at v4.12 41 kB view raw
1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/cache.h> 38#include <linux/spinlock.h> 39#include <linux/threads.h> 40#include <linux/cpumask.h> 41#include <linux/seqlock.h> 42#include <linux/lockdep.h> 43#include <linux/debugobjects.h> 44#include <linux/bug.h> 45#include <linux/compiler.h> 46#include <linux/ktime.h> 47#include <linux/irqflags.h> 48 49#include <asm/barrier.h> 50 51#ifndef CONFIG_TINY_RCU 52extern int rcu_expedited; /* for sysctl */ 53extern int rcu_normal; /* also for sysctl */ 54#endif /* #ifndef CONFIG_TINY_RCU */ 55 56#ifdef CONFIG_TINY_RCU 57/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */ 58static inline bool rcu_gp_is_normal(void) /* Internal RCU use. */ 59{ 60 return true; 61} 62static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */ 63{ 64 return false; 65} 66 67static inline void rcu_expedite_gp(void) 68{ 69} 70 71static inline void rcu_unexpedite_gp(void) 72{ 73} 74#else /* #ifdef CONFIG_TINY_RCU */ 75bool rcu_gp_is_normal(void); /* Internal RCU use. */ 76bool rcu_gp_is_expedited(void); /* Internal RCU use. */ 77void rcu_expedite_gp(void); 78void rcu_unexpedite_gp(void); 79#endif /* #else #ifdef CONFIG_TINY_RCU */ 80 81enum rcutorture_type { 82 RCU_FLAVOR, 83 RCU_BH_FLAVOR, 84 RCU_SCHED_FLAVOR, 85 RCU_TASKS_FLAVOR, 86 SRCU_FLAVOR, 87 INVALID_RCU_FLAVOR 88}; 89 90#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 91void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 92 unsigned long *gpnum, unsigned long *completed); 93void rcutorture_record_test_transition(void); 94void rcutorture_record_progress(unsigned long vernum); 95void do_trace_rcu_torture_read(const char *rcutorturename, 96 struct rcu_head *rhp, 97 unsigned long secs, 98 unsigned long c_old, 99 unsigned long c); 100bool rcu_irq_enter_disabled(void); 101#else 102static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, 103 int *flags, 104 unsigned long *gpnum, 105 unsigned long *completed) 106{ 107 *flags = 0; 108 *gpnum = 0; 109 *completed = 0; 110} 111static inline void rcutorture_record_test_transition(void) 112{ 113} 114static inline void rcutorture_record_progress(unsigned long vernum) 115{ 116} 117static inline bool rcu_irq_enter_disabled(void) 118{ 119 return false; 120} 121#ifdef CONFIG_RCU_TRACE 122void do_trace_rcu_torture_read(const char *rcutorturename, 123 struct rcu_head *rhp, 124 unsigned long secs, 125 unsigned long c_old, 126 unsigned long c); 127#else 128#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 129 do { } while (0) 130#endif 131#endif 132 133#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 134#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 135#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 136#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 137#define ulong2long(a) (*(long *)(&(a))) 138 139/* Exported common interfaces */ 140 141#ifdef CONFIG_PREEMPT_RCU 142 143/** 144 * call_rcu() - Queue an RCU callback for invocation after a grace period. 145 * @head: structure to be used for queueing the RCU updates. 146 * @func: actual callback function to be invoked after the grace period 147 * 148 * The callback function will be invoked some time after a full grace 149 * period elapses, in other words after all pre-existing RCU read-side 150 * critical sections have completed. However, the callback function 151 * might well execute concurrently with RCU read-side critical sections 152 * that started after call_rcu() was invoked. RCU read-side critical 153 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 154 * and may be nested. 155 * 156 * Note that all CPUs must agree that the grace period extended beyond 157 * all pre-existing RCU read-side critical section. On systems with more 158 * than one CPU, this means that when "func()" is invoked, each CPU is 159 * guaranteed to have executed a full memory barrier since the end of its 160 * last RCU read-side critical section whose beginning preceded the call 161 * to call_rcu(). It also means that each CPU executing an RCU read-side 162 * critical section that continues beyond the start of "func()" must have 163 * executed a memory barrier after the call_rcu() but before the beginning 164 * of that RCU read-side critical section. Note that these guarantees 165 * include CPUs that are offline, idle, or executing in user mode, as 166 * well as CPUs that are executing in the kernel. 167 * 168 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 169 * resulting RCU callback function "func()", then both CPU A and CPU B are 170 * guaranteed to execute a full memory barrier during the time interval 171 * between the call to call_rcu() and the invocation of "func()" -- even 172 * if CPU A and CPU B are the same CPU (but again only if the system has 173 * more than one CPU). 174 */ 175void call_rcu(struct rcu_head *head, 176 rcu_callback_t func); 177 178#else /* #ifdef CONFIG_PREEMPT_RCU */ 179 180/* In classic RCU, call_rcu() is just call_rcu_sched(). */ 181#define call_rcu call_rcu_sched 182 183#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 184 185/** 186 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 187 * @head: structure to be used for queueing the RCU updates. 