at v4.12 40 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18 19/* 20 * Kernel-internal data types and definitions: 21 */ 22 23#ifdef CONFIG_PERF_EVENTS 24# include <asm/perf_event.h> 25# include <asm/local64.h> 26#endif 27 28struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32}; 33 34#ifdef CONFIG_HAVE_HW_BREAKPOINT 35#include <asm/hw_breakpoint.h> 36#endif 37 38#include <linux/list.h> 39#include <linux/mutex.h> 40#include <linux/rculist.h> 41#include <linux/rcupdate.h> 42#include <linux/spinlock.h> 43#include <linux/hrtimer.h> 44#include <linux/fs.h> 45#include <linux/pid_namespace.h> 46#include <linux/workqueue.h> 47#include <linux/ftrace.h> 48#include <linux/cpu.h> 49#include <linux/irq_work.h> 50#include <linux/static_key.h> 51#include <linux/jump_label_ratelimit.h> 52#include <linux/atomic.h> 53#include <linux/sysfs.h> 54#include <linux/perf_regs.h> 55#include <linux/workqueue.h> 56#include <linux/cgroup.h> 57#include <asm/local.h> 58 59struct perf_callchain_entry { 60 __u64 nr; 61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 62}; 63 64struct perf_callchain_entry_ctx { 65 struct perf_callchain_entry *entry; 66 u32 max_stack; 67 u32 nr; 68 short contexts; 69 bool contexts_maxed; 70}; 71 72typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 73 unsigned long off, unsigned long len); 74 75struct perf_raw_frag { 76 union { 77 struct perf_raw_frag *next; 78 unsigned long pad; 79 }; 80 perf_copy_f copy; 81 void *data; 82 u32 size; 83} __packed; 84 85struct perf_raw_record { 86 struct perf_raw_frag frag; 87 u32 size; 88}; 89 90/* 91 * branch stack layout: 92 * nr: number of taken branches stored in entries[] 93 * 94 * Note that nr can vary from sample to sample 95 * branches (to, from) are stored from most recent 96 * to least recent, i.e., entries[0] contains the most 97 * recent branch. 98 */ 99struct perf_branch_stack { 100 __u64 nr; 101 struct perf_branch_entry entries[0]; 102}; 103 104struct task_struct; 105 106/* 107 * extra PMU register associated with an event 108 */ 109struct hw_perf_event_extra { 110 u64 config; /* register value */ 111 unsigned int reg; /* register address or index */ 112 int alloc; /* extra register already allocated */ 113 int idx; /* index in shared_regs->regs[] */ 114}; 115 116/** 117 * struct hw_perf_event - performance event hardware details: 118 */ 119struct hw_perf_event { 120#ifdef CONFIG_PERF_EVENTS 121 union { 122 struct { /* hardware */ 123 u64 config; 124 u64 last_tag; 125 unsigned long config_base; 126 unsigned long event_base; 127 int event_base_rdpmc; 128 int idx; 129 int last_cpu; 130 int flags; 131 132 struct hw_perf_event_extra extra_reg; 133 struct hw_perf_event_extra branch_reg; 134 }; 135 struct { /* software */ 136 struct hrtimer hrtimer; 137 }; 138 struct { /* tracepoint */ 139 /* for tp_event->class */ 140 struct list_head tp_list; 141 }; 142 struct { /* intel_cqm */ 143 int cqm_state; 144 u32 cqm_rmid; 145 int is_group_event; 146 struct list_head cqm_events_entry; 147 struct list_head cqm_groups_entry; 148 struct list_head cqm_group_entry; 149 }; 150 struct { /* itrace */ 151 int itrace_started; 152 }; 153 struct { /* amd_power */ 154 u64 pwr_acc; 155 u64 ptsc; 156 }; 157#ifdef CONFIG_HAVE_HW_BREAKPOINT 158 struct { /* breakpoint */ 159 /* 160 * Crufty hack to avoid the chicken and egg 161 * problem hw_breakpoint has with context 162 * creation and event initalization. 163 */ 164 struct arch_hw_breakpoint info; 165 struct list_head bp_list; 166 }; 167#endif 168 struct { /* amd_iommu */ 169 u8 iommu_bank; 170 u8 iommu_cntr; 171 u16 padding; 172 u64 conf; 173 u64 conf1; 174 }; 175 }; 176 /* 177 * If the event is a per task event, this will point to the task in 178 * question. See the comment in perf_event_alloc(). 179 */ 180 struct task_struct *target; 181 182 /* 183 * PMU would store hardware filter configuration 184 * here. 185 */ 186 void *addr_filters; 187 188 /* Last sync'ed generation of filters */ 189 unsigned long addr_filters_gen; 190 191/* 192 * hw_perf_event::state flags; used to track the PERF_EF_* state. 193 */ 194#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 195#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 196#define PERF_HES_ARCH 0x04 197 198 int state; 199 200 /* 201 * The last observed hardware counter value, updated with a 202 * local64_cmpxchg() such that pmu::read() can be called nested. 203 */ 204 local64_t prev_count; 205 206 /* 207 * The period to start the next sample with. 208 */ 209 u64 sample_period; 210 211 /* 212 * The period we started this sample with. 213 */ 214 u64 last_period; 215 216 /* 217 * However much is left of the current period; note that this is 218 * a full 64bit value and allows for generation of periods longer 219 * than hardware might allow. 220 */ 221 local64_t period_left; 222 223 /* 224 * State for throttling the event, see __perf_event_overflow() and 225 * perf_adjust_freq_unthr_context(). 226 */ 227 u64 interrupts_seq; 228 u64 interrupts; 229 230 /* 231 * State for freq target events, see __perf_event_overflow() and 232 * perf_adjust_freq_unthr_context(). 