335 netdev_lock_name[i]);
336}
337
338static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339{
340 int i;
341
342 i = netdev_lock_pos(dev->type);
343 lockdep_set_class_and_name(&dev->addr_list_lock,
344 &netdev_addr_lock_key[i],
345 netdev_lock_name[i]);
346}
347#else
348static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
349 unsigned short dev_type)
350{
351}
352static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353{
354}
355#endif
356
357/*******************************************************************************
358 *
359 * Protocol management and registration routines
360 *
361 *******************************************************************************/
362
363
364/*
365 * Add a protocol ID to the list. Now that the input handler is
366 * smarter we can dispense with all the messy stuff that used to be
367 * here.
368 *
369 * BEWARE!!! Protocol handlers, mangling input packets,
370 * MUST BE last in hash buckets and checking protocol handlers
371 * MUST start from promiscuous ptype_all chain in net_bh.
372 * It is true now, do not change it.
373 * Explanation follows: if protocol handler, mangling packet, will
374 * be the first on list, it is not able to sense, that packet
375 * is cloned and should be copied-on-write, so that it will
376 * change it and subsequent readers will get broken packet.
377 * --ANK (980803)
378 */
379
380static inline struct list_head *ptype_head(const struct packet_type *pt)
381{
382 if (pt->type == htons(ETH_P_ALL))
383 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
384 else
385 return pt->dev ? &pt->dev->ptype_specific :
386 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
387}
388
389/**
390 * dev_add_pack - add packet handler
391 * @pt: packet type declaration
392 *
393 * Add a protocol handler to the networking stack. The passed &packet_type
394 * is linked into kernel lists and may not be freed until it has been
395 * removed from the kernel lists.
396 *
397 * This call does not sleep therefore it can not
398 * guarantee all CPU's that are in middle of receiving packets
399 * will see the new packet type (until the next received packet).
400 */
401
402void dev_add_pack(struct packet_type *pt)
403{
404 struct list_head *head = ptype_head(pt);
405
406 spin_lock(&ptype_lock);
407 list_add_rcu(&pt->list, head);
408 spin_unlock(&ptype_lock);
409}
410EXPORT_SYMBOL(dev_add_pack);
411
412/**
413 * __dev_remove_pack - remove packet handler
414 * @pt: packet type declaration
415 *
416 * Remove a protocol handler that was previously added to the kernel
417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
418 * from the kernel lists and can be freed or reused once this function
419 * returns.
420 *
421 * The packet type might still be in use by receivers
422 * and must not be freed until after all the CPU's have gone
423 * through a quiescent state.
424 */
425void __dev_remove_pack(struct packet_type *pt)
426{
427 struct list_head *head = ptype_head(pt);
428 struct packet_type *pt1;
429
430 spin_lock(&ptype_lock);
431
432 list_for_each_entry(pt1, head, list) {
433 if (pt == pt1) {
434 list_del_rcu(&pt->list);
435 goto out;
436 }
437 }
438
439 pr_warn("dev_remove_pack: %p not found\n", pt);
440out:
441 spin_unlock(&ptype_lock);
442}
443EXPORT_SYMBOL(__dev_remove_pack);
444
445/**
446 * dev_remove_pack - remove packet handler
447 * @pt: packet type declaration
448 *
449 * Remove a protocol handler that was previously added to the kernel
450 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
451 * from the kernel lists and can be freed or reused once this function
452 * returns.
453 *
454 * This call sleeps to guarantee that no CPU is looking at the packet
455 * type after return.
456 */
457void dev_remove_pack(struct packet_type *pt)
458{
459 __dev_remove_pack(pt);
460
461 synchronize_net();
462}
463EXPORT_SYMBOL(dev_remove_pack);
464
465
466/**
467 * dev_add_offload - register offload handlers
468 * @po: protocol offload declaration
469 *
470 * Add protocol offload handlers to the networking stack. The passed
471 * &proto_offload is linked into kernel lists and may not be freed until
472 * it has been removed from the kernel lists.
473 *
474 * This call does not sleep therefore it can not
475 * guarantee all CPU's that are in middle of receiving packets
476 * will see the new offload handlers (until the next received packet).
477 */
478void dev_add_offload(struct packet_offload *po)
479{
480 struct packet_offload *elem;
481
482 spin_lock(&offload_lock);
483 list_for_each_entry(elem, &offload_base, list) {
484 if (po->priority < elem->priority)
485 break;
486 }
487 list_add_rcu(&po->list, elem->list.prev);
488 spin_unlock(&offload_lock);
489}
490EXPORT_SYMBOL(dev_add_offload);
491
492/**
493 * __dev_remove_offload - remove offload handler
494 * @po: packet offload declaration
495 *
496 * Remove a protocol offload handler that was previously added to the
497 * kernel offload handlers by dev_add_offload(). The passed &offload_type
498 * is removed from the kernel lists and can be freed or reused once this
499 * function returns.
500 *
501 * The packet type might still be in use by receivers
502 * and must not be freed until after all the CPU's have gone
503 * through a quiescent state.
504 */
505static void __dev_remove_offload(struct packet_offload *po)
506{
507 struct list_head *head = &offload_base;
508 struct packet_offload *po1;
509
510 spin_lock(&offload_lock);
511
512 list_for_each_entry(po1, head, list) {
513 if (po == po1) {
514 list_del_rcu(&po->list);
515 goto out;
516 }
517 }
518
519 pr_warn("dev_remove_offload: %p not found\n", po);
520out:
521 spin_unlock(&offload_lock);
522}
523
524/**
525 * dev_remove_offload - remove packet offload handler
526 * @po: packet offload declaration
527 *
528 * Remove a packet offload handler that was previously added to the kernel
529 * offload handlers by dev_add_offload(). The passed &offload_type is
530 * removed from the kernel lists and can be freed or reused once this
531 * function returns.
532 *
533 * This call sleeps to guarantee that no CPU is looking at the packet
534 * type after return.
535 */
536void dev_remove_offload(struct packet_offload *po)
537{
538 __dev_remove_offload(po);
539
540 synchronize_net();
541}
542EXPORT_SYMBOL(dev_remove_offload);
543
544/******************************************************************************
545 *
546 * Device Boot-time Settings Routines
547 *
548 ******************************************************************************/
549
550/* Boot time configuration table */
551static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
552
553/**
554 * netdev_boot_setup_add - add new setup entry
555 * @name: name of the device
556 * @map: configured settings for the device
557 *
558 * Adds new setup entry to the dev_boot_setup list. The function
559 * returns 0 on error and 1 on success. This is a generic routine to
560 * all netdevices.
561 */
562static int netdev_boot_setup_add(char *name, struct ifmap *map)
563{
564 struct netdev_boot_setup *s;
565 int i;
566
567 s = dev_boot_setup;
568 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
569 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
570 memset(s[i].name, 0, sizeof(s[i].name));
571 strlcpy(s[i].name, name, IFNAMSIZ);
572 memcpy(&s[i].map, map, sizeof(s[i].map));
573 break;
574 }
575 }
576
577 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
578}
579
580/**
581 * netdev_boot_setup_check - check boot time settings
582 * @dev: the netdevice
583 *
584 * Check boot time settings for the device.
585 * The found settings are set for the device to be used
586 * later in the device probing.
587 * Returns 0 if no settings found, 1 if they are.
588 */
589int netdev_boot_setup_check(struct net_device *dev)
590{
591 struct netdev_boot_setup *s = dev_boot_setup;
592 int i;
593
594 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
595 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
596 !strcmp(dev->name, s[i].name)) {
597 dev->irq = s[i].map.irq;
598 dev->base_addr = s[i].map.base_addr;
599 dev->mem_start = s[i].map.mem_start;
600 dev->mem_end = s[i].map.mem_end;
601 return 1;
602 }
603 }
604 return 0;
605}
606EXPORT_SYMBOL(netdev_boot_setup_check);
607
608
609/**
610 * netdev_boot_base - get address from boot time settings
611 * @prefix: prefix for network device
612 * @unit: id for network device
613 *
614 * Check boot time settings for the base address of device.
615 * The found settings are set for the device to be used
616 * later in the device probing.
617 * Returns 0 if no settings found.
618 */
619unsigned long netdev_boot_base(const char *prefix, int unit)
620{
621 const struct netdev_boot_setup *s = dev_boot_setup;
622 char name[IFNAMSIZ];
623 int i;
624
625 sprintf(name, "%s%d", prefix, unit);
626
627 /*
628 * If device already registered then return base of 1
629 * to indicate not to probe for this interface
630 */
631 if (__dev_get_by_name(&init_net, name))
632 return 1;
633
634 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
635 if (!strcmp(name, s[i].name))
636 return s[i].map.base_addr;
637 return 0;
638}
639
640/*
641 * Saves at boot time configured settings for any netdevice.
642 */
643int __init netdev_boot_setup(char *str)
644{
645 int ints[5];
646 struct ifmap map;
647
648 str = get_options(str, ARRAY_SIZE(ints), ints);
649 if (!str || !*str)
650 return 0;
651
652 /* Save settings */
653 memset(&map, 0, sizeof(map));
654 if (ints[0] > 0)
655 map.irq = ints[1];
656 if (ints[0] > 1)
657 map.base_addr = ints[2];
658 if (ints[0] > 2)
659 map.mem_start = ints[3];
660 if (ints[0] > 3)
661 map.mem_end = ints[4];
662
663 /* Add new entry to the list */
664 return netdev_boot_setup_add(str, &map);
665}
666
667__setup("netdev=", netdev_boot_setup);
668
669/*******************************************************************************
670 *
671 * Device Interface Subroutines
672 *
673 *******************************************************************************/
674
675/**
676 * dev_get_iflink - get 'iflink' value of a interface
677 * @dev: targeted interface
678 *
679 * Indicates the ifindex the interface is linked to.
680 * Physical interfaces have the same 'ifindex' and 'iflink' values.
681 */
682
683int dev_get_iflink(const struct net_device *dev)
684{
685 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
686 return dev->netdev_ops->ndo_get_iflink(dev);
687
688 return dev->ifindex;
689}
690EXPORT_SYMBOL(dev_get_iflink);
691
692/**
693 * dev_fill_metadata_dst - Retrieve tunnel egress information.
694 * @dev: targeted interface
695 * @skb: The packet.
696 *
697 * For better visibility of tunnel traffic OVS needs to retrieve
698 * egress tunnel information for a packet. Following API allows
699 * user to get this info.
700 */
701int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
702{
703 struct ip_tunnel_info *info;
704
705 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
706 return -EINVAL;
707
708 info = skb_tunnel_info_unclone(skb);
709 if (!info)
710 return -ENOMEM;
711 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
712 return -EINVAL;
713
714 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
715}
716EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
717
718/**
719 * __dev_get_by_name - find a device by its name
720 * @net: the applicable net namespace
721 * @name: name to find
722 *
723 * Find an interface by name. Must be called under RTNL semaphore
724 * or @dev_base_lock. If the name is found a pointer to the device
725 * is returned. If the name is not found then %NULL is returned. The
726 * reference counters are not incremented so the caller must be
727 * careful with locks.
728 */
729
730struct net_device *__dev_get_by_name(struct net *net, const char *name)
731{
732 struct net_device *dev;
733 struct hlist_head *head = dev_name_hash(net, name);
734
735 hlist_for_each_entry(dev, head, name_hlist)
736 if (!strncmp(dev->name, name, IFNAMSIZ))
737 return dev;
738
739 return NULL;
740}
741EXPORT_SYMBOL(__dev_get_by_name);
742
743/**
744 * dev_get_by_name_rcu - find a device by its name
745 * @net: the applicable net namespace
746 * @name: name to find
747 *
748 * Find an interface by name.
749 * If the name is found a pointer to the device is returned.
750 * If the name is not found then %NULL is returned.
751 * The reference counters are not incremented so the caller must be
752 * careful with locks. The caller must hold RCU lock.
753 */
754
755struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
756{
757 struct net_device *dev;
758 struct hlist_head *head = dev_name_hash(net, name);
759
760 hlist_for_each_entry_rcu(dev, head, name_hlist)
761 if (!strncmp(dev->name, name, IFNAMSIZ))
762 return dev;
763
764 return NULL;
765}
766EXPORT_SYMBOL(dev_get_by_name_rcu);
767
768/**
769 * dev_get_by_name - find a device by its name
770 * @net: the applicable net namespace
771 * @name: name to find
772 *
773 * Find an interface by name. This can be called from any
774 * context and does its own locking. The returned handle has
775 * the usage count incremented and the caller must use dev_put() to
776 * release it when it is no longer needed. %NULL is returned if no
777 * matching device is found.
778 */
779
780struct net_device *dev_get_by_name(struct net *net, const char *name)
781{
782 struct net_device *dev;
783
784 rcu_read_lock();
785 dev = dev_get_by_name_rcu(net, name);
786 if (dev)
787 dev_hold(dev);
788 rcu_read_unlock();
789 return dev;
790}
791EXPORT_SYMBOL(dev_get_by_name);
792
793/**
794 * __dev_get_by_index - find a device by its ifindex
795 * @net: the applicable net namespace
796 * @ifindex: index of device
797 *
798 * Search for an interface by index. Returns %NULL if the device
799 * is not found or a pointer to the device. The device has not
800 * had its reference counter increased so the caller must be careful
801 * about locking. The caller must hold either the RTNL semaphore
802 * or @dev_base_lock.
803 */
804
805struct net_device *__dev_get_by_index(struct net *net, int ifindex)
806{
807 struct net_device *dev;
808 struct hlist_head *head = dev_index_hash(net, ifindex);
809
810 hlist_for_each_entry(dev, head, index_hlist)
811 if (dev->ifindex == ifindex)
812 return dev;
813
814 return NULL;
815}
816EXPORT_SYMBOL(__dev_get_by_index);
817
818/**
819 * dev_get_by_index_rcu - find a device by its ifindex
820 * @net: the applicable net namespace
821 * @ifindex: index of device
822 *
823 * Search for an interface by index. Returns %NULL if the device
824 * is not found or a pointer to the device. The device has not
825 * had its reference counter increased so the caller must be careful
826 * about locking. The caller must hold RCU lock.
827 */
828
829struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
830{
831 struct net_device *dev;
832 struct hlist_head *head = dev_index_hash(net, ifindex);
833
834 hlist_for_each_entry_rcu(dev, head, index_hlist)
835 if (dev->ifindex == ifindex)
836 return dev;
837
838 return NULL;
839}
840EXPORT_SYMBOL(dev_get_by_index_rcu);
841
842
843/**
844 * dev_get_by_index - find a device by its ifindex
845 * @net: the applicable net namespace
846 * @ifindex: index of device
847 *
848 * Search for an interface by index. Returns NULL if the device
849 * is not found or a pointer to the device. The device returned has
850 * had a reference added and the pointer is safe until the user calls
851 * dev_put to indicate they have finished with it.
852 */
853
854struct net_device *dev_get_by_index(struct net *net, int ifindex)
855{
856 struct net_device *dev;
857
858 rcu_read_lock();
859 dev = dev_get_by_index_rcu(net, ifindex);
860 if (dev)
861 dev_hold(dev);
862 rcu_read_unlock();
863 return dev;
864}
865EXPORT_SYMBOL(dev_get_by_index);
866
867/**
868 * netdev_get_name - get a netdevice name, knowing its ifindex.
869 * @net: network namespace
870 * @name: a pointer to the buffer where the name will be stored.
871 * @ifindex: the ifindex of the interface to get the name from.
872 *
873 * The use of raw_seqcount_begin() and cond_resched() before
874 * retrying is required as we want to give the writers a chance
875 * to complete when CONFIG_PREEMPT is not set.
876 */
877int netdev_get_name(struct net *net, char *name, int ifindex)
878{
879 struct net_device *dev;
880 unsigned int seq;
881
882retry:
883 seq = raw_seqcount_begin(&devnet_rename_seq);
884 rcu_read_lock();
885 dev = dev_get_by_index_rcu(net, ifindex);
886 if (!dev) {
887 rcu_read_unlock();
888 return -ENODEV;
889 }
890
891 strcpy(name, dev->name);
892 rcu_read_unlock();
893 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
894 cond_resched();
895 goto retry;
896 }
897
898 return 0;
899}
900
901/**
902 * dev_getbyhwaddr_rcu - find a device by its hardware address
903 * @net: the applicable net namespace
904 * @type: media type of device
905 * @ha: hardware address
906 *
907 * Search for an interface by MAC address. Returns NULL if the device
908 * is not found or a pointer to the device.
909 * The caller must hold RCU or RTNL.
910 * The returned device has not had its ref count increased
911 * and the caller must therefore be careful about locking
912 *
913 */
914
915struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
916 const char *ha)
917{
918 struct net_device *dev;
919
920 for_each_netdev_rcu(net, dev)
921 if (dev->type == type &&
922 !memcmp(dev->dev_addr, ha, dev->addr_len))
923 return dev;
924
925 return NULL;
926}
927EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
928
929struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
930{
931 struct net_device *dev;
932
933 ASSERT_RTNL();
934 for_each_netdev(net, dev)
935 if (dev->type == type)
936 return dev;
937
938 return NULL;
939}
940EXPORT_SYMBOL(__dev_getfirstbyhwtype);
941
942struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943{
944 struct net_device *dev, *ret = NULL;
945
946 rcu_read_lock();
947 for_each_netdev_rcu(net, dev)
948 if (dev->type == type) {
949 dev_hold(dev);
950 ret = dev;
951 break;
952 }
953 rcu_read_unlock();
954 return ret;
955}
956EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958/**
959 * __dev_get_by_flags - find any device with given flags
960 * @net: the applicable net namespace
961 * @if_flags: IFF_* values
962 * @mask: bitmask of bits in if_flags to check
963 *
964 * Search for any interface with the given flags. Returns NULL if a device
965 * is not found or a pointer to the device. Must be called inside
966 * rtnl_lock(), and result refcount is unchanged.
967 */
968
969struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 unsigned short mask)
971{
972 struct net_device *dev, *ret;
973
974 ASSERT_RTNL();
975
976 ret = NULL;
977 for_each_netdev(net, dev) {
978 if (((dev->flags ^ if_flags) & mask) == 0) {
979 ret = dev;
980 break;
981 }
982 }
983 return ret;
984}
985EXPORT_SYMBOL(__dev_get_by_flags);
986
987/**
988 * dev_valid_name - check if name is okay for network device
989 * @name: name string
990 *
991 * Network device names need to be valid file names to
992 * to allow sysfs to work. We also disallow any kind of
993 * whitespace.
994 */
995bool dev_valid_name(const char *name)
996{
997 if (*name == '\0')
998 return false;
999 if (strlen(name) >= IFNAMSIZ)
1000 return false;
1001 if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 return false;
1003
1004 while (*name) {
1005 if (*name == '/' || *name == ':' || isspace(*name))
1006 return false;
1007 name++;
1008 }
1009 return true;
1010}
1011EXPORT_SYMBOL(dev_valid_name);
1012
1013/**
1014 * __dev_alloc_name - allocate a name for a device
1015 * @net: network namespace to allocate the device name in
1016 * @name: name format string
1017 * @buf: scratch buffer and result name string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029{
1030 int i = 0;
1031 const char *p;
1032 const int max_netdevices = 8*PAGE_SIZE;
1033 unsigned long *inuse;
1034 struct net_device *d;
1035
1036 p = strnchr(name, IFNAMSIZ-1, '%');
1037 if (p) {
1038 /*
1039 * Verify the string as this thing may have come from
1040 * the user. There must be either one "%d" and no other "%"
1041 * characters.
1042 */
1043 if (p[1] != 'd' || strchr(p + 2, '%'))
1044 return -EINVAL;
1045
1046 /* Use one page as a bit array of possible slots */
1047 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1048 if (!inuse)
1049 return -ENOMEM;
1050
1051 for_each_netdev(net, d) {
1052 if (!sscanf(d->name, name, &i))
1053 continue;
1054 if (i < 0 || i >= max_netdevices)
1055 continue;
1056
1057 /* avoid cases where sscanf is not exact inverse of printf */
1058 snprintf(buf, IFNAMSIZ, name, i);
1059 if (!strncmp(buf, d->name, IFNAMSIZ))
1060 set_bit(i, inuse);
1061 }
1062
1063 i = find_first_zero_bit(inuse, max_netdevices);
1064 free_page((unsigned long) inuse);
1065 }
1066
1067 if (buf != name)
1068 snprintf(buf, IFNAMSIZ, name, i);
1069 if (!__dev_get_by_name(net, buf))
1070 return i;
1071
1072 /* It is possible to run out of possible slots
1073 * when the name is long and there isn't enough space left
1074 * for the digits, or if all bits are used.
1075 */
1076 return -ENFILE;
1077}
1078
1079/**
1080 * dev_alloc_name - allocate a name for a device
1081 * @dev: device
1082 * @name: name format string
1083 *
1084 * Passed a format string - eg "lt%d" it will try and find a suitable
1085 * id. It scans list of devices to build up a free map, then chooses
1086 * the first empty slot. The caller must hold the dev_base or rtnl lock
1087 * while allocating the name and adding the device in order to avoid
1088 * duplicates.
1089 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1090 * Returns the number of the unit assigned or a negative errno code.
1091 */
1092
1093int dev_alloc_name(struct net_device *dev, const char *name)
1094{
1095 char buf[IFNAMSIZ];
1096 struct net *net;
1097 int ret;
1098
1099 BUG_ON(!dev_net(dev));
1100 net = dev_net(dev);
1101 ret = __dev_alloc_name(net, name, buf);
1102 if (ret >= 0)
1103 strlcpy(dev->name, buf, IFNAMSIZ);
1104 return ret;
1105}
1106EXPORT_SYMBOL(dev_alloc_name);
1107
1108static int dev_alloc_name_ns(struct net *net,
1109 struct net_device *dev,
1110 const char *name)
1111{
1112 char buf[IFNAMSIZ];
1113 int ret;
1114
1115 ret = __dev_alloc_name(net, name, buf);
1116 if (ret >= 0)
1117 strlcpy(dev->name, buf, IFNAMSIZ);
1118 return ret;
1119}
1120
1121static int dev_get_valid_name(struct net *net,
1122 struct net_device *dev,
1123 const char *name)
1124{
1125 BUG_ON(!net);
1126
1127 if (!dev_valid_name(name))
1128 return -EINVAL;
1129
1130 if (strchr(name, '%'))
1131 return dev_alloc_name_ns(net, dev, name);
1132 else if (__dev_get_by_name(net, name))
1133 return -EEXIST;
1134 else if (dev->name != name)
1135 strlcpy(dev->name, name, IFNAMSIZ);
1136
1137 return 0;
1138}
1139
1140/**
1141 * dev_change_name - change name of a device
1142 * @dev: device
1143 * @newname: name (or format string) must be at least IFNAMSIZ
1144 *
1145 * Change name of a device, can pass format strings "eth%d".
1146 * for wildcarding.
1147 */
1148int dev_change_name(struct net_device *dev, const char *newname)
1149{
1150 unsigned char old_assign_type;
1151 char oldname[IFNAMSIZ];
1152 int err = 0;
1153 int ret;
1154 struct net *net;
1155
1156 ASSERT_RTNL();
1157 BUG_ON(!dev_net(dev));
1158
1159 net = dev_net(dev);
1160 if (dev->flags & IFF_UP)
1161 return -EBUSY;
1162
1163 write_seqcount_begin(&devnet_rename_seq);
1164
1165 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1166 write_seqcount_end(&devnet_rename_seq);
1167 return 0;
1168 }
1169
1170 memcpy(oldname, dev->name, IFNAMSIZ);
1171
1172 err = dev_get_valid_name(net, dev, newname);
1173 if (err < 0) {
1174 write_seqcount_end(&devnet_rename_seq);
1175 return err;
1176 }
1177
1178 if (oldname[0] && !strchr(oldname, '%'))
1179 netdev_info(dev, "renamed from %s\n", oldname);
1180
1181 old_assign_type = dev->name_assign_type;
1182 dev->name_assign_type = NET_NAME_RENAMED;
1183
1184rollback:
1185 ret = device_rename(&dev->dev, dev->name);
1186 if (ret) {
1187 memcpy(dev->name, oldname, IFNAMSIZ);
1188 dev->name_assign_type = old_assign_type;
1189 write_seqcount_end(&devnet_rename_seq);
1190 return ret;
1191 }
1192
1193 write_seqcount_end(&devnet_rename_seq);
1194
1195 netdev_adjacent_rename_links(dev, oldname);
1196
1197 write_lock_bh(&dev_base_lock);
1198 hlist_del_rcu(&dev->name_hlist);
1199 write_unlock_bh(&dev_base_lock);
1200
1201 synchronize_rcu();
1202
1203 write_lock_bh(&dev_base_lock);
1204 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1205 write_unlock_bh(&dev_base_lock);
1206
1207 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1208 ret = notifier_to_errno(ret);
1209
1210 if (ret) {
1211 /* err >= 0 after dev_alloc_name() or stores the first errno */
1212 if (err >= 0) {
1213 err = ret;
1214 write_seqcount_begin(&devnet_rename_seq);
1215 memcpy(dev->name, oldname, IFNAMSIZ);
1216 memcpy(oldname, newname, IFNAMSIZ);
1217 dev->name_assign_type = old_assign_type;
1218 old_assign_type = NET_NAME_RENAMED;
1219 goto rollback;
1220 } else {
1221 pr_err("%s: name change rollback failed: %d\n",
1222 dev->name, ret);
1223 }
1224 }
1225
1226 return err;
1227}
1228
1229/**
1230 * dev_set_alias - change ifalias of a device
1231 * @dev: device
1232 * @alias: name up to IFALIASZ
1233 * @len: limit of bytes to copy from info
1234 *
1235 * Set ifalias for a device,
1236 */
1237int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1238{
1239 char *new_ifalias;
1240
1241 ASSERT_RTNL();
1242
1243 if (len >= IFALIASZ)
1244 return -EINVAL;
1245
1246 if (!len) {
1247 kfree(dev->ifalias);
1248 dev->ifalias = NULL;
1249 return 0;
1250 }
1251
1252 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1253 if (!new_ifalias)
1254 return -ENOMEM;
1255 dev->ifalias = new_ifalias;
1256 memcpy(dev->ifalias, alias, len);
1257 dev->ifalias[len] = 0;
1258
1259 return len;
1260}
1261
1262
1263/**
1264 * netdev_features_change - device changes features
1265 * @dev: device to cause notification
1266 *
1267 * Called to indicate a device has changed features.
1268 */
1269void netdev_features_change(struct net_device *dev)
1270{
1271 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1272}
1273EXPORT_SYMBOL(netdev_features_change);
1274
1275/**
1276 * netdev_state_change - device changes state
1277 * @dev: device to cause notification
1278 *
1279 * Called to indicate a device has changed state. This function calls
1280 * the notifier chains for netdev_chain and sends a NEWLINK message
1281 * to the routing socket.
1282 */
1283void netdev_state_change(struct net_device *dev)
1284{
1285 if (dev->flags & IFF_UP) {
1286 struct netdev_notifier_change_info change_info;
1287
1288 change_info.flags_changed = 0;
1289 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1290 &change_info.info);
1291 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1292 }
1293}
1294EXPORT_SYMBOL(netdev_state_change);
1295
1296/**
1297 * netdev_notify_peers - notify network peers about existence of @dev
1298 * @dev: network device
1299 *
1300 * Generate traffic such that interested network peers are aware of
1301 * @dev, such as by generating a gratuitous ARP. This may be used when
1302 * a device wants to inform the rest of the network about some sort of
1303 * reconfiguration such as a failover event or virtual machine
1304 * migration.
1305 */
1306void netdev_notify_peers(struct net_device *dev)
1307{
1308 rtnl_lock();
1309 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1310 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1311 rtnl_unlock();
1312}
1313EXPORT_SYMBOL(netdev_notify_peers);
1314
1315static int __dev_open(struct net_device *dev)
1316{
1317 const struct net_device_ops *ops = dev->netdev_ops;
1318 int ret;
1319
1320 ASSERT_RTNL();
1321
1322 if (!netif_device_present(dev))
1323 return -ENODEV;
1324
1325 /* Block netpoll from trying to do any rx path servicing.
1326 * If we don't do this there is a chance ndo_poll_controller
1327 * or ndo_poll may be running while we open the device
1328 */
1329 netpoll_poll_disable(dev);
1330
1331 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1332 ret = notifier_to_errno(ret);
1333 if (ret)
1334 return ret;
1335
1336 set_bit(__LINK_STATE_START, &dev->state);
1337
1338 if (ops->ndo_validate_addr)
1339 ret = ops->ndo_validate_addr(dev);
1340
1341 if (!ret && ops->ndo_open)
1342 ret = ops->ndo_open(dev);
1343
1344 netpoll_poll_enable(dev);
1345
1346 if (ret)
1347 clear_bit(__LINK_STATE_START, &dev->state);
1348 else {
1349 dev->flags |= IFF_UP;
1350 dev_set_rx_mode(dev);
1351 dev_activate(dev);
1352 add_device_randomness(dev->dev_addr, dev->addr_len);
1353 }
1354
1355 return ret;
1356}
1357
1358/**
1359 * dev_open - prepare an interface for use.
1360 * @dev: device to open
1361 *
1362 * Takes a device from down to up state. The device's private open
1363 * function is invoked and then the multicast lists are loaded. Finally
1364 * the device is moved into the up state and a %NETDEV_UP message is
1365 * sent to the netdev notifier chain.
1366 *
1367 * Calling this function on an active interface is a nop. On a failure
1368 * a negative errno code is returned.
1369 */
1370int dev_open(struct net_device *dev)
1371{
1372 int ret;
1373
1374 if (dev->flags & IFF_UP)
1375 return 0;
1376
1377 ret = __dev_open(dev);
1378 if (ret < 0)
1379 return ret;
1380
1381 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1382 call_netdevice_notifiers(NETDEV_UP, dev);
1383
1384 return ret;
1385}
1386EXPORT_SYMBOL(dev_open);
1387
1388static int __dev_close_many(struct list_head *head)
1389{
1390 struct net_device *dev;
1391
1392 ASSERT_RTNL();
1393 might_sleep();
1394
1395 list_for_each_entry(dev, head, close_list) {
1396 /* Temporarily disable netpoll until the interface is down */
1397 netpoll_poll_disable(dev);
1398
1399 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1400
1401 clear_bit(__LINK_STATE_START, &dev->state);
1402
1403 /* Synchronize to scheduled poll. We cannot touch poll list, it
1404 * can be even on different cpu. So just clear netif_running().
