at v4.12 81 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/percpu-refcount.h> 20#include <linux/bit_spinlock.h> 21#include <linux/shrinker.h> 22#include <linux/resource.h> 23#include <linux/page_ext.h> 24#include <linux/err.h> 25#include <linux/page_ref.h> 26 27struct mempolicy; 28struct anon_vma; 29struct anon_vma_chain; 30struct file_ra_state; 31struct user_struct; 32struct writeback_control; 33struct bdi_writeback; 34 35void init_mm_internals(void); 36 37#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 38extern unsigned long max_mapnr; 39 40static inline void set_max_mapnr(unsigned long limit) 41{ 42 max_mapnr = limit; 43} 44#else 45static inline void set_max_mapnr(unsigned long limit) { } 46#endif 47 48extern unsigned long totalram_pages; 49extern void * high_memory; 50extern int page_cluster; 51 52#ifdef CONFIG_SYSCTL 53extern int sysctl_legacy_va_layout; 54#else 55#define sysctl_legacy_va_layout 0 56#endif 57 58#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 59extern const int mmap_rnd_bits_min; 60extern const int mmap_rnd_bits_max; 61extern int mmap_rnd_bits __read_mostly; 62#endif 63#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 64extern const int mmap_rnd_compat_bits_min; 65extern const int mmap_rnd_compat_bits_max; 66extern int mmap_rnd_compat_bits __read_mostly; 67#endif 68 69#include <asm/page.h> 70#include <asm/pgtable.h> 71#include <asm/processor.h> 72 73#ifndef __pa_symbol 74#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 75#endif 76 77#ifndef page_to_virt 78#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 79#endif 80 81#ifndef lm_alias 82#define lm_alias(x) __va(__pa_symbol(x)) 83#endif 84 85/* 86 * To prevent common memory management code establishing 87 * a zero page mapping on a read fault. 88 * This macro should be defined within <asm/pgtable.h>. 89 * s390 does this to prevent multiplexing of hardware bits 90 * related to the physical page in case of virtualization. 91 */ 92#ifndef mm_forbids_zeropage 93#define mm_forbids_zeropage(X) (0) 94#endif 95 96/* 97 * Default maximum number of active map areas, this limits the number of vmas 98 * per mm struct. Users can overwrite this number by sysctl but there is a 99 * problem. 100 * 101 * When a program's coredump is generated as ELF format, a section is created 102 * per a vma. In ELF, the number of sections is represented in unsigned short. 103 * This means the number of sections should be smaller than 65535 at coredump. 104 * Because the kernel adds some informative sections to a image of program at 105 * generating coredump, we need some margin. The number of extra sections is 106 * 1-3 now and depends on arch. We use "5" as safe margin, here. 107 * 108 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 109 * not a hard limit any more. Although some userspace tools can be surprised by 110 * that. 111 */ 112#define MAPCOUNT_ELF_CORE_MARGIN (5) 113#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 114 115extern int sysctl_max_map_count; 116 117extern unsigned long sysctl_user_reserve_kbytes; 118extern unsigned long sysctl_admin_reserve_kbytes; 119 120extern int sysctl_overcommit_memory; 121extern int sysctl_overcommit_ratio; 122extern unsigned long sysctl_overcommit_kbytes; 123 124extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 125 size_t *, loff_t *); 126extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 127 size_t *, loff_t *); 128 129#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 130 131/* to align the pointer to the (next) page boundary */ 132#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 133 134/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 135#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 136 137/* 138 * Linux kernel virtual memory manager primitives. 139 * The idea being to have a "virtual" mm in the same way 140 * we have a virtual fs - giving a cleaner interface to the 141 * mm details, and allowing different kinds of memory mappings 142 * (from shared memory to executable loading to arbitrary 143 * mmap() functions). 144 */ 145 146extern struct kmem_cache *vm_area_cachep; 147 148#ifndef CONFIG_MMU 149extern struct rb_root nommu_region_tree; 150extern struct rw_semaphore nommu_region_sem; 151 152extern unsigned int kobjsize(const void *objp); 153#endif 154 155/* 156 * vm_flags in vm_area_struct, see mm_types.h. 157 * When changing, update also include/trace/events/mmflags.h 158 */ 159#define VM_NONE 0x00000000 160 161#define VM_READ 0x00000001 /* currently active flags */ 162#define VM_WRITE 0x00000002 163#define VM_EXEC 0x00000004 164#define VM_SHARED 0x00000008 165 166/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 167#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 168#define VM_MAYWRITE 0x00000020 169#define VM_MAYEXEC 0x00000040 170#define VM_MAYSHARE 0x00000080 171 172#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 173#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 174#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 175#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 176#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 177 178#define VM_LOCKED 0x00002000 179#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 180 181 /* Used by sys_madvise() */ 182#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 183#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 184 185#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 186#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 187#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 188#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 189#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 190#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 191#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 192#define VM_ARCH_2 0x02000000 193#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 194 195#ifdef CONFIG_MEM_SOFT_DIRTY 196# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 197#else 198# define VM_SOFTDIRTY 0 199#endif 200 201#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 202#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 203#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 204#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 205 206#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 207#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 208#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 209#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 210#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 211#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 212#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 213#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 214#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 215#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 216 217#if defined(CONFIG_X86) 218# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 219#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 220# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 221# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 222# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 223# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 224# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 225#endif 226#elif defined(CONFIG_PPC) 227# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 228#elif defined(CONFIG_PARISC) 229# define VM_GROWSUP VM_ARCH_1 230#elif defined(CONFIG_METAG) 231# define VM_GROWSUP VM_ARCH_1 232#elif defined(CONFIG_IA64) 233# define VM_GROWSUP VM_ARCH_1 234#elif !defined(CONFIG_MMU) 235# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 236#endif 237 238#if defined(CONFIG_X86) 239/* MPX specific bounds table or bounds directory */ 240# define VM_MPX VM_ARCH_2 241#endif 242 243#ifndef VM_GROWSUP 244# define VM_GROWSUP VM_NONE 245#endif 246 247/* Bits set in the VMA until the stack is in its final location */ 248#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 249 250#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 251#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 252#endif 253 254#ifdef CONFIG_STACK_GROWSUP 255#define VM_STACK VM_GROWSUP 256#else 257#define VM_STACK VM_GROWSDOWN 258#endif 259 260#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 261 262/* 263 * Special vmas that are non-mergable, non-mlock()able. 264 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 265 */ 266#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 267 268/* This mask defines which mm->def_flags a process can inherit its parent */ 269#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 270 271/* This mask is used to clear all the VMA flags used by mlock */ 272#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 273 274/* 275 * mapping from the currently active vm_flags protection bits (the 276 * low four bits) to a page protection mask.. 277 */ 278extern pgprot_t protection_map[16]; 279 280#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 281#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 282#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 283#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 284#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 285#define FAULT_FLAG_TRIED 0x20 /* Second try */ 286#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 287#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 288#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 289 290#define FAULT_FLAG_TRACE \ 291 { FAULT_FLAG_WRITE, "WRITE" }, \ 292 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 293 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 294 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 295 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 296 { FAULT_FLAG_TRIED, "TRIED" }, \ 297 { FAULT_FLAG_USER, "USER" }, \ 298 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 299 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 300 301/* 302 * vm_fault is filled by the the pagefault handler and passed to the vma's 303 * ->fault function. The vma's ->fault is responsible for returning a bitmask 304 * of VM_FAULT_xxx flags that give details about how the fault was handled. 305 * 306 * MM layer fills up gfp_mask for page allocations but fault handler might 307 * alter it if its implementation requires a different allocation context. 308 * 309 * pgoff should be used in favour of virtual_address, if possible. 