233 */ 234 u64 freq_time_stamp; 235 u64 freq_count_stamp; 236#endif 237}; 238 239struct perf_event; 240 241/* 242 * Common implementation detail of pmu::{start,commit,cancel}_txn 243 */ 244#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 245#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 246 247/** 248 * pmu::capabilities flags 249 */ 250#define PERF_PMU_CAP_NO_INTERRUPT 0x01 251#define PERF_PMU_CAP_NO_NMI 0x02 252#define PERF_PMU_CAP_AUX_NO_SG 0x04 253#define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 254#define PERF_PMU_CAP_EXCLUSIVE 0x10 255#define PERF_PMU_CAP_ITRACE 0x20 256#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 257 258/** 259 * struct pmu - generic performance monitoring unit 260 */ 261struct pmu { 262 struct list_head entry; 263 264 struct module *module; 265 struct device *dev; 266 const struct attribute_group **attr_groups; 267 const char *name; 268 int type; 269 270 /* 271 * various common per-pmu feature flags 272 */ 273 int capabilities; 274 275 int * __percpu pmu_disable_count; 276 struct perf_cpu_context * __percpu pmu_cpu_context; 277 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 278 int task_ctx_nr; 279 int hrtimer_interval_ms; 280 281 /* number of address filters this PMU can do */ 282 unsigned int nr_addr_filters; 283 284 /* 285 * Fully disable/enable this PMU, can be used to protect from the PMI 286 * as well as for lazy/batch writing of the MSRs. 287 */ 288 void (*pmu_enable) (struct pmu *pmu); /* optional */ 289 void (*pmu_disable) (struct pmu *pmu); /* optional */ 290 291 /* 292 * Try and initialize the event for this PMU. 293 * 294 * Returns: 295 * -ENOENT -- @event is not for this PMU 296 * 297 * -ENODEV -- @event is for this PMU but PMU not present 298 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 299 * -EINVAL -- @event is for this PMU but @event is not valid 300 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 301 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 302 * 303 * 0 -- @event is for this PMU and valid 304 * 305 * Other error return values are allowed. 306 */ 307 int (*event_init) (struct perf_event *event); 308 309 /* 310 * Notification that the event was mapped or unmapped. Called 311 * in the context of the mapping task. 312 */ 313 void (*event_mapped) (struct perf_event *event); /*optional*/ 314 void (*event_unmapped) (struct perf_event *event); /*optional*/ 315 316 /* 317 * Flags for ->add()/->del()/ ->start()/->stop(). There are 318 * matching hw_perf_event::state flags. 319 */ 320#define PERF_EF_START 0x01 /* start the counter when adding */ 321#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 322#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 323 324 /* 325 * Adds/Removes a counter to/from the PMU, can be done inside a 326 * transaction, see the ->*_txn() methods. 327 * 328 * The add/del callbacks will reserve all hardware resources required 329 * to service the event, this includes any counter constraint 330 * scheduling etc. 331 * 332 * Called with IRQs disabled and the PMU disabled on the CPU the event 333 * is on. 334 * 335 * ->add() called without PERF_EF_START should result in the same state 336 * as ->add() followed by ->stop(). 337 * 338 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 339 * ->stop() that must deal with already being stopped without 340 * PERF_EF_UPDATE. 341 */ 342 int (*add) (struct perf_event *event, int flags); 343 void (*del) (struct perf_event *event, int flags); 344 345 /* 346 * Starts/Stops a counter present on the PMU. 347 * 348 * The PMI handler should stop the counter when perf_event_overflow() 349 * returns !0. ->start() will be used to continue. 350 * 351 * Also used to change the sample period. 352 * 353 * Called with IRQs disabled and the PMU disabled on the CPU the event 354 * is on -- will be called from NMI context with the PMU generates 355 * NMIs. 356 * 357 * ->stop() with PERF_EF_UPDATE will read the counter and update 358 * period/count values like ->read() would. 359 * 360 * ->start() with PERF_EF_RELOAD will reprogram the the counter 361 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 362 */ 363 void (*start) (struct perf_event *event, int flags); 364 void (*stop) (struct perf_event *event, int flags); 365 366 /* 367 * Updates the counter value of the event. 368 * 369 * For sampling capable PMUs this will also update the software period 370 * hw_perf_event::period_left field. 371 */ 372 void (*read) (struct perf_event *event); 373 374 /* 375 * Group events scheduling is treated as a transaction, add 376 * group events as a whole and perform one schedulability test. 377 * If the test fails, roll back the whole group 378 * 379 * Start the transaction, after this ->add() doesn't need to 380 * do schedulability tests. 381 * 382 * Optional. 383 */ 384 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 385 /* 386 * If ->start_txn() disabled the ->add() schedulability test 387 * then ->commit_txn() is required to perform one. On success 388 * the transaction is closed. On error the transaction is kept 389 * open until ->cancel_txn() is called. 390 * 391 * Optional. 392 */ 393 int (*commit_txn) (struct pmu *pmu); 394 /* 395 * Will cancel the transaction, assumes ->del() is called 396 * for each successful ->add() during the transaction. 397 * 398 * Optional. 