at v4.12 35 kB view raw
1#ifndef __KVM_HOST_H 2#define __KVM_HOST_H 3 4/* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9#include <linux/types.h> 10#include <linux/hardirq.h> 11#include <linux/list.h> 12#include <linux/mutex.h> 13#include <linux/spinlock.h> 14#include <linux/signal.h> 15#include <linux/sched.h> 16#include <linux/bug.h> 17#include <linux/mm.h> 18#include <linux/mmu_notifier.h> 19#include <linux/preempt.h> 20#include <linux/msi.h> 21#include <linux/slab.h> 22#include <linux/rcupdate.h> 23#include <linux/ratelimit.h> 24#include <linux/err.h> 25#include <linux/irqflags.h> 26#include <linux/context_tracking.h> 27#include <linux/irqbypass.h> 28#include <linux/swait.h> 29#include <linux/refcount.h> 30#include <asm/signal.h> 31 32#include <linux/kvm.h> 33#include <linux/kvm_para.h> 34 35#include <linux/kvm_types.h> 36 37#include <asm/kvm_host.h> 38 39#ifndef KVM_MAX_VCPU_ID 40#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 41#endif 42 43/* 44 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 45 * in kvm, other bits are visible for userspace which are defined in 46 * include/linux/kvm_h. 47 */ 48#define KVM_MEMSLOT_INVALID (1UL << 16) 49 50/* Two fragments for cross MMIO pages. */ 51#define KVM_MAX_MMIO_FRAGMENTS 2 52 53#ifndef KVM_ADDRESS_SPACE_NUM 54#define KVM_ADDRESS_SPACE_NUM 1 55#endif 56 57/* 58 * For the normal pfn, the highest 12 bits should be zero, 59 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 60 * mask bit 63 to indicate the noslot pfn. 61 */ 62#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 63#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 64#define KVM_PFN_NOSLOT (0x1ULL << 63) 65 66#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 67#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 68#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 69 70/* 71 * error pfns indicate that the gfn is in slot but faild to 72 * translate it to pfn on host. 73 */ 74static inline bool is_error_pfn(kvm_pfn_t pfn) 75{ 76 return !!(pfn & KVM_PFN_ERR_MASK); 77} 78 79/* 80 * error_noslot pfns indicate that the gfn can not be 81 * translated to pfn - it is not in slot or failed to 82 * translate it to pfn. 83 */ 84static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 85{ 86 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 87} 88 89/* noslot pfn indicates that the gfn is not in slot. */ 90static inline bool is_noslot_pfn(kvm_pfn_t pfn) 91{ 92 return pfn == KVM_PFN_NOSLOT; 93} 94 95/* 96 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 97 * provide own defines and kvm_is_error_hva 98 */ 99#ifndef KVM_HVA_ERR_BAD 100 101#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 102#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 103 104static inline bool kvm_is_error_hva(unsigned long addr) 105{ 106 return addr >= PAGE_OFFSET; 107} 108 109#endif 110 111#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 112 113static inline bool is_error_page(struct page *page) 114{ 115 return IS_ERR(page); 116} 117 118#define KVM_REQUEST_MASK GENMASK(7,0) 119#define KVM_REQUEST_NO_WAKEUP BIT(8) 120#define KVM_REQUEST_WAIT BIT(9) 121/* 122 * Architecture-independent vcpu->requests bit members 123 * Bits 4-7 are reserved for more arch-independent bits. 124 */ 125#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 127#define KVM_REQ_PENDING_TIMER 2 128#define KVM_REQ_UNHALT 3 129 130#define KVM_USERSPACE_IRQ_SOURCE_ID 0 131#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 132 133extern struct kmem_cache *kvm_vcpu_cache; 134 135extern spinlock_t kvm_lock; 136extern struct list_head vm_list; 137 138struct kvm_io_range { 139 gpa_t addr; 140 int len; 141 struct kvm_io_device *dev; 142}; 143 144#define NR_IOBUS_DEVS 1000 145 146struct kvm_io_bus { 147 int dev_count; 148 int ioeventfd_count; 149 struct kvm_io_range range[]; 150}; 151 152enum kvm_bus { 153 KVM_MMIO_BUS, 154 KVM_PIO_BUS, 155 KVM_VIRTIO_CCW_NOTIFY_BUS, 156 KVM_FAST_MMIO_BUS, 157 KVM_NR_BUSES 158}; 159 160int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 161 int len, const void *val); 162int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 163 gpa_t addr, int len, const void *val, long cookie); 164int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 165 int len, void *val); 166int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 167 int len, struct kvm_io_device *dev); 168void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 169 struct kvm_io_device *dev); 170struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 171 gpa_t addr); 172 173#ifdef CONFIG_KVM_ASYNC_PF 174struct kvm_async_pf { 175 struct work_struct work; 