at v4.12 23 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26#include <linux/page_counter.h> 27#include <linux/vmpressure.h> 28#include <linux/eventfd.h> 29#include <linux/mmzone.h> 30#include <linux/writeback.h> 31#include <linux/page-flags.h> 32 33struct mem_cgroup; 34struct page; 35struct mm_struct; 36struct kmem_cache; 37 38/* Cgroup-specific page state, on top of universal node page state */ 39enum memcg_stat_item { 40 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 41 MEMCG_RSS, 42 MEMCG_RSS_HUGE, 43 MEMCG_SWAP, 44 MEMCG_SOCK, 45 /* XXX: why are these zone and not node counters? */ 46 MEMCG_KERNEL_STACK_KB, 47 MEMCG_SLAB_RECLAIMABLE, 48 MEMCG_SLAB_UNRECLAIMABLE, 49 MEMCG_NR_STAT, 50}; 51 52/* Cgroup-specific events, on top of universal VM events */ 53enum memcg_event_item { 54 MEMCG_LOW = NR_VM_EVENT_ITEMS, 55 MEMCG_HIGH, 56 MEMCG_MAX, 57 MEMCG_OOM, 58 MEMCG_NR_EVENTS, 59}; 60 61struct mem_cgroup_reclaim_cookie { 62 pg_data_t *pgdat; 63 int priority; 64 unsigned int generation; 65}; 66 67#ifdef CONFIG_MEMCG 68 69#define MEM_CGROUP_ID_SHIFT 16 70#define MEM_CGROUP_ID_MAX USHRT_MAX 71 72struct mem_cgroup_id { 73 int id; 74 atomic_t ref; 75}; 76 77/* 78 * Per memcg event counter is incremented at every pagein/pageout. With THP, 79 * it will be incremated by the number of pages. This counter is used for 80 * for trigger some periodic events. This is straightforward and better 81 * than using jiffies etc. to handle periodic memcg event. 82 */ 83enum mem_cgroup_events_target { 84 MEM_CGROUP_TARGET_THRESH, 85 MEM_CGROUP_TARGET_SOFTLIMIT, 86 MEM_CGROUP_TARGET_NUMAINFO, 87 MEM_CGROUP_NTARGETS, 88}; 89 90struct mem_cgroup_stat_cpu { 91 long count[MEMCG_NR_STAT]; 92 unsigned long events[MEMCG_NR_EVENTS]; 93 unsigned long nr_page_events; 94 unsigned long targets[MEM_CGROUP_NTARGETS]; 95}; 96 97struct mem_cgroup_reclaim_iter { 98 struct mem_cgroup *position; 99 /* scan generation, increased every round-trip */ 100 unsigned int generation; 101}; 102 103/* 104 * per-zone information in memory controller. 105 */ 106struct mem_cgroup_per_node { 107 struct lruvec lruvec; 108 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 109 110 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 111 112 struct rb_node tree_node; /* RB tree node */ 113 unsigned long usage_in_excess;/* Set to the value by which */ 114 /* the soft limit is exceeded*/ 115 bool on_tree; 116 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 117 /* use container_of */ 118}; 119 120struct mem_cgroup_threshold { 121 struct eventfd_ctx *eventfd; 122 unsigned long threshold; 123}; 124 125/* For threshold */ 126struct mem_cgroup_threshold_ary { 127 /* An array index points to threshold just below or equal to usage. */ 128 int current_threshold; 129 /* Size of entries[] */ 130 unsigned int size; 131 /* Array of thresholds */ 132 struct mem_cgroup_threshold entries[0]; 133}; 134 135struct mem_cgroup_thresholds { 136 /* Primary thresholds array */ 137 struct mem_cgroup_threshold_ary *primary; 138 /* 139 * Spare threshold array. 140 * This is needed to make mem_cgroup_unregister_event() "never fail". 141 * It must be able to store at least primary->size - 1 entries. 142 */ 143 struct mem_cgroup_threshold_ary *spare; 144}; 145 146enum memcg_kmem_state { 147 KMEM_NONE, 148 KMEM_ALLOCATED, 149 KMEM_ONLINE, 150}; 151 152/* 153 * The memory controller data structure. The memory controller controls both 154 * page cache and RSS per cgroup. We would eventually like to provide 155 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 156 * to help the administrator determine what knobs to tune. 157 */ 158struct mem_cgroup { 159 struct cgroup_subsys_state css; 160 161 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 162 struct mem_cgroup_id id; 163 164 /* Accounted resources */ 165 struct page_counter memory; 166 struct page_counter swap; 167 168 /* Legacy consumer-oriented counters */ 169 struct page_counter memsw; 170 struct page_counter kmem; 171 struct page_counter tcpmem; 172 173 /* Normal memory consumption range */ 174 unsigned long low; 175 unsigned long high; 176 177 /* Range enforcement for interrupt charges */ 178 struct work_struct high_work; 179 180 unsigned long soft_limit; 181 182 /* vmpressure notifications */ 183 struct vmpressure vmpressure; 184 185 /* 186 * Should the accounting and control be hierarchical, per subtree? 