399 */ 400 void (*cancel_txn) (struct pmu *pmu); 401 402 /* 403 * Will return the value for perf_event_mmap_page::index for this event, 404 * if no implementation is provided it will default to: event->hw.idx + 1. 405 */ 406 int (*event_idx) (struct perf_event *event); /*optional */ 407 408 /* 409 * context-switches callback 410 */ 411 void (*sched_task) (struct perf_event_context *ctx, 412 bool sched_in); 413 /* 414 * PMU specific data size 415 */ 416 size_t task_ctx_size; 417 418 419 /* 420 * Return the count value for a counter. 421 */ 422 u64 (*count) (struct perf_event *event); /*optional*/ 423 424 /* 425 * Set up pmu-private data structures for an AUX area 426 */ 427 void *(*setup_aux) (int cpu, void **pages, 428 int nr_pages, bool overwrite); 429 /* optional */ 430 431 /* 432 * Free pmu-private AUX data structures 433 */ 434 void (*free_aux) (void *aux); /* optional */ 435 436 /* 437 * Validate address range filters: make sure the HW supports the 438 * requested configuration and number of filters; return 0 if the 439 * supplied filters are valid, -errno otherwise. 440 * 441 * Runs in the context of the ioctl()ing process and is not serialized 442 * with the rest of the PMU callbacks. 443 */ 444 int (*addr_filters_validate) (struct list_head *filters); 445 /* optional */ 446 447 /* 448 * Synchronize address range filter configuration: 449 * translate hw-agnostic filters into hardware configuration in 450 * event::hw::addr_filters. 451 * 452 * Runs as a part of filter sync sequence that is done in ->start() 453 * callback by calling perf_event_addr_filters_sync(). 454 * 455 * May (and should) traverse event::addr_filters::list, for which its 456 * caller provides necessary serialization. 457 */ 458 void (*addr_filters_sync) (struct perf_event *event); 459 /* optional */ 460 461 /* 462 * Filter events for PMU-specific reasons. 463 */ 464 int (*filter_match) (struct perf_event *event); /* optional */ 465}; 466 467/** 468 * struct perf_addr_filter - address range filter definition 469 * @entry: event's filter list linkage 470 * @inode: object file's inode for file-based filters 471 * @offset: filter range offset 472 * @size: filter range size 473 * @range: 1: range, 0: address 474 * @filter: 1: filter/start, 0: stop 475 * 476 * This is a hardware-agnostic filter configuration as specified by the user. 477 */ 478struct perf_addr_filter { 479 struct list_head entry; 480 struct inode *inode; 481 unsigned long offset; 482 unsigned long size; 483 unsigned int range : 1, 484 filter : 1; 485}; 486 487/** 488 * struct perf_addr_filters_head - container for address range filters 489 * @list: list of filters for this event 490 * @lock: spinlock that serializes accesses to the @list and event's 491 * (and its children's) filter generations. 492 * @nr_file_filters: number of file-based filters 493 * 494 * A child event will use parent's @list (and therefore @lock), so they are 495 * bundled together; see perf_event_addr_filters(). 496 */ 497struct perf_addr_filters_head { 498 struct list_head list; 499 raw_spinlock_t lock; 500 unsigned int nr_file_filters; 501}; 502 503/** 504 * enum perf_event_active_state - the states of a event 505 */ 506enum perf_event_active_state { 507 PERF_EVENT_STATE_DEAD = -4, 508 PERF_EVENT_STATE_EXIT = -3, 509 PERF_EVENT_STATE_ERROR = -2, 510 PERF_EVENT_STATE_OFF = -1, 511 PERF_EVENT_STATE_INACTIVE = 0, 512 PERF_EVENT_STATE_ACTIVE = 1, 513}; 514 515struct file; 516struct perf_sample_data; 517 518typedef void (*perf_overflow_handler_t)(struct perf_event *, 519 struct perf_sample_data *, 520 struct pt_regs *regs); 521 522/* 523 * Event capabilities. For event_caps and groups caps. 524 * 525 * PERF_EV_CAP_SOFTWARE: Is a software event. 526 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 527 * from any CPU in the package where it is active. 528 */ 529#define PERF_EV_CAP_SOFTWARE BIT(0) 530#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 531 532#define SWEVENT_HLIST_BITS 8 533#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 534 535struct swevent_hlist { 536 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 537 struct rcu_head rcu_head; 538}; 539 540#define PERF_ATTACH_CONTEXT 0x01 541#define PERF_ATTACH_GROUP 0x02 542#define PERF_ATTACH_TASK 0x04 543#define PERF_ATTACH_TASK_DATA 0x08 544 545struct perf_cgroup; 546struct ring_buffer; 547 548struct pmu_event_list { 549 raw_spinlock_t lock; 550 struct list_head list; 551}; 552 553/** 554 * struct perf_event - performance event kernel representation: 555 */ 556struct perf_event { 557#ifdef CONFIG_PERF_EVENTS 558 /* 559 * entry onto perf_event_context::event_list; 560 * modifications require ctx->lock 561 * RCU safe iterations. 562 */ 563 struct list_head event_entry; 564 565 /* 566 * XXX: group_entry and sibling_list should be mutually exclusive; 567 * either you're a sibling on a group, or you're the group leader. 568 * Rework the code to always use the same list element. 569 * 570 * Locked for modification by both ctx->mutex and ctx->lock; holding 571 * either sufficies for read. 572 */ 573 struct list_head group_entry; 574 struct list_head sibling_list; 575 576 /* 577 * We need storage to track the entries in perf_pmu_migrate_context; we 578 * cannot use the event_entry because of RCU and we want to keep the 579 * group in tact which avoids us using the other two entries. 