176 struct list_head link; 177 struct list_head queue; 178 struct kvm_vcpu *vcpu; 179 struct mm_struct *mm; 180 gva_t gva; 181 unsigned long addr; 182 struct kvm_arch_async_pf arch; 183 bool wakeup_all; 184}; 185 186void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 187void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 188int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 189 struct kvm_arch_async_pf *arch); 190int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 191#endif 192 193enum { 194 OUTSIDE_GUEST_MODE, 195 IN_GUEST_MODE, 196 EXITING_GUEST_MODE, 197 READING_SHADOW_PAGE_TABLES, 198}; 199 200/* 201 * Sometimes a large or cross-page mmio needs to be broken up into separate 202 * exits for userspace servicing. 203 */ 204struct kvm_mmio_fragment { 205 gpa_t gpa; 206 void *data; 207 unsigned len; 208}; 209 210struct kvm_vcpu { 211 struct kvm *kvm; 212#ifdef CONFIG_PREEMPT_NOTIFIERS 213 struct preempt_notifier preempt_notifier; 214#endif 215 int cpu; 216 int vcpu_id; 217 int srcu_idx; 218 int mode; 219 unsigned long requests; 220 unsigned long guest_debug; 221 222 int pre_pcpu; 223 struct list_head blocked_vcpu_list; 224 225 struct mutex mutex; 226 struct kvm_run *run; 227 228 int guest_fpu_loaded, guest_xcr0_loaded; 229 struct swait_queue_head wq; 230 struct pid *pid; 231 int sigset_active; 232 sigset_t sigset; 233 struct kvm_vcpu_stat stat; 234 unsigned int halt_poll_ns; 235 bool valid_wakeup; 236 237#ifdef CONFIG_HAS_IOMEM 238 int mmio_needed; 239 int mmio_read_completed; 240 int mmio_is_write; 241 int mmio_cur_fragment; 242 int mmio_nr_fragments; 243 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 244#endif 245 246#ifdef CONFIG_KVM_ASYNC_PF 247 struct { 248 u32 queued; 249 struct list_head queue; 250 struct list_head done; 251 spinlock_t lock; 252 } async_pf; 253#endif 254 255#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 256 /* 257 * Cpu relax intercept or pause loop exit optimization 258 * in_spin_loop: set when a vcpu does a pause loop exit 259 * or cpu relax intercepted. 260 * dy_eligible: indicates whether vcpu is eligible for directed yield. 261 */ 262 struct { 263 bool in_spin_loop; 264 bool dy_eligible; 265 } spin_loop; 266#endif 267 bool preempted; 268 struct kvm_vcpu_arch arch; 269 struct dentry *debugfs_dentry; 270}; 271 272static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 273{ 274 /* 275 * The memory barrier ensures a previous write to vcpu->requests cannot 276 * be reordered with the read of vcpu->mode. It pairs with the general 277 * memory barrier following the write of vcpu->mode in VCPU RUN. 278 */ 279 smp_mb__before_atomic(); 280 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 281} 282 283/* 284 * Some of the bitops functions do not support too long bitmaps. 285 * This number must be determined not to exceed such limits. 286 */ 287#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 288 289struct kvm_memory_slot { 290 gfn_t base_gfn; 291 unsigned long npages; 292 unsigned long *dirty_bitmap; 293 struct kvm_arch_memory_slot arch; 294 unsigned long userspace_addr; 295 u32 flags; 296 short id; 297}; 298 299static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 300{ 301 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 302} 303 304struct kvm_s390_adapter_int { 305 u64 ind_addr; 306 u64 summary_addr; 307 u64 ind_offset; 308 u32 summary_offset; 309 u32 adapter_id; 310}; 311 312struct kvm_hv_sint { 313 u32 vcpu; 314 u32 sint; 315}; 316 317struct kvm_kernel_irq_routing_entry { 318 u32 gsi; 319 u32 type; 320 int (*set)(struct kvm_kernel_irq_routing_entry *e, 321 struct kvm *kvm, int irq_source_id, int level, 322 bool line_status); 323 union { 324 struct { 325 unsigned irqchip; 326 unsigned pin; 327 } irqchip; 328 struct { 329 u32 address_lo; 330 u32 address_hi; 331 u32 data; 332 u32 flags; 333 u32 devid; 334 } msi; 335 struct kvm_s390_adapter_int adapter; 336 struct kvm_hv_sint hv_sint; 337 }; 338 struct hlist_node link; 339}; 340 341#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 342struct kvm_irq_routing_table { 343 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 344 u32 nr_rt_entries; 345 /* 346 * Array indexed by gsi. Each entry contains list of irq chips 347 * the gsi is connected to. 348 */ 349 struct hlist_head map[0]; 350}; 351#endif 352 353#ifndef KVM_PRIVATE_MEM_SLOTS 354#define KVM_PRIVATE_MEM_SLOTS 0 355#endif 356 357#ifndef KVM_MEM_SLOTS_NUM 358#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 359#endif 360 361#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 362static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 363{ 364 return 0; 365} 