187 */ 188 bool use_hierarchy; 189 190 /* protected by memcg_oom_lock */ 191 bool oom_lock; 192 int under_oom; 193 194 int swappiness; 195 /* OOM-Killer disable */ 196 int oom_kill_disable; 197 198 /* handle for "memory.events" */ 199 struct cgroup_file events_file; 200 201 /* protect arrays of thresholds */ 202 struct mutex thresholds_lock; 203 204 /* thresholds for memory usage. RCU-protected */ 205 struct mem_cgroup_thresholds thresholds; 206 207 /* thresholds for mem+swap usage. RCU-protected */ 208 struct mem_cgroup_thresholds memsw_thresholds; 209 210 /* For oom notifier event fd */ 211 struct list_head oom_notify; 212 213 /* 214 * Should we move charges of a task when a task is moved into this 215 * mem_cgroup ? And what type of charges should we move ? 216 */ 217 unsigned long move_charge_at_immigrate; 218 /* 219 * set > 0 if pages under this cgroup are moving to other cgroup. 220 */ 221 atomic_t moving_account; 222 /* taken only while moving_account > 0 */ 223 spinlock_t move_lock; 224 struct task_struct *move_lock_task; 225 unsigned long move_lock_flags; 226 /* 227 * percpu counter. 228 */ 229 struct mem_cgroup_stat_cpu __percpu *stat; 230 231 unsigned long socket_pressure; 232 233 /* Legacy tcp memory accounting */ 234 bool tcpmem_active; 235 int tcpmem_pressure; 236 237#ifndef CONFIG_SLOB 238 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 239 int kmemcg_id; 240 enum memcg_kmem_state kmem_state; 241 struct list_head kmem_caches; 242#endif 243 244 int last_scanned_node; 245#if MAX_NUMNODES > 1 246 nodemask_t scan_nodes; 247 atomic_t numainfo_events; 248 atomic_t numainfo_updating; 249#endif 250 251#ifdef CONFIG_CGROUP_WRITEBACK 252 struct list_head cgwb_list; 253 struct wb_domain cgwb_domain; 254#endif 255 256 /* List of events which userspace want to receive */ 257 struct list_head event_list; 258 spinlock_t event_list_lock; 259 260 struct mem_cgroup_per_node *nodeinfo[0]; 261 /* WARNING: nodeinfo must be the last member here */ 262}; 263 264extern struct mem_cgroup *root_mem_cgroup; 265 266static inline bool mem_cgroup_disabled(void) 267{ 268 return !cgroup_subsys_enabled(memory_cgrp_subsys); 269} 270 271static inline void mem_cgroup_event(struct mem_cgroup *memcg, 272 enum memcg_event_item event) 273{ 274 this_cpu_inc(memcg->stat->events[event]); 275 cgroup_file_notify(&memcg->events_file); 276} 277 278bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg); 279 280int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 281 gfp_t gfp_mask, struct mem_cgroup **memcgp, 282 bool compound); 283void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 284 bool lrucare, bool compound); 285void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 286 bool compound); 287void mem_cgroup_uncharge(struct page *page); 288void mem_cgroup_uncharge_list(struct list_head *page_list); 289 290void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 291 292static struct mem_cgroup_per_node * 293mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 294{ 295 return memcg->nodeinfo[nid]; 296} 297 298/** 299 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 300 * @node: node of the wanted lruvec 301 * @memcg: memcg of the wanted lruvec 302 * 303 * Returns the lru list vector holding pages for a given @node or a given 304 * @memcg and @zone. This can be the node lruvec, if the memory controller 305 * is disabled. 