580 */ 581 struct list_head migrate_entry; 582 583 struct hlist_node hlist_entry; 584 struct list_head active_entry; 585 int nr_siblings; 586 587 /* Not serialized. Only written during event initialization. */ 588 int event_caps; 589 /* The cumulative AND of all event_caps for events in this group. */ 590 int group_caps; 591 592 struct perf_event *group_leader; 593 struct pmu *pmu; 594 void *pmu_private; 595 596 enum perf_event_active_state state; 597 unsigned int attach_state; 598 local64_t count; 599 atomic64_t child_count; 600 601 /* 602 * These are the total time in nanoseconds that the event 603 * has been enabled (i.e. eligible to run, and the task has 604 * been scheduled in, if this is a per-task event) 605 * and running (scheduled onto the CPU), respectively. 606 * 607 * They are computed from tstamp_enabled, tstamp_running and 608 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 609 */ 610 u64 total_time_enabled; 611 u64 total_time_running; 612 613 /* 614 * These are timestamps used for computing total_time_enabled 615 * and total_time_running when the event is in INACTIVE or 616 * ACTIVE state, measured in nanoseconds from an arbitrary point 617 * in time. 618 * tstamp_enabled: the notional time when the event was enabled 619 * tstamp_running: the notional time when the event was scheduled on 620 * tstamp_stopped: in INACTIVE state, the notional time when the 621 * event was scheduled off. 622 */ 623 u64 tstamp_enabled; 624 u64 tstamp_running; 625 u64 tstamp_stopped; 626 627 /* 628 * timestamp shadows the actual context timing but it can 629 * be safely used in NMI interrupt context. It reflects the 630 * context time as it was when the event was last scheduled in. 631 * 632 * ctx_time already accounts for ctx->timestamp. Therefore to 633 * compute ctx_time for a sample, simply add perf_clock(). 634 */ 635 u64 shadow_ctx_time; 636 637 struct perf_event_attr attr; 638 u16 header_size; 639 u16 id_header_size; 640 u16 read_size; 641 struct hw_perf_event hw; 642 643 struct perf_event_context *ctx; 644 atomic_long_t refcount; 645 646 /* 647 * These accumulate total time (in nanoseconds) that children 648 * events have been enabled and running, respectively. 649 */ 650 atomic64_t child_total_time_enabled; 651 atomic64_t child_total_time_running; 652 653 /* 654 * Protect attach/detach and child_list: 655 */ 656 struct mutex child_mutex; 657 struct list_head child_list; 658 struct perf_event *parent; 659 660 int oncpu; 661 int cpu; 662 663 struct list_head owner_entry; 664 struct task_struct *owner; 665 666 /* mmap bits */ 667 struct mutex mmap_mutex; 668 atomic_t mmap_count; 669 670 struct ring_buffer *rb; 671 struct list_head rb_entry; 672 unsigned long rcu_batches; 673 int rcu_pending; 674 675 /* poll related */ 676 wait_queue_head_t waitq; 677 struct fasync_struct *fasync; 678 679 /* delayed work for NMIs and such */ 680 int pending_wakeup; 681 int pending_kill; 682 int pending_disable; 683 struct irq_work pending; 684 685 atomic_t event_limit; 686 687 /* address range filters */ 688 struct perf_addr_filters_head addr_filters; 689 /* vma address array for file-based filders */ 690 unsigned long *addr_filters_offs; 691 unsigned long addr_filters_gen; 692 693 void (*destroy)(struct perf_event *); 694 struct rcu_head rcu_head; 695 696 struct pid_namespace *ns; 697 u64 id; 698 699 u64 (*clock)(void); 700 perf_overflow_handler_t overflow_handler; 701 void *overflow_handler_context; 702#ifdef CONFIG_BPF_SYSCALL 703 perf_overflow_handler_t orig_overflow_handler; 704 struct bpf_prog *prog; 705#endif 706 707#ifdef CONFIG_EVENT_TRACING 708 struct trace_event_call *tp_event; 709 struct event_filter *filter; 710#ifdef CONFIG_FUNCTION_TRACER 711 struct ftrace_ops ftrace_ops; 712#endif 713#endif 714 715#ifdef CONFIG_CGROUP_PERF 716 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 717 int cgrp_defer_enabled; 718#endif 719 720 struct list_head sb_list; 721#endif /* CONFIG_PERF_EVENTS */ 722}; 723 724/** 725 * struct perf_event_context - event context structure 726 * 727 * Used as a container for task events and CPU events as well: 728 */ 729struct perf_event_context { 730 struct pmu *pmu; 731 /* 732 * Protect the states of the events in the list, 733 * nr_active, and the list: 734 */ 735 raw_spinlock_t lock; 736 /* 737 * Protect the list of events. Locking either mutex or lock 738 * is sufficient to ensure the list doesn't change; to change 739 * the list you need to lock both the mutex and the spinlock. 740 */ 741 struct mutex mutex; 742 743 struct list_head active_ctx_list; 744 struct list_head pinned_groups; 745 struct list_head flexible_groups; 746 struct list_head event_list; 747 int nr_events; 748 int nr_active; 749 int is_active; 750 int nr_stat; 751 int nr_freq; 752 int rotate_disable; 753 atomic_t refcount; 754 struct task_struct *task; 755 756 /* 757 * Context clock, runs when context enabled. 758 */ 759 u64 time; 760 u64 timestamp; 761 762 /* 763 * These fields let us detect when two contexts have both 764 * been cloned (inherited) from a common ancestor. 