at v4.12 54 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/dax.h> 22#include <linux/buffer_head.h> 23#include <linux/swap.h> 24#include <linux/pagevec.h> 25#include <linux/writeback.h> 26#include <linux/mpage.h> 27#include <linux/mount.h> 28#include <linux/uio.h> 29#include <linux/namei.h> 30#include <linux/log2.h> 31#include <linux/cleancache.h> 32#include <linux/dax.h> 33#include <linux/badblocks.h> 34#include <linux/task_io_accounting_ops.h> 35#include <linux/falloc.h> 36#include <linux/uaccess.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 58{ 59 struct va_format vaf; 60 va_list args; 61 62 va_start(args, fmt); 63 vaf.fmt = fmt; 64 vaf.va = &args; 65 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf); 66 va_end(args); 67} 68 69static void bdev_write_inode(struct block_device *bdev) 70{ 71 struct inode *inode = bdev->bd_inode; 72 int ret; 73 74 spin_lock(&inode->i_lock); 75 while (inode->i_state & I_DIRTY) { 76 spin_unlock(&inode->i_lock); 77 ret = write_inode_now(inode, true); 78 if (ret) { 79 char name[BDEVNAME_SIZE]; 80 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 81 "for block device %s (err=%d).\n", 82 bdevname(bdev, name), ret); 83 } 84 spin_lock(&inode->i_lock); 85 } 86 spin_unlock(&inode->i_lock); 87} 88 89/* Kill _all_ buffers and pagecache , dirty or not.. */ 90void kill_bdev(struct block_device *bdev) 91{ 92 struct address_space *mapping = bdev->bd_inode->i_mapping; 93 94 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 95 return; 96 97 invalidate_bh_lrus(); 98 truncate_inode_pages(mapping, 0); 99} 100EXPORT_SYMBOL(kill_bdev); 101 102/* Invalidate clean unused buffers and pagecache. */ 103void invalidate_bdev(struct block_device *bdev) 104{ 105 struct address_space *mapping = bdev->bd_inode->i_mapping; 106 107 if (mapping->nrpages) { 108 invalidate_bh_lrus(); 109 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 110 invalidate_mapping_pages(mapping, 0, -1); 111 } 112 /* 99% of the time, we don't need to flush the cleancache on the bdev. 113 * But, for the strange corners, lets be cautious 114 */ 115 cleancache_invalidate_inode(mapping); 116} 117EXPORT_SYMBOL(invalidate_bdev); 118 119int set_blocksize(struct block_device *bdev, int size) 120{ 121 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 123 return -EINVAL; 124 125 /* Size cannot be smaller than the size supported by the device */ 126 if (size < bdev_logical_block_size(bdev)) 127 return -EINVAL; 128 129 /* Don't change the size if it is same as current */ 130 if (bdev->bd_block_size != size) { 131 sync_blockdev(bdev); 132 bdev->bd_block_size = size; 133 bdev->bd_inode->i_blkbits = blksize_bits(size); 134 kill_bdev(bdev); 135 } 136 return 0; 137} 138 139EXPORT_SYMBOL(set_blocksize); 140 141int sb_set_blocksize(struct super_block *sb, int size) 142{ 143 if (set_blocksize(sb->s_bdev, size)) 144 return 0; 145 /* If we get here, we know size is power of two 146 * and it's value is between 512 and PAGE_SIZE */ 147 sb->s_blocksize = size; 148 sb->s_blocksize_bits = blksize_bits(size); 149 return sb->s_blocksize; 150} 151 152EXPORT_SYMBOL(sb_set_blocksize); 153 154int sb_min_blocksize(struct super_block *sb, int size) 155{ 156 int minsize = bdev_logical_block_size(sb->s_bdev); 157 if (size < minsize) 158 size = minsize; 159 return sb_set_blocksize(sb, size); 160} 161 162EXPORT_SYMBOL(sb_min_blocksize); 163 164static int 165blkdev_get_block(struct inode *inode, sector_t iblock, 166 struct buffer_head *bh, int create) 167{ 168 bh->b_bdev = I_BDEV(inode); 169 bh->b_blocknr = iblock; 170 set_buffer_mapped(bh); 171 return 0; 172} 173 174static struct inode *bdev_file_inode(struct file *file) 175{ 176 return file->f_mapping->host; 177} 178 179static unsigned int dio_bio_write_op(struct kiocb *iocb) 180{ 181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 182 183 /* avoid the need for a I/O completion work item */ 184 if (iocb->ki_flags & IOCB_DSYNC) 185 op |= REQ_FUA; 186 return op; 187} 188 189#define DIO_INLINE_BIO_VECS 4 190 191static void blkdev_bio_end_io_simple(struct bio *bio) 192{ 193 struct task_struct *waiter = bio->bi_private; 194 195 WRITE_ONCE(bio->bi_private, NULL); 196 wake_up_process(waiter); 197} 198 199static ssize_t 200__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 201 int nr_pages) 202{ 203 struct file *file = iocb->ki_filp; 204 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 206 loff_t pos = iocb->ki_pos; 207 bool should_dirty = false; 208 struct bio bio; 209 ssize_t ret; 210 blk_qc_t qc; 211 int i; 212 213 if ((pos | iov_iter_alignment(iter)) & 214 (bdev_logical_block_size(bdev) - 1)) 215 return -EINVAL; 216 217 if (nr_pages <= DIO_INLINE_BIO_VECS) 218 vecs = inline_vecs; 219 else { 220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL); 221 if (!vecs) 222 return -ENOMEM; 223 } 224 225 bio_init(&bio, vecs, nr_pages); 226 bio.bi_bdev = bdev; 227 bio.bi_iter.bi_sector = pos >> 9; 228 bio.bi_private = current; 229 bio.bi_end_io = blkdev_bio_end_io_simple; 230 231 ret = bio_iov_iter_get_pages(&bio, iter); 232 if (unlikely(ret)) 233 return ret; 234 ret = bio.bi_iter.bi_size; 235 236 if (iov_iter_rw(iter) == READ) { 237 bio.bi_opf = REQ_OP_READ; 238 if (iter_is_iovec(iter)) 239 should_dirty = true; 240 } else { 241 bio.bi_opf = dio_bio_write_op(iocb); 242 task_io_account_write(ret); 243 } 244 245 qc = submit_bio(&bio); 246 for (;;) { 247 set_current_state(TASK_UNINTERRUPTIBLE); 248 if (!READ_ONCE(bio.bi_private)) 249 break; 250 if (!(iocb->ki_flags & IOCB_HIPRI) || 251 !blk_mq_poll(bdev_get_queue(bdev), qc)) 252 io_schedule(); 253 } 254 __set_current_state(TASK_RUNNING); 255 256 bio_for_each_segment_all(bvec, &bio, i) { 257 if (should_dirty && !PageCompound(bvec->bv_page)) 258 set_page_dirty_lock(bvec->bv_page); 259 put_page(bvec->bv_page); 260 } 261 262 if (vecs != inline_vecs) 263 kfree(vecs); 264 265 if (unlikely(bio.bi_error)) 266 ret = bio.bi_error; 267 268 bio_uninit(&bio); 269 270 return ret; 271} 272 273struct blkdev_dio { 274 union { 275 struct kiocb *iocb; 276 struct task_struct *waiter; 277 }; 278 size_t size; 279 atomic_t ref; 280 bool multi_bio : 1; 281 bool should_dirty : 1; 282 bool is_sync : 1; 283 struct bio bio; 284}; 285 286static struct bio_set *blkdev_dio_pool __read_mostly; 287 288static void blkdev_bio_end_io(struct bio *bio) 289{ 290 struct blkdev_dio *dio = bio->bi_private; 291 bool should_dirty = dio->should_dirty; 292 293 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) { 294 if (bio->bi_error && !dio->bio.bi_error) 295 dio->bio.bi_error = bio->bi_error; 296 } else { 297 if (!dio->is_sync) { 298 struct kiocb *iocb = dio->iocb; 299 ssize_t ret = dio->bio.bi_error; 300 301 if (likely(!ret)) { 302 ret = dio->size; 303 iocb->ki_pos += ret; 304 } 305 306 dio->iocb->ki_complete(iocb, ret, 0); 307 bio_put(&dio->bio); 308 } else { 309 struct task_struct *waiter = dio->waiter; 310 311 WRITE_ONCE(dio->waiter, NULL); 312 wake_up_process(waiter); 313 } 314 } 315 316 if (should_dirty) { 317 bio_check_pages_dirty(bio); 318 } else { 319 struct bio_vec *bvec; 320 int i; 321 322 bio_for_each_segment_all(bvec, bio, i) 323 put_page(bvec->bv_page); 324 bio_put(bio); 325 } 326} 327 328static ssize_t 329__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 330{ 331 struct file *file = iocb->ki_filp; 332 struct inode *inode = bdev_file_inode(file); 