Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef __LINUX_COMPILER_H
2#define __LINUX_COMPILER_H
3
4#ifndef __ASSEMBLY__
5
6#ifdef __CHECKER__
7# define __user __attribute__((noderef, address_space(1)))
8# define __kernel __attribute__((address_space(0)))
9# define __safe __attribute__((safe))
10# define __force __attribute__((force))
11# define __nocast __attribute__((nocast))
12# define __iomem __attribute__((noderef, address_space(2)))
13# define __must_hold(x) __attribute__((context(x,1,1)))
14# define __acquires(x) __attribute__((context(x,0,1)))
15# define __releases(x) __attribute__((context(x,1,0)))
16# define __acquire(x) __context__(x,1)
17# define __release(x) __context__(x,-1)
18# define __cond_lock(x,c) ((c) ? ({ __acquire(x); 1; }) : 0)
19# define __percpu __attribute__((noderef, address_space(3)))
20#ifdef CONFIG_SPARSE_RCU_POINTER
21# define __rcu __attribute__((noderef, address_space(4)))
22#else /* CONFIG_SPARSE_RCU_POINTER */
23# define __rcu
24#endif /* CONFIG_SPARSE_RCU_POINTER */
25# define __private __attribute__((noderef))
26extern void __chk_user_ptr(const volatile void __user *);
27extern void __chk_io_ptr(const volatile void __iomem *);
28# define ACCESS_PRIVATE(p, member) (*((typeof((p)->member) __force *) &(p)->member))
29#else /* __CHECKER__ */
30# ifdef STRUCTLEAK_PLUGIN
31# define __user __attribute__((user))
32# else
33# define __user
34# endif
35# define __kernel
36# define __safe
37# define __force
38# define __nocast
39# define __iomem
40# define __chk_user_ptr(x) (void)0
41# define __chk_io_ptr(x) (void)0
42# define __builtin_warning(x, y...) (1)
43# define __must_hold(x)
44# define __acquires(x)
45# define __releases(x)
46# define __acquire(x) (void)0
47# define __release(x) (void)0
48# define __cond_lock(x,c) (c)
49# define __percpu
50# define __rcu
51# define __private
52# define ACCESS_PRIVATE(p, member) ((p)->member)
53#endif /* __CHECKER__ */
54
55/* Indirect macros required for expanded argument pasting, eg. __LINE__. */
56#define ___PASTE(a,b) a##b
57#define __PASTE(a,b) ___PASTE(a,b)
58
59#ifdef __KERNEL__
60
61#ifdef __GNUC__
62#include <linux/compiler-gcc.h>
63#endif
64
65#if defined(CC_USING_HOTPATCH) && !defined(__CHECKER__)
66#define notrace __attribute__((hotpatch(0,0)))
67#else
68#define notrace __attribute__((no_instrument_function))
69#endif
70
71/* Intel compiler defines __GNUC__. So we will overwrite implementations
72 * coming from above header files here
73 */
74#ifdef __INTEL_COMPILER
75# include <linux/compiler-intel.h>
76#endif
77
78/* Clang compiler defines __GNUC__. So we will overwrite implementations
79 * coming from above header files here
80 */
81#ifdef __clang__
82#include <linux/compiler-clang.h>
83#endif
84
85/*
86 * Generic compiler-dependent macros required for kernel
87 * build go below this comment. Actual compiler/compiler version
88 * specific implementations come from the above header files
89 */
90
91struct ftrace_branch_data {
92 const char *func;
93 const char *file;
94 unsigned line;
95 union {
96 struct {
97 unsigned long correct;
98 unsigned long incorrect;
99 };
100 struct {
101 unsigned long miss;
102 unsigned long hit;
103 };
104 unsigned long miss_hit[2];
105 };
106};
107
108struct ftrace_likely_data {
109 struct ftrace_branch_data data;
110 unsigned long constant;
111};
112
113/*
114 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
115 * to disable branch tracing on a per file basis.
116 */
117#if defined(CONFIG_TRACE_BRANCH_PROFILING) \
118 && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
119void ftrace_likely_update(struct ftrace_likely_data *f, int val,
120 int expect, int is_constant);
121
122#define likely_notrace(x) __builtin_expect(!!(x), 1)
123#define unlikely_notrace(x) __builtin_expect(!!(x), 0)
124
125#define __branch_check__(x, expect, is_constant) ({ \
126 int ______r; \
127 static struct ftrace_likely_data \
128 __attribute__((__aligned__(4))) \
129 __attribute__((section("_ftrace_annotated_branch"))) \
130 ______f = { \
131 .data.func = __func__, \
132 .data.file = __FILE__, \
133 .data.line = __LINE__, \
134 }; \
135 ______r = __builtin_expect(!!(x), expect); \
136 ftrace_likely_update(&______f, ______r, \
137 expect, is_constant); \
138 ______r; \
139 })
140
141/*
142 * Using __builtin_constant_p(x) to ignore cases where the return
143 * value is always the same. This idea is taken from a similar patch
144 * written by Daniel Walker.