765 */ 766 struct perf_event_context *parent_ctx; 767 u64 parent_gen; 768 u64 generation; 769 int pin_count; 770#ifdef CONFIG_CGROUP_PERF 771 int nr_cgroups; /* cgroup evts */ 772#endif 773 void *task_ctx_data; /* pmu specific data */ 774 struct rcu_head rcu_head; 775}; 776 777/* 778 * Number of contexts where an event can trigger: 779 * task, softirq, hardirq, nmi. 780 */ 781#define PERF_NR_CONTEXTS 4 782 783/** 784 * struct perf_event_cpu_context - per cpu event context structure 785 */ 786struct perf_cpu_context { 787 struct perf_event_context ctx; 788 struct perf_event_context *task_ctx; 789 int active_oncpu; 790 int exclusive; 791 792 raw_spinlock_t hrtimer_lock; 793 struct hrtimer hrtimer; 794 ktime_t hrtimer_interval; 795 unsigned int hrtimer_active; 796 797#ifdef CONFIG_CGROUP_PERF 798 struct perf_cgroup *cgrp; 799 struct list_head cgrp_cpuctx_entry; 800#endif 801 802 struct list_head sched_cb_entry; 803 int sched_cb_usage; 804}; 805 806struct perf_output_handle { 807 struct perf_event *event; 808 struct ring_buffer *rb; 809 unsigned long wakeup; 810 unsigned long size; 811 u64 aux_flags; 812 union { 813 void *addr; 814 unsigned long head; 815 }; 816 int page; 817}; 818 819struct bpf_perf_event_data_kern { 820 struct pt_regs *regs; 821 struct perf_sample_data *data; 822}; 823 824#ifdef CONFIG_CGROUP_PERF 825 826/* 827 * perf_cgroup_info keeps track of time_enabled for a cgroup. 828 * This is a per-cpu dynamically allocated data structure. 829 */ 830struct perf_cgroup_info { 831 u64 time; 832 u64 timestamp; 833}; 834 835struct perf_cgroup { 836 struct cgroup_subsys_state css; 837 struct perf_cgroup_info __percpu *info; 838}; 839 840/* 841 * Must ensure cgroup is pinned (css_get) before calling 842 * this function. In other words, we cannot call this function 843 * if there is no cgroup event for the current CPU context. 844 */ 845static inline struct perf_cgroup * 846perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 847{ 848 return container_of(task_css_check(task, perf_event_cgrp_id, 849 ctx ? lockdep_is_held(&ctx->lock) 850 : true), 851 struct perf_cgroup, css); 852} 853#endif /* CONFIG_CGROUP_PERF */ 854 855#ifdef CONFIG_PERF_EVENTS 856 857extern void *perf_aux_output_begin(struct perf_output_handle *handle, 858 struct perf_event *event); 859extern void perf_aux_output_end(struct perf_output_handle *handle, 860 unsigned long size); 861extern int perf_aux_output_skip(struct perf_output_handle *handle, 862 unsigned long size); 863extern void *perf_get_aux(struct perf_output_handle *handle); 864extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 865 866extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 867extern void perf_pmu_unregister(struct pmu *pmu); 868 869extern int perf_num_counters(void); 870extern const char *perf_pmu_name(void); 871extern void __perf_event_task_sched_in(struct task_struct *prev, 872 struct task_struct *task); 873extern void __perf_event_task_sched_out(struct task_struct *prev, 874 struct task_struct *next); 875extern int perf_event_init_task(struct task_struct *child); 876extern void perf_event_exit_task(struct task_struct *child); 877extern void perf_event_free_task(struct task_struct *task); 878extern void perf_event_delayed_put(struct task_struct *task); 879extern struct file *perf_event_get(unsigned int fd); 880extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 881extern void perf_event_print_debug(void); 882extern void perf_pmu_disable(struct pmu *pmu); 883extern void perf_pmu_enable(struct pmu *pmu); 884extern void perf_sched_cb_dec(struct pmu *pmu); 885extern void perf_sched_cb_inc(struct pmu *pmu); 886extern int perf_event_task_disable(void); 887extern int perf_event_task_enable(void); 888extern int perf_event_refresh(struct perf_event *event, int refresh); 889extern void perf_event_update_userpage(struct perf_event *event); 890extern int perf_event_release_kernel(struct perf_event *event); 891extern struct perf_event * 892perf_event_create_kernel_counter(struct perf_event_attr *attr, 893 int cpu, 894 struct task_struct *task, 895 perf_overflow_handler_t callback, 896 void *context); 897extern void perf_pmu_migrate_context(struct pmu *pmu, 898 int src_cpu, int dst_cpu); 899extern u64 perf_event_read_local(struct perf_event *event); 900extern u64 perf_event_read_value(struct perf_event *event, 901 u64 *enabled, u64 *running); 902 903 904struct perf_sample_data { 905 /* 906 * Fields set by perf_sample_data_init(), group so as to 907 * minimize the cachelines touched. 908 */ 909 u64 addr; 910 struct perf_raw_record *raw; 911 struct perf_branch_stack *br_stack; 912 u64 period; 913 u64 weight; 914 u64 txn; 915 union perf_mem_data_src data_src; 916 917 /* 918 * The other fields, optionally {set,used} by 919 * perf_{prepare,output}_sample(). 920 */ 921 u64 type; 922 u64 ip; 923 struct { 924 u32 pid; 925 u32 tid; 926 } tid_entry; 927 u64 time; 928 u64 id; 929 u64 stream_id; 930 struct { 931 u32 cpu; 932 u32 reserved; 933 } cpu_entry; 934 struct perf_callchain_entry *callchain; 935 936 /* 937 * regs_user may point to task_pt_regs or to regs_user_copy, depending 938 * on arch details. 