1405 *
1406 * dev->stop() will invoke napi_disable() on all of it's
1407 * napi_struct instances on this device.
1408 */
1409 smp_mb__after_atomic(); /* Commit netif_running(). */
1410 }
1411
1412 dev_deactivate_many(head);
1413
1414 list_for_each_entry(dev, head, close_list) {
1415 const struct net_device_ops *ops = dev->netdev_ops;
1416
1417 /*
1418 * Call the device specific close. This cannot fail.
1419 * Only if device is UP
1420 *
1421 * We allow it to be called even after a DETACH hot-plug
1422 * event.
1423 */
1424 if (ops->ndo_stop)
1425 ops->ndo_stop(dev);
1426
1427 dev->flags &= ~IFF_UP;
1428 netpoll_poll_enable(dev);
1429 }
1430
1431 return 0;
1432}
1433
1434static int __dev_close(struct net_device *dev)
1435{
1436 int retval;
1437 LIST_HEAD(single);
1438
1439 list_add(&dev->close_list, &single);
1440 retval = __dev_close_many(&single);
1441 list_del(&single);
1442
1443 return retval;
1444}
1445
1446int dev_close_many(struct list_head *head, bool unlink)
1447{
1448 struct net_device *dev, *tmp;
1449
1450 /* Remove the devices that don't need to be closed */
1451 list_for_each_entry_safe(dev, tmp, head, close_list)
1452 if (!(dev->flags & IFF_UP))
1453 list_del_init(&dev->close_list);
1454
1455 __dev_close_many(head);
1456
1457 list_for_each_entry_safe(dev, tmp, head, close_list) {
1458 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1459 call_netdevice_notifiers(NETDEV_DOWN, dev);
1460 if (unlink)
1461 list_del_init(&dev->close_list);
1462 }
1463
1464 return 0;
1465}
1466EXPORT_SYMBOL(dev_close_many);
1467
1468/**
1469 * dev_close - shutdown an interface.
1470 * @dev: device to shutdown
1471 *
1472 * This function moves an active device into down state. A
1473 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1474 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1475 * chain.
1476 */
1477int dev_close(struct net_device *dev)
1478{
1479 if (dev->flags & IFF_UP) {
1480 LIST_HEAD(single);
1481
1482 list_add(&dev->close_list, &single);
1483 dev_close_many(&single, true);
1484 list_del(&single);
1485 }
1486 return 0;
1487}
1488EXPORT_SYMBOL(dev_close);
1489
1490
1491/**
1492 * dev_disable_lro - disable Large Receive Offload on a device
1493 * @dev: device
1494 *
1495 * Disable Large Receive Offload (LRO) on a net device. Must be
1496 * called under RTNL. This is needed if received packets may be
1497 * forwarded to another interface.
1498 */
1499void dev_disable_lro(struct net_device *dev)
1500{
1501 struct net_device *lower_dev;
1502 struct list_head *iter;
1503
1504 dev->wanted_features &= ~NETIF_F_LRO;
1505 netdev_update_features(dev);
1506
1507 if (unlikely(dev->features & NETIF_F_LRO))
1508 netdev_WARN(dev, "failed to disable LRO!\n");
1509
1510 netdev_for_each_lower_dev(dev, lower_dev, iter)
1511 dev_disable_lro(lower_dev);
1512}
1513EXPORT_SYMBOL(dev_disable_lro);
1514
1515static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1516 struct net_device *dev)
1517{
1518 struct netdev_notifier_info info;
1519
1520 netdev_notifier_info_init(&info, dev);
1521 return nb->notifier_call(nb, val, &info);
1522}
1523
1524static int dev_boot_phase = 1;
1525
1526/**
1527 * register_netdevice_notifier - register a network notifier block
1528 * @nb: notifier
1529 *
1530 * Register a notifier to be called when network device events occur.
1531 * The notifier passed is linked into the kernel structures and must
1532 * not be reused until it has been unregistered. A negative errno code
1533 * is returned on a failure.
1534 *
1535 * When registered all registration and up events are replayed
1536 * to the new notifier to allow device to have a race free
1537 * view of the network device list.
1538 */
1539
1540int register_netdevice_notifier(struct notifier_block *nb)
1541{
1542 struct net_device *dev;
1543 struct net_device *last;
1544 struct net *net;
1545 int err;
1546
1547 rtnl_lock();
1548 err = raw_notifier_chain_register(&netdev_chain, nb);
1549 if (err)
1550 goto unlock;
1551 if (dev_boot_phase)
1552 goto unlock;
1553 for_each_net(net) {
1554 for_each_netdev(net, dev) {
1555 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1556 err = notifier_to_errno(err);
1557 if (err)
1558 goto rollback;
1559
1560 if (!(dev->flags & IFF_UP))
1561 continue;
1562
1563 call_netdevice_notifier(nb, NETDEV_UP, dev);
1564 }
1565 }
1566
1567unlock:
1568 rtnl_unlock();
1569 return err;
1570
1571rollback:
1572 last = dev;
1573 for_each_net(net) {
1574 for_each_netdev(net, dev) {
1575 if (dev == last)
1576 goto outroll;
1577
1578 if (dev->flags & IFF_UP) {
1579 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1580 dev);
1581 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1582 }
1583 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1584 }
1585 }
1586
1587outroll:
1588 raw_notifier_chain_unregister(&netdev_chain, nb);
1589 goto unlock;
1590}
1591EXPORT_SYMBOL(register_netdevice_notifier);
1592
1593/**
1594 * unregister_netdevice_notifier - unregister a network notifier block
1595 * @nb: notifier
1596 *
1597 * Unregister a notifier previously registered by
1598 * register_netdevice_notifier(). The notifier is unlinked into the
1599 * kernel structures and may then be reused. A negative errno code
1600 * is returned on a failure.
1601 *
1602 * After unregistering unregister and down device events are synthesized
1603 * for all devices on the device list to the removed notifier to remove
1604 * the need for special case cleanup code.
1605 */
1606
1607int unregister_netdevice_notifier(struct notifier_block *nb)
1608{
1609 struct net_device *dev;
1610 struct net *net;
1611 int err;
1612
1613 rtnl_lock();
1614 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1615 if (err)
1616 goto unlock;
1617
1618 for_each_net(net) {
1619 for_each_netdev(net, dev) {
1620 if (dev->flags & IFF_UP) {
1621 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1622 dev);
1623 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1624 }
1625 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1626 }
1627 }
1628unlock:
1629 rtnl_unlock();
1630 return err;
1631}
1632EXPORT_SYMBOL(unregister_netdevice_notifier);
1633
1634/**
1635 * call_netdevice_notifiers_info - call all network notifier blocks
1636 * @val: value passed unmodified to notifier function
1637 * @dev: net_device pointer passed unmodified to notifier function
1638 * @info: notifier information data
1639 *
1640 * Call all network notifier blocks. Parameters and return value
1641 * are as for raw_notifier_call_chain().
1642 */
1643
1644static int call_netdevice_notifiers_info(unsigned long val,
1645 struct net_device *dev,
1646 struct netdev_notifier_info *info)
1647{
1648 ASSERT_RTNL();
1649 netdev_notifier_info_init(info, dev);
1650 return raw_notifier_call_chain(&netdev_chain, val, info);
1651}
1652
1653/**
1654 * call_netdevice_notifiers - call all network notifier blocks
1655 * @val: value passed unmodified to notifier function
1656 * @dev: net_device pointer passed unmodified to notifier function
1657 *
1658 * Call all network notifier blocks. Parameters and return value
1659 * are as for raw_notifier_call_chain().
1660 */
1661
1662int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1663{
1664 struct netdev_notifier_info info;
1665
1666 return call_netdevice_notifiers_info(val, dev, &info);
1667}
1668EXPORT_SYMBOL(call_netdevice_notifiers);
1669
1670#ifdef CONFIG_NET_INGRESS
1671static struct static_key ingress_needed __read_mostly;
1672
1673void net_inc_ingress_queue(void)
1674{
1675 static_key_slow_inc(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1678
1679void net_dec_ingress_queue(void)
1680{
1681 static_key_slow_dec(&ingress_needed);
1682}
1683EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1684#endif
1685
1686#ifdef CONFIG_NET_EGRESS
1687static struct static_key egress_needed __read_mostly;
1688
1689void net_inc_egress_queue(void)
1690{
1691 static_key_slow_inc(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1694
1695void net_dec_egress_queue(void)
1696{
1697 static_key_slow_dec(&egress_needed);
1698}
1699EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1700#endif
1701
1702static struct static_key netstamp_needed __read_mostly;
1703#ifdef HAVE_JUMP_LABEL
1704static atomic_t netstamp_needed_deferred;
1705static atomic_t netstamp_wanted;
1706static void netstamp_clear(struct work_struct *work)
1707{
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709 int wanted;
1710
1711 wanted = atomic_add_return(deferred, &netstamp_wanted);
1712 if (wanted > 0)
1713 static_key_enable(&netstamp_needed);
1714 else
1715 static_key_disable(&netstamp_needed);
1716}
1717static DECLARE_WORK(netstamp_work, netstamp_clear);
1718#endif
1719
1720void net_enable_timestamp(void)
1721{
1722#ifdef HAVE_JUMP_LABEL
1723 int wanted;
1724
1725 while (1) {
1726 wanted = atomic_read(&netstamp_wanted);
1727 if (wanted <= 0)
1728 break;
1729 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1730 return;
1731 }
1732 atomic_inc(&netstamp_needed_deferred);
1733 schedule_work(&netstamp_work);
1734#else
1735 static_key_slow_inc(&netstamp_needed);
1736#endif
1737}
1738EXPORT_SYMBOL(net_enable_timestamp);
1739
1740void net_disable_timestamp(void)
1741{
1742#ifdef HAVE_JUMP_LABEL
1743 int wanted;
1744
1745 while (1) {
1746 wanted = atomic_read(&netstamp_wanted);
1747 if (wanted <= 1)
1748 break;
1749 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1750 return;
1751 }
1752 atomic_dec(&netstamp_needed_deferred);
1753 schedule_work(&netstamp_work);
1754#else
1755 static_key_slow_dec(&netstamp_needed);
1756#endif
1757}
1758EXPORT_SYMBOL(net_disable_timestamp);
1759
1760static inline void net_timestamp_set(struct sk_buff *skb)
1761{
1762 skb->tstamp = 0;
1763 if (static_key_false(&netstamp_needed))
1764 __net_timestamp(skb);
1765}
1766
1767#define net_timestamp_check(COND, SKB) \
1768 if (static_key_false(&netstamp_needed)) { \
1769 if ((COND) && !(SKB)->tstamp) \
1770 __net_timestamp(SKB); \
1771 } \
1772
1773bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1774{
1775 unsigned int len;
1776
1777 if (!(dev->flags & IFF_UP))
1778 return false;
1779
1780 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1781 if (skb->len <= len)
1782 return true;
1783
1784 /* if TSO is enabled, we don't care about the length as the packet
1785 * could be forwarded without being segmented before
1786 */
1787 if (skb_is_gso(skb))
1788 return true;
1789
1790 return false;
1791}
1792EXPORT_SYMBOL_GPL(is_skb_forwardable);
1793
1794int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1795{
1796 int ret = ____dev_forward_skb(dev, skb);
1797
1798 if (likely(!ret)) {
1799 skb->protocol = eth_type_trans(skb, dev);
1800 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1801 }
1802
1803 return ret;
1804}
1805EXPORT_SYMBOL_GPL(__dev_forward_skb);
1806
1807/**
1808 * dev_forward_skb - loopback an skb to another netif
1809 *
1810 * @dev: destination network device
1811 * @skb: buffer to forward
1812 *
1813 * return values:
1814 * NET_RX_SUCCESS (no congestion)
1815 * NET_RX_DROP (packet was dropped, but freed)
1816 *
1817 * dev_forward_skb can be used for injecting an skb from the
1818 * start_xmit function of one device into the receive queue
1819 * of another device.
1820 *
1821 * The receiving device may be in another namespace, so
1822 * we have to clear all information in the skb that could
1823 * impact namespace isolation.
1824 */
1825int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1826{
1827 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1828}
1829EXPORT_SYMBOL_GPL(dev_forward_skb);
1830
1831static inline int deliver_skb(struct sk_buff *skb,
1832 struct packet_type *pt_prev,
1833 struct net_device *orig_dev)
1834{
1835 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1836 return -ENOMEM;
1837 atomic_inc(&skb->users);
1838 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1839}
1840
1841static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1842 struct packet_type **pt,
1843 struct net_device *orig_dev,
1844 __be16 type,
1845 struct list_head *ptype_list)
1846{
1847 struct packet_type *ptype, *pt_prev = *pt;
1848
1849 list_for_each_entry_rcu(ptype, ptype_list, list) {
1850 if (ptype->type != type)
1851 continue;
1852 if (pt_prev)
1853 deliver_skb(skb, pt_prev, orig_dev);
1854 pt_prev = ptype;
1855 }
1856 *pt = pt_prev;
1857}
1858
1859static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1860{
1861 if (!ptype->af_packet_priv || !skb->sk)
1862 return false;
1863
1864 if (ptype->id_match)
1865 return ptype->id_match(ptype, skb->sk);
1866 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1867 return true;
1868
1869 return false;
1870}
1871
1872/*
1873 * Support routine. Sends outgoing frames to any network
1874 * taps currently in use.
1875 */
1876
1877void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1878{
1879 struct packet_type *ptype;
1880 struct sk_buff *skb2 = NULL;
1881 struct packet_type *pt_prev = NULL;
1882 struct list_head *ptype_list = &ptype_all;
1883
1884 rcu_read_lock();
1885again:
1886 list_for_each_entry_rcu(ptype, ptype_list, list) {
1887 /* Never send packets back to the socket
1888 * they originated from - MvS (miquels@drinkel.ow.org)
1889 */
1890 if (skb_loop_sk(ptype, skb))
1891 continue;
1892
1893 if (pt_prev) {
1894 deliver_skb(skb2, pt_prev, skb->dev);
1895 pt_prev = ptype;
1896 continue;
1897 }
1898
1899 /* need to clone skb, done only once */
1900 skb2 = skb_clone(skb, GFP_ATOMIC);
1901 if (!skb2)
1902 goto out_unlock;
1903
1904 net_timestamp_set(skb2);
1905
1906 /* skb->nh should be correctly
1907 * set by sender, so that the second statement is
1908 * just protection against buggy protocols.
1909 */
1910 skb_reset_mac_header(skb2);
1911
1912 if (skb_network_header(skb2) < skb2->data ||
1913 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1914 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1915 ntohs(skb2->protocol),
1916 dev->name);
1917 skb_reset_network_header(skb2);
1918 }
1919
1920 skb2->transport_header = skb2->network_header;
1921 skb2->pkt_type = PACKET_OUTGOING;
1922 pt_prev = ptype;
1923 }
1924
1925 if (ptype_list == &ptype_all) {
1926 ptype_list = &dev->ptype_all;
1927 goto again;
1928 }
1929out_unlock:
1930 if (pt_prev)
1931 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1932 rcu_read_unlock();
1933}
1934EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1935
1936/**
1937 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1938 * @dev: Network device
1939 * @txq: number of queues available
1940 *
1941 * If real_num_tx_queues is changed the tc mappings may no longer be
1942 * valid. To resolve this verify the tc mapping remains valid and if
1943 * not NULL the mapping. With no priorities mapping to this
1944 * offset/count pair it will no longer be used. In the worst case TC0
1945 * is invalid nothing can be done so disable priority mappings. If is
1946 * expected that drivers will fix this mapping if they can before
1947 * calling netif_set_real_num_tx_queues.
1948 */
1949static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1950{
1951 int i;
1952 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1953
1954 /* If TC0 is invalidated disable TC mapping */
1955 if (tc->offset + tc->count > txq) {
1956 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1957 dev->num_tc = 0;
1958 return;
1959 }
1960
1961 /* Invalidated prio to tc mappings set to TC0 */
1962 for (i = 1; i < TC_BITMASK + 1; i++) {
1963 int q = netdev_get_prio_tc_map(dev, i);
1964
1965 tc = &dev->tc_to_txq[q];
1966 if (tc->offset + tc->count > txq) {
1967 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1968 i, q);
1969 netdev_set_prio_tc_map(dev, i, 0);
1970 }
1971 }
1972}
1973
1974int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1975{
1976 if (dev->num_tc) {
1977 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1978 int i;
1979
1980 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1981 if ((txq - tc->offset) < tc->count)
1982 return i;
1983 }
1984
1985 return -1;
1986 }
1987
1988 return 0;
1989}
1990
1991#ifdef CONFIG_XPS
1992static DEFINE_MUTEX(xps_map_mutex);
1993#define xmap_dereference(P) \
1994 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1995
1996static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1997 int tci, u16 index)
1998{
1999 struct xps_map *map = NULL;
2000 int pos;
2001
2002 if (dev_maps)
2003 map = xmap_dereference(dev_maps->cpu_map[tci]);
2004 if (!map)
2005 return false;
2006
2007 for (pos = map->len; pos--;) {
2008 if (map->queues[pos] != index)
2009 continue;
2010
2011 if (map->len > 1) {
2012 map->queues[pos] = map->queues[--map->len];
2013 break;
2014 }
2015
2016 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2017 kfree_rcu(map, rcu);
2018 return false;
2019 }
2020
2021 return true;
2022}
2023
2024static bool remove_xps_queue_cpu(struct net_device *dev,
2025 struct xps_dev_maps *dev_maps,
2026 int cpu, u16 offset, u16 count)
2027{
2028 int num_tc = dev->num_tc ? : 1;
2029 bool active = false;
2030 int tci;
2031
2032 for (tci = cpu * num_tc; num_tc--; tci++) {
2033 int i, j;
2034
2035 for (i = count, j = offset; i--; j++) {
2036 if (!remove_xps_queue(dev_maps, cpu, j))
2037 break;
2038 }
2039
2040 active |= i < 0;
2041 }
2042
2043 return active;
2044}
2045
2046static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2047 u16 count)
2048{
2049 struct xps_dev_maps *dev_maps;
2050 int cpu, i;
2051 bool active = false;
2052
2053 mutex_lock(&xps_map_mutex);
2054 dev_maps = xmap_dereference(dev->xps_maps);
2055
2056 if (!dev_maps)
2057 goto out_no_maps;
2058
2059 for_each_possible_cpu(cpu)
2060 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2061 offset, count);
2062
2063 if (!active) {
2064 RCU_INIT_POINTER(dev->xps_maps, NULL);
2065 kfree_rcu(dev_maps, rcu);
2066 }
2067
2068 for (i = offset + (count - 1); count--; i--)
2069 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2070 NUMA_NO_NODE);
2071
2072out_no_maps:
2073 mutex_unlock(&xps_map_mutex);
2074}
2075
2076static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2077{
2078 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2079}
2080
2081static struct xps_map *expand_xps_map(struct xps_map *map,
2082 int cpu, u16 index)
2083{
2084 struct xps_map *new_map;
2085 int alloc_len = XPS_MIN_MAP_ALLOC;
2086 int i, pos;
2087
2088 for (pos = 0; map && pos < map->len; pos++) {
2089 if (map->queues[pos] != index)
2090 continue;
2091 return map;
2092 }
2093
2094 /* Need to add queue to this CPU's existing map */
2095 if (map) {
2096 if (pos < map->alloc_len)
2097 return map;
2098
2099 alloc_len = map->alloc_len * 2;
2100 }
2101
2102 /* Need to allocate new map to store queue on this CPU's map */
2103 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2104 cpu_to_node(cpu));
2105 if (!new_map)
2106 return NULL;
2107
2108 for (i = 0; i < pos; i++)
2109 new_map->queues[i] = map->queues[i];
2110 new_map->alloc_len = alloc_len;
2111 new_map->len = pos;
2112
2113 return new_map;
2114}
2115
2116int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2117 u16 index)
2118{
2119 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2120 int i, cpu, tci, numa_node_id = -2;
2121 int maps_sz, num_tc = 1, tc = 0;
2122 struct xps_map *map, *new_map;
2123 bool active = false;
2124
2125 if (dev->num_tc) {
2126 num_tc = dev->num_tc;
2127 tc = netdev_txq_to_tc(dev, index);
2128 if (tc < 0)
2129 return -EINVAL;
2130 }
2131
2132 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2133 if (maps_sz < L1_CACHE_BYTES)
2134 maps_sz = L1_CACHE_BYTES;
2135
2136 mutex_lock(&xps_map_mutex);
2137
2138 dev_maps = xmap_dereference(dev->xps_maps);
2139
2140 /* allocate memory for queue storage */
2141 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2142 if (!new_dev_maps)
2143 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2144 if (!new_dev_maps) {
2145 mutex_unlock(&xps_map_mutex);
2146 return -ENOMEM;
2147 }
2148
2149 tci = cpu * num_tc + tc;
2150 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2151 NULL;
2152
2153 map = expand_xps_map(map, cpu, index);
2154 if (!map)
2155 goto error;
2156
2157 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2158 }
2159
2160 if (!new_dev_maps)
2161 goto out_no_new_maps;
2162
2163 for_each_possible_cpu(cpu) {
2164 /* copy maps belonging to foreign traffic classes */
2165 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2166 /* fill in the new device map from the old device map */
2167 map = xmap_dereference(dev_maps->cpu_map[tci]);
2168 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2169 }
2170
2171 /* We need to explicitly update tci as prevous loop
2172 * could break out early if dev_maps is NULL.
2173 */
2174 tci = cpu * num_tc + tc;
2175
2176 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2177 /* add queue to CPU maps */
2178 int pos = 0;
2179
2180 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2181 while ((pos < map->len) && (map->queues[pos] != index))
2182 pos++;
2183
2184 if (pos == map->len)
2185 map->queues[map->len++] = index;
2186#ifdef CONFIG_NUMA
2187 if (numa_node_id == -2)
2188 numa_node_id = cpu_to_node(cpu);
2189 else if (numa_node_id != cpu_to_node(cpu))
2190 numa_node_id = -1;
2191#endif
2192 } else if (dev_maps) {
2193 /* fill in the new device map from the old device map */
2194 map = xmap_dereference(dev_maps->cpu_map[tci]);
2195 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2196 }
2197
2198 /* copy maps belonging to foreign traffic classes */
2199 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2200 /* fill in the new device map from the old device map */
2201 map = xmap_dereference(dev_maps->cpu_map[tci]);
2202 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2203 }
2204 }
2205
2206 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2207
2208 /* Cleanup old maps */
2209 if (!dev_maps)
2210 goto out_no_old_maps;
2211
2212 for_each_possible_cpu(cpu) {
2213 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2214 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2215 map = xmap_dereference(dev_maps->cpu_map[tci]);
2216 if (map && map != new_map)
2217 kfree_rcu(map, rcu);
2218 }
2219 }
2220
2221 kfree_rcu(dev_maps, rcu);
2222
2223out_no_old_maps:
2224 dev_maps = new_dev_maps;
2225 active = true;
2226
2227out_no_new_maps:
2228 /* update Tx queue numa node */
2229 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2230 (numa_node_id >= 0) ? numa_node_id :
2231 NUMA_NO_NODE);
2232
2233 if (!dev_maps)
2234 goto out_no_maps;
2235
2236 /* removes queue from unused CPUs */
2237 for_each_possible_cpu(cpu) {
2238 for (i = tc, tci = cpu * num_tc; i--; tci++)
2239 active |= remove_xps_queue(dev_maps, tci, index);
2240 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2241 active |= remove_xps_queue(dev_maps, tci, index);
2242 for (i = num_tc - tc, tci++; --i; tci++)
2243 active |= remove_xps_queue(dev_maps, tci, index);
2244 }
2245
2246 /* free map if not active */
2247 if (!active) {
2248 RCU_INIT_POINTER(dev->xps_maps, NULL);
2249 kfree_rcu(dev_maps, rcu);
2250 }
2251
2252out_no_maps:
2253 mutex_unlock(&xps_map_mutex);
2254
2255 return 0;
2256error:
2257 /* remove any maps that we added */
2258 for_each_possible_cpu(cpu) {
2259 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2260 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2261 map = dev_maps ?
2262 xmap_dereference(dev_maps->cpu_map[tci]) :
2263 NULL;
2264 if (new_map && new_map != map)
2265 kfree(new_map);
2266 }
2267 }
2268
2269 mutex_unlock(&xps_map_mutex);
2270
2271 kfree(new_dev_maps);
2272 return -ENOMEM;
2273}
2274EXPORT_SYMBOL(netif_set_xps_queue);
2275
2276#endif
2277void netdev_reset_tc(struct net_device *dev)
2278{
2279#ifdef CONFIG_XPS
2280 netif_reset_xps_queues_gt(dev, 0);
2281#endif
2282 dev->num_tc = 0;
2283 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2284 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2285}
2286EXPORT_SYMBOL(netdev_reset_tc);
2287
2288int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2289{
2290 if (tc >= dev->num_tc)
2291 return -EINVAL;
2292
2293#ifdef CONFIG_XPS
2294 netif_reset_xps_queues(dev, offset, count);
2295#endif
2296 dev->tc_to_txq[tc].count = count;
2297 dev->tc_to_txq[tc].offset = offset;
2298 return 0;
2299}
2300EXPORT_SYMBOL(netdev_set_tc_queue);
2301
2302int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2303{
2304 if (num_tc > TC_MAX_QUEUE)
2305 return -EINVAL;
2306
2307#ifdef CONFIG_XPS
2308 netif_reset_xps_queues_gt(dev, 0);
2309#endif
2310 dev->num_tc = num_tc;
2311 return 0;
2312}
2313EXPORT_SYMBOL(netdev_set_num_tc);
2314
2315/*
2316 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2317 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2318 */
2319int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2320{
2321 int rc;
2322
2323 if (txq < 1 || txq > dev->num_tx_queues)
2324 return -EINVAL;
2325
2326 if (dev->reg_state == NETREG_REGISTERED ||
2327 dev->reg_state == NETREG_UNREGISTERING) {
2328 ASSERT_RTNL();
2329
2330 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2331 txq);
2332 if (rc)
2333 return rc;
2334
2335 if (dev->num_tc)
2336 netif_setup_tc(dev, txq);
2337
2338 if (txq < dev->real_num_tx_queues) {
2339 qdisc_reset_all_tx_gt(dev, txq);
2340#ifdef CONFIG_XPS
2341 netif_reset_xps_queues_gt(dev, txq);
2342#endif
2343 }
2344 }
2345
2346 dev->real_num_tx_queues = txq;
2347 return 0;
2348}
2349EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2350
2351#ifdef CONFIG_SYSFS
2352/**
2353 * netif_set_real_num_rx_queues - set actual number of RX queues used
2354 * @dev: Network device
2355 * @rxq: Actual number of RX queues
2356 *
2357 * This must be called either with the rtnl_lock held or before
2358 * registration of the net device. Returns 0 on success, or a
2359 * negative error code. If called before registration, it always
2360 * succeeds.
2361 */
2362int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2363{
2364 int rc;
2365
2366 if (rxq < 1 || rxq > dev->num_rx_queues)
2367 return -EINVAL;
2368
2369 if (dev->reg_state == NETREG_REGISTERED) {
2370 ASSERT_RTNL();
2371
2372 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2373 rxq);
2374 if (rc)
2375 return rc;
2376 }
2377
2378 dev->real_num_rx_queues = rxq;
2379 return 0;
2380}
2381EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2382#endif
2383
2384/**
2385 * netif_get_num_default_rss_queues - default number of RSS queues
2386 *
2387 * This routine should set an upper limit on the number of RSS queues
2388 * used by default by multiqueue devices.
2389 */
2390int netif_get_num_default_rss_queues(void)
2391{
2392 return is_kdump_kernel() ?
2393 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2394}
2395EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2396
2397static void __netif_reschedule(struct Qdisc *q)
2398{
2399 struct softnet_data *sd;
2400 unsigned long flags;
2401
2402 local_irq_save(flags);
2403 sd = this_cpu_ptr(&softnet_data);
2404 q->next_sched = NULL;
2405 *sd->output_queue_tailp = q;
2406 sd->output_queue_tailp = &q->next_sched;
2407 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2408 local_irq_restore(flags);
2409}
2410
2411void __netif_schedule(struct Qdisc *q)
2412{
2413 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2414 __netif_reschedule(q);
2415}
2416EXPORT_SYMBOL(__netif_schedule);
2417
2418struct dev_kfree_skb_cb {
2419 enum skb_free_reason reason;
2420};
2421
2422static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2423{
2424 return (struct dev_kfree_skb_cb *)skb->cb;
2425}
2426
2427void netif_schedule_queue(struct netdev_queue *txq)
2428{
2429 rcu_read_lock();
2430 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2431 struct Qdisc *q = rcu_dereference(txq->qdisc);
2432
2433 __netif_schedule(q);
2434 }
2435 rcu_read_unlock();
2436}
2437EXPORT_SYMBOL(netif_schedule_queue);
2438
2439void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2440{
2441 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2442 struct Qdisc *q;
2443
2444 rcu_read_lock();
2445 q = rcu_dereference(dev_queue->qdisc);
2446 __netif_schedule(q);
2447 rcu_read_unlock();
2448 }
2449}
2450EXPORT_SYMBOL(netif_tx_wake_queue);
2451
2452void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2453{
2454 unsigned long flags;
2455
2456 if (unlikely(!skb))
2457 return;
2458
2459 if (likely(atomic_read(&skb->users) == 1)) {
2460 smp_rmb();
2461 atomic_set(&skb->users, 0);
2462 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2463 return;
2464 }
2465 get_kfree_skb_cb(skb)->reason = reason;
2466 local_irq_save(flags);
2467 skb->next = __this_cpu_read(softnet_data.completion_queue);
2468 __this_cpu_write(softnet_data.completion_queue, skb);
2469 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2470 local_irq_restore(flags);
2471}
2472EXPORT_SYMBOL(__dev_kfree_skb_irq);
2473
2474void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2475{
2476 if (in_irq() || irqs_disabled())
2477 __dev_kfree_skb_irq(skb, reason);
2478 else
2479 dev_kfree_skb(skb);
2480}
2481EXPORT_SYMBOL(__dev_kfree_skb_any);
2482
2483
2484/**
2485 * netif_device_detach - mark device as removed
2486 * @dev: network device
2487 *
2488 * Mark device as removed from system and therefore no longer available.
