Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * hcd.c - DesignWare HS OTG Controller host-mode routines
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37/*
38 * This file contains the core HCD code, and implements the Linux hc_driver
39 * API
40 */
41#include <linux/kernel.h>
42#include <linux/module.h>
43#include <linux/spinlock.h>
44#include <linux/interrupt.h>
45#include <linux/platform_device.h>
46#include <linux/dma-mapping.h>
47#include <linux/delay.h>
48#include <linux/io.h>
49#include <linux/slab.h>
50#include <linux/usb.h>
51
52#include <linux/usb/hcd.h>
53#include <linux/usb/ch11.h>
54
55#include "core.h"
56#include "hcd.h"
57
58static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
59
60/*
61 * =========================================================================
62 * Host Core Layer Functions
63 * =========================================================================
64 */
65
66/**
67 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
68 * used in both device and host modes
69 *
70 * @hsotg: Programming view of the DWC_otg controller
71 */
72static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
73{
74 u32 intmsk;
75
76 /* Clear any pending OTG Interrupts */
77 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
78
79 /* Clear any pending interrupts */
80 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
81
82 /* Enable the interrupts in the GINTMSK */
83 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
84
85 if (!hsotg->params.host_dma)
86 intmsk |= GINTSTS_RXFLVL;
87 if (!hsotg->params.external_id_pin_ctl)
88 intmsk |= GINTSTS_CONIDSTSCHNG;
89
90 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
91 GINTSTS_SESSREQINT;
92
93 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
94}
95
96/*
97 * Initializes the FSLSPClkSel field of the HCFG register depending on the
98 * PHY type
99 */
100static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
101{
102 u32 hcfg, val;
103
104 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
105 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
106 hsotg->params.ulpi_fs_ls) ||
107 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
108 /* Full speed PHY */
109 val = HCFG_FSLSPCLKSEL_48_MHZ;
110 } else {
111 /* High speed PHY running at full speed or high speed */
112 val = HCFG_FSLSPCLKSEL_30_60_MHZ;
113 }
114
115 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
116 hcfg = dwc2_readl(hsotg->regs + HCFG);
117 hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
118 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
119 dwc2_writel(hcfg, hsotg->regs + HCFG);
120}
121
122static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
123{
124 u32 usbcfg, ggpio, i2cctl;
125 int retval = 0;
126
127 /*
128 * core_init() is now called on every switch so only call the
129 * following for the first time through
130 */
131 if (select_phy) {
132 dev_dbg(hsotg->dev, "FS PHY selected\n");
133
134 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
135 if (!(usbcfg & GUSBCFG_PHYSEL)) {
136 usbcfg |= GUSBCFG_PHYSEL;
137 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
138
139 /* Reset after a PHY select */
140 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
141
142 if (retval) {
143 dev_err(hsotg->dev,
144 "%s: Reset failed, aborting", __func__);
145 return retval;
146 }
147 }
148
149 if (hsotg->params.activate_stm_fs_transceiver) {
150 ggpio = dwc2_readl(hsotg->regs + GGPIO);
151 if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) {
152 dev_dbg(hsotg->dev, "Activating transceiver\n");
153 /*
154 * STM32F4x9 uses the GGPIO register as general
155 * core configuration register.
156 */
157 ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN;
158 dwc2_writel(ggpio, hsotg->regs + GGPIO);
159 }
160 }
161 }
162
163 /*
164 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
165 * do this on HNP Dev/Host mode switches (done in dev_init and
166 * host_init).