333 struct block_device *bdev = I_BDEV(inode); 334 struct blk_plug plug; 335 struct blkdev_dio *dio; 336 struct bio *bio; 337 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 338 loff_t pos = iocb->ki_pos; 339 blk_qc_t qc = BLK_QC_T_NONE; 340 int ret; 341 342 if ((pos | iov_iter_alignment(iter)) & 343 (bdev_logical_block_size(bdev) - 1)) 344 return -EINVAL; 345 346 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool); 347 bio_get(bio); /* extra ref for the completion handler */ 348 349 dio = container_of(bio, struct blkdev_dio, bio); 350 dio->is_sync = is_sync = is_sync_kiocb(iocb); 351 if (dio->is_sync) 352 dio->waiter = current; 353 else 354 dio->iocb = iocb; 355 356 dio->size = 0; 357 dio->multi_bio = false; 358 dio->should_dirty = is_read && (iter->type == ITER_IOVEC); 359 360 blk_start_plug(&plug); 361 for (;;) { 362 bio->bi_bdev = bdev; 363 bio->bi_iter.bi_sector = pos >> 9; 364 bio->bi_private = dio; 365 bio->bi_end_io = blkdev_bio_end_io; 366 367 ret = bio_iov_iter_get_pages(bio, iter); 368 if (unlikely(ret)) { 369 bio->bi_error = ret; 370 bio_endio(bio); 371 break; 372 } 373 374 if (is_read) { 375 bio->bi_opf = REQ_OP_READ; 376 if (dio->should_dirty) 377 bio_set_pages_dirty(bio); 378 } else { 379 bio->bi_opf = dio_bio_write_op(iocb); 380 task_io_account_write(bio->bi_iter.bi_size); 381 } 382 383 dio->size += bio->bi_iter.bi_size; 384 pos += bio->bi_iter.bi_size; 385 386 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 387 if (!nr_pages) { 388 qc = submit_bio(bio); 389 break; 390 } 391 392 if (!dio->multi_bio) { 393 dio->multi_bio = true; 394 atomic_set(&dio->ref, 2); 395 } else { 396 atomic_inc(&dio->ref); 397 } 398 399 submit_bio(bio); 400 bio = bio_alloc(GFP_KERNEL, nr_pages); 401 } 402 blk_finish_plug(&plug); 403 404 if (!is_sync) 405 return -EIOCBQUEUED; 406 407 for (;;) { 408 set_current_state(TASK_UNINTERRUPTIBLE); 409 if (!READ_ONCE(dio->waiter)) 410 break; 411 412 if (!(iocb->ki_flags & IOCB_HIPRI) || 413 !blk_mq_poll(bdev_get_queue(bdev), qc)) 414 io_schedule(); 415 } 416 __set_current_state(TASK_RUNNING); 417 418 ret = dio->bio.bi_error; 419 if (likely(!ret)) 420 ret = dio->size; 421 422 bio_put(&dio->bio); 423 return ret; 424} 425 426static ssize_t 427blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 428{ 429 int nr_pages; 430 431 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 432 if (!nr_pages) 433 return 0; 434 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 435 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 436 437 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 438} 439 440static __init int blkdev_init(void) 441{ 442 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio)); 443 if (!blkdev_dio_pool) 444 return -ENOMEM; 445 return 0; 446} 447module_init(blkdev_init); 448 449int __sync_blockdev(struct block_device *bdev, int wait) 450{ 451 if (!bdev) 452 return 0; 453 if (!wait) 454 return filemap_flush(bdev->bd_inode->i_mapping); 455 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 456} 457 458/* 459 * Write out and wait upon all the dirty data associated with a block 460 * device via its mapping. Does not take the superblock lock. 461 */ 462int sync_blockdev(struct block_device *bdev) 463{ 464 return __sync_blockdev(bdev, 1); 465} 466EXPORT_SYMBOL(sync_blockdev); 467 468/* 469 * Write out and wait upon all dirty data associated with this 470 * device. Filesystem data as well as the underlying block 471 * device. Takes the superblock lock. 472 */ 473int fsync_bdev(struct block_device *bdev) 474{ 475 struct super_block *sb = get_super(bdev); 476 if (sb) { 477 int res = sync_filesystem(sb); 478 drop_super(sb); 479 return res; 480 } 481 return sync_blockdev(bdev); 482} 483EXPORT_SYMBOL(fsync_bdev); 484 485/** 486 * freeze_bdev -- lock a filesystem and force it into a consistent state 487 * @bdev: blockdevice to lock 488 * 489 * If a superblock is found on this device, we take the s_umount semaphore 490 * on it to make sure nobody unmounts until the snapshot creation is done. 491 * The reference counter (bd_fsfreeze_count) guarantees that only the last 492 * unfreeze process can unfreeze the frozen filesystem actually when multiple 493 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 494 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 495 * actually. 496 */ 497struct super_block *freeze_bdev(struct block_device *bdev) 498{ 499 struct super_block *sb; 500 int error = 0; 501 502 mutex_lock(&bdev->bd_fsfreeze_mutex); 503 if (++bdev->bd_fsfreeze_count > 1) { 504 /* 505 * We don't even need to grab a reference - the first call 506 * to freeze_bdev grab an active reference and only the last 507 * thaw_bdev drops it. 508 */ 509 sb = get_super(bdev); 510 if (sb) 511 drop_super(sb); 512 mutex_unlock(&bdev->bd_fsfreeze_mutex); 513 return sb; 514 } 515 516 sb = get_active_super(bdev); 517 if (!sb) 518 goto out; 519 if (sb->s_op->freeze_super) 520 error = sb->s_op->freeze_super(sb); 521 else 522 error = freeze_super(sb); 523 if (error) { 524 deactivate_super(sb); 525 bdev->bd_fsfreeze_count--; 526 mutex_unlock(&bdev->bd_fsfreeze_mutex); 527 return ERR_PTR(error); 528 } 529 deactivate_super(sb); 530 out: 531 sync_blockdev(bdev); 532 mutex_unlock(&bdev->bd_fsfreeze_mutex); 533 return sb; /* thaw_bdev releases s->s_umount */ 534} 535EXPORT_SYMBOL(freeze_bdev); 536 537/** 538 * thaw_bdev -- unlock filesystem 539 * @bdev: blockdevice to unlock 540 * @sb: associated superblock 541 * 542 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 543 */ 544int thaw_bdev(struct block_device *bdev, struct super_block *sb) 545{ 546 int error = -EINVAL; 547 548 mutex_lock(&bdev->bd_fsfreeze_mutex); 549 if (!bdev->bd_fsfreeze_count) 550 goto out; 551 552 error = 0; 553 if (--bdev->bd_fsfreeze_count > 0) 554 goto out; 555 556 if (!sb) 557 goto out; 558 559 if (sb->s_op->thaw_super) 560 error = sb->s_op->thaw_super(sb); 561 else 562 error = thaw_super(sb); 563 if (error) 564 bdev->bd_fsfreeze_count++; 565out: 566 mutex_unlock(&bdev->bd_fsfreeze_mutex); 567 return error; 568} 569EXPORT_SYMBOL(thaw_bdev); 570 571static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 572{ 573 return block_write_full_page(page, blkdev_get_block, wbc); 574} 575 576static int blkdev_readpage(struct file * file, struct page * page) 577{ 578 return block_read_full_page(page, blkdev_get_block); 579} 580 581static int blkdev_readpages(struct file *file, struct address_space *mapping, 582 struct list_head *pages, unsigned nr_pages) 583{ 584 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 585} 586 587static int blkdev_write_begin(struct file *file, struct address_space *mapping, 588 loff_t pos, unsigned len, unsigned flags, 589 struct page **pagep, void **fsdata) 590{ 591 return block_write_begin(mapping, pos, len, flags, pagep, 592 blkdev_get_block); 593} 594 595static int blkdev_write_end(struct file *file, struct address_space *mapping, 596 loff_t pos, unsigned len, unsigned copied, 597 struct page *page, void *fsdata) 598{ 599 int ret; 600 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 601 602 unlock_page(page); 603 put_page(page); 604 605 return ret; 606} 607 608/* 609 * private llseek: 610 * for a block special file file_inode(file)->i_size is zero 611 * so we compute the size by hand (just as in block_read/write above) 612 */ 613static loff_t block_llseek(struct file *file, loff_t offset, int whence) 614{ 615 struct inode *bd_inode = bdev_file_inode(file); 616 loff_t retval; 617 618 inode_lock(bd_inode); 619 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 620 inode_unlock(bd_inode); 621 return retval; 622} 623 624int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 625{ 626 struct inode *bd_inode = bdev_file_inode(filp); 627 struct block_device *bdev = I_BDEV(bd_inode); 628 int error; 629 630 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 631 if (error) 632 return error; 633 634 /* 635 * There is no need to serialise calls to blkdev_issue_flush with 636 * i_mutex and doing so causes performance issues with concurrent 637 * O_SYNC writers to a block device. 