2489 */
2490void netif_device_detach(struct net_device *dev)
2491{
2492 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2493 netif_running(dev)) {
2494 netif_tx_stop_all_queues(dev);
2495 }
2496}
2497EXPORT_SYMBOL(netif_device_detach);
2498
2499/**
2500 * netif_device_attach - mark device as attached
2501 * @dev: network device
2502 *
2503 * Mark device as attached from system and restart if needed.
2504 */
2505void netif_device_attach(struct net_device *dev)
2506{
2507 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2508 netif_running(dev)) {
2509 netif_tx_wake_all_queues(dev);
2510 __netdev_watchdog_up(dev);
2511 }
2512}
2513EXPORT_SYMBOL(netif_device_attach);
2514
2515/*
2516 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2517 * to be used as a distribution range.
2518 */
2519u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2520 unsigned int num_tx_queues)
2521{
2522 u32 hash;
2523 u16 qoffset = 0;
2524 u16 qcount = num_tx_queues;
2525
2526 if (skb_rx_queue_recorded(skb)) {
2527 hash = skb_get_rx_queue(skb);
2528 while (unlikely(hash >= num_tx_queues))
2529 hash -= num_tx_queues;
2530 return hash;
2531 }
2532
2533 if (dev->num_tc) {
2534 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2535
2536 qoffset = dev->tc_to_txq[tc].offset;
2537 qcount = dev->tc_to_txq[tc].count;
2538 }
2539
2540 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2541}
2542EXPORT_SYMBOL(__skb_tx_hash);
2543
2544static void skb_warn_bad_offload(const struct sk_buff *skb)
2545{
2546 static const netdev_features_t null_features;
2547 struct net_device *dev = skb->dev;
2548 const char *name = "";
2549
2550 if (!net_ratelimit())
2551 return;
2552
2553 if (dev) {
2554 if (dev->dev.parent)
2555 name = dev_driver_string(dev->dev.parent);
2556 else
2557 name = netdev_name(dev);
2558 }
2559 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2560 "gso_type=%d ip_summed=%d\n",
2561 name, dev ? &dev->features : &null_features,
2562 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2563 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2564 skb_shinfo(skb)->gso_type, skb->ip_summed);
2565}
2566
2567/*
2568 * Invalidate hardware checksum when packet is to be mangled, and
2569 * complete checksum manually on outgoing path.
2570 */
2571int skb_checksum_help(struct sk_buff *skb)
2572{
2573 __wsum csum;
2574 int ret = 0, offset;
2575
2576 if (skb->ip_summed == CHECKSUM_COMPLETE)
2577 goto out_set_summed;
2578
2579 if (unlikely(skb_shinfo(skb)->gso_size)) {
2580 skb_warn_bad_offload(skb);
2581 return -EINVAL;
2582 }
2583
2584 /* Before computing a checksum, we should make sure no frag could
2585 * be modified by an external entity : checksum could be wrong.
2586 */
2587 if (skb_has_shared_frag(skb)) {
2588 ret = __skb_linearize(skb);
2589 if (ret)
2590 goto out;
2591 }
2592
2593 offset = skb_checksum_start_offset(skb);
2594 BUG_ON(offset >= skb_headlen(skb));
2595 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2596
2597 offset += skb->csum_offset;
2598 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2599
2600 if (skb_cloned(skb) &&
2601 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2602 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2603 if (ret)
2604 goto out;
2605 }
2606
2607 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2608out_set_summed:
2609 skb->ip_summed = CHECKSUM_NONE;
2610out:
2611 return ret;
2612}
2613EXPORT_SYMBOL(skb_checksum_help);
2614
2615__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2616{
2617 __be16 type = skb->protocol;
2618
2619 /* Tunnel gso handlers can set protocol to ethernet. */
2620 if (type == htons(ETH_P_TEB)) {
2621 struct ethhdr *eth;
2622
2623 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2624 return 0;
2625
2626 eth = (struct ethhdr *)skb_mac_header(skb);
2627 type = eth->h_proto;
2628 }
2629
2630 return __vlan_get_protocol(skb, type, depth);
2631}
2632
2633/**
2634 * skb_mac_gso_segment - mac layer segmentation handler.
2635 * @skb: buffer to segment
2636 * @features: features for the output path (see dev->features)
2637 */
2638struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2639 netdev_features_t features)
2640{
2641 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2642 struct packet_offload *ptype;
2643 int vlan_depth = skb->mac_len;
2644 __be16 type = skb_network_protocol(skb, &vlan_depth);
2645
2646 if (unlikely(!type))
2647 return ERR_PTR(-EINVAL);
2648
2649 __skb_pull(skb, vlan_depth);
2650
2651 rcu_read_lock();
2652 list_for_each_entry_rcu(ptype, &offload_base, list) {
2653 if (ptype->type == type && ptype->callbacks.gso_segment) {
2654 segs = ptype->callbacks.gso_segment(skb, features);
2655 break;
2656 }
2657 }
2658 rcu_read_unlock();
2659
2660 __skb_push(skb, skb->data - skb_mac_header(skb));
2661
2662 return segs;
2663}
2664EXPORT_SYMBOL(skb_mac_gso_segment);
2665
2666
2667/* openvswitch calls this on rx path, so we need a different check.
2668 */
2669static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2670{
2671 if (tx_path)
2672 return skb->ip_summed != CHECKSUM_PARTIAL &&
2673 skb->ip_summed != CHECKSUM_NONE;
2674
2675 return skb->ip_summed == CHECKSUM_NONE;
2676}
2677
2678/**
2679 * __skb_gso_segment - Perform segmentation on skb.
2680 * @skb: buffer to segment
2681 * @features: features for the output path (see dev->features)
2682 * @tx_path: whether it is called in TX path
2683 *
2684 * This function segments the given skb and returns a list of segments.
2685 *
2686 * It may return NULL if the skb requires no segmentation. This is
2687 * only possible when GSO is used for verifying header integrity.
2688 *
2689 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2690 */
2691struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2692 netdev_features_t features, bool tx_path)
2693{
2694 struct sk_buff *segs;
2695
2696 if (unlikely(skb_needs_check(skb, tx_path))) {
2697 int err;
2698
2699 /* We're going to init ->check field in TCP or UDP header */
2700 err = skb_cow_head(skb, 0);
2701 if (err < 0)
2702 return ERR_PTR(err);
2703 }
2704
2705 /* Only report GSO partial support if it will enable us to
2706 * support segmentation on this frame without needing additional
2707 * work.
2708 */
2709 if (features & NETIF_F_GSO_PARTIAL) {
2710 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2711 struct net_device *dev = skb->dev;
2712
2713 partial_features |= dev->features & dev->gso_partial_features;
2714 if (!skb_gso_ok(skb, features | partial_features))
2715 features &= ~NETIF_F_GSO_PARTIAL;
2716 }
2717
2718 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2719 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2720
2721 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2722 SKB_GSO_CB(skb)->encap_level = 0;
2723
2724 skb_reset_mac_header(skb);
2725 skb_reset_mac_len(skb);
2726
2727 segs = skb_mac_gso_segment(skb, features);
2728
2729 if (unlikely(skb_needs_check(skb, tx_path)))
2730 skb_warn_bad_offload(skb);
2731
2732 return segs;
2733}
2734EXPORT_SYMBOL(__skb_gso_segment);
2735
2736/* Take action when hardware reception checksum errors are detected. */
2737#ifdef CONFIG_BUG
2738void netdev_rx_csum_fault(struct net_device *dev)
2739{
2740 if (net_ratelimit()) {
2741 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2742 dump_stack();
2743 }
2744}
2745EXPORT_SYMBOL(netdev_rx_csum_fault);
2746#endif
2747
2748/* Actually, we should eliminate this check as soon as we know, that:
2749 * 1. IOMMU is present and allows to map all the memory.
2750 * 2. No high memory really exists on this machine.
2751 */
2752
2753static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2754{
2755#ifdef CONFIG_HIGHMEM
2756 int i;
2757
2758 if (!(dev->features & NETIF_F_HIGHDMA)) {
2759 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2760 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2761
2762 if (PageHighMem(skb_frag_page(frag)))
2763 return 1;
2764 }
2765 }
2766
2767 if (PCI_DMA_BUS_IS_PHYS) {
2768 struct device *pdev = dev->dev.parent;
2769
2770 if (!pdev)
2771 return 0;
2772 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2773 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2774 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2775
2776 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2777 return 1;
2778 }
2779 }
2780#endif
2781 return 0;
2782}
2783
2784/* If MPLS offload request, verify we are testing hardware MPLS features
2785 * instead of standard features for the netdev.
2786 */
2787#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2788static netdev_features_t net_mpls_features(struct sk_buff *skb,
2789 netdev_features_t features,
2790 __be16 type)
2791{
2792 if (eth_p_mpls(type))
2793 features &= skb->dev->mpls_features;
2794
2795 return features;
2796}
2797#else
2798static netdev_features_t net_mpls_features(struct sk_buff *skb,
2799 netdev_features_t features,
2800 __be16 type)
2801{
2802 return features;
2803}
2804#endif
2805
2806static netdev_features_t harmonize_features(struct sk_buff *skb,
2807 netdev_features_t features)
2808{
2809 int tmp;
2810 __be16 type;
2811
2812 type = skb_network_protocol(skb, &tmp);
2813 features = net_mpls_features(skb, features, type);
2814
2815 if (skb->ip_summed != CHECKSUM_NONE &&
2816 !can_checksum_protocol(features, type)) {
2817 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2818 }
2819 if (illegal_highdma(skb->dev, skb))
2820 features &= ~NETIF_F_SG;
2821
2822 return features;
2823}
2824
2825netdev_features_t passthru_features_check(struct sk_buff *skb,
2826 struct net_device *dev,
2827 netdev_features_t features)
2828{
2829 return features;
2830}
2831EXPORT_SYMBOL(passthru_features_check);
2832
2833static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2834 struct net_device *dev,
2835 netdev_features_t features)
2836{
2837 return vlan_features_check(skb, features);
2838}
2839
2840static netdev_features_t gso_features_check(const struct sk_buff *skb,
2841 struct net_device *dev,
2842 netdev_features_t features)
2843{
2844 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2845
2846 if (gso_segs > dev->gso_max_segs)
2847 return features & ~NETIF_F_GSO_MASK;
2848
2849 /* Support for GSO partial features requires software
2850 * intervention before we can actually process the packets
2851 * so we need to strip support for any partial features now
2852 * and we can pull them back in after we have partially
2853 * segmented the frame.
2854 */
2855 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2856 features &= ~dev->gso_partial_features;
2857
2858 /* Make sure to clear the IPv4 ID mangling feature if the
2859 * IPv4 header has the potential to be fragmented.
2860 */
2861 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2862 struct iphdr *iph = skb->encapsulation ?
2863 inner_ip_hdr(skb) : ip_hdr(skb);
2864
2865 if (!(iph->frag_off & htons(IP_DF)))
2866 features &= ~NETIF_F_TSO_MANGLEID;
2867 }
2868
2869 return features;
2870}
2871
2872netdev_features_t netif_skb_features(struct sk_buff *skb)
2873{
2874 struct net_device *dev = skb->dev;
2875 netdev_features_t features = dev->features;
2876
2877 if (skb_is_gso(skb))
2878 features = gso_features_check(skb, dev, features);
2879
2880 /* If encapsulation offload request, verify we are testing
2881 * hardware encapsulation features instead of standard
2882 * features for the netdev
2883 */
2884 if (skb->encapsulation)
2885 features &= dev->hw_enc_features;
2886
2887 if (skb_vlan_tagged(skb))
2888 features = netdev_intersect_features(features,
2889 dev->vlan_features |
2890 NETIF_F_HW_VLAN_CTAG_TX |
2891 NETIF_F_HW_VLAN_STAG_TX);
2892
2893 if (dev->netdev_ops->ndo_features_check)
2894 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2895 features);
2896 else
2897 features &= dflt_features_check(skb, dev, features);
2898
2899 return harmonize_features(skb, features);
2900}
2901EXPORT_SYMBOL(netif_skb_features);
2902
2903static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2904 struct netdev_queue *txq, bool more)
2905{
2906 unsigned int len;
2907 int rc;
2908
2909 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2910 dev_queue_xmit_nit(skb, dev);
2911
2912 len = skb->len;
2913 trace_net_dev_start_xmit(skb, dev);
2914 rc = netdev_start_xmit(skb, dev, txq, more);
2915 trace_net_dev_xmit(skb, rc, dev, len);
2916
2917 return rc;
2918}
2919
2920struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2921 struct netdev_queue *txq, int *ret)
2922{
2923 struct sk_buff *skb = first;
2924 int rc = NETDEV_TX_OK;
2925
2926 while (skb) {
2927 struct sk_buff *next = skb->next;
2928
2929 skb->next = NULL;
2930 rc = xmit_one(skb, dev, txq, next != NULL);
2931 if (unlikely(!dev_xmit_complete(rc))) {
2932 skb->next = next;
2933 goto out;
2934 }
2935
2936 skb = next;
2937 if (netif_xmit_stopped(txq) && skb) {
2938 rc = NETDEV_TX_BUSY;
2939 break;
2940 }
2941 }
2942
2943out:
2944 *ret = rc;
2945 return skb;
2946}
2947
2948static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2949 netdev_features_t features)
2950{
2951 if (skb_vlan_tag_present(skb) &&
2952 !vlan_hw_offload_capable(features, skb->vlan_proto))
2953 skb = __vlan_hwaccel_push_inside(skb);
2954 return skb;
2955}
2956
2957static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2958{
2959 netdev_features_t features;
2960
2961 features = netif_skb_features(skb);
2962 skb = validate_xmit_vlan(skb, features);
2963 if (unlikely(!skb))
2964 goto out_null;
2965
2966 if (netif_needs_gso(skb, features)) {
2967 struct sk_buff *segs;
2968
2969 segs = skb_gso_segment(skb, features);
2970 if (IS_ERR(segs)) {
2971 goto out_kfree_skb;
2972 } else if (segs) {
2973 consume_skb(skb);
2974 skb = segs;
2975 }
2976 } else {
2977 if (skb_needs_linearize(skb, features) &&
2978 __skb_linearize(skb))
2979 goto out_kfree_skb;
2980
2981 if (validate_xmit_xfrm(skb, features))
2982 goto out_kfree_skb;
2983
2984 /* If packet is not checksummed and device does not
2985 * support checksumming for this protocol, complete
2986 * checksumming here.
2987 */
2988 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2989 if (skb->encapsulation)
2990 skb_set_inner_transport_header(skb,
2991 skb_checksum_start_offset(skb));
2992 else
2993 skb_set_transport_header(skb,
2994 skb_checksum_start_offset(skb));
2995 if (!(features & NETIF_F_CSUM_MASK) &&
2996 skb_checksum_help(skb))
2997 goto out_kfree_skb;
2998 }
2999 }
3000
3001 return skb;
3002
3003out_kfree_skb:
3004 kfree_skb(skb);
3005out_null:
3006 atomic_long_inc(&dev->tx_dropped);
3007 return NULL;
3008}
3009
3010struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3011{
3012 struct sk_buff *next, *head = NULL, *tail;
3013
3014 for (; skb != NULL; skb = next) {
3015 next = skb->next;
3016 skb->next = NULL;
3017
3018 /* in case skb wont be segmented, point to itself */
3019 skb->prev = skb;
3020
3021 skb = validate_xmit_skb(skb, dev);
3022 if (!skb)
3023 continue;
3024
3025 if (!head)
3026 head = skb;
3027 else
3028 tail->next = skb;
3029 /* If skb was segmented, skb->prev points to
3030 * the last segment. If not, it still contains skb.
3031 */
3032 tail = skb->prev;
3033 }
3034 return head;
3035}
3036EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3037
3038static void qdisc_pkt_len_init(struct sk_buff *skb)
3039{
3040 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3041
3042 qdisc_skb_cb(skb)->pkt_len = skb->len;
3043
3044 /* To get more precise estimation of bytes sent on wire,
3045 * we add to pkt_len the headers size of all segments
3046 */
3047 if (shinfo->gso_size) {
3048 unsigned int hdr_len;
3049 u16 gso_segs = shinfo->gso_segs;
3050
3051 /* mac layer + network layer */
3052 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3053
3054 /* + transport layer */
3055 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3056 hdr_len += tcp_hdrlen(skb);
3057 else
3058 hdr_len += sizeof(struct udphdr);
3059
3060 if (shinfo->gso_type & SKB_GSO_DODGY)
3061 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3062 shinfo->gso_size);
3063
3064 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3065 }
3066}
3067
3068static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3069 struct net_device *dev,
3070 struct netdev_queue *txq)
3071{
3072 spinlock_t *root_lock = qdisc_lock(q);
3073 struct sk_buff *to_free = NULL;
3074 bool contended;
3075 int rc;
3076
3077 qdisc_calculate_pkt_len(skb, q);
3078 /*
3079 * Heuristic to force contended enqueues to serialize on a
3080 * separate lock before trying to get qdisc main lock.
3081 * This permits qdisc->running owner to get the lock more
3082 * often and dequeue packets faster.
3083 */
3084 contended = qdisc_is_running(q);
3085 if (unlikely(contended))
3086 spin_lock(&q->busylock);
3087
3088 spin_lock(root_lock);
3089 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3090 __qdisc_drop(skb, &to_free);
3091 rc = NET_XMIT_DROP;
3092 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3093 qdisc_run_begin(q)) {
3094 /*
3095 * This is a work-conserving queue; there are no old skbs
3096 * waiting to be sent out; and the qdisc is not running -
3097 * xmit the skb directly.
3098 */
3099
3100 qdisc_bstats_update(q, skb);
3101
3102 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3103 if (unlikely(contended)) {
3104 spin_unlock(&q->busylock);
3105 contended = false;
3106 }
3107 __qdisc_run(q);
3108 } else
3109 qdisc_run_end(q);
3110
3111 rc = NET_XMIT_SUCCESS;
3112 } else {
3113 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3114 if (qdisc_run_begin(q)) {
3115 if (unlikely(contended)) {
3116 spin_unlock(&q->busylock);
3117 contended = false;
3118 }
3119 __qdisc_run(q);
3120 }
3121 }
3122 spin_unlock(root_lock);
3123 if (unlikely(to_free))
3124 kfree_skb_list(to_free);
3125 if (unlikely(contended))
3126 spin_unlock(&q->busylock);
3127 return rc;
3128}
3129
3130#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3131static void skb_update_prio(struct sk_buff *skb)
3132{
3133 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3134
3135 if (!skb->priority && skb->sk && map) {
3136 unsigned int prioidx =
3137 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3138
3139 if (prioidx < map->priomap_len)
3140 skb->priority = map->priomap[prioidx];
3141 }
3142}
3143#else
3144#define skb_update_prio(skb)
3145#endif
3146
3147DEFINE_PER_CPU(int, xmit_recursion);
3148EXPORT_SYMBOL(xmit_recursion);
3149
3150/**
3151 * dev_loopback_xmit - loop back @skb
3152 * @net: network namespace this loopback is happening in
3153 * @sk: sk needed to be a netfilter okfn
3154 * @skb: buffer to transmit
3155 */
3156int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3157{
3158 skb_reset_mac_header(skb);
3159 __skb_pull(skb, skb_network_offset(skb));
3160 skb->pkt_type = PACKET_LOOPBACK;
3161 skb->ip_summed = CHECKSUM_UNNECESSARY;
3162 WARN_ON(!skb_dst(skb));
3163 skb_dst_force(skb);
3164 netif_rx_ni(skb);
3165 return 0;
3166}
3167EXPORT_SYMBOL(dev_loopback_xmit);
3168
3169#ifdef CONFIG_NET_EGRESS
3170static struct sk_buff *
3171sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3172{
3173 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3174 struct tcf_result cl_res;
3175
3176 if (!cl)
3177 return skb;
3178
3179 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3180 qdisc_bstats_cpu_update(cl->q, skb);
3181
3182 switch (tc_classify(skb, cl, &cl_res, false)) {
3183 case TC_ACT_OK:
3184 case TC_ACT_RECLASSIFY:
3185 skb->tc_index = TC_H_MIN(cl_res.classid);
3186 break;
3187 case TC_ACT_SHOT:
3188 qdisc_qstats_cpu_drop(cl->q);
3189 *ret = NET_XMIT_DROP;
3190 kfree_skb(skb);
3191 return NULL;
3192 case TC_ACT_STOLEN:
3193 case TC_ACT_QUEUED:
3194 *ret = NET_XMIT_SUCCESS;
3195 consume_skb(skb);
3196 return NULL;
3197 case TC_ACT_REDIRECT:
3198 /* No need to push/pop skb's mac_header here on egress! */
3199 skb_do_redirect(skb);
3200 *ret = NET_XMIT_SUCCESS;
3201 return NULL;
3202 default:
3203 break;
3204 }
3205
3206 return skb;
3207}
3208#endif /* CONFIG_NET_EGRESS */
3209
3210static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3211{
3212#ifdef CONFIG_XPS
3213 struct xps_dev_maps *dev_maps;
3214 struct xps_map *map;
3215 int queue_index = -1;
3216
3217 rcu_read_lock();
3218 dev_maps = rcu_dereference(dev->xps_maps);
3219 if (dev_maps) {
3220 unsigned int tci = skb->sender_cpu - 1;
3221
3222 if (dev->num_tc) {
3223 tci *= dev->num_tc;
3224 tci += netdev_get_prio_tc_map(dev, skb->priority);
3225 }
3226
3227 map = rcu_dereference(dev_maps->cpu_map[tci]);
3228 if (map) {
3229 if (map->len == 1)
3230 queue_index = map->queues[0];
3231 else
3232 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3233 map->len)];
3234 if (unlikely(queue_index >= dev->real_num_tx_queues))
3235 queue_index = -1;
3236 }
3237 }
3238 rcu_read_unlock();
3239
3240 return queue_index;
3241#else
3242 return -1;
3243#endif
3244}
3245
3246static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3247{
3248 struct sock *sk = skb->sk;
3249 int queue_index = sk_tx_queue_get(sk);
3250
3251 if (queue_index < 0 || skb->ooo_okay ||
3252 queue_index >= dev->real_num_tx_queues) {
3253 int new_index = get_xps_queue(dev, skb);
3254
3255 if (new_index < 0)
3256 new_index = skb_tx_hash(dev, skb);
3257
3258 if (queue_index != new_index && sk &&
3259 sk_fullsock(sk) &&
3260 rcu_access_pointer(sk->sk_dst_cache))
3261 sk_tx_queue_set(sk, new_index);
3262
3263 queue_index = new_index;
3264 }
3265
3266 return queue_index;
3267}
3268
3269struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3270 struct sk_buff *skb,
3271 void *accel_priv)
3272{
3273 int queue_index = 0;
3274
3275#ifdef CONFIG_XPS
3276 u32 sender_cpu = skb->sender_cpu - 1;
3277
3278 if (sender_cpu >= (u32)NR_CPUS)
3279 skb->sender_cpu = raw_smp_processor_id() + 1;
3280#endif
3281
3282 if (dev->real_num_tx_queues != 1) {
3283 const struct net_device_ops *ops = dev->netdev_ops;
3284
3285 if (ops->ndo_select_queue)
3286 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3287 __netdev_pick_tx);
3288 else
3289 queue_index = __netdev_pick_tx(dev, skb);
3290
3291 if (!accel_priv)
3292 queue_index = netdev_cap_txqueue(dev, queue_index);
3293 }
3294
3295 skb_set_queue_mapping(skb, queue_index);
3296 return netdev_get_tx_queue(dev, queue_index);
3297}
3298
3299/**
3300 * __dev_queue_xmit - transmit a buffer
3301 * @skb: buffer to transmit
3302 * @accel_priv: private data used for L2 forwarding offload
3303 *
3304 * Queue a buffer for transmission to a network device. The caller must
3305 * have set the device and priority and built the buffer before calling
3306 * this function. The function can be called from an interrupt.
3307 *
3308 * A negative errno code is returned on a failure. A success does not
3309 * guarantee the frame will be transmitted as it may be dropped due
3310 * to congestion or traffic shaping.
3311 *
3312 * -----------------------------------------------------------------------------------
3313 * I notice this method can also return errors from the queue disciplines,
3314 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3315 * be positive.
3316 *
3317 * Regardless of the return value, the skb is consumed, so it is currently
3318 * difficult to retry a send to this method. (You can bump the ref count
3319 * before sending to hold a reference for retry if you are careful.)
3320 *
3321 * When calling this method, interrupts MUST be enabled. This is because
3322 * the BH enable code must have IRQs enabled so that it will not deadlock.
3323 * --BLG
3324 */
3325static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3326{
3327 struct net_device *dev = skb->dev;
3328 struct netdev_queue *txq;
3329 struct Qdisc *q;
3330 int rc = -ENOMEM;
3331
3332 skb_reset_mac_header(skb);
3333
3334 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3335 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3336
3337 /* Disable soft irqs for various locks below. Also
3338 * stops preemption for RCU.
3339 */
3340 rcu_read_lock_bh();
3341
3342 skb_update_prio(skb);
3343
3344 qdisc_pkt_len_init(skb);
3345#ifdef CONFIG_NET_CLS_ACT
3346 skb->tc_at_ingress = 0;
3347# ifdef CONFIG_NET_EGRESS
3348 if (static_key_false(&egress_needed)) {
3349 skb = sch_handle_egress(skb, &rc, dev);
3350 if (!skb)
3351 goto out;
3352 }
3353# endif
3354#endif
3355 /* If device/qdisc don't need skb->dst, release it right now while
3356 * its hot in this cpu cache.
3357 */
3358 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3359 skb_dst_drop(skb);
3360 else
3361 skb_dst_force(skb);
3362
3363 txq = netdev_pick_tx(dev, skb, accel_priv);
3364 q = rcu_dereference_bh(txq->qdisc);
3365
3366 trace_net_dev_queue(skb);
3367 if (q->enqueue) {
3368 rc = __dev_xmit_skb(skb, q, dev, txq);
3369 goto out;
3370 }
3371
3372 /* The device has no queue. Common case for software devices:
3373 * loopback, all the sorts of tunnels...
3374
3375 * Really, it is unlikely that netif_tx_lock protection is necessary
3376 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3377 * counters.)
3378 * However, it is possible, that they rely on protection
3379 * made by us here.
3380
3381 * Check this and shot the lock. It is not prone from deadlocks.
3382 *Either shot noqueue qdisc, it is even simpler 8)
3383 */
3384 if (dev->flags & IFF_UP) {
3385 int cpu = smp_processor_id(); /* ok because BHs are off */
3386
3387 if (txq->xmit_lock_owner != cpu) {
3388 if (unlikely(__this_cpu_read(xmit_recursion) >
3389 XMIT_RECURSION_LIMIT))
3390 goto recursion_alert;
3391
3392 skb = validate_xmit_skb(skb, dev);
3393 if (!skb)
3394 goto out;
3395
3396 HARD_TX_LOCK(dev, txq, cpu);
3397
3398 if (!netif_xmit_stopped(txq)) {
3399 __this_cpu_inc(xmit_recursion);
3400 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3401 __this_cpu_dec(xmit_recursion);
3402 if (dev_xmit_complete(rc)) {
3403 HARD_TX_UNLOCK(dev, txq);
3404 goto out;
3405 }
3406 }
3407 HARD_TX_UNLOCK(dev, txq);
3408 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3409 dev->name);
3410 } else {
3411 /* Recursion is detected! It is possible,
3412 * unfortunately
3413 */
3414recursion_alert:
3415 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3416 dev->name);
3417 }
3418 }
3419
3420 rc = -ENETDOWN;
3421 rcu_read_unlock_bh();
3422
3423 atomic_long_inc(&dev->tx_dropped);
3424 kfree_skb_list(skb);
3425 return rc;
3426out:
3427 rcu_read_unlock_bh();
3428 return rc;
3429}
3430
3431int dev_queue_xmit(struct sk_buff *skb)
3432{
3433 return __dev_queue_xmit(skb, NULL);
3434}
3435EXPORT_SYMBOL(dev_queue_xmit);
3436
3437int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3438{
3439 return __dev_queue_xmit(skb, accel_priv);
3440}
3441EXPORT_SYMBOL(dev_queue_xmit_accel);
3442
3443
3444/*************************************************************************
3445 * Receiver routines
3446 *************************************************************************/
3447
3448int netdev_max_backlog __read_mostly = 1000;
3449EXPORT_SYMBOL(netdev_max_backlog);
3450
3451int netdev_tstamp_prequeue __read_mostly = 1;
3452int netdev_budget __read_mostly = 300;
3453unsigned int __read_mostly netdev_budget_usecs = 2000;
3454int weight_p __read_mostly = 64; /* old backlog weight */
3455int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3456int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3457int dev_rx_weight __read_mostly = 64;
3458int dev_tx_weight __read_mostly = 64;
3459
3460/* Called with irq disabled */
3461static inline void ____napi_schedule(struct softnet_data *sd,
3462 struct napi_struct *napi)
3463{
3464 list_add_tail(&napi->poll_list, &sd->poll_list);
3465 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3466}
3467
3468#ifdef CONFIG_RPS
3469
3470/* One global table that all flow-based protocols share. */
3471struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3472EXPORT_SYMBOL(rps_sock_flow_table);
3473u32 rps_cpu_mask __read_mostly;
3474EXPORT_SYMBOL(rps_cpu_mask);
3475
3476struct static_key rps_needed __read_mostly;
3477EXPORT_SYMBOL(rps_needed);
3478struct static_key rfs_needed __read_mostly;
3479EXPORT_SYMBOL(rfs_needed);
3480
3481static struct rps_dev_flow *
3482set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483 struct rps_dev_flow *rflow, u16 next_cpu)
3484{
3485 if (next_cpu < nr_cpu_ids) {
3486#ifdef CONFIG_RFS_ACCEL
3487 struct netdev_rx_queue *rxqueue;
3488 struct rps_dev_flow_table *flow_table;
3489 struct rps_dev_flow *old_rflow;
3490 u32 flow_id;
3491 u16 rxq_index;
3492 int rc;
3493
3494 /* Should we steer this flow to a different hardware queue? */
3495 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3496 !(dev->features & NETIF_F_NTUPLE))
3497 goto out;
3498 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3499 if (rxq_index == skb_get_rx_queue(skb))
3500 goto out;
3501
3502 rxqueue = dev->_rx + rxq_index;
3503 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3504 if (!flow_table)
3505 goto out;
3506 flow_id = skb_get_hash(skb) & flow_table->mask;
3507 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3508 rxq_index, flow_id);
3509 if (rc < 0)
3510 goto out;
3511 old_rflow = rflow;
3512 rflow = &flow_table->flows[flow_id];
3513 rflow->filter = rc;
3514 if (old_rflow->filter == rflow->filter)
3515 old_rflow->filter = RPS_NO_FILTER;
3516 out:
3517#endif
3518 rflow->last_qtail =
3519 per_cpu(softnet_data, next_cpu).input_queue_head;
3520 }
3521
3522 rflow->cpu = next_cpu;
3523 return rflow;
3524}
3525
3526/*
3527 * get_rps_cpu is called from netif_receive_skb and returns the target
3528 * CPU from the RPS map of the receiving queue for a given skb.