167 */
168 if (dwc2_is_host_mode(hsotg))
169 dwc2_init_fs_ls_pclk_sel(hsotg);
170
171 if (hsotg->params.i2c_enable) {
172 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
173
174 /* Program GUSBCFG.OtgUtmiFsSel to I2C */
175 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
176 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
177 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
178
179 /* Program GI2CCTL.I2CEn */
180 i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
181 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
182 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
183 i2cctl &= ~GI2CCTL_I2CEN;
184 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
185 i2cctl |= GI2CCTL_I2CEN;
186 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
187 }
188
189 return retval;
190}
191
192static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
193{
194 u32 usbcfg, usbcfg_old;
195 int retval = 0;
196
197 if (!select_phy)
198 return 0;
199
200 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
201 usbcfg_old = usbcfg;
202
203 /*
204 * HS PHY parameters. These parameters are preserved during soft reset
205 * so only program the first time. Do a soft reset immediately after
206 * setting phyif.
207 */
208 switch (hsotg->params.phy_type) {
209 case DWC2_PHY_TYPE_PARAM_ULPI:
210 /* ULPI interface */
211 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
212 usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
213 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
214 if (hsotg->params.phy_ulpi_ddr)
215 usbcfg |= GUSBCFG_DDRSEL;
216 break;
217 case DWC2_PHY_TYPE_PARAM_UTMI:
218 /* UTMI+ interface */
219 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
220 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
221 if (hsotg->params.phy_utmi_width == 16)
222 usbcfg |= GUSBCFG_PHYIF16;
223 break;
224 default:
225 dev_err(hsotg->dev, "FS PHY selected at HS!\n");
226 break;
227 }
228
229 if (usbcfg != usbcfg_old) {
230 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
231
232 /* Reset after setting the PHY parameters */
233 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
234 if (retval) {
235 dev_err(hsotg->dev,
236 "%s: Reset failed, aborting", __func__);
237 return retval;
238 }
239 }
240
241 return retval;
242}
243
244static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
245{
246 u32 usbcfg;
247 int retval = 0;
248
249 if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
250 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
251 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
252 /* If FS/LS mode with FS/LS PHY */
253 retval = dwc2_fs_phy_init(hsotg, select_phy);
254 if (retval)
255 return retval;
256 } else {
257 /* High speed PHY */
258 retval = dwc2_hs_phy_init(hsotg, select_phy);
259 if (retval)
260 return retval;
261 }
262
263 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
264 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
265 hsotg->params.ulpi_fs_ls) {
266 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
267 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
268 usbcfg |= GUSBCFG_ULPI_FS_LS;
269 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
270 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
271 } else {
272 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
273 usbcfg &= ~GUSBCFG_ULPI_FS_LS;
274 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
275 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
276 }
277
278 return retval;
279}
280
281static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
282{
283 u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
284
285 switch (hsotg->hw_params.arch) {
286 case GHWCFG2_EXT_DMA_ARCH:
287 dev_err(hsotg->dev, "External DMA Mode not supported\n");
288 return -EINVAL;
289
290 case GHWCFG2_INT_DMA_ARCH:
291 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
292 if (hsotg->params.ahbcfg != -1) {
293 ahbcfg &= GAHBCFG_CTRL_MASK;
294 ahbcfg |= hsotg->params.ahbcfg &
295 ~GAHBCFG_CTRL_MASK;
296 }
297 break;
298
299 case GHWCFG2_SLAVE_ONLY_ARCH:
300 default:
301 dev_dbg(hsotg->dev, "Slave Only Mode\n");
302 break;
303 }
304
305 dev_dbg(hsotg->dev, "host_dma:%d dma_desc_enable:%d\n",
306 hsotg->params.host_dma,
307 hsotg->params.dma_desc_enable);
308
309 if (hsotg->params.host_dma) {
310 if (hsotg->params.dma_desc_enable)
311 dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
312 else
313 dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
314 } else {
315 dev_dbg(hsotg->dev, "Using Slave mode\n");
316 hsotg->params.dma_desc_enable = false;