145 */
146# ifndef likely
147# define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x)))
148# endif
149# ifndef unlikely
150# define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x)))
151# endif
152
153#ifdef CONFIG_PROFILE_ALL_BRANCHES
154/*
155 * "Define 'is'", Bill Clinton
156 * "Define 'if'", Steven Rostedt
157 */
158#define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
159#define __trace_if(cond) \
160 if (__builtin_constant_p(!!(cond)) ? !!(cond) : \
161 ({ \
162 int ______r; \
163 static struct ftrace_branch_data \
164 __attribute__((__aligned__(4))) \
165 __attribute__((section("_ftrace_branch"))) \
166 ______f = { \
167 .func = __func__, \
168 .file = __FILE__, \
169 .line = __LINE__, \
170 }; \
171 ______r = !!(cond); \
172 ______f.miss_hit[______r]++; \
173 ______r; \
174 }))
175#endif /* CONFIG_PROFILE_ALL_BRANCHES */
176
177#else
178# define likely(x) __builtin_expect(!!(x), 1)
179# define unlikely(x) __builtin_expect(!!(x), 0)
180#endif
181
182/* Optimization barrier */
183#ifndef barrier
184# define barrier() __memory_barrier()
185#endif
186
187#ifndef barrier_data
188# define barrier_data(ptr) barrier()
189#endif
190
191/* Unreachable code */
192#ifndef unreachable
193# define unreachable() do { } while (1)
194#endif
195
196/*
197 * KENTRY - kernel entry point
198 * This can be used to annotate symbols (functions or data) that are used
199 * without their linker symbol being referenced explicitly. For example,
200 * interrupt vector handlers, or functions in the kernel image that are found
201 * programatically.
202 *
203 * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
204 * are handled in their own way (with KEEP() in linker scripts).
205 *
206 * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
207 * linker script. For example an architecture could KEEP() its entire
208 * boot/exception vector code rather than annotate each function and data.
209 */
210#ifndef KENTRY
211# define KENTRY(sym) \
212 extern typeof(sym) sym; \
213 static const unsigned long __kentry_##sym \
214 __used \
215 __attribute__((section("___kentry" "+" #sym ), used)) \
216 = (unsigned long)&sym;
217#endif
218
219#ifndef RELOC_HIDE
220# define RELOC_HIDE(ptr, off) \
221 ({ unsigned long __ptr; \
222 __ptr = (unsigned long) (ptr); \
223 (typeof(ptr)) (__ptr + (off)); })
224#endif
225
226#ifndef OPTIMIZER_HIDE_VAR
227#define OPTIMIZER_HIDE_VAR(var) barrier()
228#endif
229
230/* Not-quite-unique ID. */
231#ifndef __UNIQUE_ID
232# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
233#endif
234
235#include <uapi/linux/types.h>
236
237#define __READ_ONCE_SIZE \
238({ \
239 switch (size) { \
240 case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \
241 case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \
242 case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \
243 case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \
244 default: \
245 barrier(); \
246 __builtin_memcpy((void *)res, (const void *)p, size); \
247 barrier(); \
248 } \
249})
250
251static __always_inline
252void __read_once_size(const volatile void *p, void *res, int size)
253{
254 __READ_ONCE_SIZE;
255}
256
257#ifdef CONFIG_KASAN
258/*
259 * This function is not 'inline' because __no_sanitize_address confilcts
260 * with inlining. Attempt to inline it may cause a build failure.
261 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
262 * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
263 */
264static __no_sanitize_address __maybe_unused
265void __read_once_size_nocheck(const volatile void *p, void *res, int size)
266{
267 __READ_ONCE_SIZE;
268}
269#else
270static __always_inline
271void __read_once_size_nocheck(const volatile void *p, void *res, int size)
272{
273 __READ_ONCE_SIZE;
274}
275#endif
276
277static __always_inline void __write_once_size(volatile void *p, void *res, int size)
278{
279 switch (size) {
280 case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
281 case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
282 case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
283 case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
284 default:
285 barrier();
286 __builtin_memcpy((void *)p, (const void *)res, size);
287 barrier();
288 }
289}
290
291/*
292 * Prevent the compiler from merging or refetching reads or writes. The
293 * compiler is also forbidden from reordering successive instances of
294 * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
295 * compiler is aware of some particular ordering. One way to make the
296 * compiler aware of ordering is to put the two invocations of READ_ONCE,
297 * WRITE_ONCE or ACCESS_ONCE() in different C statements.