638 */ 639 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 640 if (error == -EOPNOTSUPP) 641 error = 0; 642 643 return error; 644} 645EXPORT_SYMBOL(blkdev_fsync); 646 647/** 648 * bdev_read_page() - Start reading a page from a block device 649 * @bdev: The device to read the page from 650 * @sector: The offset on the device to read the page to (need not be aligned) 651 * @page: The page to read 652 * 653 * On entry, the page should be locked. It will be unlocked when the page 654 * has been read. If the block driver implements rw_page synchronously, 655 * that will be true on exit from this function, but it need not be. 656 * 657 * Errors returned by this function are usually "soft", eg out of memory, or 658 * queue full; callers should try a different route to read this page rather 659 * than propagate an error back up the stack. 660 * 661 * Return: negative errno if an error occurs, 0 if submission was successful. 662 */ 663int bdev_read_page(struct block_device *bdev, sector_t sector, 664 struct page *page) 665{ 666 const struct block_device_operations *ops = bdev->bd_disk->fops; 667 int result = -EOPNOTSUPP; 668 669 if (!ops->rw_page || bdev_get_integrity(bdev)) 670 return result; 671 672 result = blk_queue_enter(bdev->bd_queue, false); 673 if (result) 674 return result; 675 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false); 676 blk_queue_exit(bdev->bd_queue); 677 return result; 678} 679EXPORT_SYMBOL_GPL(bdev_read_page); 680 681/** 682 * bdev_write_page() - Start writing a page to a block device 683 * @bdev: The device to write the page to 684 * @sector: The offset on the device to write the page to (need not be aligned) 685 * @page: The page to write 686 * @wbc: The writeback_control for the write 687 * 688 * On entry, the page should be locked and not currently under writeback. 689 * On exit, if the write started successfully, the page will be unlocked and 690 * under writeback. If the write failed already (eg the driver failed to 691 * queue the page to the device), the page will still be locked. If the 692 * caller is a ->writepage implementation, it will need to unlock the page. 693 * 694 * Errors returned by this function are usually "soft", eg out of memory, or 695 * queue full; callers should try a different route to write this page rather 696 * than propagate an error back up the stack. 697 * 698 * Return: negative errno if an error occurs, 0 if submission was successful. 699 */ 700int bdev_write_page(struct block_device *bdev, sector_t sector, 701 struct page *page, struct writeback_control *wbc) 702{ 703 int result; 704 const struct block_device_operations *ops = bdev->bd_disk->fops; 705 706 if (!ops->rw_page || bdev_get_integrity(bdev)) 707 return -EOPNOTSUPP; 708 result = blk_queue_enter(bdev->bd_queue, false); 709 if (result) 710 return result; 711 712 set_page_writeback(page); 713 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true); 714 if (result) 715 end_page_writeback(page); 716 else 717 unlock_page(page); 718 blk_queue_exit(bdev->bd_queue); 719 return result; 720} 721EXPORT_SYMBOL_GPL(bdev_write_page); 722 723/* 724 * pseudo-fs 725 */ 726 727static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 728static struct kmem_cache * bdev_cachep __read_mostly; 729 730static struct inode *bdev_alloc_inode(struct super_block *sb) 731{ 732 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 733 if (!ei) 734 return NULL; 735 return &ei->vfs_inode; 736} 737 738static void bdev_i_callback(struct rcu_head *head) 739{ 740 struct inode *inode = container_of(head, struct inode, i_rcu); 741 struct bdev_inode *bdi = BDEV_I(inode); 742 743 kmem_cache_free(bdev_cachep, bdi); 744} 745 746static void bdev_destroy_inode(struct inode *inode) 747{ 748 call_rcu(&inode->i_rcu, bdev_i_callback); 749} 750 751static void init_once(void *foo) 752{ 753 struct bdev_inode *ei = (struct bdev_inode *) foo; 754 struct block_device *bdev = &ei->bdev; 755 756 memset(bdev, 0, sizeof(*bdev)); 757 mutex_init(&bdev->bd_mutex); 758 INIT_LIST_HEAD(&bdev->bd_list); 759#ifdef CONFIG_SYSFS 760 INIT_LIST_HEAD(&bdev->bd_holder_disks); 761#endif 762 bdev->bd_bdi = &noop_backing_dev_info; 763 inode_init_once(&ei->vfs_inode); 764 /* Initialize mutex for freeze. */ 765 mutex_init(&bdev->bd_fsfreeze_mutex); 766} 767 768static void bdev_evict_inode(struct inode *inode) 769{ 770 struct block_device *bdev = &BDEV_I(inode)->bdev; 771 truncate_inode_pages_final(&inode->i_data); 772 invalidate_inode_buffers(inode); /* is it needed here? */ 773 clear_inode(inode); 774 spin_lock(&bdev_lock); 775 list_del_init(&bdev->bd_list); 776 spin_unlock(&bdev_lock); 777 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 778 inode_detach_wb(inode); 779 if (bdev->bd_bdi != &noop_backing_dev_info) { 780 bdi_put(bdev->bd_bdi); 781 bdev->bd_bdi = &noop_backing_dev_info; 782 } 783} 784 785static const struct super_operations bdev_sops = { 786 .statfs = simple_statfs, 787 .alloc_inode = bdev_alloc_inode, 788 .destroy_inode = bdev_destroy_inode, 789 .drop_inode = generic_delete_inode, 790 .evict_inode = bdev_evict_inode, 791}; 792 793static struct dentry *bd_mount(struct file_system_type *fs_type, 794 int flags, const char *dev_name, void *data) 795{ 796 struct dentry *dent; 797 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 798 if (!IS_ERR(dent)) 799 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 800 return dent; 801} 802 803static struct file_system_type bd_type = { 804 .name = "bdev", 805 .mount = bd_mount, 806 .kill_sb = kill_anon_super, 807}; 808 809struct super_block *blockdev_superblock __read_mostly; 810EXPORT_SYMBOL_GPL(blockdev_superblock); 811 812void __init bdev_cache_init(void) 813{ 814 int err; 815 static struct vfsmount *bd_mnt; 816 817 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 818 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 819 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 820 init_once); 821 err = register_filesystem(&bd_type); 822 if (err) 823 panic("Cannot register bdev pseudo-fs"); 824 bd_mnt = kern_mount(&bd_type); 825 if (IS_ERR(bd_mnt)) 826 panic("Cannot create bdev pseudo-fs"); 827 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 828} 829 830/* 831 * Most likely _very_ bad one - but then it's hardly critical for small 832 * /dev and can be fixed when somebody will need really large one. 833 * Keep in mind that it will be fed through icache hash function too. 834 */ 835static inline unsigned long hash(dev_t dev) 836{ 837 return MAJOR(dev)+MINOR(dev); 838} 839 840static int bdev_test(struct inode *inode, void *data) 841{ 842 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 843} 844 845static int bdev_set(struct inode *inode, void *data) 846{ 847 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 848 return 0; 849} 850 851static LIST_HEAD(all_bdevs); 852 853/* 854 * If there is a bdev inode for this device, unhash it so that it gets evicted 855 * as soon as last inode reference is dropped. 