939 */ 940 struct perf_regs regs_user; 941 struct pt_regs regs_user_copy; 942 943 struct perf_regs regs_intr; 944 u64 stack_user_size; 945} ____cacheline_aligned; 946 947/* default value for data source */ 948#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 949 PERF_MEM_S(LVL, NA) |\ 950 PERF_MEM_S(SNOOP, NA) |\ 951 PERF_MEM_S(LOCK, NA) |\ 952 PERF_MEM_S(TLB, NA)) 953 954static inline void perf_sample_data_init(struct perf_sample_data *data, 955 u64 addr, u64 period) 956{ 957 /* remaining struct members initialized in perf_prepare_sample() */ 958 data->addr = addr; 959 data->raw = NULL; 960 data->br_stack = NULL; 961 data->period = period; 962 data->weight = 0; 963 data->data_src.val = PERF_MEM_NA; 964 data->txn = 0; 965} 966 967extern void perf_output_sample(struct perf_output_handle *handle, 968 struct perf_event_header *header, 969 struct perf_sample_data *data, 970 struct perf_event *event); 971extern void perf_prepare_sample(struct perf_event_header *header, 972 struct perf_sample_data *data, 973 struct perf_event *event, 974 struct pt_regs *regs); 975 976extern int perf_event_overflow(struct perf_event *event, 977 struct perf_sample_data *data, 978 struct pt_regs *regs); 979 980extern void perf_event_output_forward(struct perf_event *event, 981 struct perf_sample_data *data, 982 struct pt_regs *regs); 983extern void perf_event_output_backward(struct perf_event *event, 984 struct perf_sample_data *data, 985 struct pt_regs *regs); 986extern void perf_event_output(struct perf_event *event, 987 struct perf_sample_data *data, 988 struct pt_regs *regs); 989 990static inline bool 991is_default_overflow_handler(struct perf_event *event) 992{ 993 if (likely(event->overflow_handler == perf_event_output_forward)) 994 return true; 995 if (unlikely(event->overflow_handler == perf_event_output_backward)) 996 return true; 997 return false; 998} 999 1000extern void 1001perf_event_header__init_id(struct perf_event_header *header, 1002 struct perf_sample_data *data, 1003 struct perf_event *event); 1004extern void 1005perf_event__output_id_sample(struct perf_event *event, 1006 struct perf_output_handle *handle, 1007 struct perf_sample_data *sample); 1008 1009extern void 1010perf_log_lost_samples(struct perf_event *event, u64 lost); 1011 1012static inline bool is_sampling_event(struct perf_event *event) 1013{ 1014 return event->attr.sample_period != 0; 1015} 1016 1017/* 1018 * Return 1 for a software event, 0 for a hardware event 1019 */ 1020static inline int is_software_event(struct perf_event *event) 1021{ 1022 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1023} 1024 1025extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1026 1027extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1028extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1029 1030#ifndef perf_arch_fetch_caller_regs 1031static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1032#endif 1033 1034/* 1035 * Take a snapshot of the regs. Skip ip and frame pointer to 1036 * the nth caller. We only need a few of the regs: 1037 * - ip for PERF_SAMPLE_IP 1038 * - cs for user_mode() tests 1039 * - bp for callchains 1040 * - eflags, for future purposes, just in case 1041 */ 1042static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1043{ 1044 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1045} 1046 1047static __always_inline void 1048perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1049{ 1050 if (static_key_false(&perf_swevent_enabled[event_id])) 1051 __perf_sw_event(event_id, nr, regs, addr); 1052} 1053 1054DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1055 1056/* 1057 * 'Special' version for the scheduler, it hard assumes no recursion, 1058 * which is guaranteed by us not actually scheduling inside other swevents 1059 * because those disable preemption. 1060 */ 1061static __always_inline void 1062perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1063{ 1064 if (static_key_false(&perf_swevent_enabled[event_id])) { 1065 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1066 1067 perf_fetch_caller_regs(regs); 1068 ___perf_sw_event(event_id, nr, regs, addr); 1069 } 1070} 1071 1072extern struct static_key_false perf_sched_events; 1073 1074static __always_inline bool 1075perf_sw_migrate_enabled(void) 1076{ 1077 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1078 return true; 1079 return false; 1080} 1081 1082static inline void perf_event_task_migrate(struct task_struct *task) 1083{ 1084 if (perf_sw_migrate_enabled()) 1085 task->sched_migrated = 1; 1086} 1087 1088static inline void perf_event_task_sched_in(struct task_struct *prev, 1089 struct task_struct *task) 1090{ 1091 if (static_branch_unlikely(&perf_sched_events)) 1092 __perf_event_task_sched_in(prev, task); 1093 1094 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1095 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1096 1097 perf_fetch_caller_regs(regs); 1098 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1099 task->sched_migrated = 0; 1100 } 1101} 1102 1103static inline void perf_event_task_sched_out(struct task_struct *prev, 1104 struct task_struct *next) 1105{ 1106 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1107 1108 if (static_branch_unlikely(&perf_sched_events)) 1109 __perf_event_task_sched_out(prev, next); 1110} 1111 1112static inline u64 __perf_event_count(struct perf_event *event) 