298 *
299 * In contrast to ACCESS_ONCE these two macros will also work on aggregate
300 * data types like structs or unions. If the size of the accessed data
301 * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
302 * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at
303 * least two memcpy()s: one for the __builtin_memcpy() and then one for
304 * the macro doing the copy of variable - '__u' allocated on the stack.
305 *
306 * Their two major use cases are: (1) Mediating communication between
307 * process-level code and irq/NMI handlers, all running on the same CPU,
308 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
309 * mutilate accesses that either do not require ordering or that interact
310 * with an explicit memory barrier or atomic instruction that provides the
311 * required ordering.
312 */
313
314#define __READ_ONCE(x, check) \
315({ \
316 union { typeof(x) __val; char __c[1]; } __u; \
317 if (check) \
318 __read_once_size(&(x), __u.__c, sizeof(x)); \
319 else \
320 __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \
321 __u.__val; \
322})
323#define READ_ONCE(x) __READ_ONCE(x, 1)
324
325/*
326 * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
327 * to hide memory access from KASAN.
328 */
329#define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
330
331#define WRITE_ONCE(x, val) \
332({ \
333 union { typeof(x) __val; char __c[1]; } __u = \
334 { .__val = (__force typeof(x)) (val) }; \
335 __write_once_size(&(x), __u.__c, sizeof(x)); \
336 __u.__val; \
337})
338
339#endif /* __KERNEL__ */
340
341#endif /* __ASSEMBLY__ */
342
343#ifdef __KERNEL__
344/*
345 * Allow us to mark functions as 'deprecated' and have gcc emit a nice
346 * warning for each use, in hopes of speeding the functions removal.
347 * Usage is:
348 * int __deprecated foo(void)
349 */
350#ifndef __deprecated
351# define __deprecated /* unimplemented */
352#endif
353
354#ifdef MODULE
355#define __deprecated_for_modules __deprecated
356#else
357#define __deprecated_for_modules
358#endif
359
360#ifndef __must_check
361#define __must_check
362#endif
363
364#ifndef CONFIG_ENABLE_MUST_CHECK
365#undef __must_check
366#define __must_check
367#endif
368#ifndef CONFIG_ENABLE_WARN_DEPRECATED
369#undef __deprecated
370#undef __deprecated_for_modules
371#define __deprecated
372#define __deprecated_for_modules
373#endif
374
375#ifndef __malloc
376#define __malloc
377#endif
378
379/*
380 * Allow us to avoid 'defined but not used' warnings on functions and data,
381 * as well as force them to be emitted to the assembly file.
382 *
383 * As of gcc 3.4, static functions that are not marked with attribute((used))
384 * may be elided from the assembly file. As of gcc 3.4, static data not so
385 * marked will not be elided, but this may change in a future gcc version.
386 *
387 * NOTE: Because distributions shipped with a backported unit-at-a-time
388 * compiler in gcc 3.3, we must define __used to be __attribute__((used))
389 * for gcc >=3.3 instead of 3.4.
390 *
391 * In prior versions of gcc, such functions and data would be emitted, but
392 * would be warned about except with attribute((unused)).
393 *
394 * Mark functions that are referenced only in inline assembly as __used so
395 * the code is emitted even though it appears to be unreferenced.
396 */
397#ifndef __used
398# define __used /* unimplemented */
399#endif
400
401#ifndef __maybe_unused
402# define __maybe_unused /* unimplemented */
403#endif
404
405#ifndef __always_unused
406# define __always_unused /* unimplemented */
407#endif
408
409#ifndef noinline
410#define noinline
411#endif
412
413/*
414 * Rather then using noinline to prevent stack consumption, use
415 * noinline_for_stack instead. For documentation reasons.
416 */
417#define noinline_for_stack noinline
418
419#ifndef __always_inline
420#define __always_inline inline
421#endif
422
423#endif /* __KERNEL__ */
424
425/*
426 * From the GCC manual:
427 *
428 * Many functions do not examine any values except their arguments,
429 * and have no effects except the return value. Basically this is
430 * just slightly more strict class than the `pure' attribute above,
431 * since function is not allowed to read global memory.
432 *
433 * Note that a function that has pointer arguments and examines the
434 * data pointed to must _not_ be declared `const'. Likewise, a
435 * function that calls a non-`const' function usually must not be
436 * `const'. It does not make sense for a `const' function to return
437 * `void'.