856 */ 857void bdev_unhash_inode(dev_t dev) 858{ 859 struct inode *inode; 860 861 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev); 862 if (inode) { 863 remove_inode_hash(inode); 864 iput(inode); 865 } 866} 867 868struct block_device *bdget(dev_t dev) 869{ 870 struct block_device *bdev; 871 struct inode *inode; 872 873 inode = iget5_locked(blockdev_superblock, hash(dev), 874 bdev_test, bdev_set, &dev); 875 876 if (!inode) 877 return NULL; 878 879 bdev = &BDEV_I(inode)->bdev; 880 881 if (inode->i_state & I_NEW) { 882 bdev->bd_contains = NULL; 883 bdev->bd_super = NULL; 884 bdev->bd_inode = inode; 885 bdev->bd_block_size = i_blocksize(inode); 886 bdev->bd_part_count = 0; 887 bdev->bd_invalidated = 0; 888 inode->i_mode = S_IFBLK; 889 inode->i_rdev = dev; 890 inode->i_bdev = bdev; 891 inode->i_data.a_ops = &def_blk_aops; 892 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 893 spin_lock(&bdev_lock); 894 list_add(&bdev->bd_list, &all_bdevs); 895 spin_unlock(&bdev_lock); 896 unlock_new_inode(inode); 897 } 898 return bdev; 899} 900 901EXPORT_SYMBOL(bdget); 902 903/** 904 * bdgrab -- Grab a reference to an already referenced block device 905 * @bdev: Block device to grab a reference to. 906 */ 907struct block_device *bdgrab(struct block_device *bdev) 908{ 909 ihold(bdev->bd_inode); 910 return bdev; 911} 912EXPORT_SYMBOL(bdgrab); 913 914long nr_blockdev_pages(void) 915{ 916 struct block_device *bdev; 917 long ret = 0; 918 spin_lock(&bdev_lock); 919 list_for_each_entry(bdev, &all_bdevs, bd_list) { 920 ret += bdev->bd_inode->i_mapping->nrpages; 921 } 922 spin_unlock(&bdev_lock); 923 return ret; 924} 925 926void bdput(struct block_device *bdev) 927{ 928 iput(bdev->bd_inode); 929} 930 931EXPORT_SYMBOL(bdput); 932 933static struct block_device *bd_acquire(struct inode *inode) 934{ 935 struct block_device *bdev; 936 937 spin_lock(&bdev_lock); 938 bdev = inode->i_bdev; 939 if (bdev && !inode_unhashed(bdev->bd_inode)) { 940 bdgrab(bdev); 941 spin_unlock(&bdev_lock); 942 return bdev; 943 } 944 spin_unlock(&bdev_lock); 945 946 /* 947 * i_bdev references block device inode that was already shut down 948 * (corresponding device got removed). Remove the reference and look 949 * up block device inode again just in case new device got 950 * reestablished under the same device number. 951 */ 952 if (bdev) 953 bd_forget(inode); 954 955 bdev = bdget(inode->i_rdev); 956 if (bdev) { 957 spin_lock(&bdev_lock); 958 if (!inode->i_bdev) { 959 /* 960 * We take an additional reference to bd_inode, 961 * and it's released in clear_inode() of inode. 962 * So, we can access it via ->i_mapping always 963 * without igrab(). 964 */ 965 bdgrab(bdev); 966 inode->i_bdev = bdev; 967 inode->i_mapping = bdev->bd_inode->i_mapping; 968 } 969 spin_unlock(&bdev_lock); 970 } 971 return bdev; 972} 973 974/* Call when you free inode */ 975 976void bd_forget(struct inode *inode) 977{ 978 struct block_device *bdev = NULL; 979 980 spin_lock(&bdev_lock); 981 if (!sb_is_blkdev_sb(inode->i_sb)) 982 bdev = inode->i_bdev; 983 inode->i_bdev = NULL; 984 inode->i_mapping = &inode->i_data; 985 spin_unlock(&bdev_lock); 986 987 if (bdev) 988 bdput(bdev); 989} 990 991/** 992 * bd_may_claim - test whether a block device can be claimed 993 * @bdev: block device of interest 994 * @whole: whole block device containing @bdev, may equal @bdev 995 * @holder: holder trying to claim @bdev 996 * 997 * Test whether @bdev can be claimed by @holder. 998 * 999 * CONTEXT: 1000 * spin_lock(&bdev_lock). 1001 * 1002 * RETURNS: 1003 * %true if @bdev can be claimed, %false otherwise. 1004 */ 1005static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1006 void *holder) 1007{ 1008 if (bdev->bd_holder == holder) 1009 return true; /* already a holder */ 1010 else if (bdev->bd_holder != NULL) 1011 return false; /* held by someone else */ 1012 else if (whole == bdev) 1013 return true; /* is a whole device which isn't held */ 1014 1015 else if (whole->bd_holder == bd_may_claim) 1016 return true; /* is a partition of a device that is being partitioned */ 1017 else if (whole->bd_holder != NULL) 1018 return false; /* is a partition of a held device */ 1019 else 1020 return true; /* is a partition of an un-held device */ 1021} 1022 1023/** 1024 * bd_prepare_to_claim - prepare to claim a block device 1025 * @bdev: block device of interest 1026 * @whole: the whole device containing @bdev, may equal @bdev 1027 * @holder: holder trying to claim @bdev 1028 * 1029 * Prepare to claim @bdev. This function fails if @bdev is already 1030 * claimed by another holder and waits if another claiming is in 1031 * progress. This function doesn't actually claim. On successful 1032 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1033 * 1034 * CONTEXT: 1035 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1036 * it multiple times. 1037 * 1038 * RETURNS: 1039 * 0 if @bdev can be claimed, -EBUSY otherwise. 1040 */ 1041static int bd_prepare_to_claim(struct block_device *bdev, 1042 struct block_device *whole, void *holder) 1043{ 1044retry: 1045 /* if someone else claimed, fail */ 1046 if (!bd_may_claim(bdev, whole, holder)) 1047 return -EBUSY; 1048 1049 /* if claiming is already in progress, wait for it to finish */ 1050 if (whole->bd_claiming) { 1051 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1052 DEFINE_WAIT(wait); 1053 1054 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1055 spin_unlock(&bdev_lock); 1056 schedule(); 1057 finish_wait(wq, &wait); 1058 spin_lock(&bdev_lock); 1059 goto retry; 1060 } 1061 1062 /* yay, all mine */ 1063 return 0; 1064} 1065 1066/** 1067 * bd_start_claiming - start claiming a block device 1068 * @bdev: block device of interest 1069 * @holder: holder trying to claim @bdev 1070 * 1071 * @bdev is about to be opened exclusively. Check @bdev can be opened 1072 * exclusively and mark that an exclusive open is in progress. Each 1073 * successful call to this function must be matched with a call to 1074 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1075 * fail). 1076 * 1077 * This function is used to gain exclusive access to the block device 1078 * without actually causing other exclusive open attempts to fail. It 1079 * should be used when the open sequence itself requires exclusive 1080 * access but may subsequently fail. 1081 * 1082 * CONTEXT: 1083 * Might sleep. 1084 * 1085 * RETURNS: 1086 * Pointer to the block device containing @bdev on success, ERR_PTR() 1087 * value on failure. 