317 }
318
319 if (hsotg->params.host_dma)
320 ahbcfg |= GAHBCFG_DMA_EN;
321
322 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
323
324 return 0;
325}
326
327static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
328{
329 u32 usbcfg;
330
331 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
332 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
333
334 switch (hsotg->hw_params.op_mode) {
335 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
336 if (hsotg->params.otg_cap ==
337 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
338 usbcfg |= GUSBCFG_HNPCAP;
339 if (hsotg->params.otg_cap !=
340 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
341 usbcfg |= GUSBCFG_SRPCAP;
342 break;
343
344 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
345 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
346 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
347 if (hsotg->params.otg_cap !=
348 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
349 usbcfg |= GUSBCFG_SRPCAP;
350 break;
351
352 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
353 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
354 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
355 default:
356 break;
357 }
358
359 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
360}
361
362/**
363 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
364 *
365 * @hsotg: Programming view of DWC_otg controller
366 */
367static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
368{
369 u32 intmsk;
370
371 dev_dbg(hsotg->dev, "%s()\n", __func__);
372
373 /* Disable all interrupts */
374 dwc2_writel(0, hsotg->regs + GINTMSK);
375 dwc2_writel(0, hsotg->regs + HAINTMSK);
376
377 /* Enable the common interrupts */
378 dwc2_enable_common_interrupts(hsotg);
379
380 /* Enable host mode interrupts without disturbing common interrupts */
381 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
382 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
383 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
384}
385
386/**
387 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
388 *
389 * @hsotg: Programming view of DWC_otg controller
390 */
391static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
392{
393 u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
394
395 /* Disable host mode interrupts without disturbing common interrupts */
396 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
397 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
398 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
399}
400
401/*
402 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
403 * For system that have a total fifo depth that is smaller than the default
404 * RX + TX fifo size.
405 *
406 * @hsotg: Programming view of DWC_otg controller
407 */
408static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
409{
410 struct dwc2_core_params *params = &hsotg->params;
411 struct dwc2_hw_params *hw = &hsotg->hw_params;
412 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
413
414 total_fifo_size = hw->total_fifo_size;
415 rxfsiz = params->host_rx_fifo_size;
416 nptxfsiz = params->host_nperio_tx_fifo_size;
417 ptxfsiz = params->host_perio_tx_fifo_size;
418
419 /*
420 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
421 * allocation with support for high bandwidth endpoints. Synopsys
422 * defines MPS(Max Packet size) for a periodic EP=1024, and for
423 * non-periodic as 512.
424 */
425 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
426 /*
427 * For Buffer DMA mode/Scatter Gather DMA mode
428 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
429 * with n = number of host channel.
430 * 2 * ((1024/4) + 2) = 516
431 */
432 rxfsiz = 516 + hw->host_channels;
433
434 /*
435 * min non-periodic tx fifo depth
436 * 2 * (largest non-periodic USB packet used / 4)
437 * 2 * (512/4) = 256
438 */
439 nptxfsiz = 256;
440
441 /*
442 * min periodic tx fifo depth
443 * (largest packet size*MC)/4
444 * (1024 * 3)/4 = 768
445 */
446 ptxfsiz = 768;
447
448 params->host_rx_fifo_size = rxfsiz;
449 params->host_nperio_tx_fifo_size = nptxfsiz;
450 params->host_perio_tx_fifo_size = ptxfsiz;
451 }
452
453 /*
454 * If the summation of RX, NPTX and PTX fifo sizes is still
455 * bigger than the total_fifo_size, then we have a problem.
456 *
457 * We won't be able to allocate as many endpoints. Right now,
458 * we're just printing an error message, but ideally this FIFO
459 * allocation algorithm would be improved in the future.
460 *
461 * FIXME improve this FIFO allocation algorithm.