1113{ 1114 return local64_read(&event->count) + atomic64_read(&event->child_count); 1115} 1116 1117extern void perf_event_mmap(struct vm_area_struct *vma); 1118extern struct perf_guest_info_callbacks *perf_guest_cbs; 1119extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1120extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1121 1122extern void perf_event_exec(void); 1123extern void perf_event_comm(struct task_struct *tsk, bool exec); 1124extern void perf_event_namespaces(struct task_struct *tsk); 1125extern void perf_event_fork(struct task_struct *tsk); 1126 1127/* Callchains */ 1128DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1129 1130extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1131extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1132extern struct perf_callchain_entry * 1133get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1134 u32 max_stack, bool crosstask, bool add_mark); 1135extern int get_callchain_buffers(int max_stack); 1136extern void put_callchain_buffers(void); 1137 1138extern int sysctl_perf_event_max_stack; 1139extern int sysctl_perf_event_max_contexts_per_stack; 1140 1141static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1142{ 1143 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1144 struct perf_callchain_entry *entry = ctx->entry; 1145 entry->ip[entry->nr++] = ip; 1146 ++ctx->contexts; 1147 return 0; 1148 } else { 1149 ctx->contexts_maxed = true; 1150 return -1; /* no more room, stop walking the stack */ 1151 } 1152} 1153 1154static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1155{ 1156 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1157 struct perf_callchain_entry *entry = ctx->entry; 1158 entry->ip[entry->nr++] = ip; 1159 ++ctx->nr; 1160 return 0; 1161 } else { 1162 return -1; /* no more room, stop walking the stack */ 1163 } 1164} 1165 1166extern int sysctl_perf_event_paranoid; 1167extern int sysctl_perf_event_mlock; 1168extern int sysctl_perf_event_sample_rate; 1169extern int sysctl_perf_cpu_time_max_percent; 1170 1171extern void perf_sample_event_took(u64 sample_len_ns); 1172 1173extern int perf_proc_update_handler(struct ctl_table *table, int write, 1174 void __user *buffer, size_t *lenp, 1175 loff_t *ppos); 1176extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1177 void __user *buffer, size_t *lenp, 1178 loff_t *ppos); 1179 1180int perf_event_max_stack_handler(struct ctl_table *table, int write, 1181 void __user *buffer, size_t *lenp, loff_t *ppos); 1182 1183static inline bool perf_paranoid_tracepoint_raw(void) 1184{ 1185 return sysctl_perf_event_paranoid > -1; 1186} 1187 1188static inline bool perf_paranoid_cpu(void) 1189{ 1190 return sysctl_perf_event_paranoid > 0; 1191} 1192 1193static inline bool perf_paranoid_kernel(void) 1194{ 1195 return sysctl_perf_event_paranoid > 1; 1196} 1197 1198extern void perf_event_init(void); 1199extern void perf_tp_event(u16 event_type, u64 count, void *record, 1200 int entry_size, struct pt_regs *regs, 1201 struct hlist_head *head, int rctx, 1202 struct task_struct *task); 1203extern void perf_bp_event(struct perf_event *event, void *data); 1204 1205#ifndef perf_misc_flags 1206# define perf_misc_flags(regs) \ 1207 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1208# define perf_instruction_pointer(regs) instruction_pointer(regs) 1209#endif 1210 1211static inline bool has_branch_stack(struct perf_event *event) 1212{ 1213 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1214} 1215 1216static inline bool needs_branch_stack(struct perf_event *event) 1217{ 1218 return event->attr.branch_sample_type != 0; 1219} 1220 1221static inline bool has_aux(struct perf_event *event) 1222{ 1223 return event->pmu->setup_aux; 1224} 1225 1226static inline bool is_write_backward(struct perf_event *event) 1227{ 1228 return !!event->attr.write_backward; 1229} 1230 1231static inline bool has_addr_filter(struct perf_event *event) 1232{ 1233 return event->pmu->nr_addr_filters; 1234} 1235 1236/* 1237 * An inherited event uses parent's filters 1238 */ 1239static inline struct perf_addr_filters_head * 1240perf_event_addr_filters(struct perf_event *event) 1241{ 1242 struct perf_addr_filters_head *ifh = &event->addr_filters; 1243 1244 if (event->parent) 1245 ifh = &event->parent->addr_filters; 1246 1247 return ifh; 1248} 1249 1250extern void perf_event_addr_filters_sync(struct perf_event *event); 1251 1252extern int perf_output_begin(struct perf_output_handle *handle, 1253 struct perf_event *event, unsigned int size); 1254extern int perf_output_begin_forward(struct perf_output_handle *handle, 1255 struct perf_event *event, 1256 unsigned int size); 1257extern int perf_output_begin_backward(struct perf_output_handle *handle, 1258 struct perf_event *event, 1259 unsigned int size); 1260 1261extern void perf_output_end(struct perf_output_handle *handle); 1262extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1263 const void *buf, unsigned int len); 1264extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1265 unsigned int len); 1266extern int perf_swevent_get_recursion_context(void); 1267extern void perf_swevent_put_recursion_context(int rctx); 1268extern u64 perf_swevent_set_period(struct perf_event *event); 