188 * @func: actual callback function to be invoked after the grace period 189 * 190 * The callback function will be invoked some time after a full grace 191 * period elapses, in other words after all currently executing RCU 192 * read-side critical sections have completed. call_rcu_bh() assumes 193 * that the read-side critical sections end on completion of a softirq 194 * handler. This means that read-side critical sections in process 195 * context must not be interrupted by softirqs. This interface is to be 196 * used when most of the read-side critical sections are in softirq context. 197 * RCU read-side critical sections are delimited by : 198 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 199 * OR 200 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 201 * These may be nested. 202 * 203 * See the description of call_rcu() for more detailed information on 204 * memory ordering guarantees. 205 */ 206void call_rcu_bh(struct rcu_head *head, 207 rcu_callback_t func); 208 209/** 210 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 211 * @head: structure to be used for queueing the RCU updates. 212 * @func: actual callback function to be invoked after the grace period 213 * 214 * The callback function will be invoked some time after a full grace 215 * period elapses, in other words after all currently executing RCU 216 * read-side critical sections have completed. call_rcu_sched() assumes 217 * that the read-side critical sections end on enabling of preemption 218 * or on voluntary preemption. 219 * RCU read-side critical sections are delimited by : 220 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 221 * OR 222 * anything that disables preemption. 223 * These may be nested. 224 * 225 * See the description of call_rcu() for more detailed information on 226 * memory ordering guarantees. 227 */ 228void call_rcu_sched(struct rcu_head *head, 229 rcu_callback_t func); 230 231void synchronize_sched(void); 232 233/** 234 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 235 * @head: structure to be used for queueing the RCU updates. 236 * @func: actual callback function to be invoked after the grace period 237 * 238 * The callback function will be invoked some time after a full grace 239 * period elapses, in other words after all currently executing RCU 240 * read-side critical sections have completed. call_rcu_tasks() assumes 241 * that the read-side critical sections end at a voluntary context 242 * switch (not a preemption!), entry into idle, or transition to usermode 243 * execution. As such, there are no read-side primitives analogous to 244 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended 245 * to determine that all tasks have passed through a safe state, not so 246 * much for data-strcuture synchronization. 247 * 248 * See the description of call_rcu() for more detailed information on 249 * memory ordering guarantees. 250 */ 251void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 252void synchronize_rcu_tasks(void); 253void rcu_barrier_tasks(void); 254 255#ifdef CONFIG_PREEMPT_RCU 256 257void __rcu_read_lock(void); 258void __rcu_read_unlock(void); 259void rcu_read_unlock_special(struct task_struct *t); 260void synchronize_rcu(void); 261 262/* 263 * Defined as a macro as it is a very low level header included from 264 * areas that don't even know about current. This gives the rcu_read_lock() 265 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 266 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 267 */ 268#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 269 270#else /* #ifdef CONFIG_PREEMPT_RCU */ 271 272static inline void __rcu_read_lock(void) 273{ 274 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 275 preempt_disable(); 276} 277 278static inline void __rcu_read_unlock(void) 279{ 280 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 281 preempt_enable(); 282} 283 284static inline void synchronize_rcu(void) 285{ 286 synchronize_sched(); 287} 288 289static inline int rcu_preempt_depth(void) 290{ 291 return 0; 292} 293 294#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 295 296/* Internal to kernel */ 297void rcu_init(void); 298void rcu_sched_qs(void); 299void rcu_bh_qs(void); 300void rcu_check_callbacks(int user); 301void rcu_report_dead(unsigned int cpu); 302void rcu_cpu_starting(unsigned int cpu); 303 304#ifndef CONFIG_TINY_RCU 305void rcu_end_inkernel_boot(void); 306#else /* #ifndef CONFIG_TINY_RCU */ 307static inline void rcu_end_inkernel_boot(void) { } 308#endif /* #ifndef CONFIG_TINY_RCU */ 309 310#ifdef CONFIG_RCU_STALL_COMMON 311void rcu_sysrq_start(void); 312void rcu_sysrq_end(void); 313#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 314static inline void rcu_sysrq_start(void) 315{ 316} 317static inline void rcu_sysrq_end(void) 318{ 319} 320#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 321 322#ifdef CONFIG_NO_HZ_FULL 323void rcu_user_enter(void); 324void rcu_user_exit(void); 325#else 326static inline void rcu_user_enter(void) { } 327static inline void rcu_user_exit(void) { } 328#endif /* CONFIG_NO_HZ_FULL */ 329 330#ifdef CONFIG_RCU_NOCB_CPU 331void rcu_init_nohz(void); 332#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 333static inline