462 */
463 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
464 dev_err(hsotg->dev, "invalid fifo sizes\n");
465}
466
467static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
468{
469 struct dwc2_core_params *params = &hsotg->params;
470 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
471
472 if (!params->enable_dynamic_fifo)
473 return;
474
475 dwc2_calculate_dynamic_fifo(hsotg);
476
477 /* Rx FIFO */
478 grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
479 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
480 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
481 grxfsiz |= params->host_rx_fifo_size <<
482 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
483 dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
484 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
485 dwc2_readl(hsotg->regs + GRXFSIZ));
486
487 /* Non-periodic Tx FIFO */
488 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
489 dwc2_readl(hsotg->regs + GNPTXFSIZ));
490 nptxfsiz = params->host_nperio_tx_fifo_size <<
491 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
492 nptxfsiz |= params->host_rx_fifo_size <<
493 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
494 dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
495 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
496 dwc2_readl(hsotg->regs + GNPTXFSIZ));
497
498 /* Periodic Tx FIFO */
499 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
500 dwc2_readl(hsotg->regs + HPTXFSIZ));
501 hptxfsiz = params->host_perio_tx_fifo_size <<
502 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
503 hptxfsiz |= (params->host_rx_fifo_size +
504 params->host_nperio_tx_fifo_size) <<
505 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
506 dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
507 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
508 dwc2_readl(hsotg->regs + HPTXFSIZ));
509
510 if (hsotg->params.en_multiple_tx_fifo &&
511 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
512 /*
513 * This feature was implemented in 2.91a version
514 * Global DFIFOCFG calculation for Host mode -
515 * include RxFIFO, NPTXFIFO and HPTXFIFO
516 */
517 dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
518 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
519 dfifocfg |= (params->host_rx_fifo_size +
520 params->host_nperio_tx_fifo_size +
521 params->host_perio_tx_fifo_size) <<
522 GDFIFOCFG_EPINFOBASE_SHIFT &
523 GDFIFOCFG_EPINFOBASE_MASK;
524 dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
525 }
526}
527
528/**
529 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
530 * the HFIR register according to PHY type and speed
531 *
532 * @hsotg: Programming view of DWC_otg controller
533 *
534 * NOTE: The caller can modify the value of the HFIR register only after the
535 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
536 * has been set
537 */
538u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
539{
540 u32 usbcfg;
541 u32 hprt0;
542 int clock = 60; /* default value */
543
544 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
545 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
546
547 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
548 !(usbcfg & GUSBCFG_PHYIF16))
549 clock = 60;
550 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
551 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
552 clock = 48;
553 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
554 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
555 clock = 30;
556 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
557 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
558 clock = 60;
559 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
560 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
561 clock = 48;
562 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
563 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
564 clock = 48;
565 if ((usbcfg & GUSBCFG_PHYSEL) &&
566 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
567 clock = 48;
568
569 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
570 /* High speed case */
571 return 125 * clock - 1;
572
573 /* FS/LS case */
574 return 1000 * clock - 1;
575}
576
577/**
578 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
579 * buffer
580 *
581 * @core_if: Programming view of DWC_otg controller
582 * @dest: Destination buffer for the packet
583 * @bytes: Number of bytes to copy to the destination
584 */
585void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
586{
587 u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
588 u32 *data_buf = (u32 *)dest;
589 int word_count = (bytes + 3) / 4;
590 int i;
591
592 /*
593 * Todo: Account for the case where dest is not dword aligned. This
594 * requires reading data from the FIFO into a u32 temp buffer, then
595 * moving it into the data buffer.