3529 * rcu_read_lock must be held on entry.
3530 */
3531static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3532 struct rps_dev_flow **rflowp)
3533{
3534 const struct rps_sock_flow_table *sock_flow_table;
3535 struct netdev_rx_queue *rxqueue = dev->_rx;
3536 struct rps_dev_flow_table *flow_table;
3537 struct rps_map *map;
3538 int cpu = -1;
3539 u32 tcpu;
3540 u32 hash;
3541
3542 if (skb_rx_queue_recorded(skb)) {
3543 u16 index = skb_get_rx_queue(skb);
3544
3545 if (unlikely(index >= dev->real_num_rx_queues)) {
3546 WARN_ONCE(dev->real_num_rx_queues > 1,
3547 "%s received packet on queue %u, but number "
3548 "of RX queues is %u\n",
3549 dev->name, index, dev->real_num_rx_queues);
3550 goto done;
3551 }
3552 rxqueue += index;
3553 }
3554
3555 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3556
3557 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3558 map = rcu_dereference(rxqueue->rps_map);
3559 if (!flow_table && !map)
3560 goto done;
3561
3562 skb_reset_network_header(skb);
3563 hash = skb_get_hash(skb);
3564 if (!hash)
3565 goto done;
3566
3567 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3568 if (flow_table && sock_flow_table) {
3569 struct rps_dev_flow *rflow;
3570 u32 next_cpu;
3571 u32 ident;
3572
3573 /* First check into global flow table if there is a match */
3574 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3575 if ((ident ^ hash) & ~rps_cpu_mask)
3576 goto try_rps;
3577
3578 next_cpu = ident & rps_cpu_mask;
3579
3580 /* OK, now we know there is a match,
3581 * we can look at the local (per receive queue) flow table
3582 */
3583 rflow = &flow_table->flows[hash & flow_table->mask];
3584 tcpu = rflow->cpu;
3585
3586 /*
3587 * If the desired CPU (where last recvmsg was done) is
3588 * different from current CPU (one in the rx-queue flow
3589 * table entry), switch if one of the following holds:
3590 * - Current CPU is unset (>= nr_cpu_ids).
3591 * - Current CPU is offline.
3592 * - The current CPU's queue tail has advanced beyond the
3593 * last packet that was enqueued using this table entry.
3594 * This guarantees that all previous packets for the flow
3595 * have been dequeued, thus preserving in order delivery.
3596 */
3597 if (unlikely(tcpu != next_cpu) &&
3598 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3599 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3600 rflow->last_qtail)) >= 0)) {
3601 tcpu = next_cpu;
3602 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3603 }
3604
3605 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3606 *rflowp = rflow;
3607 cpu = tcpu;
3608 goto done;
3609 }
3610 }
3611
3612try_rps:
3613
3614 if (map) {
3615 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3616 if (cpu_online(tcpu)) {
3617 cpu = tcpu;
3618 goto done;
3619 }
3620 }
3621
3622done:
3623 return cpu;
3624}
3625
3626#ifdef CONFIG_RFS_ACCEL
3627
3628/**
3629 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3630 * @dev: Device on which the filter was set
3631 * @rxq_index: RX queue index
3632 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3633 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3634 *
3635 * Drivers that implement ndo_rx_flow_steer() should periodically call
3636 * this function for each installed filter and remove the filters for
3637 * which it returns %true.
3638 */
3639bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3640 u32 flow_id, u16 filter_id)
3641{
3642 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3643 struct rps_dev_flow_table *flow_table;
3644 struct rps_dev_flow *rflow;
3645 bool expire = true;
3646 unsigned int cpu;
3647
3648 rcu_read_lock();
3649 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3650 if (flow_table && flow_id <= flow_table->mask) {
3651 rflow = &flow_table->flows[flow_id];
3652 cpu = ACCESS_ONCE(rflow->cpu);
3653 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3654 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3655 rflow->last_qtail) <
3656 (int)(10 * flow_table->mask)))
3657 expire = false;
3658 }
3659 rcu_read_unlock();
3660 return expire;
3661}
3662EXPORT_SYMBOL(rps_may_expire_flow);
3663
3664#endif /* CONFIG_RFS_ACCEL */
3665
3666/* Called from hardirq (IPI) context */
3667static void rps_trigger_softirq(void *data)
3668{
3669 struct softnet_data *sd = data;
3670
3671 ____napi_schedule(sd, &sd->backlog);
3672 sd->received_rps++;
3673}
3674
3675#endif /* CONFIG_RPS */
3676
3677/*
3678 * Check if this softnet_data structure is another cpu one
3679 * If yes, queue it to our IPI list and return 1
3680 * If no, return 0
3681 */
3682static int rps_ipi_queued(struct softnet_data *sd)
3683{
3684#ifdef CONFIG_RPS
3685 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3686
3687 if (sd != mysd) {
3688 sd->rps_ipi_next = mysd->rps_ipi_list;
3689 mysd->rps_ipi_list = sd;
3690
3691 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3692 return 1;
3693 }
3694#endif /* CONFIG_RPS */
3695 return 0;
3696}
3697
3698#ifdef CONFIG_NET_FLOW_LIMIT
3699int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3700#endif
3701
3702static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3703{
3704#ifdef CONFIG_NET_FLOW_LIMIT
3705 struct sd_flow_limit *fl;
3706 struct softnet_data *sd;
3707 unsigned int old_flow, new_flow;
3708
3709 if (qlen < (netdev_max_backlog >> 1))
3710 return false;
3711
3712 sd = this_cpu_ptr(&softnet_data);
3713
3714 rcu_read_lock();
3715 fl = rcu_dereference(sd->flow_limit);
3716 if (fl) {
3717 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3718 old_flow = fl->history[fl->history_head];
3719 fl->history[fl->history_head] = new_flow;
3720
3721 fl->history_head++;
3722 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3723
3724 if (likely(fl->buckets[old_flow]))
3725 fl->buckets[old_flow]--;
3726
3727 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3728 fl->count++;
3729 rcu_read_unlock();
3730 return true;
3731 }
3732 }
3733 rcu_read_unlock();
3734#endif
3735 return false;
3736}
3737
3738/*
3739 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3740 * queue (may be a remote CPU queue).
3741 */
3742static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3743 unsigned int *qtail)
3744{
3745 struct softnet_data *sd;
3746 unsigned long flags;
3747 unsigned int qlen;
3748
3749 sd = &per_cpu(softnet_data, cpu);
3750
3751 local_irq_save(flags);
3752
3753 rps_lock(sd);
3754 if (!netif_running(skb->dev))
3755 goto drop;
3756 qlen = skb_queue_len(&sd->input_pkt_queue);
3757 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3758 if (qlen) {
3759enqueue:
3760 __skb_queue_tail(&sd->input_pkt_queue, skb);
3761 input_queue_tail_incr_save(sd, qtail);
3762 rps_unlock(sd);
3763 local_irq_restore(flags);
3764 return NET_RX_SUCCESS;
3765 }
3766
3767 /* Schedule NAPI for backlog device
3768 * We can use non atomic operation since we own the queue lock
3769 */
3770 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3771 if (!rps_ipi_queued(sd))
3772 ____napi_schedule(sd, &sd->backlog);
3773 }
3774 goto enqueue;
3775 }
3776
3777drop:
3778 sd->dropped++;
3779 rps_unlock(sd);
3780
3781 local_irq_restore(flags);
3782
3783 atomic_long_inc(&skb->dev->rx_dropped);
3784 kfree_skb(skb);
3785 return NET_RX_DROP;
3786}
3787
3788static int netif_rx_internal(struct sk_buff *skb)
3789{
3790 int ret;
3791
3792 net_timestamp_check(netdev_tstamp_prequeue, skb);
3793
3794 trace_netif_rx(skb);
3795#ifdef CONFIG_RPS
3796 if (static_key_false(&rps_needed)) {
3797 struct rps_dev_flow voidflow, *rflow = &voidflow;
3798 int cpu;
3799
3800 preempt_disable();
3801 rcu_read_lock();
3802
3803 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3804 if (cpu < 0)
3805 cpu = smp_processor_id();
3806
3807 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3808
3809 rcu_read_unlock();
3810 preempt_enable();
3811 } else
3812#endif
3813 {
3814 unsigned int qtail;
3815
3816 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3817 put_cpu();
3818 }
3819 return ret;
3820}
3821
3822/**
3823 * netif_rx - post buffer to the network code
3824 * @skb: buffer to post
3825 *
3826 * This function receives a packet from a device driver and queues it for
3827 * the upper (protocol) levels to process. It always succeeds. The buffer
3828 * may be dropped during processing for congestion control or by the
3829 * protocol layers.
3830 *
3831 * return values:
3832 * NET_RX_SUCCESS (no congestion)
3833 * NET_RX_DROP (packet was dropped)
3834 *
3835 */
3836
3837int netif_rx(struct sk_buff *skb)
3838{
3839 trace_netif_rx_entry(skb);
3840
3841 return netif_rx_internal(skb);
3842}
3843EXPORT_SYMBOL(netif_rx);
3844
3845int netif_rx_ni(struct sk_buff *skb)
3846{
3847 int err;
3848
3849 trace_netif_rx_ni_entry(skb);
3850
3851 preempt_disable();
3852 err = netif_rx_internal(skb);
3853 if (local_softirq_pending())
3854 do_softirq();
3855 preempt_enable();
3856
3857 return err;
3858}
3859EXPORT_SYMBOL(netif_rx_ni);
3860
3861static __latent_entropy void net_tx_action(struct softirq_action *h)
3862{
3863 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3864
3865 if (sd->completion_queue) {
3866 struct sk_buff *clist;
3867
3868 local_irq_disable();
3869 clist = sd->completion_queue;
3870 sd->completion_queue = NULL;
3871 local_irq_enable();
3872
3873 while (clist) {
3874 struct sk_buff *skb = clist;
3875
3876 clist = clist->next;
3877
3878 WARN_ON(atomic_read(&skb->users));
3879 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3880 trace_consume_skb(skb);
3881 else
3882 trace_kfree_skb(skb, net_tx_action);
3883
3884 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3885 __kfree_skb(skb);
3886 else
3887 __kfree_skb_defer(skb);
3888 }
3889
3890 __kfree_skb_flush();
3891 }
3892
3893 if (sd->output_queue) {
3894 struct Qdisc *head;
3895
3896 local_irq_disable();
3897 head = sd->output_queue;
3898 sd->output_queue = NULL;
3899 sd->output_queue_tailp = &sd->output_queue;
3900 local_irq_enable();
3901
3902 while (head) {
3903 struct Qdisc *q = head;
3904 spinlock_t *root_lock;
3905
3906 head = head->next_sched;
3907
3908 root_lock = qdisc_lock(q);
3909 spin_lock(root_lock);
3910 /* We need to make sure head->next_sched is read
3911 * before clearing __QDISC_STATE_SCHED
3912 */
3913 smp_mb__before_atomic();
3914 clear_bit(__QDISC_STATE_SCHED, &q->state);
3915 qdisc_run(q);
3916 spin_unlock(root_lock);
3917 }
3918 }
3919}
3920
3921#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3922/* This hook is defined here for ATM LANE */
3923int (*br_fdb_test_addr_hook)(struct net_device *dev,
3924 unsigned char *addr) __read_mostly;
3925EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3926#endif
3927
3928static inline struct sk_buff *
3929sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3930 struct net_device *orig_dev)
3931{
3932#ifdef CONFIG_NET_CLS_ACT
3933 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3934 struct tcf_result cl_res;
3935
3936 /* If there's at least one ingress present somewhere (so
3937 * we get here via enabled static key), remaining devices
3938 * that are not configured with an ingress qdisc will bail
3939 * out here.
3940 */
3941 if (!cl)
3942 return skb;
3943 if (*pt_prev) {
3944 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3945 *pt_prev = NULL;
3946 }
3947
3948 qdisc_skb_cb(skb)->pkt_len = skb->len;
3949 skb->tc_at_ingress = 1;
3950 qdisc_bstats_cpu_update(cl->q, skb);
3951
3952 switch (tc_classify(skb, cl, &cl_res, false)) {
3953 case TC_ACT_OK:
3954 case TC_ACT_RECLASSIFY:
3955 skb->tc_index = TC_H_MIN(cl_res.classid);
3956 break;
3957 case TC_ACT_SHOT:
3958 qdisc_qstats_cpu_drop(cl->q);
3959 kfree_skb(skb);
3960 return NULL;
3961 case TC_ACT_STOLEN:
3962 case TC_ACT_QUEUED:
3963 consume_skb(skb);
3964 return NULL;
3965 case TC_ACT_REDIRECT:
3966 /* skb_mac_header check was done by cls/act_bpf, so
3967 * we can safely push the L2 header back before
3968 * redirecting to another netdev
3969 */
3970 __skb_push(skb, skb->mac_len);
3971 skb_do_redirect(skb);
3972 return NULL;
3973 default:
3974 break;
3975 }
3976#endif /* CONFIG_NET_CLS_ACT */
3977 return skb;
3978}
3979
3980/**
3981 * netdev_is_rx_handler_busy - check if receive handler is registered
3982 * @dev: device to check
3983 *
3984 * Check if a receive handler is already registered for a given device.
3985 * Return true if there one.
3986 *
3987 * The caller must hold the rtnl_mutex.
3988 */
3989bool netdev_is_rx_handler_busy(struct net_device *dev)
3990{
3991 ASSERT_RTNL();
3992 return dev && rtnl_dereference(dev->rx_handler);
3993}
3994EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3995
3996/**
3997 * netdev_rx_handler_register - register receive handler
3998 * @dev: device to register a handler for
3999 * @rx_handler: receive handler to register
4000 * @rx_handler_data: data pointer that is used by rx handler
4001 *
4002 * Register a receive handler for a device. This handler will then be
4003 * called from __netif_receive_skb. A negative errno code is returned
4004 * on a failure.
4005 *
4006 * The caller must hold the rtnl_mutex.
4007 *
4008 * For a general description of rx_handler, see enum rx_handler_result.
4009 */
4010int netdev_rx_handler_register(struct net_device *dev,
4011 rx_handler_func_t *rx_handler,
4012 void *rx_handler_data)
4013{
4014 if (netdev_is_rx_handler_busy(dev))
4015 return -EBUSY;
4016
4017 /* Note: rx_handler_data must be set before rx_handler */
4018 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4019 rcu_assign_pointer(dev->rx_handler, rx_handler);
4020
4021 return 0;
4022}
4023EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4024
4025/**
4026 * netdev_rx_handler_unregister - unregister receive handler
4027 * @dev: device to unregister a handler from
4028 *
4029 * Unregister a receive handler from a device.
4030 *
4031 * The caller must hold the rtnl_mutex.
4032 */
4033void netdev_rx_handler_unregister(struct net_device *dev)
4034{
4035
4036 ASSERT_RTNL();
4037 RCU_INIT_POINTER(dev->rx_handler, NULL);
4038 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4039 * section has a guarantee to see a non NULL rx_handler_data
4040 * as well.
4041 */
4042 synchronize_net();
4043 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4044}
4045EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4046
4047/*
4048 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4049 * the special handling of PFMEMALLOC skbs.
4050 */
4051static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4052{
4053 switch (skb->protocol) {
4054 case htons(ETH_P_ARP):
4055 case htons(ETH_P_IP):
4056 case htons(ETH_P_IPV6):
4057 case htons(ETH_P_8021Q):
4058 case htons(ETH_P_8021AD):
4059 return true;
4060 default:
4061 return false;
4062 }
4063}
4064
4065static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4066 int *ret, struct net_device *orig_dev)
4067{
4068#ifdef CONFIG_NETFILTER_INGRESS
4069 if (nf_hook_ingress_active(skb)) {
4070 int ingress_retval;
4071
4072 if (*pt_prev) {
4073 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4074 *pt_prev = NULL;
4075 }
4076
4077 rcu_read_lock();
4078 ingress_retval = nf_hook_ingress(skb);
4079 rcu_read_unlock();
4080 return ingress_retval;
4081 }
4082#endif /* CONFIG_NETFILTER_INGRESS */
4083 return 0;
4084}
4085
4086static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4087{
4088 struct packet_type *ptype, *pt_prev;
4089 rx_handler_func_t *rx_handler;
4090 struct net_device *orig_dev;
4091 bool deliver_exact = false;
4092 int ret = NET_RX_DROP;
4093 __be16 type;
4094
4095 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4096
4097 trace_netif_receive_skb(skb);
4098
4099 orig_dev = skb->dev;
4100
4101 skb_reset_network_header(skb);
4102 if (!skb_transport_header_was_set(skb))
4103 skb_reset_transport_header(skb);
4104 skb_reset_mac_len(skb);
4105
4106 pt_prev = NULL;
4107
4108another_round:
4109 skb->skb_iif = skb->dev->ifindex;
4110
4111 __this_cpu_inc(softnet_data.processed);
4112
4113 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4114 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4115 skb = skb_vlan_untag(skb);
4116 if (unlikely(!skb))
4117 goto out;
4118 }
4119
4120 if (skb_skip_tc_classify(skb))
4121 goto skip_classify;
4122
4123 if (pfmemalloc)
4124 goto skip_taps;
4125
4126 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4127 if (pt_prev)
4128 ret = deliver_skb(skb, pt_prev, orig_dev);
4129 pt_prev = ptype;
4130 }
4131
4132 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4133 if (pt_prev)
4134 ret = deliver_skb(skb, pt_prev, orig_dev);
4135 pt_prev = ptype;
4136 }
4137
4138skip_taps:
4139#ifdef CONFIG_NET_INGRESS
4140 if (static_key_false(&ingress_needed)) {
4141 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4142 if (!skb)
4143 goto out;
4144
4145 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4146 goto out;
4147 }
4148#endif
4149 skb_reset_tc(skb);
4150skip_classify:
4151 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4152 goto drop;
4153
4154 if (skb_vlan_tag_present(skb)) {
4155 if (pt_prev) {
4156 ret = deliver_skb(skb, pt_prev, orig_dev);
4157 pt_prev = NULL;
4158 }
4159 if (vlan_do_receive(&skb))
4160 goto another_round;
4161 else if (unlikely(!skb))
4162 goto out;
4163 }
4164
4165 rx_handler = rcu_dereference(skb->dev->rx_handler);
4166 if (rx_handler) {
4167 if (pt_prev) {
4168 ret = deliver_skb(skb, pt_prev, orig_dev);
4169 pt_prev = NULL;
4170 }
4171 switch (rx_handler(&skb)) {
4172 case RX_HANDLER_CONSUMED:
4173 ret = NET_RX_SUCCESS;
4174 goto out;
4175 case RX_HANDLER_ANOTHER:
4176 goto another_round;
4177 case RX_HANDLER_EXACT:
4178 deliver_exact = true;
4179 case RX_HANDLER_PASS:
4180 break;
4181 default:
4182 BUG();
4183 }
4184 }
4185
4186 if (unlikely(skb_vlan_tag_present(skb))) {
4187 if (skb_vlan_tag_get_id(skb))
4188 skb->pkt_type = PACKET_OTHERHOST;
4189 /* Note: we might in the future use prio bits
4190 * and set skb->priority like in vlan_do_receive()
4191 * For the time being, just ignore Priority Code Point
4192 */
4193 skb->vlan_tci = 0;
4194 }
4195
4196 type = skb->protocol;
4197
4198 /* deliver only exact match when indicated */
4199 if (likely(!deliver_exact)) {
4200 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201 &ptype_base[ntohs(type) &
4202 PTYPE_HASH_MASK]);
4203 }
4204
4205 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4206 &orig_dev->ptype_specific);
4207
4208 if (unlikely(skb->dev != orig_dev)) {
4209 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4210 &skb->dev->ptype_specific);
4211 }
4212
4213 if (pt_prev) {
4214 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4215 goto drop;
4216 else
4217 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4218 } else {
4219drop:
4220 if (!deliver_exact)
4221 atomic_long_inc(&skb->dev->rx_dropped);
4222 else
4223 atomic_long_inc(&skb->dev->rx_nohandler);
4224 kfree_skb(skb);
4225 /* Jamal, now you will not able to escape explaining
4226 * me how you were going to use this. :-)
4227 */
4228 ret = NET_RX_DROP;
4229 }
4230
4231out:
4232 return ret;
4233}
4234
4235static int __netif_receive_skb(struct sk_buff *skb)
4236{
4237 int ret;
4238
4239 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4240 unsigned int noreclaim_flag;
4241
4242 /*
4243 * PFMEMALLOC skbs are special, they should
4244 * - be delivered to SOCK_MEMALLOC sockets only
4245 * - stay away from userspace
4246 * - have bounded memory usage
4247 *
4248 * Use PF_MEMALLOC as this saves us from propagating the allocation
4249 * context down to all allocation sites.
4250 */
4251 noreclaim_flag = memalloc_noreclaim_save();
4252 ret = __netif_receive_skb_core(skb, true);
4253 memalloc_noreclaim_restore(noreclaim_flag);
4254 } else
4255 ret = __netif_receive_skb_core(skb, false);
4256
4257 return ret;
4258}
4259
4260static struct static_key generic_xdp_needed __read_mostly;
4261
4262static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4263{
4264 struct bpf_prog *new = xdp->prog;
4265 int ret = 0;
4266
4267 switch (xdp->command) {
4268 case XDP_SETUP_PROG: {
4269 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4270
4271 rcu_assign_pointer(dev->xdp_prog, new);
4272 if (old)
4273 bpf_prog_put(old);
4274
4275 if (old && !new) {
4276 static_key_slow_dec(&generic_xdp_needed);
4277 } else if (new && !old) {
4278 static_key_slow_inc(&generic_xdp_needed);
4279 dev_disable_lro(dev);
4280 }
4281 break;
4282 }
4283
4284 case XDP_QUERY_PROG:
4285 xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog);
4286 break;
4287
4288 default:
4289 ret = -EINVAL;
4290 break;
4291 }
4292
4293 return ret;
4294}
4295
4296static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4297 struct bpf_prog *xdp_prog)
4298{
4299 struct xdp_buff xdp;
4300 u32 act = XDP_DROP;
4301 void *orig_data;
4302 int hlen, off;
4303 u32 mac_len;
4304
4305 /* Reinjected packets coming from act_mirred or similar should
4306 * not get XDP generic processing.
4307 */
4308 if (skb_cloned(skb))
4309 return XDP_PASS;
4310
4311 if (skb_linearize(skb))
4312 goto do_drop;
4313
4314 /* The XDP program wants to see the packet starting at the MAC
4315 * header.
4316 */
4317 mac_len = skb->data - skb_mac_header(skb);
4318 hlen = skb_headlen(skb) + mac_len;
4319 xdp.data = skb->data - mac_len;
4320 xdp.data_end = xdp.data + hlen;
4321 xdp.data_hard_start = skb->data - skb_headroom(skb);
4322 orig_data = xdp.data;
4323
4324 act = bpf_prog_run_xdp(xdp_prog, &xdp);
4325
4326 off = xdp.data - orig_data;
4327 if (off > 0)
4328 __skb_pull(skb, off);
4329 else if (off < 0)
4330 __skb_push(skb, -off);
4331
4332 switch (act) {
4333 case XDP_TX:
4334 __skb_push(skb, mac_len);
4335 /* fall through */
4336 case XDP_PASS:
4337 break;
4338
4339 default:
4340 bpf_warn_invalid_xdp_action(act);
4341 /* fall through */
4342 case XDP_ABORTED:
4343 trace_xdp_exception(skb->dev, xdp_prog, act);
4344 /* fall through */
4345 case XDP_DROP:
4346 do_drop:
4347 kfree_skb(skb);
4348 break;
4349 }
4350
4351 return act;
4352}
4353
4354/* When doing generic XDP we have to bypass the qdisc layer and the
4355 * network taps in order to match in-driver-XDP behavior.
4356 */
4357static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4358{
4359 struct net_device *dev = skb->dev;
4360 struct netdev_queue *txq;
4361 bool free_skb = true;
4362 int cpu, rc;
4363
4364 txq = netdev_pick_tx(dev, skb, NULL);
4365 cpu = smp_processor_id();
4366 HARD_TX_LOCK(dev, txq, cpu);
4367 if (!netif_xmit_stopped(txq)) {
4368 rc = netdev_start_xmit(skb, dev, txq, 0);
4369 if (dev_xmit_complete(rc))
4370 free_skb = false;
4371 }
4372 HARD_TX_UNLOCK(dev, txq);
4373 if (free_skb) {
4374 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4375 kfree_skb(skb);
4376 }
4377}
4378
4379static int netif_receive_skb_internal(struct sk_buff *skb)
4380{
4381 int ret;
4382
4383 net_timestamp_check(netdev_tstamp_prequeue, skb);
4384
4385 if (skb_defer_rx_timestamp(skb))
4386 return NET_RX_SUCCESS;
4387
4388 rcu_read_lock();
4389
4390 if (static_key_false(&generic_xdp_needed)) {
4391 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4392
4393 if (xdp_prog) {
4394 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4395
4396 if (act != XDP_PASS) {
4397 rcu_read_unlock();
4398 if (act == XDP_TX)
4399 generic_xdp_tx(skb, xdp_prog);
4400 return NET_RX_DROP;
4401 }
4402 }
4403 }
4404
4405#ifdef CONFIG_RPS
4406 if (static_key_false(&rps_needed)) {
4407 struct rps_dev_flow voidflow, *rflow = &voidflow;
4408 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4409
4410 if (cpu >= 0) {
4411 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4412 rcu_read_unlock();
4413 return ret;
4414 }
4415 }
4416#endif
4417 ret = __netif_receive_skb(skb);
4418 rcu_read_unlock();
4419 return ret;
4420}
4421
4422/**
4423 * netif_receive_skb - process receive buffer from network
4424 * @skb: buffer to process
4425 *
4426 * netif_receive_skb() is the main receive data processing function.
4427 * It always succeeds. The buffer may be dropped during processing
4428 * for congestion control or by the protocol layers.
4429 *
4430 * This function may only be called from softirq context and interrupts
4431 * should be enabled.
4432 *
4433 * Return values (usually ignored):
4434 * NET_RX_SUCCESS: no congestion
4435 * NET_RX_DROP: packet was dropped
4436 */
4437int netif_receive_skb(struct sk_buff *skb)
4438{
4439 trace_netif_receive_skb_entry(skb);
4440
4441 return netif_receive_skb_internal(skb);
4442}
4443EXPORT_SYMBOL(netif_receive_skb);
4444
4445DEFINE_PER_CPU(struct work_struct, flush_works);
4446
4447/* Network device is going away, flush any packets still pending */
4448static void flush_backlog(struct work_struct *work)
4449{
4450 struct sk_buff *skb, *tmp;
4451 struct softnet_data *sd;
4452
4453 local_bh_disable();
4454 sd = this_cpu_ptr(&softnet_data);
4455
4456 local_irq_disable();
4457 rps_lock(sd);
4458 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4459 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4460 __skb_unlink(skb, &sd->input_pkt_queue);
4461 kfree_skb(skb);
4462 input_queue_head_incr(sd);
4463 }
4464 }
4465 rps_unlock(sd);
4466 local_irq_enable();
4467
4468 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4469 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4470 __skb_unlink(skb, &sd->process_queue);
4471 kfree_skb(skb);
4472 input_queue_head_incr(sd);
4473 }
4474 }
4475 local_bh_enable();
4476}
4477
4478static void flush_all_backlogs(void)
4479{
4480 unsigned int cpu;
4481
4482 get_online_cpus();
4483
4484 for_each_online_cpu(cpu)
4485 queue_work_on(cpu, system_highpri_wq,
4486 per_cpu_ptr(&flush_works, cpu));
4487
4488 for_each_online_cpu(cpu)
4489 flush_work(per_cpu_ptr(&flush_works, cpu));
4490
4491 put_online_cpus();
4492}
4493
4494static int napi_gro_complete(struct sk_buff *skb)
4495{
4496 struct packet_offload *ptype;
4497 __be16 type = skb->protocol;
4498 struct list_head *head = &offload_base;
4499 int err = -ENOENT;
4500
4501 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4502
4503 if (NAPI_GRO_CB(skb)->count == 1) {
4504 skb_shinfo(skb)->gso_size = 0;
4505 goto out;
4506 }
4507
4508 rcu_read_lock();
4509 list_for_each_entry_rcu(ptype, head, list) {
4510 if (ptype->type != type || !ptype->callbacks.gro_complete)
4511 continue;
4512
4513 err = ptype->callbacks.gro_complete(skb, 0);
4514 break;
4515 }
4516 rcu_read_unlock();
4517
4518 if (err) {
4519 WARN_ON(&ptype->list == head);
4520 kfree_skb(skb);
4521 return NET_RX_SUCCESS;
4522 }
4523
4524out:
4525 return netif_receive_skb_internal(skb);
4526}
4527
4528/* napi->gro_list contains packets ordered by age.