void rcu_init_nohz(void) 334{ 335} 336#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 337 338/** 339 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 340 * @a: Code that RCU needs to pay attention to. 341 * 342 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 343 * in the inner idle loop, that is, between the rcu_idle_enter() and 344 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 345 * critical sections. However, things like powertop need tracepoints 346 * in the inner idle loop. 347 * 348 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 349 * will tell RCU that it needs to pay attention, invoke its argument 350 * (in this example, calling the do_something_with_RCU() function), 351 * and then tell RCU to go back to ignoring this CPU. It is permissible 352 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 353 * on the order of a million or so, even on 32-bit systems). It is 354 * not legal to block within RCU_NONIDLE(), nor is it permissible to 355 * transfer control either into or out of RCU_NONIDLE()'s statement. 356 */ 357#define RCU_NONIDLE(a) \ 358 do { \ 359 rcu_irq_enter_irqson(); \ 360 do { a; } while (0); \ 361 rcu_irq_exit_irqson(); \ 362 } while (0) 363 364/* 365 * Note a voluntary context switch for RCU-tasks benefit. This is a 366 * macro rather than an inline function to avoid #include hell. 367 */ 368#ifdef CONFIG_TASKS_RCU 369#define TASKS_RCU(x) x 370extern struct srcu_struct tasks_rcu_exit_srcu; 371#define rcu_note_voluntary_context_switch_lite(t) \ 372 do { \ 373 if (READ_ONCE((t)->rcu_tasks_holdout)) \ 374 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 375 } while (0) 376#define rcu_note_voluntary_context_switch(t) \ 377 do { \ 378 rcu_all_qs(); \ 379 rcu_note_voluntary_context_switch_lite(t); \ 380 } while (0) 381#else /* #ifdef CONFIG_TASKS_RCU */ 382#define TASKS_RCU(x) do { } while (0) 383#define rcu_note_voluntary_context_switch_lite(t) do { } while (0) 384#define rcu_note_voluntary_context_switch(t) rcu_all_qs() 385#endif /* #else #ifdef CONFIG_TASKS_RCU */ 386 387/** 388 * cond_resched_rcu_qs - Report potential quiescent states to RCU 389 * 390 * This macro resembles cond_resched(), except that it is defined to 391 * report potential quiescent states to RCU-tasks even if the cond_resched() 392 * machinery were to be shut off, as some advocate for PREEMPT kernels. 393 */ 394#define cond_resched_rcu_qs() \ 395do { \ 396 if (!cond_resched()) \ 397 rcu_note_voluntary_context_switch(current); \ 398} while (0) 399 400#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) 401bool __rcu_is_watching(void); 402#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */ 403 404/* 405 * Infrastructure to implement the synchronize_() primitives in 406 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 407 */ 408 409#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 410#include <linux/rcutree.h> 411#elif defined(CONFIG_TINY_RCU) 412#include <linux/rcutiny.h> 413#else 414#error "Unknown RCU implementation specified to kernel configuration" 415#endif 416 417#define RCU_SCHEDULER_INACTIVE 0 418#define RCU_SCHEDULER_INIT 1 419#define RCU_SCHEDULER_RUNNING 2 420 421/* 422 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 423 * initialization and destruction of rcu_head on the stack. rcu_head structures 424 * allocated dynamically in the heap or defined statically don't need any 425 * initialization. 426 */ 427#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 428void init_rcu_head(struct rcu_head *head); 429void destroy_rcu_head(struct rcu_head *head); 430void init_rcu_head_on_stack(struct rcu_head *head); 431void destroy_rcu_head_on_stack(struct rcu_head *head); 432#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 433static inline void init_rcu_head(struct rcu_head *head) 434{ 435} 436 437static inline void destroy_rcu_head(struct rcu_head *head) 438{ 439} 440 441static inline void init_rcu_head_on_stack(struct rcu_head *head) 442{ 443} 444 445static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 446{ 447} 448#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 449 450#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 451bool rcu_lockdep_current_cpu_online(void); 452#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 453static inline bool rcu_lockdep_current_cpu_online(void) 454{ 455 return true; 456} 457#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 458 459#ifdef CONFIG_DEBUG_LOCK_ALLOC 460 461static inline void rcu_lock_acquire(struct lockdep_map *map) 462{ 463 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 464} 465 466static inline void rcu_lock_release(struct lockdep_map *map) 467{ 468 lock_release(map, 1, _THIS_IP_); 469} 470 471extern struct lockdep_map rcu_lock_map; 472extern struct lockdep_map rcu_bh_lock_map; 473extern struct lockdep_map rcu_sched_lock_map; 474extern struct lockdep_map rcu_callback_map; 475int debug_lockdep_rcu_enabled(void); 476 477int rcu_read_lock_held(void); 478int rcu_read_lock_bh_held(void); 479 480/** 481 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 482 * 483 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 484 * RCU-sched read-side critical section. In absence of 485 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 486 * critical section unless it can prove otherwise. 