310 */ 311struct vm_fault { 312 struct vm_area_struct *vma; /* Target VMA */ 313 unsigned int flags; /* FAULT_FLAG_xxx flags */ 314 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 315 pgoff_t pgoff; /* Logical page offset based on vma */ 316 unsigned long address; /* Faulting virtual address */ 317 pmd_t *pmd; /* Pointer to pmd entry matching 318 * the 'address' */ 319 pud_t *pud; /* Pointer to pud entry matching 320 * the 'address' 321 */ 322 pte_t orig_pte; /* Value of PTE at the time of fault */ 323 324 struct page *cow_page; /* Page handler may use for COW fault */ 325 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 326 struct page *page; /* ->fault handlers should return a 327 * page here, unless VM_FAULT_NOPAGE 328 * is set (which is also implied by 329 * VM_FAULT_ERROR). 330 */ 331 /* These three entries are valid only while holding ptl lock */ 332 pte_t *pte; /* Pointer to pte entry matching 333 * the 'address'. NULL if the page 334 * table hasn't been allocated. 335 */ 336 spinlock_t *ptl; /* Page table lock. 337 * Protects pte page table if 'pte' 338 * is not NULL, otherwise pmd. 339 */ 340 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 341 * vm_ops->map_pages() calls 342 * alloc_set_pte() from atomic context. 343 * do_fault_around() pre-allocates 344 * page table to avoid allocation from 345 * atomic context. 346 */ 347}; 348 349/* page entry size for vm->huge_fault() */ 350enum page_entry_size { 351 PE_SIZE_PTE = 0, 352 PE_SIZE_PMD, 353 PE_SIZE_PUD, 354}; 355 356/* 357 * These are the virtual MM functions - opening of an area, closing and 358 * unmapping it (needed to keep files on disk up-to-date etc), pointer 359 * to the functions called when a no-page or a wp-page exception occurs. 360 */ 361struct vm_operations_struct { 362 void (*open)(struct vm_area_struct * area); 363 void (*close)(struct vm_area_struct * area); 364 int (*mremap)(struct vm_area_struct * area); 365 int (*fault)(struct vm_fault *vmf); 366 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); 367 void (*map_pages)(struct vm_fault *vmf, 368 pgoff_t start_pgoff, pgoff_t end_pgoff); 369 370 /* notification that a previously read-only page is about to become 371 * writable, if an error is returned it will cause a SIGBUS */ 372 int (*page_mkwrite)(struct vm_fault *vmf); 373 374 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 375 int (*pfn_mkwrite)(struct vm_fault *vmf); 376 377 /* called by access_process_vm when get_user_pages() fails, typically 378 * for use by special VMAs that can switch between memory and hardware 379 */ 380 int (*access)(struct vm_area_struct *vma, unsigned long addr, 381 void *buf, int len, int write); 382 383 /* Called by the /proc/PID/maps code to ask the vma whether it 384 * has a special name. Returning non-NULL will also cause this 385 * vma to be dumped unconditionally. */ 386 const char *(*name)(struct vm_area_struct *vma); 387 388#ifdef CONFIG_NUMA 389 /* 390 * set_policy() op must add a reference to any non-NULL @new mempolicy 391 * to hold the policy upon return. Caller should pass NULL @new to 392 * remove a policy and fall back to surrounding context--i.e. do not 393 * install a MPOL_DEFAULT policy, nor the task or system default 394 * mempolicy. 395 */ 396 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 397 398 /* 399 * get_policy() op must add reference [mpol_get()] to any policy at 400 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 401 * in mm/mempolicy.c will do this automatically. 402 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 403 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 404 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 405 * must return NULL--i.e., do not "fallback" to task or system default 406 * policy. 407 */ 408 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 409 unsigned long addr); 410#endif 411 /* 412 * Called by vm_normal_page() for special PTEs to find the 413 * page for @addr. This is useful if the default behavior 414 * (using pte_page()) would not find the correct page. 415 */ 416 struct page *(*find_special_page)(struct vm_area_struct *vma, 417 unsigned long addr); 418}; 419 420struct mmu_gather; 421struct inode; 422 423#define page_private(page) ((page)->private) 424#define set_page_private(page, v) ((page)->private = (v)) 425 426#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 427static inline int pmd_devmap(pmd_t pmd) 428{ 429 return 0; 430} 431static inline int pud_devmap(pud_t pud) 432{ 433 return 0; 434} 435static inline int pgd_devmap(pgd_t pgd) 436{ 437 return 0; 438} 439#endif 440 441/* 442 * FIXME: take this include out, include page-flags.h in 443 * files which need it (119 of them) 444 */ 445#include <linux/page-flags.h> 446#include <linux/huge_mm.h> 447 448/* 449 * Methods to modify the page usage count. 450 * 451 * What counts for a page usage: 452 * - cache mapping (page->mapping) 453 * - private data (page->private) 454 * - page mapped in a task's page tables, each mapping 455 * is counted separately 456 * 457 * Also, many kernel routines increase the page count before a critical 458 * routine so they can be sure the page doesn't go away from under them. 459 */ 460 461/* 462 * Drop a ref, return true if the refcount fell to zero (the page has no users) 463 */ 464static inline int put_page_testzero(struct page *page) 465{ 466 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 467 return page_ref_dec_and_test(page); 468} 469 470/* 471 * Try to grab a ref unless the page has a refcount of zero, return false if 472 * that is the case. 473 * This can be called when MMU is off so it must not access 474 * any of the virtual mappings. 475 */ 476static inline int get_page_unless_zero(struct page *page) 477{ 478 return page_ref_add_unless(page, 1, 0); 479} 480 481extern int page_is_ram(unsigned long pfn); 482 483enum { 484 REGION_INTERSECTS, 485 REGION_DISJOINT, 486 REGION_MIXED, 487}; 488 489int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 490 unsigned long desc); 491 492/* Support for virtually mapped pages */ 493struct page *vmalloc_to_page(const void *addr); 494unsigned long vmalloc_to_pfn(const void *addr); 495 496/* 497 * Determine if an address is within the vmalloc range 498 * 499 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 500 * is no special casing required. 501 */ 502static inline bool is_vmalloc_addr(const void *x) 503{ 504#ifdef CONFIG_MMU 505 unsigned long addr = (unsigned long)x; 506 507 return addr >= VMALLOC_START && addr < VMALLOC_END; 508#else 509 return false; 510#endif 511} 512#ifdef CONFIG_MMU 513extern int is_vmalloc_or_module_addr(const void *x); 514#else 515static inline int is_vmalloc_or_module_addr(const void *x) 516{ 517 return 0; 518} 519#endif 520 521extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 522static inline void *kvmalloc(size_t size, gfp_t flags) 523{ 524 return kvmalloc_node(size, flags, NUMA_NO_NODE); 525} 526static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 527{ 528 return kvmalloc_node(size, flags | __GFP_ZERO, node); 529} 530static inline void *kvzalloc(size_t size, gfp_t flags) 531{ 532 return kvmalloc(size, flags | __GFP_ZERO); 533} 534 535static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 536{ 537 if (size != 0 && n > SIZE_MAX / size) 538 return NULL; 539 540 return kvmalloc(n * size, flags); 541} 542 543extern void kvfree(const void *addr); 544 545static inline atomic_t *compound_mapcount_ptr(struct page *page) 546{ 547 return &page[1].compound_mapcount; 548} 549 550static inline int compound_mapcount(struct page *page) 551{ 552 VM_BUG_ON_PAGE(!PageCompound(page), page); 553 page = compound_head(page); 554 return atomic_read(compound_mapcount_ptr(page)) + 1; 555} 556 557/* 558 * The atomic page->_mapcount, starts from -1: so that transitions 559 * both from it and to it can be tracked, using atomic_inc_and_test 560 * and atomic_add_negative(-1). 561 */ 562static inline void page_mapcount_reset(struct page *page) 563{ 564 atomic_set(&(page)->_mapcount, -1); 565} 566 567int __page_mapcount(struct page *page); 568 569static inline int page_mapcount(struct page *page) 570{ 571 VM_BUG_ON_PAGE(PageSlab(page), page); 572 573 if (unlikely(PageCompound(page))) 574 return __page_mapcount(page); 575 return atomic_read(&page->_mapcount) + 1; 576} 577 578#ifdef CONFIG_TRANSPARENT_HUGEPAGE 579int total_mapcount(struct page *page); 580int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 581#else 582static inline int total_mapcount(struct page *page) 583{ 584 return page_mapcount(page); 585} 586static inline int page_trans_huge_mapcount(struct page *page, 587 int *total_mapcount) 588{ 589 int mapcount = page_mapcount(page); 590 if (total_mapcount) 591 *total_mapcount = mapcount; 592 return mapcount; 593} 594#endif 595 596static inline struct page *virt_to_head_page(const void *x) 597{ 598 struct page *page = virt_to_page(x); 599 600 return compound_head(page); 601} 602 603void __put_page(struct page *page); 604 605void put_pages_list(struct list_head *pages); 606 607void split_page(struct page *page, unsigned int order); 608 609/* 610 * Compound pages have a destructor function. Provide a 611 * prototype for that function and accessor functions. 612 * These are _only_ valid on the head of a compound page. 613 */ 614typedef void compound_page_dtor(struct page *); 615 616/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 617enum compound_dtor_id { 618 NULL_COMPOUND_DTOR, 619 COMPOUND_PAGE_DTOR, 620#ifdef CONFIG_HUGETLB_PAGE 621 HUGETLB_PAGE_DTOR, 622#endif 623#ifdef CONFIG_TRANSPARENT_HUGEPAGE 624 TRANSHUGE_PAGE_DTOR, 625#endif 626 NR_COMPOUND_DTORS, 627}; 628extern compound_page_dtor * const compound_page_dtors[]; 629 630static inline void set_compound_page_dtor(struct page *page, 631 enum compound_dtor_id compound_dtor) 632{ 633 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 634 page[1].compound_dtor = compound_dtor; 635} 636 637static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 638{ 639 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 640 return compound_page_dtors[page[1].compound_dtor]; 641} 642 643static inline unsigned int compound_order(struct page *page) 644{ 645 if (!PageHead(page)) 646 return 0; 647 return page[1].compound_order; 648} 649 650static inline void set_compound_order(struct page *page, unsigned int order) 651{ 652 page[1].compound_order = order; 653} 654 655void free_compound_page(struct page *page); 656 657#ifdef CONFIG_MMU 658/* 659 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 660 * servicing faults for write access. In the normal case, do always want 661 * pte_mkwrite. But get_user_pages can cause write faults for mappings 662 * that do not have writing enabled, when used by access_process_vm. 663 */ 664static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 665{ 666 if (likely(vma->vm_flags & VM_WRITE)) 667 pte = pte_mkwrite(pte); 668 return pte; 669} 670 671int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 672 struct page *page); 673int finish_fault(struct vm_fault *vmf); 674int finish_mkwrite_fault(struct vm_fault *vmf); 675#endif 676 677/* 678 * Multiple processes may "see" the same page. E.g. for untouched 679 * mappings of /dev/null, all processes see the same page full of 680 * zeroes, and text pages of executables and shared libraries have 681 * only one copy in memory, at most, normally. 