1088 */ 1089static struct block_device *bd_start_claiming(struct block_device *bdev, 1090 void *holder) 1091{ 1092 struct gendisk *disk; 1093 struct block_device *whole; 1094 int partno, err; 1095 1096 might_sleep(); 1097 1098 /* 1099 * @bdev might not have been initialized properly yet, look up 1100 * and grab the outer block device the hard way. 1101 */ 1102 disk = get_gendisk(bdev->bd_dev, &partno); 1103 if (!disk) 1104 return ERR_PTR(-ENXIO); 1105 1106 /* 1107 * Normally, @bdev should equal what's returned from bdget_disk() 1108 * if partno is 0; however, some drivers (floppy) use multiple 1109 * bdev's for the same physical device and @bdev may be one of the 1110 * aliases. Keep @bdev if partno is 0. This means claimer 1111 * tracking is broken for those devices but it has always been that 1112 * way. 1113 */ 1114 if (partno) 1115 whole = bdget_disk(disk, 0); 1116 else 1117 whole = bdgrab(bdev); 1118 1119 module_put(disk->fops->owner); 1120 put_disk(disk); 1121 if (!whole) 1122 return ERR_PTR(-ENOMEM); 1123 1124 /* prepare to claim, if successful, mark claiming in progress */ 1125 spin_lock(&bdev_lock); 1126 1127 err = bd_prepare_to_claim(bdev, whole, holder); 1128 if (err == 0) { 1129 whole->bd_claiming = holder; 1130 spin_unlock(&bdev_lock); 1131 return whole; 1132 } else { 1133 spin_unlock(&bdev_lock); 1134 bdput(whole); 1135 return ERR_PTR(err); 1136 } 1137} 1138 1139#ifdef CONFIG_SYSFS 1140struct bd_holder_disk { 1141 struct list_head list; 1142 struct gendisk *disk; 1143 int refcnt; 1144}; 1145 1146static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1147 struct gendisk *disk) 1148{ 1149 struct bd_holder_disk *holder; 1150 1151 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1152 if (holder->disk == disk) 1153 return holder; 1154 return NULL; 1155} 1156 1157static int add_symlink(struct kobject *from, struct kobject *to) 1158{ 1159 return sysfs_create_link(from, to, kobject_name(to)); 1160} 1161 1162static void del_symlink(struct kobject *from, struct kobject *to) 1163{ 1164 sysfs_remove_link(from, kobject_name(to)); 1165} 1166 1167/** 1168 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1169 * @bdev: the claimed slave bdev 1170 * @disk: the holding disk 1171 * 1172 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1173 * 1174 * This functions creates the following sysfs symlinks. 1175 * 1176 * - from "slaves" directory of the holder @disk to the claimed @bdev 1177 * - from "holders" directory of the @bdev to the holder @disk 1178 * 1179 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1180 * passed to bd_link_disk_holder(), then: 1181 * 1182 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1183 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1184 * 1185 * The caller must have claimed @bdev before calling this function and 1186 * ensure that both @bdev and @disk are valid during the creation and 1187 * lifetime of these symlinks. 1188 * 1189 * CONTEXT: 1190 * Might sleep. 1191 * 1192 * RETURNS: 1193 * 0 on success, -errno on failure. 1194 */ 1195int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1196{ 1197 struct bd_holder_disk *holder; 1198 int ret = 0; 1199 1200 mutex_lock(&bdev->bd_mutex); 1201 1202 WARN_ON_ONCE(!bdev->bd_holder); 1203 1204 /* FIXME: remove the following once add_disk() handles errors */ 1205 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1206 goto out_unlock; 1207 1208 holder = bd_find_holder_disk(bdev, disk); 1209 if (holder) { 1210 holder->refcnt++; 1211 goto out_unlock; 1212 } 1213 1214 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1215 if (!holder) { 1216 ret = -ENOMEM; 1217 goto out_unlock; 1218 } 1219 1220 INIT_LIST_HEAD(&holder->list); 1221 holder->disk = disk; 1222 holder->refcnt = 1; 1223 1224 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1225 if (ret) 1226 goto out_free; 1227 1228 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1229 if (ret) 1230 goto out_del; 1231 /* 1232 * bdev could be deleted beneath us which would implicitly destroy 1233 * the holder directory. Hold on to it. 1234 */ 1235 kobject_get(bdev->bd_part->holder_dir); 1236 1237 list_add(&holder->list, &bdev->bd_holder_disks); 1238 goto out_unlock; 1239 1240out_del: 1241 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1242out_free: 1243 kfree(holder); 1244out_unlock: 1245 mutex_unlock(&bdev->bd_mutex); 1246 return ret; 1247} 1248EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1249 1250/** 1251 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1252 * @bdev: the calimed slave bdev 1253 * @disk: the holding disk 1254 * 1255 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1256 * 1257 * CONTEXT: 1258 * Might sleep. 1259 */ 1260void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1261{ 1262 struct bd_holder_disk *holder; 1263 1264 mutex_lock(&bdev->bd_mutex); 1265 1266 holder = bd_find_holder_disk(bdev, disk); 1267 1268 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1269 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1270 del_symlink(bdev->bd_part->holder_dir, 1271 &disk_to_dev(disk)->kobj); 1272 kobject_put(bdev->bd_part->holder_dir); 1273 list_del_init(&holder->list); 1274 kfree(holder); 1275 } 1276 1277 mutex_unlock(&bdev->bd_mutex); 1278} 1279EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1280#endif 1281 1282/** 1283 * flush_disk - invalidates all buffer-cache entries on a disk 1284 * 1285 * @bdev: struct block device to be flushed 1286 * @kill_dirty: flag to guide handling of dirty inodes 1287 * 1288 * Invalidates all buffer-cache entries on a disk. It should be called 1289 * when a disk has been changed -- either by a media change or online 1290 * resize. 1291 */ 1292static void flush_disk(struct block_device *bdev, bool kill_dirty) 1293{ 1294 if (__invalidate_device(bdev, kill_dirty)) { 1295 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1296 "resized disk %s\n", 1297 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1298 } 1299 1300 if (!bdev->bd_disk) 1301 return; 1302 if (disk_part_scan_enabled(bdev->bd_disk)) 1303 bdev->bd_invalidated = 1; 1304} 1305 1306/** 1307 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1308 * @disk: struct gendisk to check 1309 * @bdev: struct bdev to adjust. 1310 * 1311 * This routine checks to see if the bdev size does not match the disk size 1312 * and adjusts it if it differs. 1313 */ 1314void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1315{ 1316 loff_t disk_size, bdev_size; 1317 1318 disk_size = (loff_t)get_capacity(disk) << 9; 1319 bdev_size = i_size_read(bdev->bd_inode); 1320 if (disk_size != bdev_size) { 1321 printk(KERN_INFO 1322 "%s: detected capacity change from %lld to %lld\n", 1323 disk->disk_name, bdev_size, disk_size); 1324 i_size_write(bdev->bd_inode, disk_size); 1325 flush_disk(bdev, false); 1326 } 1327} 1328EXPORT_SYMBOL(check_disk_size_change); 1329 1330/** 1331 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1332 * @disk: struct gendisk to be revalidated 1333 * 1334 * This routine is a wrapper for lower-level driver's revalidate_disk 1335 * call-backs. It is used to do common pre and post operations needed 1336 * for all revalidate_disk operations. 1337 */ 1338int revalidate_disk(struct gendisk *disk) 1339{ 1340 struct block_device *bdev; 1341 int ret = 0; 1342 1343 if (disk->fops->revalidate_disk) 1344 ret = disk->fops->revalidate_disk(disk); 1345 bdev = bdget_disk(disk, 0); 1346 if (!bdev) 1347 return ret; 1348 1349 mutex_lock(&bdev->bd_mutex); 1350 check_disk_size_change(disk, bdev); 1351 bdev->bd_invalidated = 0; 1352 mutex_unlock(&bdev->bd_mutex); 1353 bdput(bdev); 1354 return ret; 1355} 1356EXPORT_SYMBOL(revalidate_disk); 1357 1358/* 1359 * This routine checks whether a removable media has been changed, 1360 * and invalidates all buffer-cache-entries in that case. This 1361 * is a relatively slow routine, so we have to try to minimize using 1362 * it. Thus it is called only upon a 'mount' or 'open'. This 1363 * is the best way of combining speed and utility, I think. 