487 */ 488int rcu_read_lock_sched_held(void); 489 490#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 491 492# define rcu_lock_acquire(a) do { } while (0) 493# define rcu_lock_release(a) do { } while (0) 494 495static inline int rcu_read_lock_held(void) 496{ 497 return 1; 498} 499 500static inline int rcu_read_lock_bh_held(void) 501{ 502 return 1; 503} 504 505static inline int rcu_read_lock_sched_held(void) 506{ 507 return !preemptible(); 508} 509#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 510 511#ifdef CONFIG_PROVE_RCU 512 513/** 514 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 515 * @c: condition to check 516 * @s: informative message 517 */ 518#define RCU_LOCKDEP_WARN(c, s) \ 519 do { \ 520 static bool __section(.data.unlikely) __warned; \ 521 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ 522 __warned = true; \ 523 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 524 } \ 525 } while (0) 526 527#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 528static inline void rcu_preempt_sleep_check(void) 529{ 530 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 531 "Illegal context switch in RCU read-side critical section"); 532} 533#else /* #ifdef CONFIG_PROVE_RCU */ 534static inline void rcu_preempt_sleep_check(void) 535{ 536} 537#endif /* #else #ifdef CONFIG_PROVE_RCU */ 538 539#define rcu_sleep_check() \ 540 do { \ 541 rcu_preempt_sleep_check(); \ 542 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 543 "Illegal context switch in RCU-bh read-side critical section"); \ 544 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 545 "Illegal context switch in RCU-sched read-side critical section"); \ 546 } while (0) 547 548#else /* #ifdef CONFIG_PROVE_RCU */ 549 550#define RCU_LOCKDEP_WARN(c, s) do { } while (0) 551#define rcu_sleep_check() do { } while (0) 552 553#endif /* #else #ifdef CONFIG_PROVE_RCU */ 554 555/* 556 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 557 * and rcu_assign_pointer(). Some of these could be folded into their 558 * callers, but they are left separate in order to ease introduction of 559 * multiple flavors of pointers to match the multiple flavors of RCU 560 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 561 * the future. 562 */ 563 564#ifdef __CHECKER__ 565#define rcu_dereference_sparse(p, space) \ 566 ((void)(((typeof(*p) space *)p) == p)) 567#else /* #ifdef __CHECKER__ */ 568#define rcu_dereference_sparse(p, space) 569#endif /* #else #ifdef __CHECKER__ */ 570 571#define __rcu_access_pointer(p, space) \ 572({ \ 573 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 574 rcu_dereference_sparse(p, space); \ 575 ((typeof(*p) __force __kernel *)(_________p1)); \ 576}) 577#define __rcu_dereference_check(p, c, space) \ 578({ \ 579 /* Dependency order vs. p above. */ \ 580 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \ 581 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 582 rcu_dereference_sparse(p, space); \ 583 ((typeof(*p) __force __kernel *)(________p1)); \ 584}) 585#define __rcu_dereference_protected(p, c, space) \ 586({ \ 587 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 588 rcu_dereference_sparse(p, space); \ 589 ((typeof(*p) __force __kernel *)(p)); \ 590}) 591#define rcu_dereference_raw(p) \ 592({ \ 593 /* Dependency order vs. p above. */ \ 594 typeof(p) ________p1 = lockless_dereference(p); \ 595 ((typeof(*p) __force __kernel *)(________p1)); \ 596}) 597 598/** 599 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 600 * @v: The value to statically initialize with. 601 */ 602#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 603 604/** 605 * rcu_assign_pointer() - assign to RCU-protected pointer 606 * @p: pointer to assign to 607 * @v: value to assign (publish) 608 * 609 * Assigns the specified value to the specified RCU-protected 610 * pointer, ensuring that any concurrent RCU readers will see 611 * any prior initialization. 612 * 613 * Inserts memory barriers on architectures that require them 614 * (which is most of them), and also prevents the compiler from 615 * reordering the code that initializes the structure after the pointer 616 * assignment. More importantly, this call documents which pointers 617 * will be dereferenced by RCU read-side code. 618 * 619 * In some special cases, you may use RCU_INIT_POINTER() instead 620 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 621 * to the fact that it does not constrain either the CPU or the compiler. 622 * That said, using RCU_INIT_POINTER() when you should have used 623 * rcu_assign_pointer() is a very bad thing that results in 624 * impossible-to-diagnose memory corruption. So please be careful. 625 * See the RCU_INIT_POINTER() comment header for details. 626 * 627 * Note that rcu_assign_pointer() evaluates each of its arguments only 628 * once, appearances notwithstanding. One of the "extra" evaluations 629 * is in typeof() and the other visible only to sparse (__CHECKER__), 630 * neither of which actually execute the argument. As with most cpp 631 * macros, this execute-arguments-only-once property is important, so 632 * please be careful when making changes to rcu_assign_pointer() and the 633 * other macros that it invokes. 