366#endif 367 368/* 369 * Note: 370 * memslots are not sorted by id anymore, please use id_to_memslot() 371 * to get the memslot by its id. 372 */ 373struct kvm_memslots { 374 u64 generation; 375 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 376 /* The mapping table from slot id to the index in memslots[]. */ 377 short id_to_index[KVM_MEM_SLOTS_NUM]; 378 atomic_t lru_slot; 379 int used_slots; 380}; 381 382struct kvm { 383 spinlock_t mmu_lock; 384 struct mutex slots_lock; 385 struct mm_struct *mm; /* userspace tied to this vm */ 386 struct kvm_memslots *memslots[KVM_ADDRESS_SPACE_NUM]; 387 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 388 389 /* 390 * created_vcpus is protected by kvm->lock, and is incremented 391 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 392 * incremented after storing the kvm_vcpu pointer in vcpus, 393 * and is accessed atomically. 394 */ 395 atomic_t online_vcpus; 396 int created_vcpus; 397 int last_boosted_vcpu; 398 struct list_head vm_list; 399 struct mutex lock; 400 struct kvm_io_bus *buses[KVM_NR_BUSES]; 401#ifdef CONFIG_HAVE_KVM_EVENTFD 402 struct { 403 spinlock_t lock; 404 struct list_head items; 405 struct list_head resampler_list; 406 struct mutex resampler_lock; 407 } irqfds; 408 struct list_head ioeventfds; 409#endif 410 struct kvm_vm_stat stat; 411 struct kvm_arch arch; 412 refcount_t users_count; 413#ifdef CONFIG_KVM_MMIO 414 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 415 spinlock_t ring_lock; 416 struct list_head coalesced_zones; 417#endif 418 419 struct mutex irq_lock; 420#ifdef CONFIG_HAVE_KVM_IRQCHIP 421 /* 422 * Update side is protected by irq_lock. 423 */ 424 struct kvm_irq_routing_table __rcu *irq_routing; 425#endif 426#ifdef CONFIG_HAVE_KVM_IRQFD 427 struct hlist_head irq_ack_notifier_list; 428#endif 429 430#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 431 struct mmu_notifier mmu_notifier; 432 unsigned long mmu_notifier_seq; 433 long mmu_notifier_count; 434#endif 435 long tlbs_dirty; 436 struct list_head devices; 437 struct dentry *debugfs_dentry; 438 struct kvm_stat_data **debugfs_stat_data; 439 struct srcu_struct srcu; 440 struct srcu_struct irq_srcu; 441}; 442 443#define kvm_err(fmt, ...) \ 444 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 445#define kvm_info(fmt, ...) \ 446 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 447#define kvm_debug(fmt, ...) \ 448 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 449#define kvm_debug_ratelimited(fmt, ...) \ 450 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 451 ## __VA_ARGS__) 452#define kvm_pr_unimpl(fmt, ...) \ 453 pr_err_ratelimited("kvm [%i]: " fmt, \ 454 task_tgid_nr(current), ## __VA_ARGS__) 455 456/* The guest did something we don't support. */ 457#define vcpu_unimpl(vcpu, fmt, ...) \ 458 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 459 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 460 461#define vcpu_debug(vcpu, fmt, ...) \ 462 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 463#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 464 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 465 ## __VA_ARGS__) 466#define vcpu_err(vcpu, fmt, ...) \ 467 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 468 469static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 470{ 471 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case 472 * the caller has read kvm->online_vcpus before (as is the case 473 * for kvm_for_each_vcpu, for example). 474 */ 475 smp_rmb(); 476 return kvm->vcpus[i]; 477} 478 479#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 480 for (idx = 0; \ 481 idx < atomic_read(&kvm->online_vcpus) && \ 482 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 483 idx++) 484 485static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 486{ 487 struct kvm_vcpu *vcpu = NULL; 488 int i; 489 490 if (id < 0) 491 return NULL; 492 if (id < KVM_MAX_VCPUS) 493 vcpu = kvm_get_vcpu(kvm, id); 494 if (vcpu && vcpu->vcpu_id == id) 495 return vcpu; 496 kvm_for_each_vcpu(i, vcpu, kvm) 497 if (vcpu->vcpu_id == id) 498 return vcpu; 499 return NULL; 500} 501 502static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 503{ 504 struct kvm_vcpu *tmp; 505 int idx; 506 507 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 508 if (tmp == vcpu) 509 return idx; 510 BUG(); 511} 512 513#define kvm_for_each_memslot(memslot, slots) \ 514 for (memslot = &slots->memslots[0]; \ 515 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 516 memslot++) 517 518int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 519void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 