4529 * youngest packets at the head of it.
4530 * Complete skbs in reverse order to reduce latencies.
4531 */
4532void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4533{
4534 struct sk_buff *skb, *prev = NULL;
4535
4536 /* scan list and build reverse chain */
4537 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4538 skb->prev = prev;
4539 prev = skb;
4540 }
4541
4542 for (skb = prev; skb; skb = prev) {
4543 skb->next = NULL;
4544
4545 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4546 return;
4547
4548 prev = skb->prev;
4549 napi_gro_complete(skb);
4550 napi->gro_count--;
4551 }
4552
4553 napi->gro_list = NULL;
4554}
4555EXPORT_SYMBOL(napi_gro_flush);
4556
4557static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4558{
4559 struct sk_buff *p;
4560 unsigned int maclen = skb->dev->hard_header_len;
4561 u32 hash = skb_get_hash_raw(skb);
4562
4563 for (p = napi->gro_list; p; p = p->next) {
4564 unsigned long diffs;
4565
4566 NAPI_GRO_CB(p)->flush = 0;
4567
4568 if (hash != skb_get_hash_raw(p)) {
4569 NAPI_GRO_CB(p)->same_flow = 0;
4570 continue;
4571 }
4572
4573 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4574 diffs |= p->vlan_tci ^ skb->vlan_tci;
4575 diffs |= skb_metadata_dst_cmp(p, skb);
4576 if (maclen == ETH_HLEN)
4577 diffs |= compare_ether_header(skb_mac_header(p),
4578 skb_mac_header(skb));
4579 else if (!diffs)
4580 diffs = memcmp(skb_mac_header(p),
4581 skb_mac_header(skb),
4582 maclen);
4583 NAPI_GRO_CB(p)->same_flow = !diffs;
4584 }
4585}
4586
4587static void skb_gro_reset_offset(struct sk_buff *skb)
4588{
4589 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4590 const skb_frag_t *frag0 = &pinfo->frags[0];
4591
4592 NAPI_GRO_CB(skb)->data_offset = 0;
4593 NAPI_GRO_CB(skb)->frag0 = NULL;
4594 NAPI_GRO_CB(skb)->frag0_len = 0;
4595
4596 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4597 pinfo->nr_frags &&
4598 !PageHighMem(skb_frag_page(frag0))) {
4599 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4600 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4601 skb_frag_size(frag0),
4602 skb->end - skb->tail);
4603 }
4604}
4605
4606static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4607{
4608 struct skb_shared_info *pinfo = skb_shinfo(skb);
4609
4610 BUG_ON(skb->end - skb->tail < grow);
4611
4612 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4613
4614 skb->data_len -= grow;
4615 skb->tail += grow;
4616
4617 pinfo->frags[0].page_offset += grow;
4618 skb_frag_size_sub(&pinfo->frags[0], grow);
4619
4620 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4621 skb_frag_unref(skb, 0);
4622 memmove(pinfo->frags, pinfo->frags + 1,
4623 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4624 }
4625}
4626
4627static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4628{
4629 struct sk_buff **pp = NULL;
4630 struct packet_offload *ptype;
4631 __be16 type = skb->protocol;
4632 struct list_head *head = &offload_base;
4633 int same_flow;
4634 enum gro_result ret;
4635 int grow;
4636
4637 if (netif_elide_gro(skb->dev))
4638 goto normal;
4639
4640 if (skb->csum_bad)
4641 goto normal;
4642
4643 gro_list_prepare(napi, skb);
4644
4645 rcu_read_lock();
4646 list_for_each_entry_rcu(ptype, head, list) {
4647 if (ptype->type != type || !ptype->callbacks.gro_receive)
4648 continue;
4649
4650 skb_set_network_header(skb, skb_gro_offset(skb));
4651 skb_reset_mac_len(skb);
4652 NAPI_GRO_CB(skb)->same_flow = 0;
4653 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4654 NAPI_GRO_CB(skb)->free = 0;
4655 NAPI_GRO_CB(skb)->encap_mark = 0;
4656 NAPI_GRO_CB(skb)->recursion_counter = 0;
4657 NAPI_GRO_CB(skb)->is_fou = 0;
4658 NAPI_GRO_CB(skb)->is_atomic = 1;
4659 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4660
4661 /* Setup for GRO checksum validation */
4662 switch (skb->ip_summed) {
4663 case CHECKSUM_COMPLETE:
4664 NAPI_GRO_CB(skb)->csum = skb->csum;
4665 NAPI_GRO_CB(skb)->csum_valid = 1;
4666 NAPI_GRO_CB(skb)->csum_cnt = 0;
4667 break;
4668 case CHECKSUM_UNNECESSARY:
4669 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4670 NAPI_GRO_CB(skb)->csum_valid = 0;
4671 break;
4672 default:
4673 NAPI_GRO_CB(skb)->csum_cnt = 0;
4674 NAPI_GRO_CB(skb)->csum_valid = 0;
4675 }
4676
4677 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4678 break;
4679 }
4680 rcu_read_unlock();
4681
4682 if (&ptype->list == head)
4683 goto normal;
4684
4685 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4686 ret = GRO_CONSUMED;
4687 goto ok;
4688 }
4689
4690 same_flow = NAPI_GRO_CB(skb)->same_flow;
4691 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4692
4693 if (pp) {
4694 struct sk_buff *nskb = *pp;
4695
4696 *pp = nskb->next;
4697 nskb->next = NULL;
4698 napi_gro_complete(nskb);
4699 napi->gro_count--;
4700 }
4701
4702 if (same_flow)
4703 goto ok;
4704
4705 if (NAPI_GRO_CB(skb)->flush)
4706 goto normal;
4707
4708 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4709 struct sk_buff *nskb = napi->gro_list;
4710
4711 /* locate the end of the list to select the 'oldest' flow */
4712 while (nskb->next) {
4713 pp = &nskb->next;
4714 nskb = *pp;
4715 }
4716 *pp = NULL;
4717 nskb->next = NULL;
4718 napi_gro_complete(nskb);
4719 } else {
4720 napi->gro_count++;
4721 }
4722 NAPI_GRO_CB(skb)->count = 1;
4723 NAPI_GRO_CB(skb)->age = jiffies;
4724 NAPI_GRO_CB(skb)->last = skb;
4725 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4726 skb->next = napi->gro_list;
4727 napi->gro_list = skb;
4728 ret = GRO_HELD;
4729
4730pull:
4731 grow = skb_gro_offset(skb) - skb_headlen(skb);
4732 if (grow > 0)
4733 gro_pull_from_frag0(skb, grow);
4734ok:
4735 return ret;
4736
4737normal:
4738 ret = GRO_NORMAL;
4739 goto pull;
4740}
4741
4742struct packet_offload *gro_find_receive_by_type(__be16 type)
4743{
4744 struct list_head *offload_head = &offload_base;
4745 struct packet_offload *ptype;
4746
4747 list_for_each_entry_rcu(ptype, offload_head, list) {
4748 if (ptype->type != type || !ptype->callbacks.gro_receive)
4749 continue;
4750 return ptype;
4751 }
4752 return NULL;
4753}
4754EXPORT_SYMBOL(gro_find_receive_by_type);
4755
4756struct packet_offload *gro_find_complete_by_type(__be16 type)
4757{
4758 struct list_head *offload_head = &offload_base;
4759 struct packet_offload *ptype;
4760
4761 list_for_each_entry_rcu(ptype, offload_head, list) {
4762 if (ptype->type != type || !ptype->callbacks.gro_complete)
4763 continue;
4764 return ptype;
4765 }
4766 return NULL;
4767}
4768EXPORT_SYMBOL(gro_find_complete_by_type);
4769
4770static void napi_skb_free_stolen_head(struct sk_buff *skb)
4771{
4772 skb_dst_drop(skb);
4773 secpath_reset(skb);
4774 kmem_cache_free(skbuff_head_cache, skb);
4775}
4776
4777static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4778{
4779 switch (ret) {
4780 case GRO_NORMAL:
4781 if (netif_receive_skb_internal(skb))
4782 ret = GRO_DROP;
4783 break;
4784
4785 case GRO_DROP:
4786 kfree_skb(skb);
4787 break;
4788
4789 case GRO_MERGED_FREE:
4790 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4791 napi_skb_free_stolen_head(skb);
4792 else
4793 __kfree_skb(skb);
4794 break;
4795
4796 case GRO_HELD:
4797 case GRO_MERGED:
4798 case GRO_CONSUMED:
4799 break;
4800 }
4801
4802 return ret;
4803}
4804
4805gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4806{
4807 skb_mark_napi_id(skb, napi);
4808 trace_napi_gro_receive_entry(skb);
4809
4810 skb_gro_reset_offset(skb);
4811
4812 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4813}
4814EXPORT_SYMBOL(napi_gro_receive);
4815
4816static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4817{
4818 if (unlikely(skb->pfmemalloc)) {
4819 consume_skb(skb);
4820 return;
4821 }
4822 __skb_pull(skb, skb_headlen(skb));
4823 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4824 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4825 skb->vlan_tci = 0;
4826 skb->dev = napi->dev;
4827 skb->skb_iif = 0;
4828 skb->encapsulation = 0;
4829 skb_shinfo(skb)->gso_type = 0;
4830 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4831 secpath_reset(skb);
4832
4833 napi->skb = skb;
4834}
4835
4836struct sk_buff *napi_get_frags(struct napi_struct *napi)
4837{
4838 struct sk_buff *skb = napi->skb;
4839
4840 if (!skb) {
4841 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4842 if (skb) {
4843 napi->skb = skb;
4844 skb_mark_napi_id(skb, napi);
4845 }
4846 }
4847 return skb;
4848}
4849EXPORT_SYMBOL(napi_get_frags);
4850
4851static gro_result_t napi_frags_finish(struct napi_struct *napi,
4852 struct sk_buff *skb,
4853 gro_result_t ret)
4854{
4855 switch (ret) {
4856 case GRO_NORMAL:
4857 case GRO_HELD:
4858 __skb_push(skb, ETH_HLEN);
4859 skb->protocol = eth_type_trans(skb, skb->dev);
4860 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4861 ret = GRO_DROP;
4862 break;
4863
4864 case GRO_DROP:
4865 napi_reuse_skb(napi, skb);
4866 break;
4867
4868 case GRO_MERGED_FREE:
4869 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4870 napi_skb_free_stolen_head(skb);
4871 else
4872 napi_reuse_skb(napi, skb);
4873 break;
4874
4875 case GRO_MERGED:
4876 case GRO_CONSUMED:
4877 break;
4878 }
4879
4880 return ret;
4881}
4882
4883/* Upper GRO stack assumes network header starts at gro_offset=0
4884 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4885 * We copy ethernet header into skb->data to have a common layout.
4886 */
4887static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4888{
4889 struct sk_buff *skb = napi->skb;
4890 const struct ethhdr *eth;
4891 unsigned int hlen = sizeof(*eth);
4892
4893 napi->skb = NULL;
4894
4895 skb_reset_mac_header(skb);
4896 skb_gro_reset_offset(skb);
4897
4898 eth = skb_gro_header_fast(skb, 0);
4899 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4900 eth = skb_gro_header_slow(skb, hlen, 0);
4901 if (unlikely(!eth)) {
4902 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4903 __func__, napi->dev->name);
4904 napi_reuse_skb(napi, skb);
4905 return NULL;
4906 }
4907 } else {
4908 gro_pull_from_frag0(skb, hlen);
4909 NAPI_GRO_CB(skb)->frag0 += hlen;
4910 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4911 }
4912 __skb_pull(skb, hlen);
4913
4914 /*
4915 * This works because the only protocols we care about don't require
4916 * special handling.
4917 * We'll fix it up properly in napi_frags_finish()
4918 */
4919 skb->protocol = eth->h_proto;
4920
4921 return skb;
4922}
4923
4924gro_result_t napi_gro_frags(struct napi_struct *napi)
4925{
4926 struct sk_buff *skb = napi_frags_skb(napi);
4927
4928 if (!skb)
4929 return GRO_DROP;
4930
4931 trace_napi_gro_frags_entry(skb);
4932
4933 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4934}
4935EXPORT_SYMBOL(napi_gro_frags);
4936
4937/* Compute the checksum from gro_offset and return the folded value
4938 * after adding in any pseudo checksum.
4939 */
4940__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4941{
4942 __wsum wsum;
4943 __sum16 sum;
4944
4945 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4946
4947 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4948 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4949 if (likely(!sum)) {
4950 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4951 !skb->csum_complete_sw)
4952 netdev_rx_csum_fault(skb->dev);
4953 }
4954
4955 NAPI_GRO_CB(skb)->csum = wsum;
4956 NAPI_GRO_CB(skb)->csum_valid = 1;
4957
4958 return sum;
4959}
4960EXPORT_SYMBOL(__skb_gro_checksum_complete);
4961
4962static void net_rps_send_ipi(struct softnet_data *remsd)
4963{
4964#ifdef CONFIG_RPS
4965 while (remsd) {
4966 struct softnet_data *next = remsd->rps_ipi_next;
4967
4968 if (cpu_online(remsd->cpu))
4969 smp_call_function_single_async(remsd->cpu, &remsd->csd);
4970 remsd = next;
4971 }
4972#endif
4973}
4974
4975/*
4976 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4977 * Note: called with local irq disabled, but exits with local irq enabled.
4978 */
4979static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4980{
4981#ifdef CONFIG_RPS
4982 struct softnet_data *remsd = sd->rps_ipi_list;
4983
4984 if (remsd) {
4985 sd->rps_ipi_list = NULL;
4986
4987 local_irq_enable();
4988
4989 /* Send pending IPI's to kick RPS processing on remote cpus. */
4990 net_rps_send_ipi(remsd);
4991 } else
4992#endif
4993 local_irq_enable();
4994}
4995
4996static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4997{
4998#ifdef CONFIG_RPS
4999 return sd->rps_ipi_list != NULL;
5000#else
5001 return false;
5002#endif
5003}
5004
5005static int process_backlog(struct napi_struct *napi, int quota)
5006{
5007 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5008 bool again = true;
5009 int work = 0;
5010
5011 /* Check if we have pending ipi, its better to send them now,
5012 * not waiting net_rx_action() end.
5013 */
5014 if (sd_has_rps_ipi_waiting(sd)) {
5015 local_irq_disable();
5016 net_rps_action_and_irq_enable(sd);
5017 }
5018
5019 napi->weight = dev_rx_weight;
5020 while (again) {
5021 struct sk_buff *skb;
5022
5023 while ((skb = __skb_dequeue(&sd->process_queue))) {
5024 rcu_read_lock();
5025 __netif_receive_skb(skb);
5026 rcu_read_unlock();
5027 input_queue_head_incr(sd);
5028 if (++work >= quota)
5029 return work;
5030
5031 }
5032
5033 local_irq_disable();
5034 rps_lock(sd);
5035 if (skb_queue_empty(&sd->input_pkt_queue)) {
5036 /*
5037 * Inline a custom version of __napi_complete().
5038 * only current cpu owns and manipulates this napi,
5039 * and NAPI_STATE_SCHED is the only possible flag set
5040 * on backlog.
5041 * We can use a plain write instead of clear_bit(),
5042 * and we dont need an smp_mb() memory barrier.
5043 */
5044 napi->state = 0;
5045 again = false;
5046 } else {
5047 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5048 &sd->process_queue);
5049 }
5050 rps_unlock(sd);
5051 local_irq_enable();
5052 }
5053
5054 return work;
5055}
5056
5057/**
5058 * __napi_schedule - schedule for receive
5059 * @n: entry to schedule
5060 *
5061 * The entry's receive function will be scheduled to run.
5062 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5063 */
5064void __napi_schedule(struct napi_struct *n)
5065{
5066 unsigned long flags;
5067
5068 local_irq_save(flags);
5069 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5070 local_irq_restore(flags);
5071}
5072EXPORT_SYMBOL(__napi_schedule);
5073
5074/**
5075 * napi_schedule_prep - check if napi can be scheduled
5076 * @n: napi context
5077 *
5078 * Test if NAPI routine is already running, and if not mark
5079 * it as running. This is used as a condition variable
5080 * insure only one NAPI poll instance runs. We also make
5081 * sure there is no pending NAPI disable.
5082 */
5083bool napi_schedule_prep(struct napi_struct *n)
5084{
5085 unsigned long val, new;
5086
5087 do {
5088 val = READ_ONCE(n->state);
5089 if (unlikely(val & NAPIF_STATE_DISABLE))
5090 return false;
5091 new = val | NAPIF_STATE_SCHED;
5092
5093 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5094 * This was suggested by Alexander Duyck, as compiler
5095 * emits better code than :
5096 * if (val & NAPIF_STATE_SCHED)
5097 * new |= NAPIF_STATE_MISSED;
5098 */
5099 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5100 NAPIF_STATE_MISSED;
5101 } while (cmpxchg(&n->state, val, new) != val);
5102
5103 return !(val & NAPIF_STATE_SCHED);
5104}
5105EXPORT_SYMBOL(napi_schedule_prep);
5106
5107/**
5108 * __napi_schedule_irqoff - schedule for receive
5109 * @n: entry to schedule
5110 *
5111 * Variant of __napi_schedule() assuming hard irqs are masked
5112 */
5113void __napi_schedule_irqoff(struct napi_struct *n)
5114{
5115 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5116}
5117EXPORT_SYMBOL(__napi_schedule_irqoff);
5118
5119bool napi_complete_done(struct napi_struct *n, int work_done)
5120{
5121 unsigned long flags, val, new;
5122
5123 /*
5124 * 1) Don't let napi dequeue from the cpu poll list
5125 * just in case its running on a different cpu.
5126 * 2) If we are busy polling, do nothing here, we have
5127 * the guarantee we will be called later.
5128 */
5129 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5130 NAPIF_STATE_IN_BUSY_POLL)))
5131 return false;
5132
5133 if (n->gro_list) {
5134 unsigned long timeout = 0;
5135
5136 if (work_done)
5137 timeout = n->dev->gro_flush_timeout;
5138
5139 if (timeout)
5140 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5141 HRTIMER_MODE_REL_PINNED);
5142 else
5143 napi_gro_flush(n, false);
5144 }
5145 if (unlikely(!list_empty(&n->poll_list))) {
5146 /* If n->poll_list is not empty, we need to mask irqs */
5147 local_irq_save(flags);
5148 list_del_init(&n->poll_list);
5149 local_irq_restore(flags);
5150 }
5151
5152 do {
5153 val = READ_ONCE(n->state);
5154
5155 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5156
5157 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5158
5159 /* If STATE_MISSED was set, leave STATE_SCHED set,
5160 * because we will call napi->poll() one more time.
5161 * This C code was suggested by Alexander Duyck to help gcc.
5162 */
5163 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5164 NAPIF_STATE_SCHED;
5165 } while (cmpxchg(&n->state, val, new) != val);
5166
5167 if (unlikely(val & NAPIF_STATE_MISSED)) {
5168 __napi_schedule(n);
5169 return false;
5170 }
5171
5172 return true;
5173}
5174EXPORT_SYMBOL(napi_complete_done);
5175
5176/* must be called under rcu_read_lock(), as we dont take a reference */
5177static struct napi_struct *napi_by_id(unsigned int napi_id)
5178{
5179 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5180 struct napi_struct *napi;
5181
5182 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5183 if (napi->napi_id == napi_id)
5184 return napi;
5185
5186 return NULL;
5187}
5188
5189#if defined(CONFIG_NET_RX_BUSY_POLL)
5190
5191#define BUSY_POLL_BUDGET 8
5192
5193static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5194{
5195 int rc;
5196
5197 /* Busy polling means there is a high chance device driver hard irq
5198 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5199 * set in napi_schedule_prep().
5200 * Since we are about to call napi->poll() once more, we can safely
5201 * clear NAPI_STATE_MISSED.
5202 *
5203 * Note: x86 could use a single "lock and ..." instruction
5204 * to perform these two clear_bit()
5205 */
5206 clear_bit(NAPI_STATE_MISSED, &napi->state);
5207 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5208
5209 local_bh_disable();
5210
5211 /* All we really want here is to re-enable device interrupts.
5212 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5213 */
5214 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5215 netpoll_poll_unlock(have_poll_lock);
5216 if (rc == BUSY_POLL_BUDGET)
5217 __napi_schedule(napi);
5218 local_bh_enable();
5219}
5220
5221void napi_busy_loop(unsigned int napi_id,
5222 bool (*loop_end)(void *, unsigned long),
5223 void *loop_end_arg)
5224{
5225 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5226 int (*napi_poll)(struct napi_struct *napi, int budget);
5227 void *have_poll_lock = NULL;
5228 struct napi_struct *napi;
5229
5230restart:
5231 napi_poll = NULL;
5232
5233 rcu_read_lock();
5234
5235 napi = napi_by_id(napi_id);
5236 if (!napi)
5237 goto out;
5238
5239 preempt_disable();
5240 for (;;) {
5241 int work = 0;
5242
5243 local_bh_disable();
5244 if (!napi_poll) {
5245 unsigned long val = READ_ONCE(napi->state);
5246
5247 /* If multiple threads are competing for this napi,
5248 * we avoid dirtying napi->state as much as we can.
5249 */
5250 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5251 NAPIF_STATE_IN_BUSY_POLL))
5252 goto count;
5253 if (cmpxchg(&napi->state, val,
5254 val | NAPIF_STATE_IN_BUSY_POLL |
5255 NAPIF_STATE_SCHED) != val)
5256 goto count;
5257 have_poll_lock = netpoll_poll_lock(napi);
5258 napi_poll = napi->poll;
5259 }
5260 work = napi_poll(napi, BUSY_POLL_BUDGET);
5261 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5262count:
5263 if (work > 0)
5264 __NET_ADD_STATS(dev_net(napi->dev),
5265 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5266 local_bh_enable();
5267
5268 if (!loop_end || loop_end(loop_end_arg, start_time))
5269 break;
5270
5271 if (unlikely(need_resched())) {
5272 if (napi_poll)
5273 busy_poll_stop(napi, have_poll_lock);
5274 preempt_enable();
5275 rcu_read_unlock();
5276 cond_resched();
5277 if (loop_end(loop_end_arg, start_time))
5278 return;
5279 goto restart;
5280 }
5281 cpu_relax();
5282 }
5283 if (napi_poll)
5284 busy_poll_stop(napi, have_poll_lock);
5285 preempt_enable();
5286out:
5287 rcu_read_unlock();
5288}
5289EXPORT_SYMBOL(napi_busy_loop);
5290
5291#endif /* CONFIG_NET_RX_BUSY_POLL */
5292
5293static void napi_hash_add(struct napi_struct *napi)
5294{
5295 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5296 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5297 return;
5298
5299 spin_lock(&napi_hash_lock);
5300
5301 /* 0..NR_CPUS range is reserved for sender_cpu use */
5302 do {
5303 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5304 napi_gen_id = MIN_NAPI_ID;
5305 } while (napi_by_id(napi_gen_id));
5306 napi->napi_id = napi_gen_id;
5307
5308 hlist_add_head_rcu(&napi->napi_hash_node,
5309 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5310
5311 spin_unlock(&napi_hash_lock);
5312}
5313
5314/* Warning : caller is responsible to make sure rcu grace period
5315 * is respected before freeing memory containing @napi
5316 */
5317bool napi_hash_del(struct napi_struct *napi)
5318{
5319 bool rcu_sync_needed = false;
5320
5321 spin_lock(&napi_hash_lock);
5322
5323 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5324 rcu_sync_needed = true;
5325 hlist_del_rcu(&napi->napi_hash_node);
5326 }
5327 spin_unlock(&napi_hash_lock);
5328 return rcu_sync_needed;
5329}
5330EXPORT_SYMBOL_GPL(napi_hash_del);
5331
5332static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5333{
5334 struct napi_struct *napi;
5335
5336 napi = container_of(timer, struct napi_struct, timer);
5337
5338 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5339 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5340 */
5341 if (napi->gro_list && !napi_disable_pending(napi) &&
5342 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5343 __napi_schedule_irqoff(napi);
5344
5345 return HRTIMER_NORESTART;
5346}
5347
5348void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5349 int (*poll)(struct napi_struct *, int), int weight)
5350{
5351 INIT_LIST_HEAD(&napi->poll_list);
5352 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5353 napi->timer.function = napi_watchdog;
5354 napi->gro_count = 0;
5355 napi->gro_list = NULL;
5356 napi->skb = NULL;
5357 napi->poll = poll;
5358 if (weight > NAPI_POLL_WEIGHT)
5359 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5360 weight, dev->name);
5361 napi->weight = weight;
5362 list_add(&napi->dev_list, &dev->napi_list);
5363 napi->dev = dev;
5364#ifdef CONFIG_NETPOLL
5365 napi->poll_owner = -1;
5366#endif
5367 set_bit(NAPI_STATE_SCHED, &napi->state);
5368 napi_hash_add(napi);
5369}
5370EXPORT_SYMBOL(netif_napi_add);
5371
5372void napi_disable(struct napi_struct *n)
5373{
5374 might_sleep();
5375 set_bit(NAPI_STATE_DISABLE, &n->state);
5376
5377 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5378 msleep(1);
5379 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5380 msleep(1);
5381
5382 hrtimer_cancel(&n->timer);
5383
5384 clear_bit(NAPI_STATE_DISABLE, &n->state);
5385}
5386EXPORT_SYMBOL(napi_disable);
5387
5388/* Must be called in process context */
5389void netif_napi_del(struct napi_struct *napi)
5390{
5391 might_sleep();
5392 if (napi_hash_del(napi))
5393 synchronize_net();
5394 list_del_init(&napi->dev_list);
5395 napi_free_frags(napi);
5396
5397 kfree_skb_list(napi->gro_list);
5398 napi->gro_list = NULL;
5399 napi->gro_count = 0;
5400}
5401EXPORT_SYMBOL(netif_napi_del);
5402
5403static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5404{
5405 void *have;
5406 int work, weight;
5407
5408 list_del_init(&n->poll_list);
5409
5410 have = netpoll_poll_lock(n);
5411
5412 weight = n->weight;
5413
5414 /* This NAPI_STATE_SCHED test is for avoiding a race
5415 * with netpoll's poll_napi(). Only the entity which
5416 * obtains the lock and sees NAPI_STATE_SCHED set will
5417 * actually make the ->poll() call. Therefore we avoid
5418 * accidentally calling ->poll() when NAPI is not scheduled.
5419 */
5420 work = 0;
5421 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5422 work = n->poll(n, weight);
5423 trace_napi_poll(n, work, weight);
5424 }
5425
5426 WARN_ON_ONCE(work > weight);
5427
5428 if (likely(work < weight))
5429 goto out_unlock;
5430
5431 /* Drivers must not modify the NAPI state if they
5432 * consume the entire weight. In such cases this code
5433 * still "owns" the NAPI instance and therefore can
5434 * move the instance around on the list at-will.
5435 */
5436 if (unlikely(napi_disable_pending(n))) {
5437 napi_complete(n);
5438 goto out_unlock;
5439 }
5440
5441 if (n->gro_list) {
5442 /* flush too old packets
5443 * If HZ < 1000, flush all packets.
5444 */
5445 napi_gro_flush(n, HZ >= 1000);
5446 }
5447
5448 /* Some drivers may have called napi_schedule
5449 * prior to exhausting their budget.
5450 */
5451 if (unlikely(!list_empty(&n->poll_list))) {
5452 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5453 n->dev ? n->dev->name : "backlog");
5454 goto out_unlock;
5455 }
5456
5457 list_add_tail(&n->poll_list, repoll);
5458
5459out_unlock:
5460 netpoll_poll_unlock(have);
5461
5462 return work;
5463}
5464
5465static __latent_entropy void net_rx_action(struct softirq_action *h)
5466{
5467 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5468 unsigned long time_limit = jiffies +
5469 usecs_to_jiffies(netdev_budget_usecs);
5470 int budget = netdev_budget;
5471 LIST_HEAD(list);
5472 LIST_HEAD(repoll);
5473
5474 local_irq_disable();
5475 list_splice_init(&sd->poll_list, &list);
5476 local_irq_enable();
5477
5478 for (;;) {
5479 struct napi_struct *n;
5480
5481 if (list_empty(&list)) {
5482 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5483 goto out;
5484 break;
5485 }
5486
5487 n = list_first_entry(&list, struct napi_struct, poll_list);
5488 budget -= napi_poll(n, &repoll);
5489
5490 /* If softirq window is exhausted then punt.
5491 * Allow this to run for 2 jiffies since which will allow
5492 * an average latency of 1.5/HZ.
5493 */
5494 if (unlikely(budget <= 0 ||
5495 time_after_eq(jiffies, time_limit))) {
5496 sd->time_squeeze++;
5497 break;
5498 }
5499 }
5500
5501 local_irq_disable();
5502
5503 list_splice_tail_init(&sd->poll_list, &list);
5504 list_splice_tail(&repoll, &list);
5505 list_splice(&list, &sd->poll_list);
5506 if (!list_empty(&sd->poll_list))
5507 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5508
5509 net_rps_action_and_irq_enable(sd);
5510out:
5511 __kfree_skb_flush();
5512}
5513
5514struct netdev_adjacent {
5515 struct net_device *dev;
5516
5517 /* upper master flag, there can only be one master device per list */
5518 bool master;
5519
5520 /* counter for the number of times this device was added to us */
5521 u16 ref_nr;
5522
5523 /* private field for the users */
5524 void *private;
5525
5526 struct list_head list;
5527 struct rcu_head rcu;
5528};
5529
5530static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5531 struct list_head *adj_list)
5532{
5533 struct netdev_adjacent *adj;
5534
5535 list_for_each_entry(adj, adj_list, list) {
5536 if (adj->dev == adj_dev)
5537 return adj;
5538 }
5539 return NULL;
5540}
5541
5542static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5543{
5544 struct net_device *dev = data;
5545
5546 return upper_dev == dev;
5547}
5548
5549/**
5550 * netdev_has_upper_dev - Check if device is linked to an upper device
5551 * @dev: device
5552 * @upper_dev: upper device to check
5553 *
5554 * Find out if a device is linked to specified upper device and return true
5555 * in case it is. Note that this checks only immediate upper device,
5556 * not through a complete stack of devices. The caller must hold the RTNL lock.