634 */ 635#define rcu_assign_pointer(p, v) \ 636({ \ 637 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 638 \ 639 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 640 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 641 else \ 642 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 643 _r_a_p__v; \ 644}) 645 646/** 647 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 648 * @p: The pointer to read 649 * 650 * Return the value of the specified RCU-protected pointer, but omit the 651 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful 652 * when the value of this pointer is accessed, but the pointer is not 653 * dereferenced, for example, when testing an RCU-protected pointer against 654 * NULL. Although rcu_access_pointer() may also be used in cases where 655 * update-side locks prevent the value of the pointer from changing, you 656 * should instead use rcu_dereference_protected() for this use case. 657 * 658 * It is also permissible to use rcu_access_pointer() when read-side 659 * access to the pointer was removed at least one grace period ago, as 660 * is the case in the context of the RCU callback that is freeing up 661 * the data, or after a synchronize_rcu() returns. This can be useful 662 * when tearing down multi-linked structures after a grace period 663 * has elapsed. 664 */ 665#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 666 667/** 668 * rcu_dereference_check() - rcu_dereference with debug checking 669 * @p: The pointer to read, prior to dereferencing 670 * @c: The conditions under which the dereference will take place 671 * 672 * Do an rcu_dereference(), but check that the conditions under which the 673 * dereference will take place are correct. Typically the conditions 674 * indicate the various locking conditions that should be held at that 675 * point. The check should return true if the conditions are satisfied. 676 * An implicit check for being in an RCU read-side critical section 677 * (rcu_read_lock()) is included. 678 * 679 * For example: 680 * 681 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 682 * 683 * could be used to indicate to lockdep that foo->bar may only be dereferenced 684 * if either rcu_read_lock() is held, or that the lock required to replace 685 * the bar struct at foo->bar is held. 686 * 687 * Note that the list of conditions may also include indications of when a lock 688 * need not be held, for example during initialisation or destruction of the 689 * target struct: 690 * 691 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 692 * atomic_read(&foo->usage) == 0); 693 * 694 * Inserts memory barriers on architectures that require them 695 * (currently only the Alpha), prevents the compiler from refetching 696 * (and from merging fetches), and, more importantly, documents exactly 697 * which pointers are protected by RCU and checks that the pointer is 698 * annotated as __rcu. 699 */ 700#define rcu_dereference_check(p, c) \ 701 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 702 703/** 704 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 705 * @p: The pointer to read, prior to dereferencing 706 * @c: The conditions under which the dereference will take place 707 * 708 * This is the RCU-bh counterpart to rcu_dereference_check(). 709 */ 710#define rcu_dereference_bh_check(p, c) \ 711 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 712 713/** 714 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 715 * @p: The pointer to read, prior to dereferencing 716 * @c: The conditions under which the dereference will take place 717 * 718 * This is the RCU-sched counterpart to rcu_dereference_check(). 719 */ 720#define rcu_dereference_sched_check(p, c) \ 721 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 722 __rcu) 723 724/* 725 * The tracing infrastructure traces RCU (we want that), but unfortunately 726 * some of the RCU checks causes tracing to lock up the system. 727 * 728 * The no-tracing version of rcu_dereference_raw() must not call 729 * rcu_read_lock_held(). 730 */ 731#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 732 733/** 734 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 735 * @p: The pointer to read, prior to dereferencing 736 * @c: The conditions under which the dereference will take place 737 * 738 * Return the value of the specified RCU-protected pointer, but omit 739 * both the smp_read_barrier_depends() and the READ_ONCE(). This 740 * is useful in cases where update-side locks prevent the value of the 741 * pointer from changing. Please note that this primitive does -not- 742 * prevent the compiler from repeating this reference or combining it 743 * with other references, so it should not be used without protection 744 * of appropriate locks. 745 * 746 * This function is only for update-side use. Using this function 747 * when protected only by rcu_read_lock() will result in infrequent 748 * but very ugly failures. 749 */ 750#define rcu_dereference_protected(p, c) \ 751 __rcu_dereference_protected((p), (c), __rcu) 752 753 754/** 755 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 756 * @p: The pointer to read, prior to dereferencing 757 * 758 * This is a simple wrapper around rcu_dereference_check(). 