1364 * People changing diskettes in the middle of an operation deserve 1365 * to lose :-) 1366 */ 1367int check_disk_change(struct block_device *bdev) 1368{ 1369 struct gendisk *disk = bdev->bd_disk; 1370 const struct block_device_operations *bdops = disk->fops; 1371 unsigned int events; 1372 1373 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1374 DISK_EVENT_EJECT_REQUEST); 1375 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1376 return 0; 1377 1378 flush_disk(bdev, true); 1379 if (bdops->revalidate_disk) 1380 bdops->revalidate_disk(bdev->bd_disk); 1381 return 1; 1382} 1383 1384EXPORT_SYMBOL(check_disk_change); 1385 1386void bd_set_size(struct block_device *bdev, loff_t size) 1387{ 1388 unsigned bsize = bdev_logical_block_size(bdev); 1389 1390 inode_lock(bdev->bd_inode); 1391 i_size_write(bdev->bd_inode, size); 1392 inode_unlock(bdev->bd_inode); 1393 while (bsize < PAGE_SIZE) { 1394 if (size & bsize) 1395 break; 1396 bsize <<= 1; 1397 } 1398 bdev->bd_block_size = bsize; 1399 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1400} 1401EXPORT_SYMBOL(bd_set_size); 1402 1403static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1404 1405/* 1406 * bd_mutex locking: 1407 * 1408 * mutex_lock(part->bd_mutex) 1409 * mutex_lock_nested(whole->bd_mutex, 1) 1410 */ 1411 1412static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1413{ 1414 struct gendisk *disk; 1415 struct module *owner; 1416 int ret; 1417 int partno; 1418 int perm = 0; 1419 1420 if (mode & FMODE_READ) 1421 perm |= MAY_READ; 1422 if (mode & FMODE_WRITE) 1423 perm |= MAY_WRITE; 1424 /* 1425 * hooks: /n/, see "layering violations". 1426 */ 1427 if (!for_part) { 1428 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1429 if (ret != 0) { 1430 bdput(bdev); 1431 return ret; 1432 } 1433 } 1434 1435 restart: 1436 1437 ret = -ENXIO; 1438 disk = get_gendisk(bdev->bd_dev, &partno); 1439 if (!disk) 1440 goto out; 1441 owner = disk->fops->owner; 1442 1443 disk_block_events(disk); 1444 mutex_lock_nested(&bdev->bd_mutex, for_part); 1445 if (!bdev->bd_openers) { 1446 bdev->bd_disk = disk; 1447 bdev->bd_queue = disk->queue; 1448 bdev->bd_contains = bdev; 1449 1450 if (!partno) { 1451 ret = -ENXIO; 1452 bdev->bd_part = disk_get_part(disk, partno); 1453 if (!bdev->bd_part) 1454 goto out_clear; 1455 1456 ret = 0; 1457 if (disk->fops->open) { 1458 ret = disk->fops->open(bdev, mode); 1459 if (ret == -ERESTARTSYS) { 1460 /* Lost a race with 'disk' being 1461 * deleted, try again. 1462 * See md.c 1463 */ 1464 disk_put_part(bdev->bd_part); 1465 bdev->bd_part = NULL; 1466 bdev->bd_disk = NULL; 1467 bdev->bd_queue = NULL; 1468 mutex_unlock(&bdev->bd_mutex); 1469 disk_unblock_events(disk); 1470 put_disk(disk); 1471 module_put(owner); 1472 goto restart; 1473 } 1474 } 1475 1476 if (!ret) 1477 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1478 1479 /* 1480 * If the device is invalidated, rescan partition 1481 * if open succeeded or failed with -ENOMEDIUM. 1482 * The latter is necessary to prevent ghost 1483 * partitions on a removed medium. 1484 */ 1485 if (bdev->bd_invalidated) { 1486 if (!ret) 1487 rescan_partitions(disk, bdev); 1488 else if (ret == -ENOMEDIUM) 1489 invalidate_partitions(disk, bdev); 1490 } 1491 1492 if (ret) 1493 goto out_clear; 1494 } else { 1495 struct block_device *whole; 1496 whole = bdget_disk(disk, 0); 1497 ret = -ENOMEM; 1498 if (!whole) 1499 goto out_clear; 1500 BUG_ON(for_part); 1501 ret = __blkdev_get(whole, mode, 1); 1502 if (ret) 1503 goto out_clear; 1504 bdev->bd_contains = whole; 1505 bdev->bd_part = disk_get_part(disk, partno); 1506 if (!(disk->flags & GENHD_FL_UP) || 1507 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1508 ret = -ENXIO; 1509 goto out_clear; 1510 } 1511 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1512 } 1513 1514 if (bdev->bd_bdi == &noop_backing_dev_info) 1515 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1516 } else { 1517 if (bdev->bd_contains == bdev) { 1518 ret = 0; 1519 if (bdev->bd_disk->fops->open) 1520 ret = bdev->bd_disk->fops->open(bdev, mode); 1521 /* the same as first opener case, read comment there */ 1522 if (bdev->bd_invalidated) { 1523 if (!ret) 1524 rescan_partitions(bdev->bd_disk, bdev); 1525 else if (ret == -ENOMEDIUM) 1526 invalidate_partitions(bdev->bd_disk, bdev); 1527 } 1528 if (ret) 1529 goto out_unlock_bdev; 1530 } 1531 /* only one opener holds refs to the module and disk */ 1532 put_disk(disk); 1533 module_put(owner); 1534 } 1535 bdev->bd_openers++; 1536 if (for_part) 1537 bdev->bd_part_count++; 1538 mutex_unlock(&bdev->bd_mutex); 1539 disk_unblock_events(disk); 1540 return 0; 1541 1542 out_clear: 1543 disk_put_part(bdev->bd_part); 1544 bdev->bd_disk = NULL; 1545 bdev->bd_part = NULL; 1546 bdev->bd_queue = NULL; 1547 if (bdev != bdev->bd_contains) 1548 __blkdev_put(bdev->bd_contains, mode, 1); 1549 bdev->bd_contains = NULL; 1550 out_unlock_bdev: 1551 mutex_unlock(&bdev->bd_mutex); 1552 disk_unblock_events(disk); 1553 put_disk(disk); 1554 module_put(owner); 1555 out: 1556 bdput(bdev); 1557 1558 return ret; 1559} 1560 1561/** 1562 * blkdev_get - open a block device 1563 * @bdev: block_device to open 1564 * @mode: FMODE_* mask 1565 * @holder: exclusive holder identifier 1566 * 1567 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1568 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1569 * @holder is invalid. Exclusive opens may nest for the same @holder. 1570 * 1571 * On success, the reference count of @bdev is unchanged. On failure, 1572 * @bdev is put. 1573 * 1574 * CONTEXT: 1575 * Might sleep. 1576 * 1577 * RETURNS: 1578 * 0 on success, -errno on failure. 1579 */ 1580int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1581{ 1582 struct block_device *whole = NULL; 1583 int res; 1584 1585 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1586 1587 if ((mode & FMODE_EXCL) && holder) { 1588 whole = bd_start_claiming(bdev, holder); 1589 if (IS_ERR(whole)) { 1590 bdput(bdev); 1591 return PTR_ERR(whole); 1592 } 1593 } 1594 1595 res = __blkdev_get(bdev, mode, 0); 1596 1597 if (whole) { 1598 struct gendisk *disk = whole->bd_disk; 1599 1600 /* finish claiming */ 1601 mutex_lock(&bdev->bd_mutex); 1602 spin_lock(&bdev_lock); 1603 1604 if (!res) { 1605 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1606 /* 1607 * Note that for a whole device bd_holders 1608 * will be incremented twice, and bd_holder 1609 * will be set to bd_may_claim before being 1610 * set to holder 1611 */ 1612 whole->bd_holders++; 1613 whole->bd_holder = bd_may_claim; 1614 bdev->bd_holders++; 1615 bdev->bd_holder = holder; 1616 } 1617 1618 /* tell others that we're done */ 1619 BUG_ON(whole->bd_claiming != holder); 1620 whole->bd_claiming = NULL; 1621 wake_up_bit(&whole->bd_claiming, 0); 1622 1623 spin_unlock(&bdev_lock); 1624 1625 /* 1626 * Block event polling for write claims if requested. Any 1627 * write holder makes the write_holder state stick until 1628 * all are released. This is good enough and tracking 1629 * individual writeable reference is too fragile given the 1630 * way @mode is used in blkdev_get/put(). 