596 */
597
598 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
599
600 for (i = 0; i < word_count; i++, data_buf++)
601 *data_buf = dwc2_readl(fifo);
602}
603
604/**
605 * dwc2_dump_channel_info() - Prints the state of a host channel
606 *
607 * @hsotg: Programming view of DWC_otg controller
608 * @chan: Pointer to the channel to dump
609 *
610 * Must be called with interrupt disabled and spinlock held
611 *
612 * NOTE: This function will be removed once the peripheral controller code
613 * is integrated and the driver is stable
614 */
615static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
616 struct dwc2_host_chan *chan)
617{
618#ifdef VERBOSE_DEBUG
619 int num_channels = hsotg->params.host_channels;
620 struct dwc2_qh *qh;
621 u32 hcchar;
622 u32 hcsplt;
623 u32 hctsiz;
624 u32 hc_dma;
625 int i;
626
627 if (!chan)
628 return;
629
630 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
631 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
632 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
633 hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
634
635 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
636 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
637 hcchar, hcsplt);
638 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
639 hctsiz, hc_dma);
640 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
641 chan->dev_addr, chan->ep_num, chan->ep_is_in);
642 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
643 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
644 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
645 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
646 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
647 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
648 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
649 (unsigned long)chan->xfer_dma);
650 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
651 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
652 dev_dbg(hsotg->dev, " NP inactive sched:\n");
653 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
654 qh_list_entry)
655 dev_dbg(hsotg->dev, " %p\n", qh);
656 dev_dbg(hsotg->dev, " NP active sched:\n");
657 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
658 qh_list_entry)
659 dev_dbg(hsotg->dev, " %p\n", qh);
660 dev_dbg(hsotg->dev, " Channels:\n");
661 for (i = 0; i < num_channels; i++) {
662 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
663
664 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
665 }
666#endif /* VERBOSE_DEBUG */
667}
668
669static int _dwc2_hcd_start(struct usb_hcd *hcd);
670
671static void dwc2_host_start(struct dwc2_hsotg *hsotg)
672{
673 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
674
675 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
676 _dwc2_hcd_start(hcd);
677}
678
679static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
680{
681 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
682
683 hcd->self.is_b_host = 0;
684}
685
686static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
687 int *hub_addr, int *hub_port)
688{
689 struct urb *urb = context;
690
691 if (urb->dev->tt)
692 *hub_addr = urb->dev->tt->hub->devnum;
693 else
694 *hub_addr = 0;
695 *hub_port = urb->dev->ttport;
696}
697
698/*
699 * =========================================================================
700 * Low Level Host Channel Access Functions
701 * =========================================================================
702 */
703
704static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
705 struct dwc2_host_chan *chan)
706{
707 u32 hcintmsk = HCINTMSK_CHHLTD;
708
709 switch (chan->ep_type) {
710 case USB_ENDPOINT_XFER_CONTROL:
711 case USB_ENDPOINT_XFER_BULK:
712 dev_vdbg(hsotg->dev, "control/bulk\n");
713 hcintmsk |= HCINTMSK_XFERCOMPL;
714 hcintmsk |= HCINTMSK_STALL;
715 hcintmsk |= HCINTMSK_XACTERR;
716 hcintmsk |= HCINTMSK_DATATGLERR;
717 if (chan->ep_is_in) {
718 hcintmsk |= HCINTMSK_BBLERR;
719 } else {
720 hcintmsk |= HCINTMSK_NAK;
721 hcintmsk |= HCINTMSK_NYET;
722 if (chan->do_ping)
723 hcintmsk |= HCINTMSK_ACK;
724 }
725
726 if (chan->do_split) {
727 hcintmsk |= HCINTMSK_NAK;
728 if (chan->complete_split)
729 hcintmsk |= HCINTMSK_NYET;
730 else
731 hcintmsk |= HCINTMSK_ACK;
732 }
733
734 if (chan->error_state)
735 hcintmsk |= HCINTMSK_ACK;
736 break;
737
738 case USB_ENDPOINT_XFER_INT:
739 if (dbg_perio())
740 dev_vdbg(hsotg->dev, "intr\n");
741 hcintmsk |= HCINTMSK_XFERCOMPL;
742 hcintmsk |= HCINTMSK_NAK;
743 hcintmsk |= HCINTMSK_STALL;
744 hcintmsk |= HCINTMSK_XACTERR;
745 hcintmsk |= HCINTMSK_DATATGLERR;
746 hcintmsk |= HCINTMSK_FRMOVRUN;
747
748 if (chan->ep_is_in)
749 hcintmsk |= HCINTMSK_BBLERR;
750 if (chan->error_state)
751 hcintmsk |= HCINTMSK_ACK;
752 if (chan->do_split) {
753 if (chan->complete_split)
754 hcintmsk |= HCINTMSK_NYET;
755 else
756 hcintmsk |= HCINTMSK_ACK;
757 }
758 break;
759
760 case USB_ENDPOINT_XFER_ISOC:
761 if (dbg_perio())
762 dev_vdbg(hsotg->dev, "isoc\n");
763 hcintmsk |= HCINTMSK_XFERCOMPL;
764 hcintmsk |= HCINTMSK_FRMOVRUN;
765 hcintmsk |= HCINTMSK_ACK;
766
767 if (chan->ep_is_in) {
768 hcintmsk |= HCINTMSK_XACTERR;
769 hcintmsk |= HCINTMSK_BBLERR;
770 }
771 break;
772 default:
773 dev_err(hsotg->dev, "## Unknown EP type ##\n");
774 break;
775 }
776
777 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
778 if (dbg_hc(chan))
779 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
780}
781
782static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
783 struct dwc2_host_chan *chan)
784{
785 u32 hcintmsk = HCINTMSK_CHHLTD;
786
787 /*
788 * For Descriptor DMA mode core halts the channel on AHB error.