682 * 683 * For the non-reserved pages, page_count(page) denotes a reference count. 684 * page_count() == 0 means the page is free. page->lru is then used for 685 * freelist management in the buddy allocator. 686 * page_count() > 0 means the page has been allocated. 687 * 688 * Pages are allocated by the slab allocator in order to provide memory 689 * to kmalloc and kmem_cache_alloc. In this case, the management of the 690 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 691 * unless a particular usage is carefully commented. (the responsibility of 692 * freeing the kmalloc memory is the caller's, of course). 693 * 694 * A page may be used by anyone else who does a __get_free_page(). 695 * In this case, page_count still tracks the references, and should only 696 * be used through the normal accessor functions. The top bits of page->flags 697 * and page->virtual store page management information, but all other fields 698 * are unused and could be used privately, carefully. The management of this 699 * page is the responsibility of the one who allocated it, and those who have 700 * subsequently been given references to it. 701 * 702 * The other pages (we may call them "pagecache pages") are completely 703 * managed by the Linux memory manager: I/O, buffers, swapping etc. 704 * The following discussion applies only to them. 705 * 706 * A pagecache page contains an opaque `private' member, which belongs to the 707 * page's address_space. Usually, this is the address of a circular list of 708 * the page's disk buffers. PG_private must be set to tell the VM to call 709 * into the filesystem to release these pages. 710 * 711 * A page may belong to an inode's memory mapping. In this case, page->mapping 712 * is the pointer to the inode, and page->index is the file offset of the page, 713 * in units of PAGE_SIZE. 714 * 715 * If pagecache pages are not associated with an inode, they are said to be 716 * anonymous pages. These may become associated with the swapcache, and in that 717 * case PG_swapcache is set, and page->private is an offset into the swapcache. 718 * 719 * In either case (swapcache or inode backed), the pagecache itself holds one 720 * reference to the page. Setting PG_private should also increment the 721 * refcount. The each user mapping also has a reference to the page. 722 * 723 * The pagecache pages are stored in a per-mapping radix tree, which is 724 * rooted at mapping->page_tree, and indexed by offset. 725 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 726 * lists, we instead now tag pages as dirty/writeback in the radix tree. 727 * 728 * All pagecache pages may be subject to I/O: 729 * - inode pages may need to be read from disk, 730 * - inode pages which have been modified and are MAP_SHARED may need 731 * to be written back to the inode on disk, 732 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 733 * modified may need to be swapped out to swap space and (later) to be read 734 * back into memory. 735 */ 736 737/* 738 * The zone field is never updated after free_area_init_core() 739 * sets it, so none of the operations on it need to be atomic. 740 */ 741 742/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 743#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 744#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 745#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 746#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 747 748/* 749 * Define the bit shifts to access each section. For non-existent 750 * sections we define the shift as 0; that plus a 0 mask ensures 751 * the compiler will optimise away reference to them. 752 */ 753#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 754#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 755#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 756#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 757 758/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 759#ifdef NODE_NOT_IN_PAGE_FLAGS 760#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 761#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 762 SECTIONS_PGOFF : ZONES_PGOFF) 763#else 764#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 765#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 766 NODES_PGOFF : ZONES_PGOFF) 767#endif 768 769#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 770 771#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 772#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 773#endif 774 775#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 776#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 777#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 778#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 779#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 780 781static inline enum zone_type page_zonenum(const struct page *page) 782{ 783 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 784} 785 786#ifdef CONFIG_ZONE_DEVICE 787static inline bool is_zone_device_page(const struct page *page) 788{ 789 return page_zonenum(page) == ZONE_DEVICE; 790} 791#else 792static inline bool is_zone_device_page(const struct page *page) 793{ 794 return false; 795} 796#endif 797 798static inline void get_page(struct page *page) 799{ 800 page = compound_head(page); 801 /* 802 * Getting a normal page or the head of a compound page 803 * requires to already have an elevated page->_refcount. 804 */ 805 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 806 page_ref_inc(page); 807} 808 809static inline void put_page(struct page *page) 810{ 811 page = compound_head(page); 812 813 if (put_page_testzero(page)) 814 __put_page(page); 815} 816 817#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 818#define SECTION_IN_PAGE_FLAGS 819#endif 820 821/* 822 * The identification function is mainly used by the buddy allocator for 823 * determining if two pages could be buddies. We are not really identifying 824 * the zone since we could be using the section number id if we do not have 825 * node id available in page flags. 826 * We only guarantee that it will return the same value for two combinable 827 * pages in a zone. 828 */ 829static inline int page_zone_id(struct page *page) 830{ 831 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 832} 833 834static inline int zone_to_nid(struct zone *zone) 835{ 836#ifdef CONFIG_NUMA 837 return zone->node; 838#else 839 return 0; 840#endif 841} 842 843#ifdef NODE_NOT_IN_PAGE_FLAGS 844extern int page_to_nid(const struct page *page); 845#else 846static inline int page_to_nid(const struct page *page) 847{ 848 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 849} 850#endif 851 852#ifdef CONFIG_NUMA_BALANCING 853static inline int cpu_pid_to_cpupid(int cpu, int pid) 854{ 855 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 856} 857 858static inline int cpupid_to_pid(int cpupid) 859{ 860 return cpupid & LAST__PID_MASK; 861} 862 863static inline int cpupid_to_cpu(int cpupid) 864{ 865 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 866} 867 868static inline int cpupid_to_nid(int cpupid) 869{ 870 return cpu_to_node(cpupid_to_cpu(cpupid)); 871} 872 873static inline bool cpupid_pid_unset(int cpupid) 874{ 875 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 876} 877 878static inline bool cpupid_cpu_unset(int cpupid) 879{ 880 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 881} 882 883static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 884{ 885 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 886} 887 888#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 889#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 890static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 891{ 892 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 893} 894 895static inline int page_cpupid_last(struct page *page) 896{ 897 return page->_last_cpupid; 898} 899static inline void page_cpupid_reset_last(struct page *page) 900{ 901 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 902} 903#else 904static inline int page_cpupid_last(struct page *page) 905{ 906 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 907} 908 909extern int page_cpupid_xchg_last(struct page *page, int cpupid); 910 911static inline void page_cpupid_reset_last(struct page *page) 912{ 913 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 914} 915#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 916#else /* !CONFIG_NUMA_BALANCING */ 917static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 918{ 919 return page_to_nid(page); /* XXX */ 920} 921 922static inline int page_cpupid_last(struct page *page) 923{ 924 return page_to_nid(page); /* XXX */ 925} 926 927static inline int cpupid_to_nid(int cpupid) 928{ 929 return -1; 930} 931 932static inline int cpupid_to_pid(int cpupid) 933{ 934 return -1; 935} 936 937static inline int cpupid_to_cpu(int cpupid) 938{ 939 return -1; 940} 941 942static inline int cpu_pid_to_cpupid(int nid, int pid) 943{ 944 return -1; 945} 946 947static inline bool cpupid_pid_unset(int cpupid) 948{ 949 return 1; 950} 951 952static inline void page_cpupid_reset_last(struct page *page) 953{ 954} 955 956static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 957{ 958 return false; 959} 960#endif /* CONFIG_NUMA_BALANCING */ 961 962static inline struct zone *page_zone(const struct page *page) 963{ 964 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 965} 966 967static inline pg_data_t *page_pgdat(const struct page *page) 968{ 969 return NODE_DATA(page_to_nid(page)); 970} 971 972#ifdef SECTION_IN_PAGE_FLAGS 973static inline void set_page_section(struct page *page, unsigned long section) 974{ 975 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 976 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 977} 978 979static inline unsigned long page_to_section(const struct page *page) 980{ 981 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 982} 983#endif 984 985static inline void set_page_zone(struct page *page, enum zone_type zone) 986{ 987 