1631 */ 1632 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1633 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1634 bdev->bd_write_holder = true; 1635 disk_block_events(disk); 1636 } 1637 1638 mutex_unlock(&bdev->bd_mutex); 1639 bdput(whole); 1640 } 1641 1642 return res; 1643} 1644EXPORT_SYMBOL(blkdev_get); 1645 1646/** 1647 * blkdev_get_by_path - open a block device by name 1648 * @path: path to the block device to open 1649 * @mode: FMODE_* mask 1650 * @holder: exclusive holder identifier 1651 * 1652 * Open the blockdevice described by the device file at @path. @mode 1653 * and @holder are identical to blkdev_get(). 1654 * 1655 * On success, the returned block_device has reference count of one. 1656 * 1657 * CONTEXT: 1658 * Might sleep. 1659 * 1660 * RETURNS: 1661 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1662 */ 1663struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1664 void *holder) 1665{ 1666 struct block_device *bdev; 1667 int err; 1668 1669 bdev = lookup_bdev(path); 1670 if (IS_ERR(bdev)) 1671 return bdev; 1672 1673 err = blkdev_get(bdev, mode, holder); 1674 if (err) 1675 return ERR_PTR(err); 1676 1677 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1678 blkdev_put(bdev, mode); 1679 return ERR_PTR(-EACCES); 1680 } 1681 1682 return bdev; 1683} 1684EXPORT_SYMBOL(blkdev_get_by_path); 1685 1686/** 1687 * blkdev_get_by_dev - open a block device by device number 1688 * @dev: device number of block device to open 1689 * @mode: FMODE_* mask 1690 * @holder: exclusive holder identifier 1691 * 1692 * Open the blockdevice described by device number @dev. @mode and 1693 * @holder are identical to blkdev_get(). 1694 * 1695 * Use it ONLY if you really do not have anything better - i.e. when 1696 * you are behind a truly sucky interface and all you are given is a 1697 * device number. _Never_ to be used for internal purposes. If you 1698 * ever need it - reconsider your API. 1699 * 1700 * On success, the returned block_device has reference count of one. 1701 * 1702 * CONTEXT: 1703 * Might sleep. 1704 * 1705 * RETURNS: 1706 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1707 */ 1708struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1709{ 1710 struct block_device *bdev; 1711 int err; 1712 1713 bdev = bdget(dev); 1714 if (!bdev) 1715 return ERR_PTR(-ENOMEM); 1716 1717 err = blkdev_get(bdev, mode, holder); 1718 if (err) 1719 return ERR_PTR(err); 1720 1721 return bdev; 1722} 1723EXPORT_SYMBOL(blkdev_get_by_dev); 1724 1725static int blkdev_open(struct inode * inode, struct file * filp) 1726{ 1727 struct block_device *bdev; 1728 1729 /* 1730 * Preserve backwards compatibility and allow large file access 1731 * even if userspace doesn't ask for it explicitly. Some mkfs 1732 * binary needs it. We might want to drop this workaround 1733 * during an unstable branch. 1734 */ 1735 filp->f_flags |= O_LARGEFILE; 1736 1737 if (filp->f_flags & O_NDELAY) 1738 filp->f_mode |= FMODE_NDELAY; 1739 if (filp->f_flags & O_EXCL) 1740 filp->f_mode |= FMODE_EXCL; 1741 if ((filp->f_flags & O_ACCMODE) == 3) 1742 filp->f_mode |= FMODE_WRITE_IOCTL; 1743 1744 bdev = bd_acquire(inode); 1745 if (bdev == NULL) 1746 return -ENOMEM; 1747 1748 filp->f_mapping = bdev->bd_inode->i_mapping; 1749 1750 return blkdev_get(bdev, filp->f_mode, filp); 1751} 1752 1753static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1754{ 1755 struct gendisk *disk = bdev->bd_disk; 1756 struct block_device *victim = NULL; 1757 1758 mutex_lock_nested(&bdev->bd_mutex, for_part); 1759 if (for_part) 1760 bdev->bd_part_count--; 1761 1762 if (!--bdev->bd_openers) { 1763 WARN_ON_ONCE(bdev->bd_holders); 1764 sync_blockdev(bdev); 1765 kill_bdev(bdev); 1766 1767 bdev_write_inode(bdev); 1768 } 1769 if (bdev->bd_contains == bdev) { 1770 if (disk->fops->release) 1771 disk->fops->release(disk, mode); 1772 } 1773 if (!bdev->bd_openers) { 1774 struct module *owner = disk->fops->owner; 1775 1776 disk_put_part(bdev->bd_part); 1777 bdev->bd_part = NULL; 1778 bdev->bd_disk = NULL; 1779 if (bdev != bdev->bd_contains) 1780 victim = bdev->bd_contains; 1781 bdev->bd_contains = NULL; 1782 1783 put_disk(disk); 1784 module_put(owner); 1785 } 1786 mutex_unlock(&bdev->bd_mutex); 1787 bdput(bdev); 1788 if (victim) 1789 __blkdev_put(victim, mode, 1); 1790} 1791 1792void blkdev_put(struct block_device *bdev, fmode_t mode) 1793{ 1794 mutex_lock(&bdev->bd_mutex); 1795 1796 if (mode & FMODE_EXCL) { 1797 bool bdev_free; 1798 1799 /* 1800 * Release a claim on the device. The holder fields 1801 * are protected with bdev_lock. bd_mutex is to 1802 * synchronize disk_holder unlinking. 1803 */ 1804 spin_lock(&bdev_lock); 1805 1806 WARN_ON_ONCE(--bdev->bd_holders < 0); 1807 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1808 1809 /* bd_contains might point to self, check in a separate step */ 1810 if ((bdev_free = !bdev->bd_holders)) 1811 bdev->bd_holder = NULL; 1812 if (!bdev->bd_contains->bd_holders) 1813 bdev->bd_contains->bd_holder = NULL; 1814 1815 spin_unlock(&bdev_lock); 1816 1817 /* 1818 * If this was the last claim, remove holder link and 1819 * unblock evpoll if it was a write holder. 1820 */ 1821 if (bdev_free && bdev->bd_write_holder) { 1822 disk_unblock_events(bdev->bd_disk); 1823 bdev->bd_write_holder = false; 1824 } 1825 } 1826 1827 /* 1828 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1829 * event. This is to ensure detection of media removal commanded 1830 * from userland - e.g. eject(1). 1831 */ 1832 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1833 1834 mutex_unlock(&bdev->bd_mutex); 1835 1836 __blkdev_put(bdev, mode, 0); 1837} 1838EXPORT_SYMBOL(blkdev_put); 1839 1840static int blkdev_close(struct inode * inode, struct file * filp) 1841{ 1842 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1843 blkdev_put(bdev, filp->f_mode); 1844 return 0; 1845} 1846 1847static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1848{ 1849 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1850 fmode_t mode = file->f_mode; 1851 1852 /* 1853 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1854 * to updated it before every ioctl. 1855 */ 1856 if (file->f_flags & O_NDELAY) 1857 mode |= FMODE_NDELAY; 1858 else 1859 mode &= ~FMODE_NDELAY; 1860 1861 return blkdev_ioctl(bdev, mode, cmd, arg); 1862} 1863 1864/* 1865 * Write data to the block device. Only intended for the block device itself 1866 * and the raw driver which basically is a fake block device. 1867 * 1868 * Does not take i_mutex for the write and thus is not for general purpose 1869 * use. 1870 */ 1871ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1872{ 1873 struct file *file = iocb->ki_filp; 1874 struct inode *bd_inode = bdev_file_inode(file); 1875 loff_t size = i_size_read(bd_inode); 1876 struct blk_plug plug; 1877 ssize_t ret; 1878 1879 if (bdev_read_only(I_BDEV(bd_inode))) 1880 return -EPERM; 1881 1882 if (!iov_iter_count(from)) 1883 return 0; 1884 1885 if (iocb->ki_pos >= size) 1886 return -ENOSPC; 1887 1888 iov_iter_truncate(from, size - iocb->ki_pos); 1889 1890 blk_start_plug(&plug); 1891 ret = __generic_file_write_iter(iocb, from); 1892 if (ret > 0) 1893 ret = generic_write_sync(iocb, ret); 1894 blk_finish_plug(&plug); 1895 return ret; 1896} 1897EXPORT_SYMBOL_GPL(blkdev_write_iter); 1898 1899ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1900{ 1901 struct file *file = iocb->ki_filp; 1902 struct inode *bd_inode = bdev_file_inode(file); 1903 loff_t size = i_size_read(bd_inode); 1904 loff_t pos = iocb->ki_pos; 1905 1906 if (pos >= size) 1907 return 0; 1908 1909 size -= pos; 1910 iov_iter_truncate(to, size); 1911 return generic_file_read_iter(iocb, to); 1912} 1913EXPORT_SYMBOL_GPL(blkdev_read_iter); 1914 1915/* 1916 * Try to release a page associated with block device when the system 1917 * is under memory pressure. 