5557 */
5558bool netdev_has_upper_dev(struct net_device *dev,
5559 struct net_device *upper_dev)
5560{
5561 ASSERT_RTNL();
5562
5563 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5564 upper_dev);
5565}
5566EXPORT_SYMBOL(netdev_has_upper_dev);
5567
5568/**
5569 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5570 * @dev: device
5571 * @upper_dev: upper device to check
5572 *
5573 * Find out if a device is linked to specified upper device and return true
5574 * in case it is. Note that this checks the entire upper device chain.
5575 * The caller must hold rcu lock.
5576 */
5577
5578bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5579 struct net_device *upper_dev)
5580{
5581 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5582 upper_dev);
5583}
5584EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5585
5586/**
5587 * netdev_has_any_upper_dev - Check if device is linked to some device
5588 * @dev: device
5589 *
5590 * Find out if a device is linked to an upper device and return true in case
5591 * it is. The caller must hold the RTNL lock.
5592 */
5593static bool netdev_has_any_upper_dev(struct net_device *dev)
5594{
5595 ASSERT_RTNL();
5596
5597 return !list_empty(&dev->adj_list.upper);
5598}
5599
5600/**
5601 * netdev_master_upper_dev_get - Get master upper device
5602 * @dev: device
5603 *
5604 * Find a master upper device and return pointer to it or NULL in case
5605 * it's not there. The caller must hold the RTNL lock.
5606 */
5607struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5608{
5609 struct netdev_adjacent *upper;
5610
5611 ASSERT_RTNL();
5612
5613 if (list_empty(&dev->adj_list.upper))
5614 return NULL;
5615
5616 upper = list_first_entry(&dev->adj_list.upper,
5617 struct netdev_adjacent, list);
5618 if (likely(upper->master))
5619 return upper->dev;
5620 return NULL;
5621}
5622EXPORT_SYMBOL(netdev_master_upper_dev_get);
5623
5624/**
5625 * netdev_has_any_lower_dev - Check if device is linked to some device
5626 * @dev: device
5627 *
5628 * Find out if a device is linked to a lower device and return true in case
5629 * it is. The caller must hold the RTNL lock.
5630 */
5631static bool netdev_has_any_lower_dev(struct net_device *dev)
5632{
5633 ASSERT_RTNL();
5634
5635 return !list_empty(&dev->adj_list.lower);
5636}
5637
5638void *netdev_adjacent_get_private(struct list_head *adj_list)
5639{
5640 struct netdev_adjacent *adj;
5641
5642 adj = list_entry(adj_list, struct netdev_adjacent, list);
5643
5644 return adj->private;
5645}
5646EXPORT_SYMBOL(netdev_adjacent_get_private);
5647
5648/**
5649 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5650 * @dev: device
5651 * @iter: list_head ** of the current position
5652 *
5653 * Gets the next device from the dev's upper list, starting from iter
5654 * position. The caller must hold RCU read lock.
5655 */
5656struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5657 struct list_head **iter)
5658{
5659 struct netdev_adjacent *upper;
5660
5661 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5662
5663 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5664
5665 if (&upper->list == &dev->adj_list.upper)
5666 return NULL;
5667
5668 *iter = &upper->list;
5669
5670 return upper->dev;
5671}
5672EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5673
5674static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5675 struct list_head **iter)
5676{
5677 struct netdev_adjacent *upper;
5678
5679 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5680
5681 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5682
5683 if (&upper->list == &dev->adj_list.upper)
5684 return NULL;
5685
5686 *iter = &upper->list;
5687
5688 return upper->dev;
5689}
5690
5691int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5692 int (*fn)(struct net_device *dev,
5693 void *data),
5694 void *data)
5695{
5696 struct net_device *udev;
5697 struct list_head *iter;
5698 int ret;
5699
5700 for (iter = &dev->adj_list.upper,
5701 udev = netdev_next_upper_dev_rcu(dev, &iter);
5702 udev;
5703 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5704 /* first is the upper device itself */
5705 ret = fn(udev, data);
5706 if (ret)
5707 return ret;
5708
5709 /* then look at all of its upper devices */
5710 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5711 if (ret)
5712 return ret;
5713 }
5714
5715 return 0;
5716}
5717EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5718
5719/**
5720 * netdev_lower_get_next_private - Get the next ->private from the
5721 * lower neighbour list
5722 * @dev: device
5723 * @iter: list_head ** of the current position
5724 *
5725 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5726 * list, starting from iter position. The caller must hold either hold the
5727 * RTNL lock or its own locking that guarantees that the neighbour lower
5728 * list will remain unchanged.
5729 */
5730void *netdev_lower_get_next_private(struct net_device *dev,
5731 struct list_head **iter)
5732{
5733 struct netdev_adjacent *lower;
5734
5735 lower = list_entry(*iter, struct netdev_adjacent, list);
5736
5737 if (&lower->list == &dev->adj_list.lower)
5738 return NULL;
5739
5740 *iter = lower->list.next;
5741
5742 return lower->private;
5743}
5744EXPORT_SYMBOL(netdev_lower_get_next_private);
5745
5746/**
5747 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5748 * lower neighbour list, RCU
5749 * variant
5750 * @dev: device
5751 * @iter: list_head ** of the current position
5752 *
5753 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5754 * list, starting from iter position. The caller must hold RCU read lock.
5755 */
5756void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5757 struct list_head **iter)
5758{
5759 struct netdev_adjacent *lower;
5760
5761 WARN_ON_ONCE(!rcu_read_lock_held());
5762
5763 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5764
5765 if (&lower->list == &dev->adj_list.lower)
5766 return NULL;
5767
5768 *iter = &lower->list;
5769
5770 return lower->private;
5771}
5772EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5773
5774/**
5775 * netdev_lower_get_next - Get the next device from the lower neighbour
5776 * list
5777 * @dev: device
5778 * @iter: list_head ** of the current position
5779 *
5780 * Gets the next netdev_adjacent from the dev's lower neighbour
5781 * list, starting from iter position. The caller must hold RTNL lock or
5782 * its own locking that guarantees that the neighbour lower
5783 * list will remain unchanged.
5784 */
5785void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5786{
5787 struct netdev_adjacent *lower;
5788
5789 lower = list_entry(*iter, struct netdev_adjacent, list);
5790
5791 if (&lower->list == &dev->adj_list.lower)
5792 return NULL;
5793
5794 *iter = lower->list.next;
5795
5796 return lower->dev;
5797}
5798EXPORT_SYMBOL(netdev_lower_get_next);
5799
5800static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5801 struct list_head **iter)
5802{
5803 struct netdev_adjacent *lower;
5804
5805 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5806
5807 if (&lower->list == &dev->adj_list.lower)
5808 return NULL;
5809
5810 *iter = &lower->list;
5811
5812 return lower->dev;
5813}
5814
5815int netdev_walk_all_lower_dev(struct net_device *dev,
5816 int (*fn)(struct net_device *dev,
5817 void *data),
5818 void *data)
5819{
5820 struct net_device *ldev;
5821 struct list_head *iter;
5822 int ret;
5823
5824 for (iter = &dev->adj_list.lower,
5825 ldev = netdev_next_lower_dev(dev, &iter);
5826 ldev;
5827 ldev = netdev_next_lower_dev(dev, &iter)) {
5828 /* first is the lower device itself */
5829 ret = fn(ldev, data);
5830 if (ret)
5831 return ret;
5832
5833 /* then look at all of its lower devices */
5834 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5835 if (ret)
5836 return ret;
5837 }
5838
5839 return 0;
5840}
5841EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5842
5843static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5844 struct list_head **iter)
5845{
5846 struct netdev_adjacent *lower;
5847
5848 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5849 if (&lower->list == &dev->adj_list.lower)
5850 return NULL;
5851
5852 *iter = &lower->list;
5853
5854 return lower->dev;
5855}
5856
5857int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5858 int (*fn)(struct net_device *dev,
5859 void *data),
5860 void *data)
5861{
5862 struct net_device *ldev;
5863 struct list_head *iter;
5864 int ret;
5865
5866 for (iter = &dev->adj_list.lower,
5867 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5868 ldev;
5869 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5870 /* first is the lower device itself */
5871 ret = fn(ldev, data);
5872 if (ret)
5873 return ret;
5874
5875 /* then look at all of its lower devices */
5876 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5877 if (ret)
5878 return ret;
5879 }
5880
5881 return 0;
5882}
5883EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5884
5885/**
5886 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5887 * lower neighbour list, RCU
5888 * variant
5889 * @dev: device
5890 *
5891 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5892 * list. The caller must hold RCU read lock.
5893 */
5894void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5895{
5896 struct netdev_adjacent *lower;
5897
5898 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5899 struct netdev_adjacent, list);
5900 if (lower)
5901 return lower->private;
5902 return NULL;
5903}
5904EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5905
5906/**
5907 * netdev_master_upper_dev_get_rcu - Get master upper device
5908 * @dev: device
5909 *
5910 * Find a master upper device and return pointer to it or NULL in case
5911 * it's not there. The caller must hold the RCU read lock.
5912 */
5913struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5914{
5915 struct netdev_adjacent *upper;
5916
5917 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5918 struct netdev_adjacent, list);
5919 if (upper && likely(upper->master))
5920 return upper->dev;
5921 return NULL;
5922}
5923EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5924
5925static int netdev_adjacent_sysfs_add(struct net_device *dev,
5926 struct net_device *adj_dev,
5927 struct list_head *dev_list)
5928{
5929 char linkname[IFNAMSIZ+7];
5930
5931 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5932 "upper_%s" : "lower_%s", adj_dev->name);
5933 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5934 linkname);
5935}
5936static void netdev_adjacent_sysfs_del(struct net_device *dev,
5937 char *name,
5938 struct list_head *dev_list)
5939{
5940 char linkname[IFNAMSIZ+7];
5941
5942 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5943 "upper_%s" : "lower_%s", name);
5944 sysfs_remove_link(&(dev->dev.kobj), linkname);
5945}
5946
5947static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5948 struct net_device *adj_dev,
5949 struct list_head *dev_list)
5950{
5951 return (dev_list == &dev->adj_list.upper ||
5952 dev_list == &dev->adj_list.lower) &&
5953 net_eq(dev_net(dev), dev_net(adj_dev));
5954}
5955
5956static int __netdev_adjacent_dev_insert(struct net_device *dev,
5957 struct net_device *adj_dev,
5958 struct list_head *dev_list,
5959 void *private, bool master)
5960{
5961 struct netdev_adjacent *adj;
5962 int ret;
5963
5964 adj = __netdev_find_adj(adj_dev, dev_list);
5965
5966 if (adj) {
5967 adj->ref_nr += 1;
5968 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5969 dev->name, adj_dev->name, adj->ref_nr);
5970
5971 return 0;
5972 }
5973
5974 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5975 if (!adj)
5976 return -ENOMEM;
5977
5978 adj->dev = adj_dev;
5979 adj->master = master;
5980 adj->ref_nr = 1;
5981 adj->private = private;
5982 dev_hold(adj_dev);
5983
5984 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5985 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5986
5987 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5988 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5989 if (ret)
5990 goto free_adj;
5991 }
5992
5993 /* Ensure that master link is always the first item in list. */
5994 if (master) {
5995 ret = sysfs_create_link(&(dev->dev.kobj),
5996 &(adj_dev->dev.kobj), "master");
5997 if (ret)
5998 goto remove_symlinks;
5999
6000 list_add_rcu(&adj->list, dev_list);
6001 } else {
6002 list_add_tail_rcu(&adj->list, dev_list);
6003 }
6004
6005 return 0;
6006
6007remove_symlinks:
6008 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6009 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6010free_adj:
6011 kfree(adj);
6012 dev_put(adj_dev);
6013
6014 return ret;
6015}
6016
6017static void __netdev_adjacent_dev_remove(struct net_device *dev,
6018 struct net_device *adj_dev,
6019 u16 ref_nr,
6020 struct list_head *dev_list)
6021{
6022 struct netdev_adjacent *adj;
6023
6024 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6025 dev->name, adj_dev->name, ref_nr);
6026
6027 adj = __netdev_find_adj(adj_dev, dev_list);
6028
6029 if (!adj) {
6030 pr_err("Adjacency does not exist for device %s from %s\n",
6031 dev->name, adj_dev->name);
6032 WARN_ON(1);
6033 return;
6034 }
6035
6036 if (adj->ref_nr > ref_nr) {
6037 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6038 dev->name, adj_dev->name, ref_nr,
6039 adj->ref_nr - ref_nr);
6040 adj->ref_nr -= ref_nr;
6041 return;
6042 }
6043
6044 if (adj->master)
6045 sysfs_remove_link(&(dev->dev.kobj), "master");
6046
6047 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6048 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6049
6050 list_del_rcu(&adj->list);
6051 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6052 adj_dev->name, dev->name, adj_dev->name);
6053 dev_put(adj_dev);
6054 kfree_rcu(adj, rcu);
6055}
6056
6057static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6058 struct net_device *upper_dev,
6059 struct list_head *up_list,
6060 struct list_head *down_list,
6061 void *private, bool master)
6062{
6063 int ret;
6064
6065 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6066 private, master);
6067 if (ret)
6068 return ret;
6069
6070 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6071 private, false);
6072 if (ret) {
6073 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6074 return ret;
6075 }
6076
6077 return 0;
6078}
6079
6080static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6081 struct net_device *upper_dev,
6082 u16 ref_nr,
6083 struct list_head *up_list,
6084 struct list_head *down_list)
6085{
6086 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6087 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6088}
6089
6090static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6091 struct net_device *upper_dev,
6092 void *private, bool master)
6093{
6094 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6095 &dev->adj_list.upper,
6096 &upper_dev->adj_list.lower,
6097 private, master);
6098}
6099
6100static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6101 struct net_device *upper_dev)
6102{
6103 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6104 &dev->adj_list.upper,
6105 &upper_dev->adj_list.lower);
6106}
6107
6108static int __netdev_upper_dev_link(struct net_device *dev,
6109 struct net_device *upper_dev, bool master,
6110 void *upper_priv, void *upper_info)
6111{
6112 struct netdev_notifier_changeupper_info changeupper_info;
6113 int ret = 0;
6114
6115 ASSERT_RTNL();
6116
6117 if (dev == upper_dev)
6118 return -EBUSY;
6119
6120 /* To prevent loops, check if dev is not upper device to upper_dev. */
6121 if (netdev_has_upper_dev(upper_dev, dev))
6122 return -EBUSY;
6123
6124 if (netdev_has_upper_dev(dev, upper_dev))
6125 return -EEXIST;
6126
6127 if (master && netdev_master_upper_dev_get(dev))
6128 return -EBUSY;
6129
6130 changeupper_info.upper_dev = upper_dev;
6131 changeupper_info.master = master;
6132 changeupper_info.linking = true;
6133 changeupper_info.upper_info = upper_info;
6134
6135 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6136 &changeupper_info.info);
6137 ret = notifier_to_errno(ret);
6138 if (ret)
6139 return ret;
6140
6141 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6142 master);
6143 if (ret)
6144 return ret;
6145
6146 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6147 &changeupper_info.info);
6148 ret = notifier_to_errno(ret);
6149 if (ret)
6150 goto rollback;
6151
6152 return 0;
6153
6154rollback:
6155 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6156
6157 return ret;
6158}
6159
6160/**
6161 * netdev_upper_dev_link - Add a link to the upper device
6162 * @dev: device
6163 * @upper_dev: new upper device
6164 *
6165 * Adds a link to device which is upper to this one. The caller must hold
6166 * the RTNL lock. On a failure a negative errno code is returned.
6167 * On success the reference counts are adjusted and the function
6168 * returns zero.
6169 */
6170int netdev_upper_dev_link(struct net_device *dev,
6171 struct net_device *upper_dev)
6172{
6173 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6174}
6175EXPORT_SYMBOL(netdev_upper_dev_link);
6176
6177/**
6178 * netdev_master_upper_dev_link - Add a master link to the upper device
6179 * @dev: device
6180 * @upper_dev: new upper device
6181 * @upper_priv: upper device private
6182 * @upper_info: upper info to be passed down via notifier
6183 *
6184 * Adds a link to device which is upper to this one. In this case, only
6185 * one master upper device can be linked, although other non-master devices
6186 * might be linked as well. The caller must hold the RTNL lock.
6187 * On a failure a negative errno code is returned. On success the reference
6188 * counts are adjusted and the function returns zero.
6189 */
6190int netdev_master_upper_dev_link(struct net_device *dev,
6191 struct net_device *upper_dev,
6192 void *upper_priv, void *upper_info)
6193{
6194 return __netdev_upper_dev_link(dev, upper_dev, true,
6195 upper_priv, upper_info);
6196}
6197EXPORT_SYMBOL(netdev_master_upper_dev_link);
6198
6199/**
6200 * netdev_upper_dev_unlink - Removes a link to upper device
6201 * @dev: device
6202 * @upper_dev: new upper device
6203 *
6204 * Removes a link to device which is upper to this one. The caller must hold
6205 * the RTNL lock.
6206 */
6207void netdev_upper_dev_unlink(struct net_device *dev,
6208 struct net_device *upper_dev)
6209{
6210 struct netdev_notifier_changeupper_info changeupper_info;
6211
6212 ASSERT_RTNL();
6213
6214 changeupper_info.upper_dev = upper_dev;
6215 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6216 changeupper_info.linking = false;
6217
6218 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6219 &changeupper_info.info);
6220
6221 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6222
6223 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6224 &changeupper_info.info);
6225}
6226EXPORT_SYMBOL(netdev_upper_dev_unlink);
6227
6228/**
6229 * netdev_bonding_info_change - Dispatch event about slave change
6230 * @dev: device
6231 * @bonding_info: info to dispatch
6232 *
6233 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6234 * The caller must hold the RTNL lock.
6235 */
6236void netdev_bonding_info_change(struct net_device *dev,
6237 struct netdev_bonding_info *bonding_info)
6238{
6239 struct netdev_notifier_bonding_info info;
6240
6241 memcpy(&info.bonding_info, bonding_info,
6242 sizeof(struct netdev_bonding_info));
6243 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6244 &info.info);
6245}
6246EXPORT_SYMBOL(netdev_bonding_info_change);
6247
6248static void netdev_adjacent_add_links(struct net_device *dev)
6249{
6250 struct netdev_adjacent *iter;
6251
6252 struct net *net = dev_net(dev);
6253
6254 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6255 if (!net_eq(net, dev_net(iter->dev)))
6256 continue;
6257 netdev_adjacent_sysfs_add(iter->dev, dev,
6258 &iter->dev->adj_list.lower);
6259 netdev_adjacent_sysfs_add(dev, iter->dev,
6260 &dev->adj_list.upper);
6261 }
6262
6263 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6264 if (!net_eq(net, dev_net(iter->dev)))
6265 continue;
6266 netdev_adjacent_sysfs_add(iter->dev, dev,
6267 &iter->dev->adj_list.upper);
6268 netdev_adjacent_sysfs_add(dev, iter->dev,
6269 &dev->adj_list.lower);
6270 }
6271}
6272
6273static void netdev_adjacent_del_links(struct net_device *dev)
6274{
6275 struct netdev_adjacent *iter;
6276
6277 struct net *net = dev_net(dev);
6278
6279 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6280 if (!net_eq(net, dev_net(iter->dev)))
6281 continue;
6282 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6283 &iter->dev->adj_list.lower);
6284 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6285 &dev->adj_list.upper);
6286 }
6287
6288 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6289 if (!net_eq(net, dev_net(iter->dev)))
6290 continue;
6291 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6292 &iter->dev->adj_list.upper);
6293 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6294 &dev->adj_list.lower);
6295 }
6296}
6297
6298void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6299{
6300 struct netdev_adjacent *iter;
6301
6302 struct net *net = dev_net(dev);
6303
6304 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6305 if (!net_eq(net, dev_net(iter->dev)))
6306 continue;
6307 netdev_adjacent_sysfs_del(iter->dev, oldname,
6308 &iter->dev->adj_list.lower);
6309 netdev_adjacent_sysfs_add(iter->dev, dev,
6310 &iter->dev->adj_list.lower);
6311 }
6312
6313 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6314 if (!net_eq(net, dev_net(iter->dev)))
6315 continue;
6316 netdev_adjacent_sysfs_del(iter->dev, oldname,
6317 &iter->dev->adj_list.upper);
6318 netdev_adjacent_sysfs_add(iter->dev, dev,
6319 &iter->dev->adj_list.upper);
6320 }
6321}
6322
6323void *netdev_lower_dev_get_private(struct net_device *dev,
6324 struct net_device *lower_dev)
6325{
6326 struct netdev_adjacent *lower;
6327
6328 if (!lower_dev)
6329 return NULL;
6330 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6331 if (!lower)
6332 return NULL;
6333
6334 return lower->private;
6335}
6336EXPORT_SYMBOL(netdev_lower_dev_get_private);
6337
6338
6339int dev_get_nest_level(struct net_device *dev)
6340{
6341 struct net_device *lower = NULL;
6342 struct list_head *iter;
6343 int max_nest = -1;
6344 int nest;
6345
6346 ASSERT_RTNL();
6347
6348 netdev_for_each_lower_dev(dev, lower, iter) {
6349 nest = dev_get_nest_level(lower);
6350 if (max_nest < nest)
6351 max_nest = nest;
6352 }
6353
6354 return max_nest + 1;
6355}
6356EXPORT_SYMBOL(dev_get_nest_level);
6357
6358/**
6359 * netdev_lower_change - Dispatch event about lower device state change
6360 * @lower_dev: device
6361 * @lower_state_info: state to dispatch
6362 *
6363 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6364 * The caller must hold the RTNL lock.
6365 */
6366void netdev_lower_state_changed(struct net_device *lower_dev,
6367 void *lower_state_info)
6368{
6369 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6370
6371 ASSERT_RTNL();
6372 changelowerstate_info.lower_state_info = lower_state_info;
6373 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6374 &changelowerstate_info.info);
6375}
6376EXPORT_SYMBOL(netdev_lower_state_changed);
6377
6378static void dev_change_rx_flags(struct net_device *dev, int flags)
6379{
6380 const struct net_device_ops *ops = dev->netdev_ops;
6381
6382 if (ops->ndo_change_rx_flags)
6383 ops->ndo_change_rx_flags(dev, flags);
6384}
6385
6386static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6387{
6388 unsigned int old_flags = dev->flags;
6389 kuid_t uid;
6390 kgid_t gid;
6391
6392 ASSERT_RTNL();
6393
6394 dev->flags |= IFF_PROMISC;
6395 dev->promiscuity += inc;
6396 if (dev->promiscuity == 0) {
6397 /*
6398 * Avoid overflow.
6399 * If inc causes overflow, untouch promisc and return error.
6400 */
6401 if (inc < 0)
6402 dev->flags &= ~IFF_PROMISC;
6403 else {
6404 dev->promiscuity -= inc;
6405 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6406 dev->name);
6407 return -EOVERFLOW;
6408 }
6409 }
6410 if (dev->flags != old_flags) {
6411 pr_info("device %s %s promiscuous mode\n",
6412 dev->name,
6413 dev->flags & IFF_PROMISC ? "entered" : "left");
6414 if (audit_enabled) {
6415 current_uid_gid(&uid, &gid);
6416 audit_log(current->audit_context, GFP_ATOMIC,
6417 AUDIT_ANOM_PROMISCUOUS,
6418 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6419 dev->name, (dev->flags & IFF_PROMISC),
6420 (old_flags & IFF_PROMISC),
6421 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6422 from_kuid(&init_user_ns, uid),
6423 from_kgid(&init_user_ns, gid),
6424 audit_get_sessionid(current));
6425 }
6426
6427 dev_change_rx_flags(dev, IFF_PROMISC);
6428 }
6429 if (notify)
6430 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6431 return 0;
6432}
6433
6434/**
6435 * dev_set_promiscuity - update promiscuity count on a device
6436 * @dev: device
6437 * @inc: modifier
6438 *
6439 * Add or remove promiscuity from a device. While the count in the device
6440 * remains above zero the interface remains promiscuous. Once it hits zero
6441 * the device reverts back to normal filtering operation. A negative inc
6442 * value is used to drop promiscuity on the device.
6443 * Return 0 if successful or a negative errno code on error.
6444 */
6445int dev_set_promiscuity(struct net_device *dev, int inc)
6446{
6447 unsigned int old_flags = dev->flags;
6448 int err;
6449
6450 err = __dev_set_promiscuity(dev, inc, true);
6451 if (err < 0)
6452 return err;
6453 if (dev->flags != old_flags)
6454 dev_set_rx_mode(dev);
6455 return err;
6456}
6457EXPORT_SYMBOL(dev_set_promiscuity);
6458
6459static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6460{
6461 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6462
6463 ASSERT_RTNL();
6464
6465 dev->flags |= IFF_ALLMULTI;
6466 dev->allmulti += inc;
6467 if (dev->allmulti == 0) {
6468 /*
6469 * Avoid overflow.
6470 * If inc causes overflow, untouch allmulti and return error.
6471 */
6472 if (inc < 0)
6473 dev->flags &= ~IFF_ALLMULTI;
6474 else {
6475 dev->allmulti -= inc;
6476 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6477 dev->name);
6478 return -EOVERFLOW;
6479 }
6480 }
6481 if (dev->flags ^ old_flags) {
6482 dev_change_rx_flags(dev, IFF_ALLMULTI);
6483 dev_set_rx_mode(dev);
6484 if (notify)
6485 __dev_notify_flags(dev, old_flags,
6486 dev->gflags ^ old_gflags);
6487 }
6488 return 0;
6489}
6490
6491/**
6492 * dev_set_allmulti - update allmulti count on a device
6493 * @dev: device
6494 * @inc: modifier
6495 *
6496 * Add or remove reception of all multicast frames to a device. While the
6497 * count in the device remains above zero the interface remains listening
6498 * to all interfaces. Once it hits zero the device reverts back to normal
6499 * filtering operation. A negative @inc value is used to drop the counter
6500 * when releasing a resource needing all multicasts.
6501 * Return 0 if successful or a negative errno code on error.
6502 */
6503
6504int dev_set_allmulti(struct net_device *dev, int inc)
6505{
6506 return __dev_set_allmulti(dev, inc, true);
6507}
6508EXPORT_SYMBOL(dev_set_allmulti);
6509
6510/*
6511 * Upload unicast and multicast address lists to device and
6512 * configure RX filtering. When the device doesn't support unicast
6513 * filtering it is put in promiscuous mode while unicast addresses
6514 * are present.
6515 */
6516void __dev_set_rx_mode(struct net_device *dev)
6517{
6518 const struct net_device_ops *ops = dev->netdev_ops;
6519
6520 /* dev_open will call this function so the list will stay sane. */
6521 if (!(dev->flags&IFF_UP))
6522 return;
6523
6524 if (!netif_device_present(dev))
6525 return;
6526
6527 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6528 /* Unicast addresses changes may only happen under the rtnl,
6529 * therefore calling __dev_set_promiscuity here is safe.
6530 */
6531 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6532 __dev_set_promiscuity(dev, 1, false);
6533 dev->uc_promisc = true;
6534 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6535 __dev_set_promiscuity(dev, -1, false);
6536 dev->uc_promisc = false;
6537 }
6538 }
6539
6540 if (ops->ndo_set_rx_mode)
6541 ops->ndo_set_rx_mode(dev);
6542}
6543
6544void dev_set_rx_mode(struct net_device *dev)
6545{
6546 netif_addr_lock_bh(dev);
6547 __dev_set_rx_mode(dev);
6548 netif_addr_unlock_bh(dev);
6549}
6550
6551/**
6552 * dev_get_flags - get flags reported to userspace
6553 * @dev: device
6554 *
6555 * Get the combination of flag bits exported through APIs to userspace.
6556 */
6557unsigned int dev_get_flags(const struct net_device *dev)
6558{
6559 unsigned int flags;
6560
6561 flags = (dev->flags & ~(IFF_PROMISC |
6562 IFF_ALLMULTI |
6563 IFF_RUNNING |
6564 IFF_LOWER_UP |
6565 IFF_DORMANT)) |
6566 (dev->gflags & (IFF_PROMISC |
6567 IFF_ALLMULTI));
6568
6569 if (netif_running(dev)) {
6570 if (netif_oper_up(dev))
6571 flags |= IFF_RUNNING;
6572 if (netif_carrier_ok(dev))
6573 flags |= IFF_LOWER_UP;
6574 if (netif_dormant(dev))
6575 flags |= IFF_DORMANT;
6576 }
6577
6578 return flags;
6579}
6580EXPORT_SYMBOL(dev_get_flags);
6581
6582int __dev_change_flags(struct net_device *dev, unsigned int flags)
6583{
6584 unsigned int old_flags = dev->flags;
6585 int ret;
6586
6587 ASSERT_RTNL();
6588
6589 /*
6590 * Set the flags on our device.
6591 */
6592
6593 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6594 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6595 IFF_AUTOMEDIA)) |
6596 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6597 IFF_ALLMULTI));
6598
6599 /*
6600 * Load in the correct multicast list now the flags have changed.
6601 */
6602
6603 if ((old_flags ^ flags) & IFF_MULTICAST)
6604 dev_change_rx_flags(dev, IFF_MULTICAST);
6605
6606 dev_set_rx_mode(dev);
6607
6608 /*
6609 * Have we downed the interface. We handle IFF_UP ourselves
6610 * according to user attempts to set it, rather than blindly
6611 * setting it.