520 521int __must_check vcpu_load(struct kvm_vcpu *vcpu); 522void vcpu_put(struct kvm_vcpu *vcpu); 523 524#ifdef __KVM_HAVE_IOAPIC 525void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 526void kvm_arch_post_irq_routing_update(struct kvm *kvm); 527#else 528static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 529{ 530} 531static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 532{ 533} 534#endif 535 536#ifdef CONFIG_HAVE_KVM_IRQFD 537int kvm_irqfd_init(void); 538void kvm_irqfd_exit(void); 539#else 540static inline int kvm_irqfd_init(void) 541{ 542 return 0; 543} 544 545static inline void kvm_irqfd_exit(void) 546{ 547} 548#endif 549int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 550 struct module *module); 551void kvm_exit(void); 552 553void kvm_get_kvm(struct kvm *kvm); 554void kvm_put_kvm(struct kvm *kvm); 555 556static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 557{ 558 return rcu_dereference_check(kvm->memslots[as_id], 559 srcu_read_lock_held(&kvm->srcu) 560 || lockdep_is_held(&kvm->slots_lock)); 561} 562 563static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 564{ 565 return __kvm_memslots(kvm, 0); 566} 567 568static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 569{ 570 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 571 572 return __kvm_memslots(vcpu->kvm, as_id); 573} 574 575static inline struct kvm_memory_slot * 576id_to_memslot(struct kvm_memslots *slots, int id) 577{ 578 int index = slots->id_to_index[id]; 579 struct kvm_memory_slot *slot; 580 581 slot = &slots->memslots[index]; 582 583 WARN_ON(slot->id != id); 584 return slot; 585} 586 587/* 588 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 589 * - create a new memory slot 590 * - delete an existing memory slot 591 * - modify an existing memory slot 592 * -- move it in the guest physical memory space 593 * -- just change its flags 594 * 595 * Since flags can be changed by some of these operations, the following 596 * differentiation is the best we can do for __kvm_set_memory_region(): 597 */ 598enum kvm_mr_change { 599 KVM_MR_CREATE, 600 KVM_MR_DELETE, 601 KVM_MR_MOVE, 602 KVM_MR_FLAGS_ONLY, 603}; 604 605int kvm_set_memory_region(struct kvm *kvm, 606 const struct kvm_userspace_memory_region *mem); 607int __kvm_set_memory_region(struct kvm *kvm, 608 const struct kvm_userspace_memory_region *mem); 609void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 610 struct kvm_memory_slot *dont); 611int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 612 unsigned long npages); 613void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots); 614int kvm_arch_prepare_memory_region(struct kvm *kvm, 615 struct kvm_memory_slot *memslot, 616 const struct kvm_userspace_memory_region *mem, 617 enum kvm_mr_change change); 618void kvm_arch_commit_memory_region(struct kvm *kvm, 619 const struct kvm_userspace_memory_region *mem, 620 const struct kvm_memory_slot *old, 621 const struct kvm_memory_slot *new, 622 enum kvm_mr_change change); 623bool kvm_largepages_enabled(void); 624void kvm_disable_largepages(void); 625/* flush all memory translations */ 626void kvm_arch_flush_shadow_all(struct kvm *kvm); 627/* flush memory translations pointing to 'slot' */ 628void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 629 struct kvm_memory_slot *slot); 630 631int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 632 struct page **pages, int nr_pages); 633 634struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 635unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 636unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 637unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 638unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 639 bool *writable); 640void kvm_release_page_clean(struct page *page); 641void kvm_release_page_dirty(struct page *page); 642void kvm_set_page_accessed(struct page *page); 643 644kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 645kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 646kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 647 bool *writable); 648kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 649kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 650kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 651 bool atomic, bool *async, bool write_fault, 652 bool *writable); 653 654void kvm_release_pfn_clean(kvm_pfn_t pfn); 655void kvm_set_pfn_dirty(kvm_pfn_t pfn); 656void kvm_set_pfn_accessed(kvm_pfn_t pfn); 657void kvm_get_pfn(kvm_pfn_t pfn); 658 659int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 660 int len); 661int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 