789 * Interrupt is not required.
790 */
791 if (!hsotg->params.dma_desc_enable) {
792 if (dbg_hc(chan))
793 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
794 hcintmsk |= HCINTMSK_AHBERR;
795 } else {
796 if (dbg_hc(chan))
797 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
798 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
799 hcintmsk |= HCINTMSK_XFERCOMPL;
800 }
801
802 if (chan->error_state && !chan->do_split &&
803 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
804 if (dbg_hc(chan))
805 dev_vdbg(hsotg->dev, "setting ACK\n");
806 hcintmsk |= HCINTMSK_ACK;
807 if (chan->ep_is_in) {
808 hcintmsk |= HCINTMSK_DATATGLERR;
809 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
810 hcintmsk |= HCINTMSK_NAK;
811 }
812 }
813
814 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
815 if (dbg_hc(chan))
816 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
817}
818
819static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
820 struct dwc2_host_chan *chan)
821{
822 u32 intmsk;
823
824 if (hsotg->params.host_dma) {
825 if (dbg_hc(chan))
826 dev_vdbg(hsotg->dev, "DMA enabled\n");
827 dwc2_hc_enable_dma_ints(hsotg, chan);
828 } else {
829 if (dbg_hc(chan))
830 dev_vdbg(hsotg->dev, "DMA disabled\n");
831 dwc2_hc_enable_slave_ints(hsotg, chan);
832 }
833
834 /* Enable the top level host channel interrupt */
835 intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
836 intmsk |= 1 << chan->hc_num;
837 dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
838 if (dbg_hc(chan))
839 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
840
841 /* Make sure host channel interrupts are enabled */
842 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
843 intmsk |= GINTSTS_HCHINT;
844 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
845 if (dbg_hc(chan))
846 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
847}
848
849/**
850 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
851 * a specific endpoint
852 *
853 * @hsotg: Programming view of DWC_otg controller
854 * @chan: Information needed to initialize the host channel
855 *
856 * The HCCHARn register is set up with the characteristics specified in chan.
857 * Host channel interrupts that may need to be serviced while this transfer is
858 * in progress are enabled.