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 988 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 989} 990 991static inline void set_page_node(struct page *page, unsigned long node) 992{ 993 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 994 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 995} 996 997static inline void set_page_links(struct page *page, enum zone_type zone, 998 unsigned long node, unsigned long pfn) 999{ 1000 set_page_zone(page, zone); 1001 set_page_node(page, node); 1002#ifdef SECTION_IN_PAGE_FLAGS 1003 set_page_section(page, pfn_to_section_nr(pfn)); 1004#endif 1005} 1006 1007#ifdef CONFIG_MEMCG 1008static inline struct mem_cgroup *page_memcg(struct page *page) 1009{ 1010 return page->mem_cgroup; 1011} 1012static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1013{ 1014 WARN_ON_ONCE(!rcu_read_lock_held()); 1015 return READ_ONCE(page->mem_cgroup); 1016} 1017#else 1018static inline struct mem_cgroup *page_memcg(struct page *page) 1019{ 1020 return NULL; 1021} 1022static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1023{ 1024 WARN_ON_ONCE(!rcu_read_lock_held()); 1025 return NULL; 1026} 1027#endif 1028 1029/* 1030 * Some inline functions in vmstat.h depend on page_zone() 1031 */ 1032#include <linux/vmstat.h> 1033 1034static __always_inline void *lowmem_page_address(const struct page *page) 1035{ 1036 return page_to_virt(page); 1037} 1038 1039#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1040#define HASHED_PAGE_VIRTUAL 1041#endif 1042 1043#if defined(WANT_PAGE_VIRTUAL) 1044static inline void *page_address(const struct page *page) 1045{ 1046 return page->virtual; 1047} 1048static inline void set_page_address(struct page *page, void *address) 1049{ 1050 page->virtual = address; 1051} 1052#define page_address_init() do { } while(0) 1053#endif 1054 1055#if defined(HASHED_PAGE_VIRTUAL) 1056void *page_address(const struct page *page); 1057void set_page_address(struct page *page, void *virtual); 1058void page_address_init(void); 1059#endif 1060 1061#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1062#define page_address(page) lowmem_page_address(page) 1063#define set_page_address(page, address) do { } while(0) 1064#define page_address_init() do { } while(0) 1065#endif 1066 1067extern void *page_rmapping(struct page *page); 1068extern struct anon_vma *page_anon_vma(struct page *page); 1069extern struct address_space *page_mapping(struct page *page); 1070 1071extern struct address_space *__page_file_mapping(struct page *); 1072 1073static inline 1074struct address_space *page_file_mapping(struct page *page) 1075{ 1076 if (unlikely(PageSwapCache(page))) 1077 return __page_file_mapping(page); 1078 1079 return page->mapping; 1080} 1081 1082extern pgoff_t __page_file_index(struct page *page); 1083 1084/* 1085 * Return the pagecache index of the passed page. Regular pagecache pages 1086 * use ->index whereas swapcache pages use swp_offset(->private) 1087 */ 1088static inline pgoff_t page_index(struct page *page) 1089{ 1090 if (unlikely(PageSwapCache(page))) 1091 return __page_file_index(page); 1092 return page->index; 1093} 1094 1095bool page_mapped(struct page *page); 1096struct address_space *page_mapping(struct page *page); 1097 1098/* 1099 * Return true only if the page has been allocated with 1100 * ALLOC_NO_WATERMARKS and the low watermark was not 1101 * met implying that the system is under some pressure. 1102 */ 1103static inline bool page_is_pfmemalloc(struct page *page) 1104{ 1105 /* 1106 * Page index cannot be this large so this must be 1107 * a pfmemalloc page. 1108 */ 1109 return page->index == -1UL; 1110} 1111 1112/* 1113 * Only to be called by the page allocator on a freshly allocated 1114 * page. 1115 */ 1116static inline void set_page_pfmemalloc(struct page *page) 1117{ 1118 page->index = -1UL; 1119} 1120 1121static inline void clear_page_pfmemalloc(struct page *page) 1122{ 1123 page->index = 0; 1124} 1125 1126/* 1127 * Different kinds of faults, as returned by handle_mm_fault(). 1128 * Used to decide whether a process gets delivered SIGBUS or 1129 * just gets major/minor fault counters bumped up. 1130 */ 1131 1132#define VM_FAULT_OOM 0x0001 1133#define VM_FAULT_SIGBUS 0x0002 1134#define VM_FAULT_MAJOR 0x0004 1135#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1136#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1137#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1138#define VM_FAULT_SIGSEGV 0x0040 1139 1140#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1141#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1142#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1143#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1144#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1145 1146#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1147 1148#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1149 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1150 VM_FAULT_FALLBACK) 1151 1152#define VM_FAULT_RESULT_TRACE \ 1153 { VM_FAULT_OOM, "OOM" }, \ 1154 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1155 { VM_FAULT_MAJOR, "MAJOR" }, \ 1156 { VM_FAULT_WRITE, "WRITE" }, \ 1157 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1158 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1159 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1160 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1161 { VM_FAULT_LOCKED, "LOCKED" }, \ 1162 { VM_FAULT_RETRY, "RETRY" }, \ 1163 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1164 { VM_FAULT_DONE_COW, "DONE_COW" } 1165 1166/* Encode hstate index for a hwpoisoned large page */ 1167#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1168#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1169 1170/* 1171 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1172 */ 1173extern void pagefault_out_of_memory(void); 1174 1175#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1176 1177/* 1178 * Flags passed to show_mem() and show_free_areas() to suppress output in 1179 * various contexts. 1180 */ 1181#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1182 1183extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1184 1185extern bool can_do_mlock(void); 1186extern int user_shm_lock(size_t, struct user_struct *); 1187extern void user_shm_unlock(size_t, struct user_struct *); 1188 1189/* 1190 * Parameter block passed down to zap_pte_range in exceptional cases. 1191 */ 1192struct zap_details { 1193 struct address_space *check_mapping; /* Check page->mapping if set */ 1194 pgoff_t first_index; /* Lowest page->index to unmap */ 1195 pgoff_t last_index; /* Highest page->index to unmap */ 1196}; 1197 1198struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1199 pte_t pte); 1200struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1201 pmd_t pmd); 1202 1203int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1204 unsigned long size); 1205void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1206 unsigned long size); 1207void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1208 unsigned long start, unsigned long end); 1209 1210/** 1211 * mm_walk - callbacks for walk_page_range 1212 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1213 * this handler should only handle pud_trans_huge() puds. 1214 * the pmd_entry or pte_entry callbacks will be used for 1215 * regular PUDs. 1216 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1217 * this handler is required to be able to handle 1218 * pmd_trans_huge() pmds. They may simply choose to 1219 * split_huge_page() instead of handling it explicitly. 1220 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1221 * @pte_hole: if set, called for each hole at all levels 1222 * @hugetlb_entry: if set, called for each hugetlb entry 1223 * @test_walk: caller specific callback function to determine whether 1224 * we walk over the current vma or not. Returning 0 1225 * value means "do page table walk over the current vma," 1226 * and a negative one means "abort current page table walk 1227 * right now." 1 means "skip the current vma." 1228 * @mm: mm_struct representing the target process of page table walk 1229 * @vma: vma currently walked (NULL if walking outside vmas) 1230 * @private: private data for callbacks' usage 1231 * 1232 * (see the comment on walk_page_range() for more details) 1233 */ 1234struct mm_walk { 1235 int (*pud_entry)(pud_t *pud, unsigned long addr, 1236 unsigned long next, struct mm_walk *walk); 1237 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1238 unsigned long next, struct mm_walk *walk); 1239 int (*pte_entry)(pte_t *pte, unsigned long addr, 1240 unsigned long next, struct mm_walk *walk); 1241 int (*pte_hole)(unsigned long addr, unsigned long next, 1242 struct mm_walk *walk); 1243 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1244 unsigned long addr, unsigned long next, 1245 struct mm_walk *walk); 1246 int (*test_walk)(unsigned long addr, unsigned long next, 1247 struct mm_walk *walk); 1248 struct mm_struct *mm; 1249 struct vm_area_struct *vma; 1250 void *private; 1251}; 1252 1253int walk_page_range(unsigned long addr, unsigned long end, 1254 struct mm_walk *walk); 1255int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1256void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1257 unsigned long end, unsigned long floor, unsigned long ceiling); 1258int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1259 struct vm_area_struct *vma); 1260void unmap_mapping_range(struct address_space *mapping, 1261 loff_t const holebegin, loff_t const holelen, int even_cows); 1262int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1263 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1264int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1265 unsigned long *pfn); 1266int follow_phys(struct vm_area_struct *vma, unsigned long address, 1267 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1268int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1269 void *buf, int len, int write); 1270 1271static inline void unmap_shared_mapping_range(struct address_space *mapping, 1272 loff_t const holebegin, loff_t const holelen) 1273{ 1274 unmap_mapping_range(mapping, holebegin, holelen, 0); 1275} 1276 1277extern void truncate_pagecache(struct inode *inode, loff_t new); 1278extern void truncate_setsize(struct inode *inode, loff_t newsize); 1279void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1280void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1281int truncate_inode_page(struct address_space *mapping, struct page *page); 1282int generic_error_remove_page(struct