438 */
439#ifndef __attribute_const__
440# define __attribute_const__ /* unimplemented */
441#endif
442
443#ifndef __latent_entropy
444# define __latent_entropy
445#endif
446
447/*
448 * Tell gcc if a function is cold. The compiler will assume any path
449 * directly leading to the call is unlikely.
450 */
451
452#ifndef __cold
453#define __cold
454#endif
455
456/* Simple shorthand for a section definition */
457#ifndef __section
458# define __section(S) __attribute__ ((__section__(#S)))
459#endif
460
461#ifndef __visible
462#define __visible
463#endif
464
465/*
466 * Assume alignment of return value.
467 */
468#ifndef __assume_aligned
469#define __assume_aligned(a, ...)
470#endif
471
472
473/* Are two types/vars the same type (ignoring qualifiers)? */
474#ifndef __same_type
475# define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
476#endif
477
478/* Is this type a native word size -- useful for atomic operations */
479#ifndef __native_word
480# define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long))
481#endif
482
483/* Compile time object size, -1 for unknown */
484#ifndef __compiletime_object_size
485# define __compiletime_object_size(obj) -1
486#endif
487#ifndef __compiletime_warning
488# define __compiletime_warning(message)
489#endif
490#ifndef __compiletime_error
491# define __compiletime_error(message)
492/*
493 * Sparse complains of variable sized arrays due to the temporary variable in
494 * __compiletime_assert. Unfortunately we can't just expand it out to make
495 * sparse see a constant array size without breaking compiletime_assert on old
496 * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
497 */
498# ifndef __CHECKER__
499# define __compiletime_error_fallback(condition) \
500 do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
501# endif
502#endif
503#ifndef __compiletime_error_fallback
504# define __compiletime_error_fallback(condition) do { } while (0)
505#endif
506
507#define __compiletime_assert(condition, msg, prefix, suffix) \
508 do { \
509 bool __cond = !(condition); \
510 extern void prefix ## suffix(void) __compiletime_error(msg); \
511 if (__cond) \
512 prefix ## suffix(); \
513 __compiletime_error_fallback(__cond); \
514 } while (0)
515
516#define _compiletime_assert(condition, msg, prefix, suffix) \
517 __compiletime_assert(condition, msg, prefix, suffix)
518
519/**
520 * compiletime_assert - break build and emit msg if condition is false
521 * @condition: a compile-time constant condition to check
522 * @msg: a message to emit if condition is false
523 *
524 * In tradition of POSIX assert, this macro will break the build if the
525 * supplied condition is *false*, emitting the supplied error message if the
526 * compiler has support to do so.
527 */
528#define compiletime_assert(condition, msg) \
529 _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
530
531#define compiletime_assert_atomic_type(t) \
532 compiletime_assert(__native_word(t), \
533 "Need native word sized stores/loads for atomicity.")
534
535/*
536 * Prevent the compiler from merging or refetching accesses. The compiler
537 * is also forbidden from reordering successive instances of ACCESS_ONCE(),
538 * but only when the compiler is aware of some particular ordering. One way
539 * to make the compiler aware of ordering is to put the two invocations of
540 * ACCESS_ONCE() in different C statements.
541 *
542 * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
543 * on a union member will work as long as the size of the member matches the
544 * size of the union and the size is smaller than word size.
545 *
546 * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
547 * between process-level code and irq/NMI handlers, all running on the same CPU,
548 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
549 * mutilate accesses that either do not require ordering or that interact
550 * with an explicit memory barrier or atomic instruction that provides the
551 * required ordering.
552 *
553 * If possible use READ_ONCE()/WRITE_ONCE() instead.
554 */
555#define __ACCESS_ONCE(x) ({ \
556 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
557 (volatile typeof(x) *)&(x); })
558#define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
559
560/**
561 * lockless_dereference() - safely load a pointer for later dereference
562 * @p: The pointer to load
563 *
564 * Similar to rcu_dereference(), but for situations where the pointed-to
565 * object's lifetime is managed by something other than RCU. That
566 * "something other" might be reference counting or simple immortality.
567 *
568 * The seemingly unused variable ___typecheck_p validates that @p is
569 * indeed a pointer type by using a pointer to typeof(*p) as the type.
570 * Taking a pointer to typeof(*p) again is needed in case p is void *.
571 */
572#define lockless_dereference(p) \
573({ \
574 typeof(p) _________p1 = READ_ONCE(p); \
575 typeof(*(p)) *___typecheck_p __maybe_unused; \
576 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
577 (_________p1); \
578})
579
580#endif /* __LINUX_COMPILER_H */