859 */
860static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
861{
862 u8 hc_num = chan->hc_num;
863 u32 hcintmsk;
864 u32 hcchar;
865 u32 hcsplt = 0;
866
867 if (dbg_hc(chan))
868 dev_vdbg(hsotg->dev, "%s()\n", __func__);
869
870 /* Clear old interrupt conditions for this host channel */
871 hcintmsk = 0xffffffff;
872 hcintmsk &= ~HCINTMSK_RESERVED14_31;
873 dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
874
875 /* Enable channel interrupts required for this transfer */
876 dwc2_hc_enable_ints(hsotg, chan);
877
878 /*
879 * Program the HCCHARn register with the endpoint characteristics for
880 * the current transfer
881 */
882 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
883 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
884 if (chan->ep_is_in)
885 hcchar |= HCCHAR_EPDIR;
886 if (chan->speed == USB_SPEED_LOW)
887 hcchar |= HCCHAR_LSPDDEV;
888 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
889 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
890 dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
891 if (dbg_hc(chan)) {
892 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
893 hc_num, hcchar);
894
895 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
896 __func__, hc_num);
897 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
898 chan->dev_addr);
899 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
900 chan->ep_num);
901 dev_vdbg(hsotg->dev, " Is In: %d\n",
902 chan->ep_is_in);
903 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
904 chan->speed == USB_SPEED_LOW);
905 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
906 chan->ep_type);
907 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
908 chan->max_packet);
909 }
910
911 /* Program the HCSPLT register for SPLITs */
912 if (chan->do_split) {
913 if (dbg_hc(chan))
914 dev_vdbg(hsotg->dev,
915 "Programming HC %d with split --> %s\n",
916 hc_num,
917 chan->complete_split ? "CSPLIT" : "SSPLIT");
918 if (chan->complete_split)
919 hcsplt |= HCSPLT_COMPSPLT;
920 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
921 HCSPLT_XACTPOS_MASK;
922 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
923 HCSPLT_HUBADDR_MASK;
924 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
925 HCSPLT_PRTADDR_MASK;
926 if (dbg_hc(chan)) {
927 dev_vdbg(hsotg->dev, " comp split %d\n",
928 chan->complete_split);
929 dev_vdbg(hsotg->dev, " xact pos %d\n",
930 chan->xact_pos);
931 dev_vdbg(hsotg->dev, " hub addr %d\n",
932 chan->hub_addr);
933 dev_vdbg(hsotg->dev, " hub port %d\n",
934 chan->hub_port);
935 dev_vdbg(hsotg->dev, " is_in %d\n",
936 chan->ep_is_in);
937 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
938 chan->max_packet);
939 dev_vdbg(hsotg->dev, " xferlen %d\n",
940 chan->xfer_len);
941 }
942 }
943
944 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
945}
946
947/**
948 * dwc2_hc_halt() - Attempts to halt a host channel
949 *
950 * @hsotg: Controller register interface
951 * @chan: Host channel to halt
952 * @halt_status: Reason for halting the channel
953 *
954 * This function should only be called in Slave mode or to abort a transfer in
955 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
956 * controller halts the channel when the transfer is complete or a condition
957 * occurs that requires application intervention.
958 *
959 * In slave mode, checks for a free request queue entry, then sets the Channel
960 * Enable and Channel Disable bits of the Host Channel Characteristics
961 * register of the specified channel to intiate the halt. If there is no free
962 * request queue entry, sets only the Channel Disable bit of the HCCHARn
963 * register to flush requests for this channel. In the latter case, sets a
964 * flag to indicate that the host channel needs to be halted when a request
965 * queue slot is open.
966 *
967 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
968 * HCCHARn register. The controller ensures there is space in the request
969 * queue before submitting the halt request.
970 *
971 * Some time may elapse before the core flushes any posted requests for this
972 * host channel and halts. The Channel Halted interrupt handler completes the
973 * deactivation of the host channel.
974 */
975void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
976 enum dwc2_halt_status halt_status)
977{
978 u32 nptxsts, hptxsts, hcchar;
979
980 if (dbg_hc(chan))
981 dev_vdbg(hsotg->dev, "%s()\n", __func__);
982 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
983 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
984
985 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
986 halt_status == DWC2_HC_XFER_AHB_ERR) {
987 /*
988 * Disable all channel interrupts except Ch Halted. The QTD
989 * and QH state associated with this transfer has been cleared
990 * (in the case of URB_DEQUEUE), so the channel needs to be
991 * shut down carefully to prevent crashes.
992 */
993 u32 hcintmsk = HCINTMSK_CHHLTD;
994
995 dev_vdbg(hsotg->dev, "dequeue/error\n");
996 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
997
998 /*
999 * Make sure no other interrupts besides halt are currently
1000 * pending. Handling another interrupt could cause a crash due
1001 * to the QTD and QH state.