306 */ 307static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 308 struct mem_cgroup *memcg) 309{ 310 struct mem_cgroup_per_node *mz; 311 struct lruvec *lruvec; 312 313 if (mem_cgroup_disabled()) { 314 lruvec = node_lruvec(pgdat); 315 goto out; 316 } 317 318 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 319 lruvec = &mz->lruvec; 320out: 321 /* 322 * Since a node can be onlined after the mem_cgroup was created, 323 * we have to be prepared to initialize lruvec->pgdat here; 324 * and if offlined then reonlined, we need to reinitialize it. 325 */ 326 if (unlikely(lruvec->pgdat != pgdat)) 327 lruvec->pgdat = pgdat; 328 return lruvec; 329} 330 331struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 332 333bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 334struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 335 336static inline 337struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 338 return css ? container_of(css, struct mem_cgroup, css) : NULL; 339} 340 341#define mem_cgroup_from_counter(counter, member) \ 342 container_of(counter, struct mem_cgroup, member) 343 344struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 345 struct mem_cgroup *, 346 struct mem_cgroup_reclaim_cookie *); 347void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 348int mem_cgroup_scan_tasks(struct mem_cgroup *, 349 int (*)(struct task_struct *, void *), void *); 350 351static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 352{ 353 if (mem_cgroup_disabled()) 354 return 0; 355 356 return memcg->id.id; 357} 358struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 359 360/** 361 * parent_mem_cgroup - find the accounting parent of a memcg 362 * @memcg: memcg whose parent to find 363 * 364 * Returns the parent memcg, or NULL if this is the root or the memory 365 * controller is in legacy no-hierarchy mode. 366 */ 367static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 368{ 369 if (!memcg->memory.parent) 370 return NULL; 371 return mem_cgroup_from_counter(memcg->memory.parent, memory); 372} 373 374static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 375 struct mem_cgroup *root) 376{ 377 if (root == memcg) 378 return true; 379 if (!root->use_hierarchy) 380 return false; 381 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 382} 383 384static inline bool mm_match_cgroup(struct mm_struct *mm, 385 struct mem_cgroup *memcg) 386{ 387 struct mem_cgroup *task_memcg; 388 bool match = false; 389 390 rcu_read_lock(); 391 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 392 if (task_memcg) 393 match = mem_cgroup_is_descendant(task_memcg, memcg); 394 rcu_read_unlock(); 395 return match; 396} 397 398struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 399ino_t page_cgroup_ino(struct page *page); 400 401static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 402{ 403 if (mem_cgroup_disabled()) 404 return true; 405 return !!(memcg->css.flags & CSS_ONLINE); 406} 407 408/* 409 * For memory reclaim. 410 */ 411int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 412 413void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 414 int zid, int nr_pages); 415 416unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 417 int nid, unsigned int lru_mask); 418 419static inline 420unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 421{ 422 struct mem_cgroup_per_node *mz; 423 unsigned long nr_pages = 0; 424 int zid; 425 426 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 427 for (zid = 0; zid < MAX_NR_ZONES; zid++) 428 nr_pages += mz->lru_zone_size[zid][lru]; 429 return nr_pages; 430} 431 432static inline 433unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 434 enum lru_list lru, int zone_idx) 435{ 436 struct mem_cgroup_per_node *mz; 437 438 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 439 return mz->lru_zone_size[zone_idx][lru]; 440} 441 442void mem_cgroup_handle_over_high(void); 443 444unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg); 445 446void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 447 struct task_struct *p); 448 449static inline