759 */ 760#define rcu_dereference(p) rcu_dereference_check(p, 0) 761 762/** 763 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 764 * @p: The pointer to read, prior to dereferencing 765 * 766 * Makes rcu_dereference_check() do the dirty work. 767 */ 768#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 769 770/** 771 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 772 * @p: The pointer to read, prior to dereferencing 773 * 774 * Makes rcu_dereference_check() do the dirty work. 775 */ 776#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 777 778/** 779 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 780 * @p: The pointer to hand off 781 * 782 * This is simply an identity function, but it documents where a pointer 783 * is handed off from RCU to some other synchronization mechanism, for 784 * example, reference counting or locking. In C11, it would map to 785 * kill_dependency(). It could be used as follows: 786 * 787 * rcu_read_lock(); 788 * p = rcu_dereference(gp); 789 * long_lived = is_long_lived(p); 790 * if (long_lived) { 791 * if (!atomic_inc_not_zero(p->refcnt)) 792 * long_lived = false; 793 * else 794 * p = rcu_pointer_handoff(p); 795 * } 796 * rcu_read_unlock(); 797 */ 798#define rcu_pointer_handoff(p) (p) 799 800/** 801 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 802 * 803 * When synchronize_rcu() is invoked on one CPU while other CPUs 804 * are within RCU read-side critical sections, then the 805 * synchronize_rcu() is guaranteed to block until after all the other 806 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 807 * on one CPU while other CPUs are within RCU read-side critical 808 * sections, invocation of the corresponding RCU callback is deferred 809 * until after the all the other CPUs exit their critical sections. 810 * 811 * Note, however, that RCU callbacks are permitted to run concurrently 812 * with new RCU read-side critical sections. One way that this can happen 813 * is via the following sequence of events: (1) CPU 0 enters an RCU 814 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 815 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 816 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 817 * callback is invoked. This is legal, because the RCU read-side critical 818 * section that was running concurrently with the call_rcu() (and which 819 * therefore might be referencing something that the corresponding RCU 820 * callback would free up) has completed before the corresponding 821 * RCU callback is invoked. 822 * 823 * RCU read-side critical sections may be nested. Any deferred actions 824 * will be deferred until the outermost RCU read-side critical section 825 * completes. 826 * 827 * You can avoid reading and understanding the next paragraph by 828 * following this rule: don't put anything in an rcu_read_lock() RCU 829 * read-side critical section that would block in a !PREEMPT kernel. 830 * But if you want the full story, read on! 831 * 832 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), 833 * it is illegal to block while in an RCU read-side critical section. 834 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT 835 * kernel builds, RCU read-side critical sections may be preempted, 836 * but explicit blocking is illegal. Finally, in preemptible RCU 837 * implementations in real-time (with -rt patchset) kernel builds, RCU 838 * read-side critical sections may be preempted and they may also block, but 839 * only when acquiring spinlocks that are subject to priority inheritance. 840 */ 841static inline void rcu_read_lock(void) 842{ 843 __rcu_read_lock(); 844 __acquire(RCU); 845 rcu_lock_acquire(&rcu_lock_map); 846 RCU_LOCKDEP_WARN(!rcu_is_watching(), 847 "rcu_read_lock() used illegally while idle"); 848} 849 850/* 851 * So where is rcu_write_lock()? It does not exist, as there is no 852 * way for writers to lock out RCU readers. This is a feature, not 853 * a bug -- this property is what provides RCU's performance benefits. 854 * Of course, writers must coordinate with each other. The normal 855 * spinlock primitives work well for this, but any other technique may be 856 * used as well. RCU does not care how the writers keep out of each 857 * others' way, as long as they do so. 858 */ 859 860/** 861 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 862 * 863 * In most situations, rcu_read_unlock() is immune from deadlock. 864 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 865 * is responsible for deboosting, which it does via rt_mutex_unlock(). 866 * Unfortunately, this function acquires the scheduler's runqueue and 867 * priority-inheritance spinlocks. This means that deadlock could result 868 * if the caller of rcu_read_unlock() already holds one of these locks or 869 * any lock that is ever acquired while holding them; or any lock which 870 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock() 871 * does not disable irqs while taking ->wait_lock. 872 * 873 * That said, RCU readers are never priority boosted unless they were 874 * preempted. Therefore, one way to avoid deadlock is to make sure 875 * that preemption never happens within any RCU read-side critical 876 * section whose outermost rcu_read_unlock() is called with one of 877 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 878 * a number of ways, for example, by invoking preempt_disable() before 879 * critical section's outermost rcu_read_lock(). 