662 unsigned long len); 663int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 664int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 665 void *data, unsigned long len); 666int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 667 int offset, int len); 668int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 669 unsigned long len); 670int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 671 void *data, unsigned long len); 672int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 673 void *data, int offset, unsigned long len); 674int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 675 gpa_t gpa, unsigned long len); 676int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 677int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 678struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 679bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 680unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 681void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 682 683struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 684struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 685kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 686kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 687struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 688unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 689unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 690int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 691 int len); 692int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 693 unsigned long len); 694int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 695 unsigned long len); 696int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 697 int offset, int len); 698int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 699 unsigned long len); 700void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 701 702void kvm_vcpu_block(struct kvm_vcpu *vcpu); 703void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 704void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 705bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 706void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 707int kvm_vcpu_yield_to(struct kvm_vcpu *target); 708void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu); 709void kvm_load_guest_fpu(struct kvm_vcpu *vcpu); 710void kvm_put_guest_fpu(struct kvm_vcpu *vcpu); 711 712void kvm_flush_remote_tlbs(struct kvm *kvm); 713void kvm_reload_remote_mmus(struct kvm *kvm); 714bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 715 716long kvm_arch_dev_ioctl(struct file *filp, 717 unsigned int ioctl, unsigned long arg); 718long kvm_arch_vcpu_ioctl(struct file *filp, 719 unsigned int ioctl, unsigned long arg); 720int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 721 722int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 723 724int kvm_get_dirty_log(struct kvm *kvm, 725 struct kvm_dirty_log *log, int *is_dirty); 726 727int kvm_get_dirty_log_protect(struct kvm *kvm, 728 struct kvm_dirty_log *log, bool *is_dirty); 729 730void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 731 struct kvm_memory_slot *slot, 732 gfn_t gfn_offset, 733 unsigned long mask); 734 735int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 736 struct kvm_dirty_log *log); 737 738int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 739 bool line_status); 740long kvm_arch_vm_ioctl(struct file *filp, 741 unsigned int ioctl, unsigned long arg); 742 743int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 744int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 745 746int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 747 struct kvm_translation *tr); 748 749int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 750int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 751int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 752 struct kvm_sregs *sregs); 753int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 754 struct kvm_sregs *sregs); 755int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 756 struct kvm_mp_state *mp_state); 757int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 758 struct kvm_mp_state *mp_state); 759int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 760 struct kvm_guest_debug *dbg); 761int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 762 763int kvm_arch_init(void *opaque); 764void kvm_arch_exit(void); 765 766int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 767void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 768 769void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 770 