6612 */
6613
6614 ret = 0;
6615 if ((old_flags ^ flags) & IFF_UP)
6616 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6617
6618 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6619 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6620 unsigned int old_flags = dev->flags;
6621
6622 dev->gflags ^= IFF_PROMISC;
6623
6624 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6625 if (dev->flags != old_flags)
6626 dev_set_rx_mode(dev);
6627 }
6628
6629 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6630 * is important. Some (broken) drivers set IFF_PROMISC, when
6631 * IFF_ALLMULTI is requested not asking us and not reporting.
6632 */
6633 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6634 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6635
6636 dev->gflags ^= IFF_ALLMULTI;
6637 __dev_set_allmulti(dev, inc, false);
6638 }
6639
6640 return ret;
6641}
6642
6643void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6644 unsigned int gchanges)
6645{
6646 unsigned int changes = dev->flags ^ old_flags;
6647
6648 if (gchanges)
6649 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6650
6651 if (changes & IFF_UP) {
6652 if (dev->flags & IFF_UP)
6653 call_netdevice_notifiers(NETDEV_UP, dev);
6654 else
6655 call_netdevice_notifiers(NETDEV_DOWN, dev);
6656 }
6657
6658 if (dev->flags & IFF_UP &&
6659 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6660 struct netdev_notifier_change_info change_info;
6661
6662 change_info.flags_changed = changes;
6663 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6664 &change_info.info);
6665 }
6666}
6667
6668/**
6669 * dev_change_flags - change device settings
6670 * @dev: device
6671 * @flags: device state flags
6672 *
6673 * Change settings on device based state flags. The flags are
6674 * in the userspace exported format.
6675 */
6676int dev_change_flags(struct net_device *dev, unsigned int flags)
6677{
6678 int ret;
6679 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6680
6681 ret = __dev_change_flags(dev, flags);
6682 if (ret < 0)
6683 return ret;
6684
6685 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6686 __dev_notify_flags(dev, old_flags, changes);
6687 return ret;
6688}
6689EXPORT_SYMBOL(dev_change_flags);
6690
6691static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6692{
6693 const struct net_device_ops *ops = dev->netdev_ops;
6694
6695 if (ops->ndo_change_mtu)
6696 return ops->ndo_change_mtu(dev, new_mtu);
6697
6698 dev->mtu = new_mtu;
6699 return 0;
6700}
6701
6702/**
6703 * dev_set_mtu - Change maximum transfer unit
6704 * @dev: device
6705 * @new_mtu: new transfer unit
6706 *
6707 * Change the maximum transfer size of the network device.
6708 */
6709int dev_set_mtu(struct net_device *dev, int new_mtu)
6710{
6711 int err, orig_mtu;
6712
6713 if (new_mtu == dev->mtu)
6714 return 0;
6715
6716 /* MTU must be positive, and in range */
6717 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6718 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6719 dev->name, new_mtu, dev->min_mtu);
6720 return -EINVAL;
6721 }
6722
6723 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6724 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6725 dev->name, new_mtu, dev->max_mtu);
6726 return -EINVAL;
6727 }
6728
6729 if (!netif_device_present(dev))
6730 return -ENODEV;
6731
6732 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6733 err = notifier_to_errno(err);
6734 if (err)
6735 return err;
6736
6737 orig_mtu = dev->mtu;
6738 err = __dev_set_mtu(dev, new_mtu);
6739
6740 if (!err) {
6741 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6742 err = notifier_to_errno(err);
6743 if (err) {
6744 /* setting mtu back and notifying everyone again,
6745 * so that they have a chance to revert changes.
6746 */
6747 __dev_set_mtu(dev, orig_mtu);
6748 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6749 }
6750 }
6751 return err;
6752}
6753EXPORT_SYMBOL(dev_set_mtu);
6754
6755/**
6756 * dev_set_group - Change group this device belongs to
6757 * @dev: device
6758 * @new_group: group this device should belong to
6759 */
6760void dev_set_group(struct net_device *dev, int new_group)
6761{
6762 dev->group = new_group;
6763}
6764EXPORT_SYMBOL(dev_set_group);
6765
6766/**
6767 * dev_set_mac_address - Change Media Access Control Address
6768 * @dev: device
6769 * @sa: new address
6770 *
6771 * Change the hardware (MAC) address of the device
6772 */
6773int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6774{
6775 const struct net_device_ops *ops = dev->netdev_ops;
6776 int err;
6777
6778 if (!ops->ndo_set_mac_address)
6779 return -EOPNOTSUPP;
6780 if (sa->sa_family != dev->type)
6781 return -EINVAL;
6782 if (!netif_device_present(dev))
6783 return -ENODEV;
6784 err = ops->ndo_set_mac_address(dev, sa);
6785 if (err)
6786 return err;
6787 dev->addr_assign_type = NET_ADDR_SET;
6788 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6789 add_device_randomness(dev->dev_addr, dev->addr_len);
6790 return 0;
6791}
6792EXPORT_SYMBOL(dev_set_mac_address);
6793
6794/**
6795 * dev_change_carrier - Change device carrier
6796 * @dev: device
6797 * @new_carrier: new value
6798 *
6799 * Change device carrier
6800 */
6801int dev_change_carrier(struct net_device *dev, bool new_carrier)
6802{
6803 const struct net_device_ops *ops = dev->netdev_ops;
6804
6805 if (!ops->ndo_change_carrier)
6806 return -EOPNOTSUPP;
6807 if (!netif_device_present(dev))
6808 return -ENODEV;
6809 return ops->ndo_change_carrier(dev, new_carrier);
6810}
6811EXPORT_SYMBOL(dev_change_carrier);
6812
6813/**
6814 * dev_get_phys_port_id - Get device physical port ID
6815 * @dev: device
6816 * @ppid: port ID
6817 *
6818 * Get device physical port ID
6819 */
6820int dev_get_phys_port_id(struct net_device *dev,
6821 struct netdev_phys_item_id *ppid)
6822{
6823 const struct net_device_ops *ops = dev->netdev_ops;
6824
6825 if (!ops->ndo_get_phys_port_id)
6826 return -EOPNOTSUPP;
6827 return ops->ndo_get_phys_port_id(dev, ppid);
6828}
6829EXPORT_SYMBOL(dev_get_phys_port_id);
6830
6831/**
6832 * dev_get_phys_port_name - Get device physical port name
6833 * @dev: device
6834 * @name: port name
6835 * @len: limit of bytes to copy to name
6836 *
6837 * Get device physical port name
6838 */
6839int dev_get_phys_port_name(struct net_device *dev,
6840 char *name, size_t len)
6841{
6842 const struct net_device_ops *ops = dev->netdev_ops;
6843
6844 if (!ops->ndo_get_phys_port_name)
6845 return -EOPNOTSUPP;
6846 return ops->ndo_get_phys_port_name(dev, name, len);
6847}
6848EXPORT_SYMBOL(dev_get_phys_port_name);
6849
6850/**
6851 * dev_change_proto_down - update protocol port state information
6852 * @dev: device
6853 * @proto_down: new value
6854 *
6855 * This info can be used by switch drivers to set the phys state of the
6856 * port.
6857 */
6858int dev_change_proto_down(struct net_device *dev, bool proto_down)
6859{
6860 const struct net_device_ops *ops = dev->netdev_ops;
6861
6862 if (!ops->ndo_change_proto_down)
6863 return -EOPNOTSUPP;
6864 if (!netif_device_present(dev))
6865 return -ENODEV;
6866 return ops->ndo_change_proto_down(dev, proto_down);
6867}
6868EXPORT_SYMBOL(dev_change_proto_down);
6869
6870bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op)
6871{
6872 struct netdev_xdp xdp;
6873
6874 memset(&xdp, 0, sizeof(xdp));
6875 xdp.command = XDP_QUERY_PROG;
6876
6877 /* Query must always succeed. */
6878 WARN_ON(xdp_op(dev, &xdp) < 0);
6879 return xdp.prog_attached;
6880}
6881
6882static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6883 struct netlink_ext_ack *extack,
6884 struct bpf_prog *prog)
6885{
6886 struct netdev_xdp xdp;
6887
6888 memset(&xdp, 0, sizeof(xdp));
6889 xdp.command = XDP_SETUP_PROG;
6890 xdp.extack = extack;
6891 xdp.prog = prog;
6892
6893 return xdp_op(dev, &xdp);
6894}
6895
6896/**
6897 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6898 * @dev: device
6899 * @extack: netlink extended ack
6900 * @fd: new program fd or negative value to clear
6901 * @flags: xdp-related flags
6902 *
6903 * Set or clear a bpf program for a device
6904 */
6905int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6906 int fd, u32 flags)
6907{
6908 const struct net_device_ops *ops = dev->netdev_ops;
6909 struct bpf_prog *prog = NULL;
6910 xdp_op_t xdp_op, xdp_chk;
6911 int err;
6912
6913 ASSERT_RTNL();
6914
6915 xdp_op = xdp_chk = ops->ndo_xdp;
6916 if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE))
6917 return -EOPNOTSUPP;
6918 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
6919 xdp_op = generic_xdp_install;
6920 if (xdp_op == xdp_chk)
6921 xdp_chk = generic_xdp_install;
6922
6923 if (fd >= 0) {
6924 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk))
6925 return -EEXIST;
6926 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
6927 __dev_xdp_attached(dev, xdp_op))
6928 return -EBUSY;
6929
6930 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6931 if (IS_ERR(prog))
6932 return PTR_ERR(prog);
6933 }
6934
6935 err = dev_xdp_install(dev, xdp_op, extack, prog);
6936 if (err < 0 && prog)
6937 bpf_prog_put(prog);
6938
6939 return err;
6940}
6941
6942/**
6943 * dev_new_index - allocate an ifindex
6944 * @net: the applicable net namespace
6945 *
6946 * Returns a suitable unique value for a new device interface
6947 * number. The caller must hold the rtnl semaphore or the
6948 * dev_base_lock to be sure it remains unique.
6949 */
6950static int dev_new_index(struct net *net)
6951{
6952 int ifindex = net->ifindex;
6953
6954 for (;;) {
6955 if (++ifindex <= 0)
6956 ifindex = 1;
6957 if (!__dev_get_by_index(net, ifindex))
6958 return net->ifindex = ifindex;
6959 }
6960}
6961
6962/* Delayed registration/unregisteration */
6963static LIST_HEAD(net_todo_list);
6964DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6965
6966static void net_set_todo(struct net_device *dev)
6967{
6968 list_add_tail(&dev->todo_list, &net_todo_list);
6969 dev_net(dev)->dev_unreg_count++;
6970}
6971
6972static void rollback_registered_many(struct list_head *head)
6973{
6974 struct net_device *dev, *tmp;
6975 LIST_HEAD(close_head);
6976
6977 BUG_ON(dev_boot_phase);
6978 ASSERT_RTNL();
6979
6980 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6981 /* Some devices call without registering
6982 * for initialization unwind. Remove those
6983 * devices and proceed with the remaining.
6984 */
6985 if (dev->reg_state == NETREG_UNINITIALIZED) {
6986 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6987 dev->name, dev);
6988
6989 WARN_ON(1);
6990 list_del(&dev->unreg_list);
6991 continue;
6992 }
6993 dev->dismantle = true;
6994 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6995 }
6996
6997 /* If device is running, close it first. */
6998 list_for_each_entry(dev, head, unreg_list)
6999 list_add_tail(&dev->close_list, &close_head);
7000 dev_close_many(&close_head, true);
7001
7002 list_for_each_entry(dev, head, unreg_list) {
7003 /* And unlink it from device chain. */
7004 unlist_netdevice(dev);
7005
7006 dev->reg_state = NETREG_UNREGISTERING;
7007 }
7008 flush_all_backlogs();
7009
7010 synchronize_net();
7011
7012 list_for_each_entry(dev, head, unreg_list) {
7013 struct sk_buff *skb = NULL;
7014
7015 /* Shutdown queueing discipline. */
7016 dev_shutdown(dev);
7017
7018
7019 /* Notify protocols, that we are about to destroy
7020 * this device. They should clean all the things.
7021 */
7022 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7023
7024 if (!dev->rtnl_link_ops ||
7025 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7026 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
7027 GFP_KERNEL);
7028
7029 /*
7030 * Flush the unicast and multicast chains
7031 */
7032 dev_uc_flush(dev);
7033 dev_mc_flush(dev);
7034
7035 if (dev->netdev_ops->ndo_uninit)
7036 dev->netdev_ops->ndo_uninit(dev);
7037
7038 if (skb)
7039 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7040
7041 /* Notifier chain MUST detach us all upper devices. */
7042 WARN_ON(netdev_has_any_upper_dev(dev));
7043 WARN_ON(netdev_has_any_lower_dev(dev));
7044
7045 /* Remove entries from kobject tree */
7046 netdev_unregister_kobject(dev);
7047#ifdef CONFIG_XPS
7048 /* Remove XPS queueing entries */
7049 netif_reset_xps_queues_gt(dev, 0);
7050#endif
7051 }
7052
7053 synchronize_net();
7054
7055 list_for_each_entry(dev, head, unreg_list)
7056 dev_put(dev);
7057}
7058
7059static void rollback_registered(struct net_device *dev)
7060{
7061 LIST_HEAD(single);
7062
7063 list_add(&dev->unreg_list, &single);
7064 rollback_registered_many(&single);
7065 list_del(&single);
7066}
7067
7068static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7069 struct net_device *upper, netdev_features_t features)
7070{
7071 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7072 netdev_features_t feature;
7073 int feature_bit;
7074
7075 for_each_netdev_feature(&upper_disables, feature_bit) {
7076 feature = __NETIF_F_BIT(feature_bit);
7077 if (!(upper->wanted_features & feature)
7078 && (features & feature)) {
7079 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7080 &feature, upper->name);
7081 features &= ~feature;
7082 }
7083 }
7084
7085 return features;
7086}
7087
7088static void netdev_sync_lower_features(struct net_device *upper,
7089 struct net_device *lower, netdev_features_t features)
7090{
7091 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7092 netdev_features_t feature;
7093 int feature_bit;
7094
7095 for_each_netdev_feature(&upper_disables, feature_bit) {
7096 feature = __NETIF_F_BIT(feature_bit);
7097 if (!(features & feature) && (lower->features & feature)) {
7098 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7099 &feature, lower->name);
7100 lower->wanted_features &= ~feature;
7101 netdev_update_features(lower);
7102
7103 if (unlikely(lower->features & feature))
7104 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7105 &feature, lower->name);
7106 }
7107 }
7108}
7109
7110static netdev_features_t netdev_fix_features(struct net_device *dev,
7111 netdev_features_t features)
7112{
7113 /* Fix illegal checksum combinations */
7114 if ((features & NETIF_F_HW_CSUM) &&
7115 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7116 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7117 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7118 }
7119
7120 /* TSO requires that SG is present as well. */
7121 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7122 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7123 features &= ~NETIF_F_ALL_TSO;
7124 }
7125
7126 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7127 !(features & NETIF_F_IP_CSUM)) {
7128 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7129 features &= ~NETIF_F_TSO;
7130 features &= ~NETIF_F_TSO_ECN;
7131 }
7132
7133 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7134 !(features & NETIF_F_IPV6_CSUM)) {
7135 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7136 features &= ~NETIF_F_TSO6;
7137 }
7138
7139 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7140 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7141 features &= ~NETIF_F_TSO_MANGLEID;
7142
7143 /* TSO ECN requires that TSO is present as well. */
7144 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7145 features &= ~NETIF_F_TSO_ECN;
7146
7147 /* Software GSO depends on SG. */
7148 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7149 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7150 features &= ~NETIF_F_GSO;
7151 }
7152
7153 /* UFO needs SG and checksumming */
7154 if (features & NETIF_F_UFO) {
7155 /* maybe split UFO into V4 and V6? */
7156 if (!(features & NETIF_F_HW_CSUM) &&
7157 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7158 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7159 netdev_dbg(dev,
7160 "Dropping NETIF_F_UFO since no checksum offload features.\n");
7161 features &= ~NETIF_F_UFO;
7162 }
7163
7164 if (!(features & NETIF_F_SG)) {
7165 netdev_dbg(dev,
7166 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7167 features &= ~NETIF_F_UFO;
7168 }
7169 }
7170
7171 /* GSO partial features require GSO partial be set */
7172 if ((features & dev->gso_partial_features) &&
7173 !(features & NETIF_F_GSO_PARTIAL)) {
7174 netdev_dbg(dev,
7175 "Dropping partially supported GSO features since no GSO partial.\n");
7176 features &= ~dev->gso_partial_features;
7177 }
7178
7179 return features;
7180}
7181
7182int __netdev_update_features(struct net_device *dev)
7183{
7184 struct net_device *upper, *lower;
7185 netdev_features_t features;
7186 struct list_head *iter;
7187 int err = -1;
7188
7189 ASSERT_RTNL();
7190
7191 features = netdev_get_wanted_features(dev);
7192
7193 if (dev->netdev_ops->ndo_fix_features)
7194 features = dev->netdev_ops->ndo_fix_features(dev, features);
7195
7196 /* driver might be less strict about feature dependencies */
7197 features = netdev_fix_features(dev, features);
7198
7199 /* some features can't be enabled if they're off an an upper device */
7200 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7201 features = netdev_sync_upper_features(dev, upper, features);
7202
7203 if (dev->features == features)
7204 goto sync_lower;
7205
7206 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7207 &dev->features, &features);
7208
7209 if (dev->netdev_ops->ndo_set_features)
7210 err = dev->netdev_ops->ndo_set_features(dev, features);
7211 else
7212 err = 0;
7213
7214 if (unlikely(err < 0)) {
7215 netdev_err(dev,
7216 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7217 err, &features, &dev->features);
7218 /* return non-0 since some features might have changed and
7219 * it's better to fire a spurious notification than miss it
7220 */
7221 return -1;
7222 }
7223
7224sync_lower:
7225 /* some features must be disabled on lower devices when disabled
7226 * on an upper device (think: bonding master or bridge)
7227 */
7228 netdev_for_each_lower_dev(dev, lower, iter)
7229 netdev_sync_lower_features(dev, lower, features);
7230
7231 if (!err)
7232 dev->features = features;
7233
7234 return err < 0 ? 0 : 1;
7235}
7236
7237/**
7238 * netdev_update_features - recalculate device features
7239 * @dev: the device to check
7240 *
7241 * Recalculate dev->features set and send notifications if it
7242 * has changed. Should be called after driver or hardware dependent
7243 * conditions might have changed that influence the features.
7244 */
7245void netdev_update_features(struct net_device *dev)
7246{
7247 if (__netdev_update_features(dev))
7248 netdev_features_change(dev);
7249}
7250EXPORT_SYMBOL(netdev_update_features);
7251
7252/**
7253 * netdev_change_features - recalculate device features
7254 * @dev: the device to check
7255 *
7256 * Recalculate dev->features set and send notifications even
7257 * if they have not changed. Should be called instead of
7258 * netdev_update_features() if also dev->vlan_features might
7259 * have changed to allow the changes to be propagated to stacked
7260 * VLAN devices.
7261 */
7262void netdev_change_features(struct net_device *dev)
7263{
7264 __netdev_update_features(dev);
7265 netdev_features_change(dev);
7266}
7267EXPORT_SYMBOL(netdev_change_features);
7268
7269/**
7270 * netif_stacked_transfer_operstate - transfer operstate
7271 * @rootdev: the root or lower level device to transfer state from
7272 * @dev: the device to transfer operstate to
7273 *
7274 * Transfer operational state from root to device. This is normally
7275 * called when a stacking relationship exists between the root
7276 * device and the device(a leaf device).
7277 */
7278void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7279 struct net_device *dev)
7280{
7281 if (rootdev->operstate == IF_OPER_DORMANT)
7282 netif_dormant_on(dev);
7283 else
7284 netif_dormant_off(dev);
7285
7286 if (netif_carrier_ok(rootdev))
7287 netif_carrier_on(dev);
7288 else
7289 netif_carrier_off(dev);
7290}
7291EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7292
7293#ifdef CONFIG_SYSFS
7294static int netif_alloc_rx_queues(struct net_device *dev)
7295{
7296 unsigned int i, count = dev->num_rx_queues;
7297 struct netdev_rx_queue *rx;
7298 size_t sz = count * sizeof(*rx);
7299
7300 BUG_ON(count < 1);
7301
7302 rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7303 if (!rx)
7304 return -ENOMEM;
7305
7306 dev->_rx = rx;
7307
7308 for (i = 0; i < count; i++)
7309 rx[i].dev = dev;
7310 return 0;
7311}
7312#endif
7313
7314static void netdev_init_one_queue(struct net_device *dev,
7315 struct netdev_queue *queue, void *_unused)
7316{
7317 /* Initialize queue lock */
7318 spin_lock_init(&queue->_xmit_lock);
7319 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7320 queue->xmit_lock_owner = -1;
7321 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7322 queue->dev = dev;
7323#ifdef CONFIG_BQL
7324 dql_init(&queue->dql, HZ);
7325#endif
7326}
7327
7328static void netif_free_tx_queues(struct net_device *dev)
7329{
7330 kvfree(dev->_tx);
7331}
7332
7333static int netif_alloc_netdev_queues(struct net_device *dev)
7334{
7335 unsigned int count = dev->num_tx_queues;
7336 struct netdev_queue *tx;
7337 size_t sz = count * sizeof(*tx);
7338
7339 if (count < 1 || count > 0xffff)
7340 return -EINVAL;
7341
7342 tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7343 if (!tx)
7344 return -ENOMEM;
7345
7346 dev->_tx = tx;
7347
7348 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7349 spin_lock_init(&dev->tx_global_lock);
7350
7351 return 0;
7352}
7353
7354void netif_tx_stop_all_queues(struct net_device *dev)
7355{
7356 unsigned int i;
7357
7358 for (i = 0; i < dev->num_tx_queues; i++) {
7359 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7360
7361 netif_tx_stop_queue(txq);
7362 }
7363}
7364EXPORT_SYMBOL(netif_tx_stop_all_queues);
7365
7366/**
7367 * register_netdevice - register a network device
7368 * @dev: device to register
7369 *
7370 * Take a completed network device structure and add it to the kernel
7371 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7372 * chain. 0 is returned on success. A negative errno code is returned
7373 * on a failure to set up the device, or if the name is a duplicate.
7374 *
7375 * Callers must hold the rtnl semaphore. You may want
7376 * register_netdev() instead of this.
7377 *
7378 * BUGS:
7379 * The locking appears insufficient to guarantee two parallel registers
7380 * will not get the same name.
7381 */
7382
7383int register_netdevice(struct net_device *dev)
7384{
7385 int ret;
7386 struct net *net = dev_net(dev);
7387
7388 BUG_ON(dev_boot_phase);
7389 ASSERT_RTNL();
7390
7391 might_sleep();
7392
7393 /* When net_device's are persistent, this will be fatal. */
7394 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7395 BUG_ON(!net);
7396
7397 spin_lock_init(&dev->addr_list_lock);
7398 netdev_set_addr_lockdep_class(dev);
7399
7400 ret = dev_get_valid_name(net, dev, dev->name);
7401 if (ret < 0)
7402 goto out;
7403
7404 /* Init, if this function is available */
7405 if (dev->netdev_ops->ndo_init) {
7406 ret = dev->netdev_ops->ndo_init(dev);
7407 if (ret) {
7408 if (ret > 0)
7409 ret = -EIO;
7410 goto out;
7411 }
7412 }
7413
7414 if (((dev->hw_features | dev->features) &
7415 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7416 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7417 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7418 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7419 ret = -EINVAL;
7420 goto err_uninit;
7421 }
7422
7423 ret = -EBUSY;
7424 if (!dev->ifindex)
7425 dev->ifindex = dev_new_index(net);
7426 else if (__dev_get_by_index(net, dev->ifindex))
7427 goto err_uninit;
7428
7429 /* Transfer changeable features to wanted_features and enable
7430 * software offloads (GSO and GRO).
7431 */
7432 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7433 dev->features |= NETIF_F_SOFT_FEATURES;
7434 dev->wanted_features = dev->features & dev->hw_features;
7435
7436 if (!(dev->flags & IFF_LOOPBACK))
7437 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7438
7439 /* If IPv4 TCP segmentation offload is supported we should also
7440 * allow the device to enable segmenting the frame with the option
7441 * of ignoring a static IP ID value. This doesn't enable the
7442 * feature itself but allows the user to enable it later.
7443 */
7444 if (dev->hw_features & NETIF_F_TSO)
7445 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7446 if (dev->vlan_features & NETIF_F_TSO)
7447 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7448 if (dev->mpls_features & NETIF_F_TSO)
7449 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7450 if (dev->hw_enc_features & NETIF_F_TSO)
7451 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7452
7453 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7454 */
7455 dev->vlan_features |= NETIF_F_HIGHDMA;
7456
7457 /* Make NETIF_F_SG inheritable to tunnel devices.
7458 */
7459 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7460
7461 /* Make NETIF_F_SG inheritable to MPLS.
7462 */
7463 dev->mpls_features |= NETIF_F_SG;
7464
7465 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7466 ret = notifier_to_errno(ret);
7467 if (ret)
7468 goto err_uninit;
7469
7470 ret = netdev_register_kobject(dev);
7471 if (ret)
7472 goto err_uninit;
7473 dev->reg_state = NETREG_REGISTERED;
7474
7475 __netdev_update_features(dev);
7476
7477 /*
7478 * Default initial state at registry is that the
7479 * device is present.
7480 */
7481
7482 set_bit(__LINK_STATE_PRESENT, &dev->state);
7483
7484 linkwatch_init_dev(dev);
7485
7486 dev_init_scheduler(dev);
7487 dev_hold(dev);
7488 list_netdevice(dev);
7489 add_device_randomness(dev->dev_addr, dev->addr_len);
7490
7491 /* If the device has permanent device address, driver should
7492 * set dev_addr and also addr_assign_type should be set to
7493 * NET_ADDR_PERM (default value).
7494 */
7495 if (dev->addr_assign_type == NET_ADDR_PERM)
7496 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7497
7498 /* Notify protocols, that a new device appeared. */
7499 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7500 ret = notifier_to_errno(ret);
7501 if (ret) {
7502 rollback_registered(dev);
7503 dev->reg_state = NETREG_UNREGISTERED;
7504 }
7505 /*
7506 * Prevent userspace races by waiting until the network
7507 * device is fully setup before sending notifications.
7508 */
7509 if (!dev->rtnl_link_ops ||
7510 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7511 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7512
7513out:
7514 return ret;
7515
7516err_uninit:
7517 if (dev->netdev_ops->ndo_uninit)
7518 dev->netdev_ops->ndo_uninit(dev);
7519 if (dev->priv_destructor)
7520 dev->priv_destructor(dev);
7521 goto out;
7522}
7523EXPORT_SYMBOL(register_netdevice);
7524
7525/**
7526 * init_dummy_netdev - init a dummy network device for NAPI
7527 * @dev: device to init
7528 *
7529 * This takes a network device structure and initialize the minimum
7530 * amount of fields so it can be used to schedule NAPI polls without
7531 * registering a full blown interface. This is to be used by drivers
7532 * that need to tie several hardware interfaces to a single NAPI
7533 * poll scheduler due to HW limitations.
7534 */
7535int init_dummy_netdev(struct net_device *dev)
7536{
7537 /* Clear everything. Note we don't initialize spinlocks
7538 * are they aren't supposed to be taken by any of the
7539 * NAPI code and this dummy netdev is supposed to be
7540 * only ever used for NAPI polls
7541 */
7542 memset(dev, 0, sizeof(struct net_device));
7543
7544 /* make sure we BUG if trying to hit standard
7545 * register/unregister code path
7546 */
7547 dev->reg_state = NETREG_DUMMY;
7548
7549 /* NAPI wants this */
7550 INIT_LIST_HEAD(&dev->napi_list);
7551
7552 /* a dummy interface is started by default */
7553 set_bit(__LINK_STATE_PRESENT, &dev->state);
7554 set_bit(__LINK_STATE_START, &dev->state);
7555
7556 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7557 * because users of this 'device' dont need to change
7558 * its refcount.
7559 */
7560
7561 return 0;
7562}
7563EXPORT_SYMBOL_GPL(init_dummy_netdev);
7564
7565
7566/**
7567 * register_netdev - register a network device
7568 * @dev: device to register
7569 *
7570 * Take a completed network device structure and add it to the kernel
7571 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7572 * chain. 0 is returned on success. A negative errno code is returned
7573 * on a failure to set up the device, or if the name is a duplicate.
7574 *
7575 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7576 * and expands the device name if you passed a format string to
7577 * alloc_netdev.
7578 */
7579int register_netdev(struct net_device *dev)
7580{
7581 int err;
7582
7583 rtnl_lock();
7584 err = register_netdevice(dev);
7585 rtnl_unlock();
7586 return err;
7587}
7588EXPORT_SYMBOL(register_netdev);
7589
7590int netdev_refcnt_read(const struct net_device *dev)
7591{
7592 int i, refcnt = 0;
7593
7594 for_each_possible_cpu(i)
7595 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7596 return refcnt;
7597}
7598EXPORT_SYMBOL(netdev_refcnt_read);
7599
7600/**
7601 * netdev_wait_allrefs - wait until all references are gone.
7602 * @dev: target net_device
7603 *
7604 * This is called when unregistering network devices.
7605 *
7606 * Any protocol or device that holds a reference should register
7607 * for netdevice notification, and cleanup and put back the
7608 * reference if they receive an UNREGISTER event.
7609 * We can get stuck here if buggy protocols don't correctly
7610 * call dev_put.
7611 */
7612static void netdev_wait_allrefs(struct net_device *dev)
7613{
7614 unsigned long rebroadcast_time, warning_time;
7615 int refcnt;
7616
7617 linkwatch_forget_dev(dev);
7618
7619 rebroadcast_time = warning_time = jiffies;
7620 refcnt = netdev_refcnt_read(dev);
7621
7622 while (refcnt != 0) {
7623 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7624 rtnl_lock();
7625
7626 /* Rebroadcast unregister notification */
7627 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7628
7629 __rtnl_unlock();
7630 rcu_barrier();
7631 rtnl_lock();
7632
7633 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7634 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7635 &dev->state)) {
7636 /* We must not have linkwatch events
7637 * pending on unregister. If this
7638 * happens, we simply run the queue
7639 * unscheduled, resulting in a noop
7640 * for this device.