address_space *mapping, struct page *page); 1283int invalidate_inode_page(struct page *page); 1284 1285#ifdef CONFIG_MMU 1286extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1287 unsigned int flags); 1288extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1289 unsigned long address, unsigned int fault_flags, 1290 bool *unlocked); 1291#else 1292static inline int handle_mm_fault(struct vm_area_struct *vma, 1293 unsigned long address, unsigned int flags) 1294{ 1295 /* should never happen if there's no MMU */ 1296 BUG(); 1297 return VM_FAULT_SIGBUS; 1298} 1299static inline int fixup_user_fault(struct task_struct *tsk, 1300 struct mm_struct *mm, unsigned long address, 1301 unsigned int fault_flags, bool *unlocked) 1302{ 1303 /* should never happen if there's no MMU */ 1304 BUG(); 1305 return -EFAULT; 1306} 1307#endif 1308 1309extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1310 unsigned int gup_flags); 1311extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1312 void *buf, int len, unsigned int gup_flags); 1313extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1314 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1315 1316long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1317 unsigned long start, unsigned long nr_pages, 1318 unsigned int gup_flags, struct page **pages, 1319 struct vm_area_struct **vmas, int *locked); 1320long get_user_pages(unsigned long start, unsigned long nr_pages, 1321 unsigned int gup_flags, struct page **pages, 1322 struct vm_area_struct **vmas); 1323long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1324 unsigned int gup_flags, struct page **pages, int *locked); 1325long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1326 struct page **pages, unsigned int gup_flags); 1327int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1328 struct page **pages); 1329 1330/* Container for pinned pfns / pages */ 1331struct frame_vector { 1332 unsigned int nr_allocated; /* Number of frames we have space for */ 1333 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1334 bool got_ref; /* Did we pin pages by getting page ref? */ 1335 bool is_pfns; /* Does array contain pages or pfns? */ 1336 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1337 * pfns_vector_pages() or pfns_vector_pfns() 1338 * for access */ 1339}; 1340 1341struct frame_vector *frame_vector_create(unsigned int nr_frames); 1342void frame_vector_destroy(struct frame_vector *vec); 1343int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1344 unsigned int gup_flags, struct frame_vector *vec); 1345void put_vaddr_frames(struct frame_vector *vec); 1346int frame_vector_to_pages(struct frame_vector *vec); 1347void frame_vector_to_pfns(struct frame_vector *vec); 1348 1349static inline unsigned int frame_vector_count(struct frame_vector *vec) 1350{ 1351 return vec->nr_frames; 1352} 1353 1354static inline struct page **frame_vector_pages(struct frame_vector *vec) 1355{ 1356 if (vec->is_pfns) { 1357 int err = frame_vector_to_pages(vec); 1358 1359 if (err) 1360 return ERR_PTR(err); 1361 } 1362 return (struct page **)(vec->ptrs); 1363} 1364 1365static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1366{ 1367 if (!vec->is_pfns) 1368 frame_vector_to_pfns(vec); 1369 return (unsigned long *)(vec->ptrs); 1370} 1371 1372struct kvec; 1373int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1374 struct page **pages); 1375int get_kernel_page(unsigned long start, int write, struct page **pages); 1376struct page *get_dump_page(unsigned long addr); 1377 1378extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1379extern void do_invalidatepage(struct page *page, unsigned int offset, 1380 unsigned int length); 1381 1382int __set_page_dirty_nobuffers(struct page *page); 1383int __set_page_dirty_no_writeback(struct page *page); 1384int redirty_page_for_writepage(struct writeback_control *wbc, 1385 struct page *page); 1386void account_page_dirtied(struct page *page, struct address_space *mapping); 1387void account_page_cleaned(struct page *page, struct address_space *mapping, 1388 struct bdi_writeback *wb); 1389int set_page_dirty(struct page *page); 1390int set_page_dirty_lock(struct page *page); 1391void cancel_dirty_page(struct page *page); 1392int clear_page_dirty_for_io(struct page *page); 1393 1394int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1395 1396static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1397{ 1398 return !vma->vm_ops; 1399} 1400 1401#ifdef CONFIG_SHMEM 1402/* 1403 * The vma_is_shmem is not inline because it is used only by slow 1404 * paths in userfault. 1405 */ 1406bool vma_is_shmem(struct vm_area_struct *vma); 1407#else 1408static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1409#endif 1410 1411int vma_is_stack_for_current(struct vm_area_struct *vma); 1412 1413extern unsigned long move_page_tables(struct vm_area_struct *vma, 1414 unsigned long old_addr, struct vm_area_struct *new_vma, 1415 unsigned long new_addr, unsigned long len, 1416 bool need_rmap_locks); 1417extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1418 unsigned long end, pgprot_t newprot, 1419 int dirty_accountable, int prot_numa); 1420extern int mprotect_fixup(struct vm_area_struct *vma, 1421 struct vm_area_struct **pprev, unsigned long start, 1422 unsigned long end, unsigned long newflags); 1423 1424/* 1425 * doesn't attempt to fault and will return short. 1426 */ 1427int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1428 struct page **pages); 1429/* 1430 * per-process(per-mm_struct) statistics. 1431 */ 1432static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1433{ 1434 long val = atomic_long_read(&mm->rss_stat.count[member]); 1435 1436#ifdef SPLIT_RSS_COUNTING 1437 /* 1438 * counter is updated in asynchronous manner and may go to minus. 1439 * But it's never be expected number for users. 1440 */ 1441 if (val < 0) 1442 val = 0; 1443#endif 1444 return (unsigned long)val; 1445} 1446 1447static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1448{ 1449 atomic_long_add(value, &mm->rss_stat.count[member]); 1450} 1451 1452static inline void inc_mm_counter(struct mm_struct *mm, int member) 1453{ 1454 atomic_long_inc(&mm->rss_stat.count[member]); 1455} 1456 1457static inline void dec_mm_counter(struct mm_struct *mm, int member) 1458{ 1459 atomic_long_dec(&mm->rss_stat.count[member]); 1460} 1461 1462/* Optimized variant when page is already known not to be PageAnon */ 1463static inline int mm_counter_file(struct page *page) 1464{ 1465 if (PageSwapBacked(page)) 1466 return MM_SHMEMPAGES; 1467 return MM_FILEPAGES; 1468} 1469 1470static inline int mm_counter(struct page *page) 1471{ 1472 if (PageAnon(page)) 1473 return MM_ANONPAGES; 1474 return mm_counter_file(page); 1475} 1476 1477static inline unsigned long get_mm_rss(struct mm_struct *mm) 1478{ 1479 return get_mm_counter(mm, MM_FILEPAGES) + 1480 get_mm_counter(mm, MM_ANONPAGES) + 1481 get_mm_counter(mm, MM_SHMEMPAGES); 1482} 1483 1484static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1485{ 1486 return max(mm->hiwater_rss, get_mm_rss(mm)); 1487} 1488 1489static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1490{ 1491 return max(mm->hiwater_vm, mm->total_vm); 1492} 1493 1494static inline void update_hiwater_rss(struct mm_struct *mm) 1495{ 1496 unsigned long _rss = get_mm_rss(mm); 1497 1498 if ((mm)->hiwater_rss < _rss) 1499 (mm)->hiwater_rss = _rss; 1500} 1501 1502static inline void update_hiwater_vm(struct mm_struct *mm) 1503{ 1504 if (mm->hiwater_vm < mm->total_vm) 1505 mm->hiwater_vm = mm->total_vm; 1506} 1507 1508static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1509{ 1510 mm->hiwater_rss = get_mm_rss(mm); 1511} 1512 1513static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1514 struct mm_struct *mm) 1515{ 1516 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1517 1518 if (*maxrss < hiwater_rss) 1519 *maxrss = hiwater_rss; 1520} 1521 1522#if defined(SPLIT_RSS_COUNTING) 1523void sync_mm_rss(struct mm_struct *mm); 1524#else 1525static inline void sync_mm_rss(struct mm_struct *mm) 1526{ 1527} 1528#endif 1529 1530#ifndef __HAVE_ARCH_PTE_DEVMAP 1531static inline int pte_devmap(pte_t pte) 1532{ 1533 return 0; 1534} 1535#endif 1536 1537int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1538 1539extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1540 spinlock_t **ptl); 1541static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1542 spinlock_t **ptl) 1543{ 1544 pte_t *ptep; 1545 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1546 return ptep; 1547} 1548 1549#ifdef __PAGETABLE_P4D_FOLDED 1550static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1551 unsigned long address) 1552{ 1553 return 0; 1554} 1555#else 1556int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1557#endif 1558 1559#ifdef __PAGETABLE_PUD_FOLDED 1560static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1561 unsigned long address) 1562{ 1563 return 0; 1564} 1565#else 1566int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1567#endif 1568 1569#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1570static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1571 unsigned long address) 1572{ 1573 return 0; 1574} 1575 1576static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1577 1578static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1579{ 1580 return 0; 1581} 1582 1583static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1584static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1585 1586#else 1587int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1588 1589static inline void mm_nr_pmds_init(struct mm_struct *mm) 1590{ 1591 atomic_long_set(&mm->nr_pmds, 0); 1592} 1593 1594static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1595{ 1596 return atomic_long_read(&mm->nr_pmds); 1597} 1598 1599static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1600{ 1601 atomic_long_inc(&mm->nr_pmds); 1602} 1603 1604static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1605{ 1606 atomic_long_dec(&mm->nr_pmds); 1607} 1608#endif 1609 1610int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1611int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1612 1613/* 1614 * The following ifdef needed to get the 4level-fixup.h header to work. 1615 * Remove it when 4level-fixup.h has been removed. 