771void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 772void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 773void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 774struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 775int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 776void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 777void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 778 779bool kvm_arch_has_vcpu_debugfs(void); 780int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 781 782int kvm_arch_hardware_enable(void); 783void kvm_arch_hardware_disable(void); 784int kvm_arch_hardware_setup(void); 785void kvm_arch_hardware_unsetup(void); 786void kvm_arch_check_processor_compat(void *rtn); 787int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 788int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 789 790#ifndef __KVM_HAVE_ARCH_VM_ALLOC 791static inline struct kvm *kvm_arch_alloc_vm(void) 792{ 793 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 794} 795 796static inline void kvm_arch_free_vm(struct kvm *kvm) 797{ 798 kfree(kvm); 799} 800#endif 801 802#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 803void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 804void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 805bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 806#else 807static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 808{ 809} 810 811static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 812{ 813} 814 815static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 816{ 817 return false; 818} 819#endif 820#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 821void kvm_arch_start_assignment(struct kvm *kvm); 822void kvm_arch_end_assignment(struct kvm *kvm); 823bool kvm_arch_has_assigned_device(struct kvm *kvm); 824#else 825static inline void kvm_arch_start_assignment(struct kvm *kvm) 826{ 827} 828 829static inline void kvm_arch_end_assignment(struct kvm *kvm) 830{ 831} 832 833static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 834{ 835 return false; 836} 837#endif 838 839static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 840{ 841#ifdef __KVM_HAVE_ARCH_WQP 842 return vcpu->arch.wqp; 843#else 844 return &vcpu->wq; 845#endif 846} 847 848#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 849/* 850 * returns true if the virtual interrupt controller is initialized and 851 * ready to accept virtual IRQ. On some architectures the virtual interrupt 852 * controller is dynamically instantiated and this is not always true. 853 */ 854bool kvm_arch_intc_initialized(struct kvm *kvm); 855#else 856static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 857{ 858 return true; 859} 860#endif 861 862int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 863void kvm_arch_destroy_vm(struct kvm *kvm); 864void kvm_arch_sync_events(struct kvm *kvm); 865 866int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 867void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 868 869bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 870 871struct kvm_irq_ack_notifier { 872 struct hlist_node link; 873 unsigned gsi; 874 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 875}; 876 877int kvm_irq_map_gsi(struct kvm *kvm, 878 struct kvm_kernel_irq_routing_entry *entries, int gsi); 879int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 880 881int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 882 bool line_status); 883int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 884 int irq_source_id, int level, bool line_status); 885int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 886 struct kvm *kvm, int irq_source_id, 887 int level, bool line_status); 888bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 889void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 890void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 891void kvm_register_irq_ack_notifier(struct kvm *kvm, 892 struct kvm_irq_ack_notifier *kian); 893void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 894 struct kvm_irq_ack_notifier *kian); 895int kvm_request_irq_source_id(struct kvm *kvm); 896void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 897 898/* 899 * search_memslots() and __gfn_to_memslot() are here because they are 900 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 901 * gfn_to_memslot() itself isn't here as an inline because that would 902 * bloat other code too much. 903 */ 904static inline struct kvm_memory_slot * 905search_memslots(struct kvm_memslots *slots, gfn_t gfn) 906{ 907 int start = 0, end = slots->used_slots; 908 int slot = atomic_read(&slots->lru_slot); 909 struct kvm_memory_slot *memslots = slots->memslots; 910 911 if (gfn >= memslots[slot].base_gfn && 912 gfn < memslots[slot].base_gfn + memslots[slot].npages) 913 return &memslots[slot]; 914 915 while (start < end) { 916 slot = start + (end - start) / 2; 917 918 if (gfn >= memslots[slot].base_gfn) 919 end = slot; 920 else 921 start = slot + 1; 922 } 923 924 if (gfn >= memslots[start].base_gfn && 925 gfn < memslots[start].base_gfn + memslots[start].npages) { 926 atomic_set(&slots->lru_slot, start); 927 return &memslots[start]; 928 } 929 930 return NULL; 931} 932 933static inline struct kvm_memory_slot * 934__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 935{ 936 return search_memslots(slots, gfn); 937} 938 939static inline unsigned long 940__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 941{ 942 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 943} 944 945static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 946{ 947 return gfn_to_memslot(kvm, gfn)->id; 948} 949 950static inline gfn_t 951hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 952{ 953 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 954 955 return slot->base_gfn + gfn_offset; 956} 957 958static inline gpa_t gfn_to_gpa(gfn_t gfn) 959{ 960 return (gpa_t)gfn << PAGE_SHIFT; 961} 962 963static inline gfn_t gpa_to_gfn(gpa_t gpa) 964{ 965 return (gfn_t)(gpa >> PAGE_SHIFT); 966} 967 968static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 969{ 970 return (hpa_t)pfn << PAGE_SHIFT; 971} 972 973static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 974{ 975 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 976 977 return kvm_is_error_hva(hva); 978} 979 980enum kvm_stat_kind { 981 KVM_STAT_VM, 982 KVM_STAT_VCPU, 983}; 984 985struct kvm_stat_data { 986 int offset; 987 struct kvm *kvm; 988}; 989 990struct kvm_stats_debugfs_item { 991 const char *name; 992 int offset; 993 enum kvm_stat_kind kind; 994}; 995extern struct kvm_stats_debugfs_item debugfs_entries[]; 996extern struct dentry *kvm_debugfs_dir; 997 998#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 999static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1000{ 1001 if (unlikely(kvm->mmu_notifier_count)) 1002 return 1; 1003 /* 1004 * Ensure the read of mmu_notifier_count happens before the read 1005 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1006 * mmu_notifier_invalidate_range_end to make sure that the caller 1007 * either sees the old (non-zero) value of mmu_notifier_count or 1008 * the new (incremented) value of mmu_notifier_seq. 1009 * PowerPC Book3s HV KVM calls this under a per-page lock 1010 * rather than under kvm->mmu_lock, for scalability, so 1011 * can't rely on kvm->mmu_lock to keep things ordered. 1012 */ 1013 smp_rmb(); 1014 if (kvm->mmu_notifier_seq != mmu_seq) 1015 return 1; 1016 return 0; 1017} 1018#endif 1019 1020#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1021 1022#ifdef CONFIG_S390 1023#define KVM_MAX_IRQ_ROUTES 4096 //FIXME: we can have more than that... 1024#elif defined(CONFIG_ARM64) 1025#define KVM_MAX_IRQ_ROUTES 4096 1026#else 1027#define KVM_MAX_IRQ_ROUTES 1024 1028#endif 1029 1030bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1031int kvm_set_irq_routing(struct kvm *kvm, 1032 const struct kvm_irq_routing_entry *entries, 1033 unsigned nr, 1034 unsigned flags); 1035int kvm_set_routing_entry(struct kvm *kvm, 1036 struct kvm_kernel_irq_routing_entry *e, 1037 const struct kvm_irq_routing_entry *ue); 1038void kvm_free_irq_routing(struct kvm *kvm); 1039 1040#else 1041 1042static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1043 1044#endif 1045 1046int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1047 1048#ifdef CONFIG_HAVE_KVM_EVENTFD 1049 1050void kvm_eventfd_init(struct kvm *kvm); 1051int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1052 1053#ifdef CONFIG_HAVE_KVM_IRQFD 1054int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1055void kvm_irqfd_release(struct kvm *kvm); 1056void kvm_irq_routing_update(struct kvm *); 1057#else 1058static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1059{ 1060 return -EINVAL; 1061} 1062 1063static inline void kvm_irqfd_release(struct kvm *kvm) {} 1064#endif 1065 1066#else 1067 1068static inline void kvm_eventfd_init(struct kvm *kvm) {} 1069 1070static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1071{ 1072 return -EINVAL; 1073} 1074 1075static inline void kvm_irqfd_release(struct kvm *kvm) {} 1076 1077#ifdef CONFIG_HAVE_KVM_IRQCHIP 1078static inline void kvm_irq_routing_update(struct kvm *kvm) 1079{ 1080} 1081#endif 1082void kvm_arch_irq_routing_update(struct