void mem_cgroup_oom_enable(void) 450{ 451 WARN_ON(current->memcg_may_oom); 452 current->memcg_may_oom = 1; 453} 454 455static inline void mem_cgroup_oom_disable(void) 456{ 457 WARN_ON(!current->memcg_may_oom); 458 current->memcg_may_oom = 0; 459} 460 461static inline bool task_in_memcg_oom(struct task_struct *p) 462{ 463 return p->memcg_in_oom; 464} 465 466bool mem_cgroup_oom_synchronize(bool wait); 467 468#ifdef CONFIG_MEMCG_SWAP 469extern int do_swap_account; 470#endif 471 472void lock_page_memcg(struct page *page); 473void unlock_page_memcg(struct page *page); 474 475static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 476 enum memcg_stat_item idx) 477{ 478 long val = 0; 479 int cpu; 480 481 for_each_possible_cpu(cpu) 482 val += per_cpu(memcg->stat->count[idx], cpu); 483 484 if (val < 0) 485 val = 0; 486 487 return val; 488} 489 490static inline void mod_memcg_state(struct mem_cgroup *memcg, 491 enum memcg_stat_item idx, int val) 492{ 493 if (!mem_cgroup_disabled()) 494 this_cpu_add(memcg->stat->count[idx], val); 495} 496 497static inline void inc_memcg_state(struct mem_cgroup *memcg, 498 enum memcg_stat_item idx) 499{ 500 mod_memcg_state(memcg, idx, 1); 501} 502 503static inline void dec_memcg_state(struct mem_cgroup *memcg, 504 enum memcg_stat_item idx) 505{ 506 mod_memcg_state(memcg, idx, -1); 507} 508 509/** 510 * mod_memcg_page_state - update page state statistics 511 * @page: the page 512 * @idx: page state item to account 513 * @val: number of pages (positive or negative) 514 * 515 * The @page must be locked or the caller must use lock_page_memcg() 516 * to prevent double accounting when the page is concurrently being 517 * moved to another memcg: 518 * 519 * lock_page(page) or lock_page_memcg(page) 520 * if (TestClearPageState(page)) 521 * mod_memcg_page_state(page, state, -1); 522 * unlock_page(page) or unlock_page_memcg(page) 523 * 524 * Kernel pages are an exception to this, since they'll never move. 525 */ 526static inline void mod_memcg_page_state(struct page *page, 527 enum memcg_stat_item idx, int val) 528{ 529 if (page->mem_cgroup) 530 mod_memcg_state(page->mem_cgroup, idx, val); 531} 532 533static inline void inc_memcg_page_state(struct page *page, 534 enum memcg_stat_item idx) 535{ 536 mod_memcg_page_state(page, idx, 1); 537} 538 539static inline void dec_memcg_page_state(struct page *page, 540 enum memcg_stat_item idx) 541{ 542 mod_memcg_page_state(page, idx, -1); 543} 544 545unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 546 gfp_t gfp_mask, 547 unsigned long *total_scanned); 548 549static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 550 enum vm_event_item idx) 551{ 552 struct mem_cgroup *memcg; 553 554 if (mem_cgroup_disabled()) 555 return; 556 557 rcu_read_lock(); 558 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 559 if (likely(memcg)) 560 this_cpu_inc(memcg->stat->events[idx]); 561 rcu_read_unlock(); 562} 563#ifdef CONFIG_TRANSPARENT_HUGEPAGE 564void mem_cgroup_split_huge_fixup(struct page *head); 565#endif 566 567#else /* CONFIG_MEMCG */ 568 569#define MEM_CGROUP_ID_SHIFT 0 570#define MEM_CGROUP_ID_MAX 0 571 572struct mem_cgroup; 573 574static inline bool mem_cgroup_disabled(void) 575{ 576 return true; 577} 578 579static inline void mem_cgroup_event(struct mem_cgroup *memcg, 580 enum memcg_event_item event) 581{ 582} 583 584static inline bool mem_cgroup_low(struct mem_cgroup *root, 585 struct mem_cgroup *memcg) 586{ 587 return false; 588} 589 590static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 591 gfp_t gfp_mask, 592 struct mem_cgroup **memcgp, 593 bool compound) 594{ 595 *memcgp = NULL; 596 return 0; 597} 598 599static inline void mem_cgroup_commit_charge(struct page *page, 600 struct mem_cgroup *memcg, 601 bool lrucare, bool compound) 602{ 603} 604 605static inline void mem_cgroup_cancel_charge(struct page *page, 606 struct mem_cgroup *memcg, 607 bool compound) 608{ 609} 610 611static inline void