1616 */ 1617#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1618 1619#ifndef __ARCH_HAS_5LEVEL_HACK 1620static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1621 unsigned long address) 1622{ 1623 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1624 NULL : p4d_offset(pgd, address); 1625} 1626 1627static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1628 unsigned long address) 1629{ 1630 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1631 NULL : pud_offset(p4d, address); 1632} 1633#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1634 1635static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1636{ 1637 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1638 NULL: pmd_offset(pud, address); 1639} 1640#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1641 1642#if USE_SPLIT_PTE_PTLOCKS 1643#if ALLOC_SPLIT_PTLOCKS 1644void __init ptlock_cache_init(void); 1645extern bool ptlock_alloc(struct page *page); 1646extern void ptlock_free(struct page *page); 1647 1648static inline spinlock_t *ptlock_ptr(struct page *page) 1649{ 1650 return page->ptl; 1651} 1652#else /* ALLOC_SPLIT_PTLOCKS */ 1653static inline void ptlock_cache_init(void) 1654{ 1655} 1656 1657static inline bool ptlock_alloc(struct page *page) 1658{ 1659 return true; 1660} 1661 1662static inline void ptlock_free(struct page *page) 1663{ 1664} 1665 1666static inline spinlock_t *ptlock_ptr(struct page *page) 1667{ 1668 return &page->ptl; 1669} 1670#endif /* ALLOC_SPLIT_PTLOCKS */ 1671 1672static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1673{ 1674 return ptlock_ptr(pmd_page(*pmd)); 1675} 1676 1677static inline bool ptlock_init(struct page *page) 1678{ 1679 /* 1680 * prep_new_page() initialize page->private (and therefore page->ptl) 1681 * with 0. Make sure nobody took it in use in between. 1682 * 1683 * It can happen if arch try to use slab for page table allocation: 1684 * slab code uses page->slab_cache, which share storage with page->ptl. 1685 */ 1686 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1687 if (!ptlock_alloc(page)) 1688 return false; 1689 spin_lock_init(ptlock_ptr(page)); 1690 return true; 1691} 1692 1693/* Reset page->mapping so free_pages_check won't complain. */ 1694static inline void pte_lock_deinit(struct page *page) 1695{ 1696 page->mapping = NULL; 1697 ptlock_free(page); 1698} 1699 1700#else /* !USE_SPLIT_PTE_PTLOCKS */ 1701/* 1702 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1703 */ 1704static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1705{ 1706 return &mm->page_table_lock; 1707} 1708static inline void ptlock_cache_init(void) {} 1709static inline bool ptlock_init(struct page *page) { return true; } 1710static inline void pte_lock_deinit(struct page *page) {} 1711#endif /* USE_SPLIT_PTE_PTLOCKS */ 1712 1713static inline void pgtable_init(void) 1714{ 1715 ptlock_cache_init(); 1716 pgtable_cache_init(); 1717} 1718 1719static inline bool pgtable_page_ctor(struct page *page) 1720{ 1721 if (!ptlock_init(page)) 1722 return false; 1723 inc_zone_page_state(page, NR_PAGETABLE); 1724 return true; 1725} 1726 1727static inline void pgtable_page_dtor(struct page *page) 1728{ 1729 pte_lock_deinit(page); 1730 dec_zone_page_state(page, NR_PAGETABLE); 1731} 1732 1733#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1734({ \ 1735 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1736 pte_t *__pte = pte_offset_map(pmd, address); \ 1737 *(ptlp) = __ptl; \ 1738 spin_lock(__ptl); \ 1739 __pte; \ 1740}) 1741 1742#define pte_unmap_unlock(pte, ptl) do { \ 1743 spin_unlock(ptl); \ 1744 pte_unmap(pte); \ 1745} while (0) 1746 1747#define pte_alloc(mm, pmd, address) \ 1748 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1749 1750#define pte_alloc_map(mm, pmd, address) \ 1751 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1752 1753#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1754 (pte_alloc(mm, pmd, address) ? \ 1755 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1756 1757#define pte_alloc_kernel(pmd, address) \ 1758 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1759 NULL: pte_offset_kernel(pmd, address)) 1760 1761#if USE_SPLIT_PMD_PTLOCKS 1762 1763static struct page *pmd_to_page(pmd_t *pmd) 1764{ 1765 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1766 return virt_to_page((void *)((unsigned long) pmd & mask)); 1767} 1768 1769static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1770{ 1771 return ptlock_ptr(pmd_to_page(pmd)); 1772} 1773 1774static inline bool pgtable_pmd_page_ctor(struct page *page) 1775{ 1776#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1777 page->pmd_huge_pte = NULL; 1778#endif 1779 return ptlock_init(page); 1780} 1781 1782static inline void pgtable_pmd_page_dtor(struct page *page) 1783{ 1784#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1785 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1786#endif 1787 ptlock_free(page); 1788} 1789 1790#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1791 1792#else 1793 1794static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1795{ 1796 return &mm->page_table_lock; 1797} 1798 1799static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1800static inline void pgtable_pmd_page_dtor(struct page *page) {} 1801 1802#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1803 1804#endif 1805 1806static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1807{ 1808 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1809 spin_lock(ptl); 1810 return ptl; 1811} 1812 1813/* 1814 * No scalability reason to split PUD locks yet, but follow the same pattern 1815 * as the PMD locks to make it easier if we decide to. The VM should not be 1816 * considered ready to switch to split PUD locks yet; there may be places 1817 * which need to be converted from page_table_lock. 1818 */ 1819static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 1820{ 1821 return &mm->page_table_lock; 1822} 1823 1824static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 1825{ 1826 spinlock_t *ptl = pud_lockptr(mm, pud); 1827 1828 spin_lock(ptl); 1829 return ptl; 1830} 1831 1832extern void __init pagecache_init(void); 1833extern void free_area_init(unsigned long * zones_size); 1834extern void free_area_init_node(int nid, unsigned long * zones_size, 1835 unsigned long zone_start_pfn, unsigned long *zholes_size); 1836extern void free_initmem(void); 1837 1838/* 1839 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1840 * into the buddy system. The freed pages will be poisoned with pattern 1841 * "poison" if it's within range [0, UCHAR_MAX]. 1842 * Return pages freed into the buddy system. 1843 */ 1844extern unsigned long free_reserved_area(void *start, void *end, 1845 int poison, char *s); 1846 1847#ifdef CONFIG_HIGHMEM 1848/* 1849 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1850 * and totalram_pages. 1851 */ 1852extern void free_highmem_page(struct page *page); 1853#endif 1854 1855extern void adjust_managed_page_count(struct page *page, long count); 1856extern void mem_init_print_info(const char *str); 1857 1858extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1859 1860/* Free the reserved page into the buddy system, so it gets managed. */ 1861static inline void __free_reserved_page(struct page *page) 1862{ 1863 ClearPageReserved(page); 1864 init_page_count(page); 1865 __free_page(page); 1866} 1867 1868static inline void free_reserved_page(struct page *page) 1869{ 1870 __free_reserved_page(page); 1871 adjust_managed_page_count(page, 1); 1872} 1873 1874static inline void mark_page_reserved(struct page *page) 1875{ 1876 SetPageReserved(page); 1877 adjust_managed_page_count(page, -1); 1878} 1879 1880/* 1881 * Default method to free all the __init memory into the buddy system. 1882 * The freed pages will be poisoned with pattern "poison" if it's within 1883 * range [0, UCHAR_MAX]. 1884 * Return pages freed into the buddy system. 1885 */ 1886static inline unsigned long free_initmem_default(int poison) 1887{ 1888 extern char __init_begin[], __init_end[]; 1889 1890 return free_reserved_area(&__init_begin, &__init_end, 1891 poison, "unused kernel"); 1892} 1893 1894static inline unsigned long get_num_physpages(void) 1895{ 1896 int nid; 1897 unsigned long phys_pages = 0; 1898 1899 for_each_online_node(nid) 1900 phys_pages += node_present_pages(nid); 1901 1902 return phys_pages; 1903} 1904 1905#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1906/* 1907 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1908 * zones, allocate the backing mem_map and account for memory holes in a more 1909 * architecture independent manner. This is a substitute for creating the 1910 * zone_sizes[] and zholes_size[] arrays and passing them to 1911 * free_area_init_node() 1912 * 1913 * An architecture is expected to register range of page frames backed by 1914 * physical memory with memblock_add[_node]() before calling 1915 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1916 * usage, an architecture is expected to do something like 1917 * 1918 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1919 * max_highmem_pfn}; 1920 * for_each_valid_physical_page_range() 1921 * memblock_add_node(base, size, nid) 1922 * free_area_init_nodes(max_zone_pfns); 1923 * 1924 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1925 * registered physical page range. Similarly 1926 * sparse_memory_present_with_active_regions() calls memory_present() for 1927 * each range when SPARSEMEM is enabled. 