7641 */
7642 linkwatch_run_queue();
7643 }
7644
7645 __rtnl_unlock();
7646
7647 rebroadcast_time = jiffies;
7648 }
7649
7650 msleep(250);
7651
7652 refcnt = netdev_refcnt_read(dev);
7653
7654 if (time_after(jiffies, warning_time + 10 * HZ)) {
7655 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7656 dev->name, refcnt);
7657 warning_time = jiffies;
7658 }
7659 }
7660}
7661
7662/* The sequence is:
7663 *
7664 * rtnl_lock();
7665 * ...
7666 * register_netdevice(x1);
7667 * register_netdevice(x2);
7668 * ...
7669 * unregister_netdevice(y1);
7670 * unregister_netdevice(y2);
7671 * ...
7672 * rtnl_unlock();
7673 * free_netdev(y1);
7674 * free_netdev(y2);
7675 *
7676 * We are invoked by rtnl_unlock().
7677 * This allows us to deal with problems:
7678 * 1) We can delete sysfs objects which invoke hotplug
7679 * without deadlocking with linkwatch via keventd.
7680 * 2) Since we run with the RTNL semaphore not held, we can sleep
7681 * safely in order to wait for the netdev refcnt to drop to zero.
7682 *
7683 * We must not return until all unregister events added during
7684 * the interval the lock was held have been completed.
7685 */
7686void netdev_run_todo(void)
7687{
7688 struct list_head list;
7689
7690 /* Snapshot list, allow later requests */
7691 list_replace_init(&net_todo_list, &list);
7692
7693 __rtnl_unlock();
7694
7695
7696 /* Wait for rcu callbacks to finish before next phase */
7697 if (!list_empty(&list))
7698 rcu_barrier();
7699
7700 while (!list_empty(&list)) {
7701 struct net_device *dev
7702 = list_first_entry(&list, struct net_device, todo_list);
7703 list_del(&dev->todo_list);
7704
7705 rtnl_lock();
7706 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7707 __rtnl_unlock();
7708
7709 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7710 pr_err("network todo '%s' but state %d\n",
7711 dev->name, dev->reg_state);
7712 dump_stack();
7713 continue;
7714 }
7715
7716 dev->reg_state = NETREG_UNREGISTERED;
7717
7718 netdev_wait_allrefs(dev);
7719
7720 /* paranoia */
7721 BUG_ON(netdev_refcnt_read(dev));
7722 BUG_ON(!list_empty(&dev->ptype_all));
7723 BUG_ON(!list_empty(&dev->ptype_specific));
7724 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7725 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7726 WARN_ON(dev->dn_ptr);
7727
7728 if (dev->priv_destructor)
7729 dev->priv_destructor(dev);
7730 if (dev->needs_free_netdev)
7731 free_netdev(dev);
7732
7733 /* Report a network device has been unregistered */
7734 rtnl_lock();
7735 dev_net(dev)->dev_unreg_count--;
7736 __rtnl_unlock();
7737 wake_up(&netdev_unregistering_wq);
7738
7739 /* Free network device */
7740 kobject_put(&dev->dev.kobj);
7741 }
7742}
7743
7744/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7745 * all the same fields in the same order as net_device_stats, with only
7746 * the type differing, but rtnl_link_stats64 may have additional fields
7747 * at the end for newer counters.
7748 */
7749void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7750 const struct net_device_stats *netdev_stats)
7751{
7752#if BITS_PER_LONG == 64
7753 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7754 memcpy(stats64, netdev_stats, sizeof(*stats64));
7755 /* zero out counters that only exist in rtnl_link_stats64 */
7756 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7757 sizeof(*stats64) - sizeof(*netdev_stats));
7758#else
7759 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7760 const unsigned long *src = (const unsigned long *)netdev_stats;
7761 u64 *dst = (u64 *)stats64;
7762
7763 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7764 for (i = 0; i < n; i++)
7765 dst[i] = src[i];
7766 /* zero out counters that only exist in rtnl_link_stats64 */
7767 memset((char *)stats64 + n * sizeof(u64), 0,
7768 sizeof(*stats64) - n * sizeof(u64));
7769#endif
7770}
7771EXPORT_SYMBOL(netdev_stats_to_stats64);
7772
7773/**
7774 * dev_get_stats - get network device statistics
7775 * @dev: device to get statistics from
7776 * @storage: place to store stats
7777 *
7778 * Get network statistics from device. Return @storage.
7779 * The device driver may provide its own method by setting
7780 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7781 * otherwise the internal statistics structure is used.
7782 */
7783struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7784 struct rtnl_link_stats64 *storage)
7785{
7786 const struct net_device_ops *ops = dev->netdev_ops;
7787
7788 if (ops->ndo_get_stats64) {
7789 memset(storage, 0, sizeof(*storage));
7790 ops->ndo_get_stats64(dev, storage);
7791 } else if (ops->ndo_get_stats) {
7792 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7793 } else {
7794 netdev_stats_to_stats64(storage, &dev->stats);
7795 }
7796 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7797 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7798 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7799 return storage;
7800}
7801EXPORT_SYMBOL(dev_get_stats);
7802
7803struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7804{
7805 struct netdev_queue *queue = dev_ingress_queue(dev);
7806
7807#ifdef CONFIG_NET_CLS_ACT
7808 if (queue)
7809 return queue;
7810 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7811 if (!queue)
7812 return NULL;
7813 netdev_init_one_queue(dev, queue, NULL);
7814 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7815 queue->qdisc_sleeping = &noop_qdisc;
7816 rcu_assign_pointer(dev->ingress_queue, queue);
7817#endif
7818 return queue;
7819}
7820
7821static const struct ethtool_ops default_ethtool_ops;
7822
7823void netdev_set_default_ethtool_ops(struct net_device *dev,
7824 const struct ethtool_ops *ops)
7825{
7826 if (dev->ethtool_ops == &default_ethtool_ops)
7827 dev->ethtool_ops = ops;
7828}
7829EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7830
7831void netdev_freemem(struct net_device *dev)
7832{
7833 char *addr = (char *)dev - dev->padded;
7834
7835 kvfree(addr);
7836}
7837
7838/**
7839 * alloc_netdev_mqs - allocate network device
7840 * @sizeof_priv: size of private data to allocate space for
7841 * @name: device name format string
7842 * @name_assign_type: origin of device name
7843 * @setup: callback to initialize device
7844 * @txqs: the number of TX subqueues to allocate
7845 * @rxqs: the number of RX subqueues to allocate
7846 *
7847 * Allocates a struct net_device with private data area for driver use
7848 * and performs basic initialization. Also allocates subqueue structs
7849 * for each queue on the device.
7850 */
7851struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7852 unsigned char name_assign_type,
7853 void (*setup)(struct net_device *),
7854 unsigned int txqs, unsigned int rxqs)
7855{
7856 struct net_device *dev;
7857 size_t alloc_size;
7858 struct net_device *p;
7859
7860 BUG_ON(strlen(name) >= sizeof(dev->name));
7861
7862 if (txqs < 1) {
7863 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7864 return NULL;
7865 }
7866
7867#ifdef CONFIG_SYSFS
7868 if (rxqs < 1) {
7869 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7870 return NULL;
7871 }
7872#endif
7873
7874 alloc_size = sizeof(struct net_device);
7875 if (sizeof_priv) {
7876 /* ensure 32-byte alignment of private area */
7877 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7878 alloc_size += sizeof_priv;
7879 }
7880 /* ensure 32-byte alignment of whole construct */
7881 alloc_size += NETDEV_ALIGN - 1;
7882
7883 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
7884 if (!p)
7885 return NULL;
7886
7887 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7888 dev->padded = (char *)dev - (char *)p;
7889
7890 dev->pcpu_refcnt = alloc_percpu(int);
7891 if (!dev->pcpu_refcnt)
7892 goto free_dev;
7893
7894 if (dev_addr_init(dev))
7895 goto free_pcpu;
7896
7897 dev_mc_init(dev);
7898 dev_uc_init(dev);
7899
7900 dev_net_set(dev, &init_net);
7901
7902 dev->gso_max_size = GSO_MAX_SIZE;
7903 dev->gso_max_segs = GSO_MAX_SEGS;
7904
7905 INIT_LIST_HEAD(&dev->napi_list);
7906 INIT_LIST_HEAD(&dev->unreg_list);
7907 INIT_LIST_HEAD(&dev->close_list);
7908 INIT_LIST_HEAD(&dev->link_watch_list);
7909 INIT_LIST_HEAD(&dev->adj_list.upper);
7910 INIT_LIST_HEAD(&dev->adj_list.lower);
7911 INIT_LIST_HEAD(&dev->ptype_all);
7912 INIT_LIST_HEAD(&dev->ptype_specific);
7913#ifdef CONFIG_NET_SCHED
7914 hash_init(dev->qdisc_hash);
7915#endif
7916 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7917 setup(dev);
7918
7919 if (!dev->tx_queue_len) {
7920 dev->priv_flags |= IFF_NO_QUEUE;
7921 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7922 }
7923
7924 dev->num_tx_queues = txqs;
7925 dev->real_num_tx_queues = txqs;
7926 if (netif_alloc_netdev_queues(dev))
7927 goto free_all;
7928
7929#ifdef CONFIG_SYSFS
7930 dev->num_rx_queues = rxqs;
7931 dev->real_num_rx_queues = rxqs;
7932 if (netif_alloc_rx_queues(dev))
7933 goto free_all;
7934#endif
7935
7936 strcpy(dev->name, name);
7937 dev->name_assign_type = name_assign_type;
7938 dev->group = INIT_NETDEV_GROUP;
7939 if (!dev->ethtool_ops)
7940 dev->ethtool_ops = &default_ethtool_ops;
7941
7942 nf_hook_ingress_init(dev);
7943
7944 return dev;
7945
7946free_all:
7947 free_netdev(dev);
7948 return NULL;
7949
7950free_pcpu:
7951 free_percpu(dev->pcpu_refcnt);
7952free_dev:
7953 netdev_freemem(dev);
7954 return NULL;
7955}
7956EXPORT_SYMBOL(alloc_netdev_mqs);
7957
7958/**
7959 * free_netdev - free network device
7960 * @dev: device
7961 *
7962 * This function does the last stage of destroying an allocated device
7963 * interface. The reference to the device object is released. If this
7964 * is the last reference then it will be freed.Must be called in process
7965 * context.
7966 */
7967void free_netdev(struct net_device *dev)
7968{
7969 struct napi_struct *p, *n;
7970 struct bpf_prog *prog;
7971
7972 might_sleep();
7973 netif_free_tx_queues(dev);
7974#ifdef CONFIG_SYSFS
7975 kvfree(dev->_rx);
7976#endif
7977
7978 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7979
7980 /* Flush device addresses */
7981 dev_addr_flush(dev);
7982
7983 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7984 netif_napi_del(p);
7985
7986 free_percpu(dev->pcpu_refcnt);
7987 dev->pcpu_refcnt = NULL;
7988
7989 prog = rcu_dereference_protected(dev->xdp_prog, 1);
7990 if (prog) {
7991 bpf_prog_put(prog);
7992 static_key_slow_dec(&generic_xdp_needed);
7993 }
7994
7995 /* Compatibility with error handling in drivers */
7996 if (dev->reg_state == NETREG_UNINITIALIZED) {
7997 netdev_freemem(dev);
7998 return;
7999 }
8000
8001 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8002 dev->reg_state = NETREG_RELEASED;
8003
8004 /* will free via device release */
8005 put_device(&dev->dev);
8006}
8007EXPORT_SYMBOL(free_netdev);
8008
8009/**
8010 * synchronize_net - Synchronize with packet receive processing
8011 *
8012 * Wait for packets currently being received to be done.
8013 * Does not block later packets from starting.
8014 */
8015void synchronize_net(void)
8016{
8017 might_sleep();
8018 if (rtnl_is_locked())
8019 synchronize_rcu_expedited();
8020 else
8021 synchronize_rcu();
8022}
8023EXPORT_SYMBOL(synchronize_net);
8024
8025/**
8026 * unregister_netdevice_queue - remove device from the kernel
8027 * @dev: device
8028 * @head: list
8029 *
8030 * This function shuts down a device interface and removes it
8031 * from the kernel tables.
8032 * If head not NULL, device is queued to be unregistered later.
8033 *
8034 * Callers must hold the rtnl semaphore. You may want
8035 * unregister_netdev() instead of this.
8036 */
8037
8038void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8039{
8040 ASSERT_RTNL();
8041
8042 if (head) {
8043 list_move_tail(&dev->unreg_list, head);
8044 } else {
8045 rollback_registered(dev);
8046 /* Finish processing unregister after unlock */
8047 net_set_todo(dev);
8048 }
8049}
8050EXPORT_SYMBOL(unregister_netdevice_queue);
8051
8052/**
8053 * unregister_netdevice_many - unregister many devices
8054 * @head: list of devices
8055 *
8056 * Note: As most callers use a stack allocated list_head,
8057 * we force a list_del() to make sure stack wont be corrupted later.
8058 */
8059void unregister_netdevice_many(struct list_head *head)
8060{
8061 struct net_device *dev;
8062
8063 if (!list_empty(head)) {
8064 rollback_registered_many(head);
8065 list_for_each_entry(dev, head, unreg_list)
8066 net_set_todo(dev);
8067 list_del(head);
8068 }
8069}
8070EXPORT_SYMBOL(unregister_netdevice_many);
8071
8072/**
8073 * unregister_netdev - remove device from the kernel
8074 * @dev: device
8075 *
8076 * This function shuts down a device interface and removes it
8077 * from the kernel tables.
8078 *
8079 * This is just a wrapper for unregister_netdevice that takes
8080 * the rtnl semaphore. In general you want to use this and not
8081 * unregister_netdevice.
8082 */
8083void unregister_netdev(struct net_device *dev)
8084{
8085 rtnl_lock();
8086 unregister_netdevice(dev);
8087 rtnl_unlock();
8088}
8089EXPORT_SYMBOL(unregister_netdev);
8090
8091/**
8092 * dev_change_net_namespace - move device to different nethost namespace
8093 * @dev: device
8094 * @net: network namespace
8095 * @pat: If not NULL name pattern to try if the current device name
8096 * is already taken in the destination network namespace.
8097 *
8098 * This function shuts down a device interface and moves it
8099 * to a new network namespace. On success 0 is returned, on
8100 * a failure a netagive errno code is returned.
8101 *
8102 * Callers must hold the rtnl semaphore.
8103 */
8104
8105int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8106{
8107 int err;
8108
8109 ASSERT_RTNL();
8110
8111 /* Don't allow namespace local devices to be moved. */
8112 err = -EINVAL;
8113 if (dev->features & NETIF_F_NETNS_LOCAL)
8114 goto out;
8115
8116 /* Ensure the device has been registrered */
8117 if (dev->reg_state != NETREG_REGISTERED)
8118 goto out;
8119
8120 /* Get out if there is nothing todo */
8121 err = 0;
8122 if (net_eq(dev_net(dev), net))
8123 goto out;
8124
8125 /* Pick the destination device name, and ensure
8126 * we can use it in the destination network namespace.
8127 */
8128 err = -EEXIST;
8129 if (__dev_get_by_name(net, dev->name)) {
8130 /* We get here if we can't use the current device name */
8131 if (!pat)
8132 goto out;
8133 if (dev_get_valid_name(net, dev, pat) < 0)
8134 goto out;
8135 }
8136
8137 /*
8138 * And now a mini version of register_netdevice unregister_netdevice.
8139 */
8140
8141 /* If device is running close it first. */
8142 dev_close(dev);
8143
8144 /* And unlink it from device chain */
8145 err = -ENODEV;
8146 unlist_netdevice(dev);
8147
8148 synchronize_net();
8149
8150 /* Shutdown queueing discipline. */
8151 dev_shutdown(dev);
8152
8153 /* Notify protocols, that we are about to destroy
8154 * this device. They should clean all the things.
8155 *
8156 * Note that dev->reg_state stays at NETREG_REGISTERED.
8157 * This is wanted because this way 8021q and macvlan know
8158 * the device is just moving and can keep their slaves up.
8159 */
8160 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8161 rcu_barrier();
8162 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8163 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8164
8165 /*
8166 * Flush the unicast and multicast chains
8167 */
8168 dev_uc_flush(dev);
8169 dev_mc_flush(dev);
8170
8171 /* Send a netdev-removed uevent to the old namespace */
8172 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8173 netdev_adjacent_del_links(dev);
8174
8175 /* Actually switch the network namespace */
8176 dev_net_set(dev, net);
8177
8178 /* If there is an ifindex conflict assign a new one */
8179 if (__dev_get_by_index(net, dev->ifindex))
8180 dev->ifindex = dev_new_index(net);
8181
8182 /* Send a netdev-add uevent to the new namespace */
8183 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8184 netdev_adjacent_add_links(dev);
8185
8186 /* Fixup kobjects */
8187 err = device_rename(&dev->dev, dev->name);
8188 WARN_ON(err);
8189
8190 /* Add the device back in the hashes */
8191 list_netdevice(dev);
8192
8193 /* Notify protocols, that a new device appeared. */
8194 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8195
8196 /*
8197 * Prevent userspace races by waiting until the network
8198 * device is fully setup before sending notifications.
8199 */
8200 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8201
8202 synchronize_net();
8203 err = 0;
8204out:
8205 return err;
8206}
8207EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8208
8209static int dev_cpu_dead(unsigned int oldcpu)
8210{
8211 struct sk_buff **list_skb;
8212 struct sk_buff *skb;
8213 unsigned int cpu;
8214 struct softnet_data *sd, *oldsd, *remsd = NULL;
8215
8216 local_irq_disable();
8217 cpu = smp_processor_id();
8218 sd = &per_cpu(softnet_data, cpu);
8219 oldsd = &per_cpu(softnet_data, oldcpu);
8220
8221 /* Find end of our completion_queue. */
8222 list_skb = &sd->completion_queue;
8223 while (*list_skb)
8224 list_skb = &(*list_skb)->next;
8225 /* Append completion queue from offline CPU. */
8226 *list_skb = oldsd->completion_queue;
8227 oldsd->completion_queue = NULL;
8228
8229 /* Append output queue from offline CPU. */
8230 if (oldsd->output_queue) {
8231 *sd->output_queue_tailp = oldsd->output_queue;
8232 sd->output_queue_tailp = oldsd->output_queue_tailp;
8233 oldsd->output_queue = NULL;
8234 oldsd->output_queue_tailp = &oldsd->output_queue;
8235 }
8236 /* Append NAPI poll list from offline CPU, with one exception :
8237 * process_backlog() must be called by cpu owning percpu backlog.
8238 * We properly handle process_queue & input_pkt_queue later.
8239 */
8240 while (!list_empty(&oldsd->poll_list)) {
8241 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8242 struct napi_struct,
8243 poll_list);
8244
8245 list_del_init(&napi->poll_list);
8246 if (napi->poll == process_backlog)
8247 napi->state = 0;
8248 else
8249 ____napi_schedule(sd, napi);
8250 }
8251
8252 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8253 local_irq_enable();
8254
8255#ifdef CONFIG_RPS
8256 remsd = oldsd->rps_ipi_list;
8257 oldsd->rps_ipi_list = NULL;
8258#endif
8259 /* send out pending IPI's on offline CPU */
8260 net_rps_send_ipi(remsd);
8261
8262 /* Process offline CPU's input_pkt_queue */
8263 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8264 netif_rx_ni(skb);
8265 input_queue_head_incr(oldsd);
8266 }
8267 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8268 netif_rx_ni(skb);
8269 input_queue_head_incr(oldsd);
8270 }
8271
8272 return 0;
8273}
8274
8275/**
8276 * netdev_increment_features - increment feature set by one
8277 * @all: current feature set
8278 * @one: new feature set
8279 * @mask: mask feature set
8280 *
8281 * Computes a new feature set after adding a device with feature set
8282 * @one to the master device with current feature set @all. Will not
8283 * enable anything that is off in @mask. Returns the new feature set.
8284 */
8285netdev_features_t netdev_increment_features(netdev_features_t all,
8286 netdev_features_t one, netdev_features_t mask)
8287{
8288 if (mask & NETIF_F_HW_CSUM)
8289 mask |= NETIF_F_CSUM_MASK;
8290 mask |= NETIF_F_VLAN_CHALLENGED;
8291
8292 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8293 all &= one | ~NETIF_F_ALL_FOR_ALL;
8294
8295 /* If one device supports hw checksumming, set for all. */
8296 if (all & NETIF_F_HW_CSUM)
8297 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8298
8299 return all;
8300}
8301EXPORT_SYMBOL(netdev_increment_features);
8302
8303static struct hlist_head * __net_init netdev_create_hash(void)
8304{
8305 int i;
8306 struct hlist_head *hash;
8307
8308 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8309 if (hash != NULL)
8310 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8311 INIT_HLIST_HEAD(&hash[i]);
8312
8313 return hash;
8314}
8315
8316/* Initialize per network namespace state */
8317static int __net_init netdev_init(struct net *net)
8318{
8319 if (net != &init_net)
8320 INIT_LIST_HEAD(&net->dev_base_head);
8321
8322 net->dev_name_head = netdev_create_hash();
8323 if (net->dev_name_head == NULL)
8324 goto err_name;
8325
8326 net->dev_index_head = netdev_create_hash();
8327 if (net->dev_index_head == NULL)
8328 goto err_idx;
8329
8330 return 0;
8331
8332err_idx:
8333 kfree(net->dev_name_head);
8334err_name:
8335 return -ENOMEM;
8336}
8337
8338/**
8339 * netdev_drivername - network driver for the device
8340 * @dev: network device
8341 *
8342 * Determine network driver for device.
8343 */
8344const char *netdev_drivername(const struct net_device *dev)
8345{
8346 const struct device_driver *driver;
8347 const struct device *parent;
8348 const char *empty = "";
8349
8350 parent = dev->dev.parent;
8351 if (!parent)
8352 return empty;
8353
8354 driver = parent->driver;
8355 if (driver && driver->name)
8356 return driver->name;
8357 return empty;
8358}
8359
8360static void __netdev_printk(const char *level, const struct net_device *dev,
8361 struct va_format *vaf)
8362{
8363 if (dev && dev->dev.parent) {
8364 dev_printk_emit(level[1] - '0',
8365 dev->dev.parent,
8366 "%s %s %s%s: %pV",
8367 dev_driver_string(dev->dev.parent),
8368 dev_name(dev->dev.parent),
8369 netdev_name(dev), netdev_reg_state(dev),
8370 vaf);
8371 } else if (dev) {
8372 printk("%s%s%s: %pV",
8373 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8374 } else {
8375 printk("%s(NULL net_device): %pV", level, vaf);
8376 }
8377}
8378
8379void netdev_printk(const char *level, const struct net_device *dev,
8380 const char *format, ...)
8381{
8382 struct va_format vaf;
8383 va_list args;
8384
8385 va_start(args, format);
8386
8387 vaf.fmt = format;
8388 vaf.va = &args;
8389
8390 __netdev_printk(level, dev, &vaf);
8391
8392 va_end(args);
8393}
8394EXPORT_SYMBOL(netdev_printk);
8395
8396#define define_netdev_printk_level(func, level) \
8397void func(const struct net_device *dev, const char *fmt, ...) \
8398{ \
8399 struct va_format vaf; \
8400 va_list args; \
8401 \
8402 va_start(args, fmt); \
8403 \
8404 vaf.fmt = fmt; \
8405 vaf.va = &args; \
8406 \
8407 __netdev_printk(level, dev, &vaf); \
8408 \
8409 va_end(args); \
8410} \
8411EXPORT_SYMBOL(func);
8412
8413define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8414define_netdev_printk_level(netdev_alert, KERN_ALERT);
8415define_netdev_printk_level(netdev_crit, KERN_CRIT);
8416define_netdev_printk_level(netdev_err, KERN_ERR);
8417define_netdev_printk_level(netdev_warn, KERN_WARNING);
8418define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8419define_netdev_printk_level(netdev_info, KERN_INFO);
8420
8421static void __net_exit netdev_exit(struct net *net)
8422{
8423 kfree(net->dev_name_head);
8424 kfree(net->dev_index_head);
8425}
8426
8427static struct pernet_operations __net_initdata netdev_net_ops = {
8428 .init = netdev_init,
8429 .exit = netdev_exit,
8430};
8431
8432static void __net_exit default_device_exit(struct net *net)
8433{
8434 struct net_device *dev, *aux;
8435 /*
8436 * Push all migratable network devices back to the
8437 * initial network namespace
8438 */
8439 rtnl_lock();
8440 for_each_netdev_safe(net, dev, aux) {
8441 int err;
8442 char fb_name[IFNAMSIZ];
8443
8444 /* Ignore unmoveable devices (i.e. loopback) */
8445 if (dev->features & NETIF_F_NETNS_LOCAL)
8446 continue;
8447
8448 /* Leave virtual devices for the generic cleanup */
8449 if (dev->rtnl_link_ops)
8450 continue;
8451
8452 /* Push remaining network devices to init_net */
8453 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8454 err = dev_change_net_namespace(dev, &init_net, fb_name);
8455 if (err) {
8456 pr_emerg("%s: failed to move %s to init_net: %d\n",
8457 __func__, dev->name, err);
8458 BUG();
8459 }
8460 }
8461 rtnl_unlock();
8462}
8463
8464static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8465{
8466 /* Return with the rtnl_lock held when there are no network
8467 * devices unregistering in any network namespace in net_list.
8468 */
8469 struct net *net;
8470 bool unregistering;
8471 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8472
8473 add_wait_queue(&netdev_unregistering_wq, &wait);
8474 for (;;) {
8475 unregistering = false;
8476 rtnl_lock();
8477 list_for_each_entry(net, net_list, exit_list) {
8478 if (net->dev_unreg_count > 0) {
8479 unregistering = true;
8480 break;
8481 }
8482 }
8483 if (!unregistering)
8484 break;
8485 __rtnl_unlock();
8486
8487 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8488 }
8489 remove_wait_queue(&netdev_unregistering_wq, &wait);
8490}
8491
8492static void __net_exit default_device_exit_batch(struct list_head *net_list)
8493{
8494 /* At exit all network devices most be removed from a network
8495 * namespace. Do this in the reverse order of registration.
8496 * Do this across as many network namespaces as possible to
8497 * improve batching efficiency.
8498 */
8499 struct net_device *dev;
8500 struct net *net;
8501 LIST_HEAD(dev_kill_list);
8502
8503 /* To prevent network device cleanup code from dereferencing
8504 * loopback devices or network devices that have been freed
8505 * wait here for all pending unregistrations to complete,
8506 * before unregistring the loopback device and allowing the
8507 * network namespace be freed.
8508 *
8509 * The netdev todo list containing all network devices
8510 * unregistrations that happen in default_device_exit_batch
8511 * will run in the rtnl_unlock() at the end of
8512 * default_device_exit_batch.
8513 */
8514 rtnl_lock_unregistering(net_list);
8515 list_for_each_entry(net, net_list, exit_list) {
8516 for_each_netdev_reverse(net, dev) {
8517 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8518 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8519 else
8520 unregister_netdevice_queue(dev, &dev_kill_list);
8521 }
8522 }
8523 unregister_netdevice_many(&dev_kill_list);
8524 rtnl_unlock();
8525}
8526
8527static struct pernet_operations __net_initdata default_device_ops = {
8528 .exit = default_device_exit,
8529 .exit_batch = default_device_exit_batch,
8530};
8531
8532/*
8533 * Initialize the DEV module. At boot time this walks the device list and
8534 * unhooks any devices that fail to initialise (normally hardware not
8535 * present) and leaves us with a valid list of present and active devices.
8536 *
8537 */
8538
8539/*
8540 * This is called single threaded during boot, so no need
8541 * to take the rtnl semaphore.
8542 */
8543static int __init net_dev_init(void)
8544{
8545 int i, rc = -ENOMEM;
8546
8547 BUG_ON(!dev_boot_phase);
8548
8549 if (dev_proc_init())
8550 goto out;
8551
8552 if (netdev_kobject_init())
8553 goto out;
8554
8555 INIT_LIST_HEAD(&ptype_all);
8556 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8557 INIT_LIST_HEAD(&ptype_base[i]);
8558
8559 INIT_LIST_HEAD(&offload_base);
8560
8561 if (register_pernet_subsys(&netdev_net_ops))
8562 goto out;
8563
8564 /*
8565 * Initialise the packet receive queues.
8566 */
8567
8568 for_each_possible_cpu(i) {
8569 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8570 struct softnet_data *sd = &per_cpu(softnet_data, i);
8571
8572 INIT_WORK(flush, flush_backlog);
8573
8574 skb_queue_head_init(&sd->input_pkt_queue);
8575 skb_queue_head_init(&sd->process_queue);
8576 INIT_LIST_HEAD(&sd->poll_list);
8577 sd->output_queue_tailp = &sd->output_queue;
8578#ifdef CONFIG_RPS
8579 sd->csd.func = rps_trigger_softirq;
8580 sd->csd.info = sd;
8581 sd->cpu = i;
8582#endif
8583
8584 sd->backlog.poll = process_backlog;
8585 sd->backlog.weight = weight_p;
8586 }
8587
8588 dev_boot_phase = 0;
8589
8590 /* The loopback device is special if any other network devices
8591 * is present in a network namespace the loopback device must
8592 * be present. Since we now dynamically allocate and free the
8593 * loopback device ensure this invariant is maintained by
8594 * keeping the loopback device as the first device on the
8595 * list of network devices. Ensuring the loopback devices
8596 * is the first device that appears and the last network device
8597 * that disappears.
8598 */
8599 if (register_pernet_device(&loopback_net_ops))
8600 goto out;
8601
8602 if (register_pernet_device(&default_device_ops))
8603 goto out;
8604
8605 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8606 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8607
8608 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8609 NULL, dev_cpu_dead);
8610 WARN_ON(rc < 0);
8611 dst_subsys_init();
8612 rc = 0;
8613out:
8614 return rc;
8615}
8616
8617subsys_initcall(net_dev_init);