mem_cgroup_uncharge(struct page *page) 612{ 613} 614 615static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 616{ 617} 618 619static inline void mem_cgroup_migrate(struct page *old, struct page *new) 620{ 621} 622 623static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 624 struct mem_cgroup *memcg) 625{ 626 return node_lruvec(pgdat); 627} 628 629static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 630 struct pglist_data *pgdat) 631{ 632 return &pgdat->lruvec; 633} 634 635static inline bool mm_match_cgroup(struct mm_struct *mm, 636 struct mem_cgroup *memcg) 637{ 638 return true; 639} 640 641static inline bool task_in_mem_cgroup(struct task_struct *task, 642 const struct mem_cgroup *memcg) 643{ 644 return true; 645} 646 647static inline struct mem_cgroup * 648mem_cgroup_iter(struct mem_cgroup *root, 649 struct mem_cgroup *prev, 650 struct mem_cgroup_reclaim_cookie *reclaim) 651{ 652 return NULL; 653} 654 655static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 656 struct mem_cgroup *prev) 657{ 658} 659 660static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 661 int (*fn)(struct task_struct *, void *), void *arg) 662{ 663 return 0; 664} 665 666static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 667{ 668 return 0; 669} 670 671static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 672{ 673 WARN_ON_ONCE(id); 674 /* XXX: This should always return root_mem_cgroup */ 675 return NULL; 676} 677 678static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 679{ 680 return true; 681} 682 683static inline unsigned long 684mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 685{ 686 return 0; 687} 688static inline 689unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 690 enum lru_list lru, int zone_idx) 691{ 692 return 0; 693} 694 695static inline unsigned long 696mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 697 int nid, unsigned int lru_mask) 698{ 699 return 0; 700} 701 702static inline unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 703{ 704 return 0; 705} 706 707static inline void 708mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 709{ 710} 711 712static inline void lock_page_memcg(struct page *page) 713{ 714} 715 716static inline void unlock_page_memcg(struct page *page) 717{ 718} 719 720static inline void mem_cgroup_handle_over_high(void) 721{ 722} 723 724static inline void mem_cgroup_oom_enable(void) 725{ 726} 727 728static inline void mem_cgroup_oom_disable(void) 729{ 730} 731 732static inline bool task_in_memcg_oom(struct task_struct *p) 733{ 734 return false; 735} 736 737static inline bool mem_cgroup_oom_synchronize(bool wait) 738{ 739 return false; 740} 741 742static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 743 enum memcg_stat_item idx) 744{ 745 return 0; 746} 747 748static inline void mod_memcg_state(struct mem_cgroup *memcg, 749 enum memcg_stat_item idx, 750 int nr) 751{ 752} 753 754static inline void inc_memcg_state(struct mem_cgroup *memcg, 755 enum memcg_stat_item idx) 756{ 757} 758 759static inline void dec_memcg_state(struct mem_cgroup *memcg, 760 enum memcg_stat_item idx) 761{ 762} 763 764static inline void mod_memcg_page_state(struct page *page, 765 enum memcg_stat_item idx, 766 int nr) 767{ 768} 769 770static inline void inc_memcg_page_state(struct page *page, 771 enum memcg_stat_item idx) 772{ 773} 774 775static inline void dec_memcg_page_state(struct page *page, 776 enum memcg_stat_item idx) 777{ 778} 779 780static inline 781unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 782 gfp_t gfp_mask, 783 unsigned long *total_scanned) 784{ 785 return 0; 786} 787 788static inline void mem_cgroup_split_huge_fixup(struct page *head) 789{ 790} 791 792static inline 793void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 794{ 795} 796#endif /* CONFIG_MEMCG */ 797 798#ifdef CONFIG_CGROUP_WRITEBACK 799 800struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg); 801struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 802void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 803 unsigned long *pheadroom, unsigned long *pdirty, 804 unsigned long *pwriteback); 805 806#else /* CONFIG_CGROUP_WRITEBACK */ 807 808static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 809{ 810 return NULL; 811} 812 813static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 814 unsigned long *pfilepages, 815 unsigned long *pheadroom, 816 unsigned long *pdirty, 817 unsigned long *pwriteback) 818{ 819} 820 821#endif /* CONFIG_CGROUP_WRITEBACK */ 822 823struct sock; 824bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 825void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 826#ifdef CONFIG_MEMCG 827extern struct static_key_false memcg_sockets_enabled_key; 828#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 829void mem_cgroup_sk_alloc(struct sock *sk); 830void mem_cgroup_sk_free(struct sock *sk); 831static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 832{ 833 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 834 return true; 835 do { 836 if (time_before(jiffies, memcg->socket_pressure)) 837 return true; 838 } while ((memcg = parent_mem_cgroup(memcg))); 839 return false; 840} 841#else 842#define mem_cgroup_sockets_enabled 0 843static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 844static inline void mem_cgroup_sk_free(struct sock *sk) { }; 845static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 846{ 847 return false; 848} 849#endif 850 851struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 852void memcg_kmem_put_cache(struct kmem_cache *cachep); 853int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 854 struct mem_cgroup *memcg); 855int memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 856void memcg_kmem_uncharge(struct page *page, int order); 857 858#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 859extern struct static_key_false memcg_kmem_enabled_key; 860extern struct workqueue_struct *memcg_kmem_cache_wq; 861 862extern int memcg_nr_cache_ids; 863void memcg_get_cache_ids(void); 864void memcg_put_cache_ids(void); 865 866/* 867 * Helper macro to loop through all memcg-specific caches. Callers must still 868 * check if the cache is valid (it is either valid or NULL). 869 * the slab_mutex must be held when looping through those caches 870 */ 871#define for_each_memcg_cache_index(_idx) \ 872 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 873 874static inline bool memcg_kmem_enabled(void) 875{ 876 return static_branch_unlikely(&memcg_kmem_enabled_key); 877} 878 879/* 880 * helper for accessing a memcg's index. It will be used as an index in the 881 * child cache array in kmem_cache, and also to derive its name. This function 882 * will return -1 when this is not a kmem-limited memcg. 883 */ 884static inline int memcg_cache_id(struct mem_cgroup *memcg) 885{ 886 return memcg ? memcg->kmemcg_id : -1; 887} 888 889/** 890 * memcg_kmem_update_page_stat - update kmem page state statistics 891 * @page: the page 892 * @idx: page state item to account 893 * @val: number of pages (positive or negative) 894 */ 895static inline void memcg_kmem_update_page_stat(struct page *page, 896 enum memcg_stat_item idx, int val) 897{ 898 if (memcg_kmem_enabled() && page->mem_cgroup) 899 this_cpu_add(page->mem_cgroup->stat->count[idx], val); 900} 901 902#else 903#define for_each_memcg_cache_index(_idx) \ 904 for (; NULL; ) 905 906static inline bool memcg_kmem_enabled(void) 907{ 908 return false; 909} 910 911static inline int memcg_cache_id(struct mem_cgroup *memcg) 912{ 913 return -1; 914} 915 916static inline void memcg_get_cache_ids(void) 917{ 918} 919 920static inline void memcg_put_cache_ids(void) 921{ 922} 923 924static inline void memcg_kmem_update_page_stat(struct page *page, 925 enum memcg_stat_item idx, int val) 926{ 927} 928#endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 929 930#endif /* _LINUX_MEMCONTROL_H */