880 * 881 * Given that the set of locks acquired by rt_mutex_unlock() might change 882 * at any time, a somewhat more future-proofed approach is to make sure 883 * that that preemption never happens within any RCU read-side critical 884 * section whose outermost rcu_read_unlock() is called with irqs disabled. 885 * This approach relies on the fact that rt_mutex_unlock() currently only 886 * acquires irq-disabled locks. 887 * 888 * The second of these two approaches is best in most situations, 889 * however, the first approach can also be useful, at least to those 890 * developers willing to keep abreast of the set of locks acquired by 891 * rt_mutex_unlock(). 892 * 893 * See rcu_read_lock() for more information. 894 */ 895static inline void rcu_read_unlock(void) 896{ 897 RCU_LOCKDEP_WARN(!rcu_is_watching(), 898 "rcu_read_unlock() used illegally while idle"); 899 __release(RCU); 900 __rcu_read_unlock(); 901 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 902} 903 904/** 905 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 906 * 907 * This is equivalent of rcu_read_lock(), but to be used when updates 908 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 909 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 910 * softirq handler to be a quiescent state, a process in RCU read-side 911 * critical section must be protected by disabling softirqs. Read-side 912 * critical sections in interrupt context can use just rcu_read_lock(), 913 * though this should at least be commented to avoid confusing people 914 * reading the code. 915 * 916 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 917 * must occur in the same context, for example, it is illegal to invoke 918 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 919 * was invoked from some other task. 920 */ 921static inline void rcu_read_lock_bh(void) 922{ 923 local_bh_disable(); 924 __acquire(RCU_BH); 925 rcu_lock_acquire(&rcu_bh_lock_map); 926 RCU_LOCKDEP_WARN(!rcu_is_watching(), 927 "rcu_read_lock_bh() used illegally while idle"); 928} 929 930/* 931 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 932 * 933 * See rcu_read_lock_bh() for more information. 934 */ 935static inline void rcu_read_unlock_bh(void) 936{ 937 RCU_LOCKDEP_WARN(!rcu_is_watching(), 938 "rcu_read_unlock_bh() used illegally while idle"); 939 rcu_lock_release(&rcu_bh_lock_map); 940 __release(RCU_BH); 941 local_bh_enable(); 942} 943 944/** 945 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 946 * 947 * This is equivalent of rcu_read_lock(), but to be used when updates 948 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 949 * Read-side critical sections can also be introduced by anything that 950 * disables preemption, including local_irq_disable() and friends. 951 * 952 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 953 * must occur in the same context, for example, it is illegal to invoke 954 * rcu_read_unlock_sched() from process context if the matching 955 * rcu_read_lock_sched() was invoked from an NMI handler. 956 */ 957static inline void rcu_read_lock_sched(void) 958{ 959 preempt_disable(); 960 __acquire(RCU_SCHED); 961 rcu_lock_acquire(&rcu_sched_lock_map); 962 RCU_LOCKDEP_WARN(!rcu_is_watching(), 963 "rcu_read_lock_sched() used illegally while idle"); 964} 965 966/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 967static inline notrace void rcu_read_lock_sched_notrace(void) 968{ 969 preempt_disable_notrace(); 970 __acquire(RCU_SCHED); 971} 972 973/* 974 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 975 * 976 * See rcu_read_lock_sched for more information. 977 */ 978static inline void rcu_read_unlock_sched(void) 979{ 980 RCU_LOCKDEP_WARN(!rcu_is_watching(), 981 "rcu_read_unlock_sched() used illegally while idle"); 982 rcu_lock_release(&rcu_sched_lock_map); 983 __release(RCU_SCHED); 984 preempt_enable(); 985} 986 987/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 988static inline notrace void rcu_read_unlock_sched_notrace(void) 989{ 990 __release(RCU_SCHED); 991 preempt_enable_notrace(); 992} 993 994/** 995 * RCU_INIT_POINTER() - initialize an RCU protected pointer 996 * 997 * Initialize an RCU-protected pointer in special cases where readers 998 * do not need ordering constraints on the CPU or the compiler. These 999 * special cases are: 1000 * 1001 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 1002 * 2. The caller has taken whatever steps are required to prevent 1003 * RCU readers from concurrently accessing this pointer -or- 1004 * 3. The referenced data structure has already been exposed to 1005 * readers either at compile time or via rcu_assign_pointer() -and- 1006 * a. You have not made -any- reader-visible changes to 1007 * this structure since then -or- 1008 * b. It is OK for readers accessing this structure from its 1009 * new location to see the old state of the structure. (For 1010 * example, the changes were to statistical counters or to 1011 * other state where exact synchronization is not required.) 