1918 */ 1919static int blkdev_releasepage(struct page *page, gfp_t wait) 1920{ 1921 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1922 1923 if (super && super->s_op->bdev_try_to_free_page) 1924 return super->s_op->bdev_try_to_free_page(super, page, wait); 1925 1926 return try_to_free_buffers(page); 1927} 1928 1929static int blkdev_writepages(struct address_space *mapping, 1930 struct writeback_control *wbc) 1931{ 1932 if (dax_mapping(mapping)) { 1933 struct block_device *bdev = I_BDEV(mapping->host); 1934 1935 return dax_writeback_mapping_range(mapping, bdev, wbc); 1936 } 1937 return generic_writepages(mapping, wbc); 1938} 1939 1940static const struct address_space_operations def_blk_aops = { 1941 .readpage = blkdev_readpage, 1942 .readpages = blkdev_readpages, 1943 .writepage = blkdev_writepage, 1944 .write_begin = blkdev_write_begin, 1945 .write_end = blkdev_write_end, 1946 .writepages = blkdev_writepages, 1947 .releasepage = blkdev_releasepage, 1948 .direct_IO = blkdev_direct_IO, 1949 .is_dirty_writeback = buffer_check_dirty_writeback, 1950}; 1951 1952#define BLKDEV_FALLOC_FL_SUPPORTED \ 1953 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 1954 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 1955 1956static long blkdev_fallocate(struct file *file, int mode, loff_t start, 1957 loff_t len) 1958{ 1959 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1960 struct address_space *mapping; 1961 loff_t end = start + len - 1; 1962 loff_t isize; 1963 int error; 1964 1965 /* Fail if we don't recognize the flags. */ 1966 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 1967 return -EOPNOTSUPP; 1968 1969 /* Don't go off the end of the device. */ 1970 isize = i_size_read(bdev->bd_inode); 1971 if (start >= isize) 1972 return -EINVAL; 1973 if (end >= isize) { 1974 if (mode & FALLOC_FL_KEEP_SIZE) { 1975 len = isize - start; 1976 end = start + len - 1; 1977 } else 1978 return -EINVAL; 1979 } 1980 1981 /* 1982 * Don't allow IO that isn't aligned to logical block size. 1983 */ 1984 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 1985 return -EINVAL; 1986 1987 /* Invalidate the page cache, including dirty pages. */ 1988 mapping = bdev->bd_inode->i_mapping; 1989 truncate_inode_pages_range(mapping, start, end); 1990 1991 switch (mode) { 1992 case FALLOC_FL_ZERO_RANGE: 1993 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 1994 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 1995 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 1996 break; 1997 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 1998 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 1999 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2000 break; 2001 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2002 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2003 GFP_KERNEL, 0); 2004 break; 2005 default: 2006 return -EOPNOTSUPP; 2007 } 2008 if (error) 2009 return error; 2010 2011 /* 2012 * Invalidate again; if someone wandered in and dirtied a page, 2013 * the caller will be given -EBUSY. The third argument is 2014 * inclusive, so the rounding here is safe. 2015 */ 2016 return invalidate_inode_pages2_range(mapping, 2017 start >> PAGE_SHIFT, 2018 end >> PAGE_SHIFT); 2019} 2020 2021const struct file_operations def_blk_fops = { 2022 .open = blkdev_open, 2023 .release = blkdev_close, 2024 .llseek = block_llseek, 2025 .read_iter = blkdev_read_iter, 2026 .write_iter = blkdev_write_iter, 2027 .mmap = generic_file_mmap, 2028 .fsync = blkdev_fsync, 2029 .unlocked_ioctl = block_ioctl, 2030#ifdef CONFIG_COMPAT 2031 .compat_ioctl = compat_blkdev_ioctl, 2032#endif 2033 .splice_read = generic_file_splice_read, 2034 .splice_write = iter_file_splice_write, 2035 .fallocate = blkdev_fallocate, 2036}; 2037 2038int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2039{ 2040 int res; 2041 mm_segment_t old_fs = get_fs(); 2042 set_fs(KERNEL_DS); 2043 res = blkdev_ioctl(bdev, 0, cmd, arg); 2044 set_fs(old_fs); 2045 return res; 2046} 2047 2048EXPORT_SYMBOL(ioctl_by_bdev); 2049 2050/** 2051 * lookup_bdev - lookup a struct block_device by name 2052 * @pathname: special file representing the block device 2053 * 2054 * Get a reference to the blockdevice at @pathname in the current 2055 * namespace if possible and return it. Return ERR_PTR(error) 2056 * otherwise. 2057 */ 2058struct block_device *lookup_bdev(const char *pathname) 2059{ 2060 struct block_device *bdev; 2061 struct inode *inode; 2062 struct path path; 2063 int error; 2064 2065 if (!pathname || !*pathname) 2066 return ERR_PTR(-EINVAL); 2067 2068 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2069 if (error) 2070 return ERR_PTR(error); 2071 2072 inode = d_backing_inode(path.dentry); 2073 error = -ENOTBLK; 2074 if (!S_ISBLK(inode->i_mode)) 2075 goto fail; 2076 error = -EACCES; 2077 if (!may_open_dev(&path)) 2078 goto fail; 2079 error = -ENOMEM; 2080 bdev = bd_acquire(inode); 2081 if (!bdev) 2082 goto fail; 2083out: 2084 path_put(&path); 2085 return bdev; 2086fail: 2087 bdev = ERR_PTR(error); 2088 goto out; 2089} 2090EXPORT_SYMBOL(lookup_bdev); 2091 2092int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2093{ 2094 struct super_block *sb = get_super(bdev); 2095 int res = 0; 2096 2097 if (sb) { 2098 /* 2099 * no need to lock the super, get_super holds the 2100 * read mutex so the filesystem cannot go away 2101 * under us (->put_super runs with the write lock 2102 * hold). 2103 */ 2104 shrink_dcache_sb(sb); 2105 res = invalidate_inodes(sb, kill_dirty); 2106 drop_super(sb); 2107 } 2108 invalidate_bdev(bdev); 2109 return res; 2110} 2111EXPORT_SYMBOL(__invalidate_device); 2112 2113void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2114{ 2115 struct inode *inode, *old_inode = NULL; 2116 2117 spin_lock(&blockdev_superblock->s_inode_list_lock); 2118 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2119 struct address_space *mapping = inode->i_mapping; 2120 struct block_device *bdev; 2121 2122 spin_lock(&inode->i_lock); 2123 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2124 mapping->nrpages == 0) { 2125 spin_unlock(&inode->i_lock); 2126 continue; 2127 } 2128 __iget(inode); 2129 spin_unlock(&inode->i_lock); 2130 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2131 /* 2132 * We hold a reference to 'inode' so it couldn't have been 2133 * removed from s_inodes list while we dropped the 2134 * s_inode_list_lock We cannot iput the inode now as we can 2135 * be holding the last reference and we cannot iput it under 2136 * s_inode_list_lock. So we keep the reference and iput it 2137 * later. 2138 */ 2139 iput(old_inode); 2140 old_inode = inode; 2141 bdev = I_BDEV(inode); 2142 2143 mutex_lock(&bdev->bd_mutex); 2144 if (bdev->bd_openers) 2145 func(bdev, arg); 2146 mutex_unlock(&bdev->bd_mutex); 2147 2148 spin_lock(&blockdev_superblock->s_inode_list_lock); 2149 } 2150 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2151 iput(old_inode); 2152}