1928 * 1929 * See mm/page_alloc.c for more information on each function exposed by 1930 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1931 */ 1932extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1933unsigned long node_map_pfn_alignment(void); 1934unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1935 unsigned long end_pfn); 1936extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1937 unsigned long end_pfn); 1938extern void get_pfn_range_for_nid(unsigned int nid, 1939 unsigned long *start_pfn, unsigned long *end_pfn); 1940extern unsigned long find_min_pfn_with_active_regions(void); 1941extern void free_bootmem_with_active_regions(int nid, 1942 unsigned long max_low_pfn); 1943extern void sparse_memory_present_with_active_regions(int nid); 1944 1945#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1946 1947#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1948 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1949static inline int __early_pfn_to_nid(unsigned long pfn, 1950 struct mminit_pfnnid_cache *state) 1951{ 1952 return 0; 1953} 1954#else 1955/* please see mm/page_alloc.c */ 1956extern int __meminit early_pfn_to_nid(unsigned long pfn); 1957/* there is a per-arch backend function. */ 1958extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1959 struct mminit_pfnnid_cache *state); 1960#endif 1961 1962extern void set_dma_reserve(unsigned long new_dma_reserve); 1963extern void memmap_init_zone(unsigned long, int, unsigned long, 1964 unsigned long, enum memmap_context); 1965extern void setup_per_zone_wmarks(void); 1966extern int __meminit init_per_zone_wmark_min(void); 1967extern void mem_init(void); 1968extern void __init mmap_init(void); 1969extern void show_mem(unsigned int flags, nodemask_t *nodemask); 1970extern long si_mem_available(void); 1971extern void si_meminfo(struct sysinfo * val); 1972extern void si_meminfo_node(struct sysinfo *val, int nid); 1973#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 1974extern unsigned long arch_reserved_kernel_pages(void); 1975#endif 1976 1977extern __printf(3, 4) 1978void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 1979 1980extern void setup_per_cpu_pageset(void); 1981 1982extern void zone_pcp_update(struct zone *zone); 1983extern void zone_pcp_reset(struct zone *zone); 1984 1985/* page_alloc.c */ 1986extern int min_free_kbytes; 1987extern int watermark_scale_factor; 1988 1989/* nommu.c */ 1990extern atomic_long_t mmap_pages_allocated; 1991extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1992 1993/* interval_tree.c */ 1994void vma_interval_tree_insert(struct vm_area_struct *node, 1995 struct rb_root *root); 1996void vma_interval_tree_insert_after(struct vm_area_struct *node, 1997 struct vm_area_struct *prev, 1998 struct rb_root *root); 1999void vma_interval_tree_remove(struct vm_area_struct *node, 2000 struct rb_root *root); 2001struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 2002 unsigned long start, unsigned long last); 2003struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2004 unsigned long start, unsigned long last); 2005 2006#define vma_interval_tree_foreach(vma, root, start, last) \ 2007 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2008 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2009 2010void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2011 struct rb_root *root); 2012void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2013 struct rb_root *root); 2014struct anon_vma_chain *anon_vma_interval_tree_iter_first( 2015 struct rb_root *root, unsigned long start, unsigned long last); 2016struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2017 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2018#ifdef CONFIG_DEBUG_VM_RB 2019void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2020#endif 2021 2022#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2023 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2024 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2025 2026/* mmap.c */ 2027extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2028extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2029 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2030 struct vm_area_struct *expand); 2031static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2032 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2033{ 2034 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2035} 2036extern struct vm_area_struct *vma_merge(struct mm_struct *, 2037 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2038 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2039 struct mempolicy *, struct vm_userfaultfd_ctx); 2040extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2041extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2042 unsigned long addr, int new_below); 2043extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2044 unsigned long addr, int new_below); 2045extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2046extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2047 struct rb_node **, struct rb_node *); 2048extern void unlink_file_vma(struct vm_area_struct *); 2049extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2050 unsigned long addr, unsigned long len, pgoff_t pgoff, 2051 bool *need_rmap_locks); 2052extern void exit_mmap(struct mm_struct *); 2053 2054static inline int check_data_rlimit(unsigned long rlim, 2055 unsigned long new, 2056 unsigned long start, 2057 unsigned long end_data, 2058 unsigned long start_data) 2059{ 2060 if (rlim < RLIM_INFINITY) { 2061 if (((new - start) + (end_data - start_data)) > rlim) 2062 return -ENOSPC; 2063 } 2064 2065 return 0; 2066} 2067 2068extern int mm_take_all_locks(struct mm_struct *mm); 2069extern void mm_drop_all_locks(struct mm_struct *mm); 2070 2071extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2072extern struct file *get_mm_exe_file(struct mm_struct *mm); 2073extern struct file *get_task_exe_file(struct task_struct *task); 2074 2075extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2076extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2077 2078extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2079 const struct vm_special_mapping *sm); 2080extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2081 unsigned long addr, unsigned long len, 2082 unsigned long flags, 2083 const struct vm_special_mapping *spec); 2084/* This is an obsolete alternative to _install_special_mapping. */ 2085extern int install_special_mapping(struct mm_struct *mm, 2086 unsigned long addr, unsigned long len, 2087 unsigned long flags, struct page **pages); 2088 2089extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2090 2091extern unsigned long mmap_region(struct file *file, unsigned long addr, 2092 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2093 struct list_head *uf); 2094extern unsigned long do_mmap(struct file *file, unsigned long addr, 2095 unsigned long len, unsigned long prot, unsigned long flags, 2096 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2097 struct list_head *uf); 2098extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2099 struct list_head *uf); 2100 2101static inline unsigned long 2102do_mmap_pgoff(struct file *file, unsigned long addr, 2103 unsigned long len, unsigned long prot, unsigned long flags, 2104 unsigned long pgoff, unsigned long *populate, 2105 struct list_head *uf) 2106{ 2107 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2108} 2109 2110#ifdef CONFIG_MMU 2111extern int __mm_populate(unsigned long addr, unsigned long len, 2112 int ignore_errors); 2113static inline void mm_populate(unsigned long addr, unsigned long len) 2114{ 2115 /* Ignore errors */ 2116 (void) __mm_populate(addr, len, 1); 2117} 2118#else 2119static inline void mm_populate(unsigned long addr, unsigned long len) {} 2120#endif 2121 2122/* These take the mm semaphore themselves */ 2123extern int __must_check vm_brk(unsigned long, unsigned long); 2124extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2125extern int vm_munmap(unsigned long, size_t); 2126extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2127 unsigned long, unsigned long, 2128 unsigned long, unsigned long); 2129 2130struct vm_unmapped_area_info { 2131#define VM_UNMAPPED_AREA_TOPDOWN 1 2132 unsigned long flags; 2133 unsigned long length; 2134 unsigned long low_limit; 2135 unsigned long high_limit; 2136 unsigned long align_mask; 2137 unsigned long align_offset; 2138}; 2139 2140extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2141extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2142 2143/* 2144 * Search for an unmapped address range. 2145 * 2146 * We are looking for a range that: 2147 * - does not intersect with any VMA; 2148 * - is contained within the [low_limit, high_limit) interval; 2149 * - is at least the desired size. 2150 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2151 */ 2152static inline unsigned long 2153vm_unmapped_area(struct vm_unmapped_area_info *info) 2154{ 2155 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2156 return unmapped_area_topdown(info); 2157 else 2158 return unmapped_area(info); 2159} 2160 2161/* truncate.c */ 2162extern void truncate_inode_pages(struct address_space *, loff_t); 2163extern void truncate_inode_pages_range(struct address_space *, 2164 loff_t lstart, loff_t lend); 2165extern void truncate_inode_pages_final(struct address_space *); 2166 2167/* generic vm_area_ops exported for stackable file systems */ 2168extern int filemap_fault(struct vm_fault *vmf); 2169extern void filemap_map_pages(struct vm_fault *vmf, 2170 pgoff_t start_pgoff, pgoff_t end_pgoff); 2171extern int filemap_page_mkwrite(struct vm_fault *vmf); 2172 2173/* mm/page-writeback.c */ 2174int write_one_page(struct page *page, int wait); 2175void task_dirty_inc(struct task_struct *tsk); 2176 2177/* readahead.c */ 2178#define VM_MAX_READAHEAD 128 /* kbytes */ 2179#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2180 2181int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2182 pgoff_t offset, unsigned long nr_to_read); 2183 2184void page_cache_sync_readahead(struct address_space *mapping, 2185 struct file_ra_state *ra, 2186 struct file *filp, 2187 pgoff_t offset, 2188 unsigned long size); 2189 2190void page_cache_async_readahead(struct address_space *mapping, 2191 struct file_ra_state *ra, 2192 struct file *filp, 2193 struct page *pg, 2194 pgoff_t offset, 2195 unsigned long size); 2196 2197extern unsigned long stack_guard_gap; 2198/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2199extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2200 2201/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2202extern int expand_downwards(struct vm_area_struct *vma, 2203 unsigned long address); 2204#if VM_GROWSUP 2205extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2206#else 2207 #define expand_upwards(vma, address) (0) 2208#endif 2209 2210/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2211extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2212extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2213 struct vm_area_struct **pprev); 2214 2215/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2216 NULL if none. Assume start_addr < end_addr. */ 2217static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2218{ 2219 struct vm_area_struct * vma = find_vma(mm,start_addr); 2220 2221 if (vma && end_addr <= vma->vm_start) 2222 vma = NULL; 2223 return vma; 2224} 2225 2226static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2227{ 2228 unsigned long vm_start = vma->vm_start; 2229 2230 if (vma->vm_flags & VM_GROWSDOWN) { 2231 vm_start -= stack_guard_gap; 2232 if (vm_start > vma->vm_start) 2233 vm_start = 0; 2234 } 2235 return vm_start; 2236} 2237 2238static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2239{ 2240 unsigned long vm_end = vma->vm_end; 2241 2242 if (vma->vm_flags & VM_GROWSUP) { 2243 vm_end += stack_guard_gap; 2244 if (vm_end < vma->vm_end) 2245 vm_end = -PAGE_SIZE; 2246 } 2247 return vm_end; 2248} 2249 2250static