1012 * 1013 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 1014 * result in impossible-to-diagnose memory corruption. As in the structures 1015 * will look OK in crash dumps, but any concurrent RCU readers might 1016 * see pre-initialized values of the referenced data structure. So 1017 * please be very careful how you use RCU_INIT_POINTER()!!! 1018 * 1019 * If you are creating an RCU-protected linked structure that is accessed 1020 * by a single external-to-structure RCU-protected pointer, then you may 1021 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 1022 * pointers, but you must use rcu_assign_pointer() to initialize the 1023 * external-to-structure pointer -after- you have completely initialized 1024 * the reader-accessible portions of the linked structure. 1025 * 1026 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 1027 * ordering guarantees for either the CPU or the compiler. 1028 */ 1029#define RCU_INIT_POINTER(p, v) \ 1030 do { \ 1031 rcu_dereference_sparse(p, __rcu); \ 1032 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 1033 } while (0) 1034 1035/** 1036 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 1037 * 1038 * GCC-style initialization for an RCU-protected pointer in a structure field. 1039 */ 1040#define RCU_POINTER_INITIALIZER(p, v) \ 1041 .p = RCU_INITIALIZER(v) 1042 1043/* 1044 * Does the specified offset indicate that the corresponding rcu_head 1045 * structure can be handled by kfree_rcu()? 1046 */ 1047#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 1048 1049/* 1050 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 1051 */ 1052#define __kfree_rcu(head, offset) \ 1053 do { \ 1054 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 1055 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ 1056 } while (0) 1057 1058/** 1059 * kfree_rcu() - kfree an object after a grace period. 1060 * @ptr: pointer to kfree 1061 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 1062 * 1063 * Many rcu callbacks functions just call kfree() on the base structure. 1064 * These functions are trivial, but their size adds up, and furthermore 1065 * when they are used in a kernel module, that module must invoke the 1066 * high-latency rcu_barrier() function at module-unload time. 1067 * 1068 * The kfree_rcu() function handles this issue. Rather than encoding a 1069 * function address in the embedded rcu_head structure, kfree_rcu() instead 1070 * encodes the offset of the rcu_head structure within the base structure. 1071 * Because the functions are not allowed in the low-order 4096 bytes of 1072 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 1073 * If the offset is larger than 4095 bytes, a compile-time error will 1074 * be generated in __kfree_rcu(). If this error is triggered, you can 1075 * either fall back to use of call_rcu() or rearrange the structure to 1076 * position the rcu_head structure into the first 4096 bytes. 1077 * 1078 * Note that the allowable offset might decrease in the future, for example, 1079 * to allow something like kmem_cache_free_rcu(). 1080 * 1081 * The BUILD_BUG_ON check must not involve any function calls, hence the 1082 * checks are done in macros here. 1083 */ 1084#define kfree_rcu(ptr, rcu_head) \ 1085 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 1086 1087#ifdef CONFIG_TINY_RCU 1088static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1089{ 1090 *nextevt = KTIME_MAX; 1091 return 0; 1092} 1093#endif /* #ifdef CONFIG_TINY_RCU */ 1094 1095#if defined(CONFIG_RCU_NOCB_CPU_ALL) 1096static inline bool rcu_is_nocb_cpu(int cpu) { return true; } 1097#elif defined(CONFIG_RCU_NOCB_CPU) 1098bool rcu_is_nocb_cpu(int cpu); 1099#else 1100static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 1101#endif 1102 1103 1104/* Only for use by adaptive-ticks code. */ 1105#ifdef CONFIG_NO_HZ_FULL_SYSIDLE 1106bool rcu_sys_is_idle(void); 1107void rcu_sysidle_force_exit(void); 1108#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1109 1110static inline bool rcu_sys_is_idle(void) 1111{ 1112 return false; 1113} 1114 1115static inline void rcu_sysidle_force_exit(void) 1116{ 1117} 1118 1119#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1120 1121 1122/* 1123 * Dump the ftrace buffer, but only one time per callsite per boot. 1124 */ 1125#define rcu_ftrace_dump(oops_dump_mode) \ 1126do { \ 1127 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \ 1128 \ 1129 if (!atomic_read(&___rfd_beenhere) && \ 1130 !atomic_xchg(&___rfd_beenhere, 1)) \ 1131 ftrace_dump(oops_dump_mode); \ 1132} while (0) 1133 1134/* 1135 * Place this after a lock-acquisition primitive to guarantee that 1136 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 1137 * if the UNLOCK and LOCK are executed by the same CPU or if the 1138 * UNLOCK and LOCK operate on the same lock variable. 1139 */ 1140#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 1141#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 1142#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1143#define smp_mb__after_unlock_lock() do { } while (0) 1144#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1145 1146 1147#endif /* __LINUX_RCUPDATE_H */