1269extern void perf_event_enable(struct perf_event *event); 1270extern void perf_event_disable(struct perf_event *event); 1271extern void perf_event_disable_local(struct perf_event *event); 1272extern void perf_event_disable_inatomic(struct perf_event *event); 1273extern void perf_event_task_tick(void); 1274extern int perf_event_account_interrupt(struct perf_event *event); 1275#else /* !CONFIG_PERF_EVENTS: */ 1276static inline void * 1277perf_aux_output_begin(struct perf_output_handle *handle, 1278 struct perf_event *event) { return NULL; } 1279static inline void 1280perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1281 { } 1282static inline int 1283perf_aux_output_skip(struct perf_output_handle *handle, 1284 unsigned long size) { return -EINVAL; } 1285static inline void * 1286perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1287static inline void 1288perf_event_task_migrate(struct task_struct *task) { } 1289static inline void 1290perf_event_task_sched_in(struct task_struct *prev, 1291 struct task_struct *task) { } 1292static inline void 1293perf_event_task_sched_out(struct task_struct *prev, 1294 struct task_struct *next) { } 1295static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1296static inline void perf_event_exit_task(struct task_struct *child) { } 1297static inline void perf_event_free_task(struct task_struct *task) { } 1298static inline void perf_event_delayed_put(struct task_struct *task) { } 1299static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1300static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1301{ 1302 return ERR_PTR(-EINVAL); 1303} 1304static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; } 1305static inline void perf_event_print_debug(void) { } 1306static inline int perf_event_task_disable(void) { return -EINVAL; } 1307static inline int perf_event_task_enable(void) { return -EINVAL; } 1308static inline int perf_event_refresh(struct perf_event *event, int refresh) 1309{ 1310 return -EINVAL; 1311} 1312 1313static inline void 1314perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1315static inline void 1316perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1317static inline void 1318perf_bp_event(struct perf_event *event, void *data) { } 1319 1320static inline int perf_register_guest_info_callbacks 1321(struct perf_guest_info_callbacks *callbacks) { return 0; } 1322static inline int perf_unregister_guest_info_callbacks 1323(struct perf_guest_info_callbacks *callbacks) { return 0; } 1324 1325static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1326static inline void perf_event_exec(void) { } 1327static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1328static inline void perf_event_namespaces(struct task_struct *tsk) { } 1329static inline void perf_event_fork(struct task_struct *tsk) { } 1330static inline void perf_event_init(void) { } 1331static inline int perf_swevent_get_recursion_context(void) { return -1; } 1332static inline void perf_swevent_put_recursion_context(int rctx) { } 1333static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1334static inline void perf_event_enable(struct perf_event *event) { } 1335static inline void perf_event_disable(struct perf_event *event) { } 1336static inline int __perf_event_disable(void *info) { return -1; } 1337static inline void perf_event_task_tick(void) { } 1338static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1339#endif 1340 1341#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1342extern void perf_restore_debug_store(void); 1343#else 1344static inline void perf_restore_debug_store(void) { } 1345#endif 1346 1347static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1348{ 1349 return frag->pad < sizeof(u64); 1350} 1351 1352#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1353 1354struct perf_pmu_events_attr { 1355 struct device_attribute attr; 1356 u64 id; 1357 const char *event_str; 1358}; 1359 1360struct perf_pmu_events_ht_attr { 1361 struct device_attribute attr; 1362 u64 id; 1363 const char *event_str_ht; 1364 const char *event_str_noht; 1365}; 1366 1367ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1368 char *page); 1369 1370#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1371static struct perf_pmu_events_attr _var = { \ 1372 .attr = __ATTR(_name, 0444, _show, NULL), \ 1373 .id = _id, \ 1374}; 1375 1376#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1377static struct perf_pmu_events_attr _var = { \ 1378 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1379 .id = 0, \ 1380 .event_str = _str, \ 1381}; 1382 1383#define PMU_FORMAT_ATTR(_name, _format) \ 1384static ssize_t \ 1385_name##_show(struct device *dev, \ 1386 struct device_attribute *attr, \ 1387 char *page) \ 1388{ \ 1389 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1390 return sprintf(page, _format "\n"); \ 1391} \ 1392 \ 1393static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1394 1395/* Performance counter hotplug functions */ 1396#ifdef CONFIG_PERF_EVENTS 1397int perf_event_init_cpu(unsigned int cpu); 1398int perf_event_exit_cpu(unsigned int cpu); 1399#else 1400#define perf_event_init_cpu NULL 1401#define perf_event_exit_cpu NULL 1402#endif 1403 1404#endif /* _LINUX_PERF_EVENT_H */