kvm *kvm); 1083 1084static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1085{ 1086 return -ENOSYS; 1087} 1088 1089#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1090 1091static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1092{ 1093 /* 1094 * Ensure the rest of the request is published to kvm_check_request's 1095 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1096 */ 1097 smp_wmb(); 1098 set_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1099} 1100 1101static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1102{ 1103 return test_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1104} 1105 1106static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1107{ 1108 clear_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1109} 1110 1111static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1112{ 1113 if (kvm_test_request(req, vcpu)) { 1114 kvm_clear_request(req, vcpu); 1115 1116 /* 1117 * Ensure the rest of the request is visible to kvm_check_request's 1118 * caller. Paired with the smp_wmb in kvm_make_request. 1119 */ 1120 smp_mb__after_atomic(); 1121 return true; 1122 } else { 1123 return false; 1124 } 1125} 1126 1127extern bool kvm_rebooting; 1128 1129extern unsigned int halt_poll_ns; 1130extern unsigned int halt_poll_ns_grow; 1131extern unsigned int halt_poll_ns_shrink; 1132 1133struct kvm_device { 1134 struct kvm_device_ops *ops; 1135 struct kvm *kvm; 1136 void *private; 1137 struct list_head vm_node; 1138}; 1139 1140/* create, destroy, and name are mandatory */ 1141struct kvm_device_ops { 1142 const char *name; 1143 1144 /* 1145 * create is called holding kvm->lock and any operations not suitable 1146 * to do while holding the lock should be deferred to init (see 1147 * below). 1148 */ 1149 int (*create)(struct kvm_device *dev, u32 type); 1150 1151 /* 1152 * init is called after create if create is successful and is called 1153 * outside of holding kvm->lock. 1154 */ 1155 void (*init)(struct kvm_device *dev); 1156 1157 /* 1158 * Destroy is responsible for freeing dev. 1159 * 1160 * Destroy may be called before or after destructors are called 1161 * on emulated I/O regions, depending on whether a reference is 1162 * held by a vcpu or other kvm component that gets destroyed 1163 * after the emulated I/O. 1164 */ 1165 void (*destroy)(struct kvm_device *dev); 1166 1167 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1168 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1169 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1170 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1171 unsigned long arg); 1172}; 1173 1174void kvm_device_get(struct kvm_device *dev); 1175void kvm_device_put(struct kvm_device *dev); 1176struct kvm_device *kvm_device_from_filp(struct file *filp); 1177int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1178void kvm_unregister_device_ops(u32 type); 1179 1180extern struct kvm_device_ops kvm_mpic_ops; 1181extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1182extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1183 1184#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1185 1186static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1187{ 1188 vcpu->spin_loop.in_spin_loop = val; 1189} 1190static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1191{ 1192 vcpu->spin_loop.dy_eligible = val; 1193} 1194 1195#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1196 1197static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1198{ 1199} 1200 1201static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1202{ 1203} 1204#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1205 1206#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1207bool kvm_arch_has_irq_bypass(void); 1208int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1209 struct irq_bypass_producer *); 1210void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1211 struct irq_bypass_producer *); 1212void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1213void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1214int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1215 uint32_t guest_irq, bool set); 1216#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1217 1218#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1219/* If we wakeup during the poll time, was it a sucessful poll? */ 1220static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1221{ 1222 return vcpu->valid_wakeup; 1223} 1224 1225#else 1226static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1227{ 1228 return true; 1229} 1230#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1231 1232#endif