inline unsigned long vma_pages(struct vm_area_struct *vma) 2251{ 2252 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2253} 2254 2255/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2256static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2257 unsigned long vm_start, unsigned long vm_end) 2258{ 2259 struct vm_area_struct *vma = find_vma(mm, vm_start); 2260 2261 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2262 vma = NULL; 2263 2264 return vma; 2265} 2266 2267#ifdef CONFIG_MMU 2268pgprot_t vm_get_page_prot(unsigned long vm_flags); 2269void vma_set_page_prot(struct vm_area_struct *vma); 2270#else 2271static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2272{ 2273 return __pgprot(0); 2274} 2275static inline void vma_set_page_prot(struct vm_area_struct *vma) 2276{ 2277 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2278} 2279#endif 2280 2281#ifdef CONFIG_NUMA_BALANCING 2282unsigned long change_prot_numa(struct vm_area_struct *vma, 2283 unsigned long start, unsigned long end); 2284#endif 2285 2286struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2287int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2288 unsigned long pfn, unsigned long size, pgprot_t); 2289int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2290int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2291 unsigned long pfn); 2292int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2293 unsigned long pfn, pgprot_t pgprot); 2294int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2295 pfn_t pfn); 2296int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2297 2298 2299struct page *follow_page_mask(struct vm_area_struct *vma, 2300 unsigned long address, unsigned int foll_flags, 2301 unsigned int *page_mask); 2302 2303static inline struct page *follow_page(struct vm_area_struct *vma, 2304 unsigned long address, unsigned int foll_flags) 2305{ 2306 unsigned int unused_page_mask; 2307 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2308} 2309 2310#define FOLL_WRITE 0x01 /* check pte is writable */ 2311#define FOLL_TOUCH 0x02 /* mark page accessed */ 2312#define FOLL_GET 0x04 /* do get_page on page */ 2313#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2314#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2315#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2316 * and return without waiting upon it */ 2317#define FOLL_POPULATE 0x40 /* fault in page */ 2318#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2319#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2320#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2321#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2322#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2323#define FOLL_MLOCK 0x1000 /* lock present pages */ 2324#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2325#define FOLL_COW 0x4000 /* internal GUP flag */ 2326 2327static inline int vm_fault_to_errno(int vm_fault, int foll_flags) 2328{ 2329 if (vm_fault & VM_FAULT_OOM) 2330 return -ENOMEM; 2331 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2332 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2333 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2334 return -EFAULT; 2335 return 0; 2336} 2337 2338typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2339 void *data); 2340extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2341 unsigned long size, pte_fn_t fn, void *data); 2342 2343 2344#ifdef CONFIG_PAGE_POISONING 2345extern bool page_poisoning_enabled(void); 2346extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2347extern bool page_is_poisoned(struct page *page); 2348#else 2349static inline bool page_poisoning_enabled(void) { return false; } 2350static inline void kernel_poison_pages(struct page *page, int numpages, 2351 int enable) { } 2352static inline bool page_is_poisoned(struct page *page) { return false; } 2353#endif 2354 2355#ifdef CONFIG_DEBUG_PAGEALLOC 2356extern bool _debug_pagealloc_enabled; 2357extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2358 2359static inline bool debug_pagealloc_enabled(void) 2360{ 2361 return _debug_pagealloc_enabled; 2362} 2363 2364static inline void 2365kernel_map_pages(struct page *page, int numpages, int enable) 2366{ 2367 if (!debug_pagealloc_enabled()) 2368 return; 2369 2370 __kernel_map_pages(page, numpages, enable); 2371} 2372#ifdef CONFIG_HIBERNATION 2373extern bool kernel_page_present(struct page *page); 2374#endif /* CONFIG_HIBERNATION */ 2375#else /* CONFIG_DEBUG_PAGEALLOC */ 2376static inline void 2377kernel_map_pages(struct page *page, int numpages, int enable) {} 2378#ifdef CONFIG_HIBERNATION 2379static inline bool kernel_page_present(struct page *page) { return true; } 2380#endif /* CONFIG_HIBERNATION */ 2381static inline bool debug_pagealloc_enabled(void) 2382{ 2383 return false; 2384} 2385#endif /* CONFIG_DEBUG_PAGEALLOC */ 2386 2387#ifdef __HAVE_ARCH_GATE_AREA 2388extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2389extern int in_gate_area_no_mm(unsigned long addr); 2390extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2391#else 2392static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2393{ 2394 return NULL; 2395} 2396static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2397static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2398{ 2399 return 0; 2400} 2401#endif /* __HAVE_ARCH_GATE_AREA */ 2402 2403extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2404 2405#ifdef CONFIG_SYSCTL 2406extern int sysctl_drop_caches; 2407int drop_caches_sysctl_handler(struct ctl_table *, int, 2408 void __user *, size_t *, loff_t *); 2409#endif 2410 2411void drop_slab(void); 2412void drop_slab_node(int nid); 2413 2414#ifndef CONFIG_MMU 2415#define randomize_va_space 0 2416#else 2417extern int randomize_va_space; 2418#endif 2419 2420const char * arch_vma_name(struct vm_area_struct *vma); 2421void print_vma_addr(char *prefix, unsigned long rip); 2422 2423void sparse_mem_maps_populate_node(struct page **map_map, 2424 unsigned long pnum_begin, 2425 unsigned long pnum_end, 2426 unsigned long map_count, 2427 int nodeid); 2428 2429struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2430pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2431p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2432pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2433pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2434pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2435void *vmemmap_alloc_block(unsigned long size, int node); 2436struct vmem_altmap; 2437void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2438 struct vmem_altmap *altmap); 2439static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2440{ 2441 return __vmemmap_alloc_block_buf(size, node, NULL); 2442} 2443 2444void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2445int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2446 int node); 2447int vmemmap_populate(unsigned long start, unsigned long end, int node); 2448void vmemmap_populate_print_last(void); 2449#ifdef CONFIG_MEMORY_HOTPLUG 2450void vmemmap_free(unsigned long start, unsigned long end); 2451#endif 2452void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2453 unsigned long size); 2454 2455enum mf_flags { 2456 MF_COUNT_INCREASED = 1 << 0, 2457 MF_ACTION_REQUIRED = 1 << 1, 2458 MF_MUST_KILL = 1 << 2, 2459 MF_SOFT_OFFLINE = 1 << 3, 2460}; 2461extern int memory_failure(unsigned long pfn, int trapno, int flags); 2462extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2463extern int unpoison_memory(unsigned long pfn); 2464extern int get_hwpoison_page(struct page *page); 2465#define put_hwpoison_page(page) put_page(page) 2466extern int sysctl_memory_failure_early_kill; 2467extern int sysctl_memory_failure_recovery; 2468extern void shake_page(struct page *p, int access); 2469extern atomic_long_t num_poisoned_pages; 2470extern int soft_offline_page(struct page *page, int flags); 2471 2472 2473/* 2474 * Error handlers for various types of pages. 2475 */ 2476enum mf_result { 2477 MF_IGNORED, /* Error: cannot be handled */ 2478 MF_FAILED, /* Error: handling failed */ 2479 MF_DELAYED, /* Will be handled later */ 2480 MF_RECOVERED, /* Successfully recovered */ 2481}; 2482 2483enum mf_action_page_type { 2484 MF_MSG_KERNEL, 2485 MF_MSG_KERNEL_HIGH_ORDER, 2486 MF_MSG_SLAB, 2487 MF_MSG_DIFFERENT_COMPOUND, 2488 MF_MSG_POISONED_HUGE, 2489 MF_MSG_HUGE, 2490 MF_MSG_FREE_HUGE, 2491 MF_MSG_UNMAP_FAILED, 2492 MF_MSG_DIRTY_SWAPCACHE, 2493 MF_MSG_CLEAN_SWAPCACHE, 2494 MF_MSG_DIRTY_MLOCKED_LRU, 2495 MF_MSG_CLEAN_MLOCKED_LRU, 2496 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2497 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2498 MF_MSG_DIRTY_LRU, 2499 MF_MSG_CLEAN_LRU, 2500 MF_MSG_TRUNCATED_LRU, 2501 MF_MSG_BUDDY, 2502 MF_MSG_BUDDY_2ND, 2503 MF_MSG_UNKNOWN, 2504}; 2505 2506#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2507extern void clear_huge_page(struct page *page, 2508 unsigned long addr, 2509 unsigned int pages_per_huge_page); 2510extern void copy_user_huge_page(struct page *dst, struct page *src, 2511 unsigned long addr, struct vm_area_struct *vma, 2512 unsigned int pages_per_huge_page); 2513extern long copy_huge_page_from_user(struct page *dst_page, 2514 const void __user *usr_src, 2515 unsigned int pages_per_huge_page, 2516 bool allow_pagefault); 2517#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2518 2519extern struct page_ext_operations debug_guardpage_ops; 2520 2521#ifdef CONFIG_DEBUG_PAGEALLOC 2522extern unsigned int _debug_guardpage_minorder; 2523extern bool _debug_guardpage_enabled; 2524 2525static inline unsigned int debug_guardpage_minorder(void) 2526{ 2527 return _debug_guardpage_minorder; 2528} 2529 2530static inline bool debug_guardpage_enabled(void) 2531{ 2532 return _debug_guardpage_enabled; 2533} 2534 2535static inline bool page_is_guard(struct page *page) 2536{ 2537 struct page_ext *page_ext; 2538 2539 if (!debug_guardpage_enabled()) 2540 return false; 2541 2542 page_ext = lookup_page_ext(page); 2543 if (unlikely(!page_ext)) 2544 return false; 2545 2546 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2547} 2548#else 2549static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2550static inline bool debug_guardpage_enabled(void) { return false; } 2551static inline bool page_is_guard(struct page *page) { return false; } 2552#endif /* CONFIG_DEBUG_PAGEALLOC */ 2553 2554#if MAX_NUMNODES > 1 2555void __init setup_nr_node_ids(void); 2556#else 2557static inline void setup_nr_node_ids(void) {} 2558#endif 2559 2560#endif /* __KERNEL__ */ 2561#endif /* _LINUX_MM_H */