1002 */
1003 dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1004
1005 /*
1006 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1007 * even if the channel was already halted for some other
1008 * reason
1009 */
1010 chan->halt_status = halt_status;
1011
1012 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1013 if (!(hcchar & HCCHAR_CHENA)) {
1014 /*
1015 * The channel is either already halted or it hasn't
1016 * started yet. In DMA mode, the transfer may halt if
1017 * it finishes normally or a condition occurs that
1018 * requires driver intervention. Don't want to halt
1019 * the channel again. In either Slave or DMA mode,
1020 * it's possible that the transfer has been assigned
1021 * to a channel, but not started yet when an URB is
1022 * dequeued. Don't want to halt a channel that hasn't
1023 * started yet.
1024 */
1025 return;
1026 }
1027 }
1028 if (chan->halt_pending) {
1029 /*
1030 * A halt has already been issued for this channel. This might
1031 * happen when a transfer is aborted by a higher level in
1032 * the stack.
1033 */
1034 dev_vdbg(hsotg->dev,
1035 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1036 __func__, chan->hc_num);
1037 return;
1038 }
1039
1040 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1041
1042 /* No need to set the bit in DDMA for disabling the channel */
1043 /* TODO check it everywhere channel is disabled */
1044 if (!hsotg->params.dma_desc_enable) {
1045 if (dbg_hc(chan))
1046 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1047 hcchar |= HCCHAR_CHENA;
1048 } else {
1049 if (dbg_hc(chan))
1050 dev_dbg(hsotg->dev, "desc DMA enabled\n");
1051 }
1052 hcchar |= HCCHAR_CHDIS;
1053
1054 if (!hsotg->params.host_dma) {
1055 if (dbg_hc(chan))
1056 dev_vdbg(hsotg->dev, "DMA not enabled\n");
1057 hcchar |= HCCHAR_CHENA;
1058
1059 /* Check for space in the request queue to issue the halt */
1060 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1061 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1062 dev_vdbg(hsotg->dev, "control/bulk\n");
1063 nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1064 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1065 dev_vdbg(hsotg->dev, "Disabling channel\n");
1066 hcchar &= ~HCCHAR_CHENA;
1067 }
1068 } else {
1069 if (dbg_perio())
1070 dev_vdbg(hsotg->dev, "isoc/intr\n");
1071 hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1072 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1073 hsotg->queuing_high_bandwidth) {
1074 if (dbg_perio())
1075 dev_vdbg(hsotg->dev, "Disabling channel\n");
1076 hcchar &= ~HCCHAR_CHENA;
1077 }
1078 }
1079 } else {
1080 if (dbg_hc(chan))
1081 dev_vdbg(hsotg->dev, "DMA enabled\n");
1082 }
1083
1084 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1085 chan->halt_status = halt_status;
1086
1087 if (hcchar & HCCHAR_CHENA) {
1088 if (dbg_hc(chan))
1089 dev_vdbg(hsotg->dev, "Channel enabled\n");
1090 chan->halt_pending = 1;
1091 chan->halt_on_queue = 0;
1092 } else {
1093 if (dbg_hc(chan))
1094 dev_vdbg(hsotg->dev, "Channel disabled\n");
1095 chan->halt_on_queue = 1;
1096 }
1097
1098 if (dbg_hc(chan)) {
1099 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1100 chan->hc_num);
1101 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
1102 hcchar);
1103 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
1104 chan->halt_pending);
1105 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
1106 chan->halt_on_queue);
1107 dev_vdbg(hsotg->dev, " halt_status: %d\n",
1108 chan->halt_status);
1109 }
1110}
1111
1112/**
1113 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1114 *
1115 * @hsotg: Programming view of DWC_otg controller
1116 * @chan: Identifies the host channel to clean up
1117 *
1118 * This function is normally called after a transfer is done and the host
1119 * channel is being released
1120 */
1121void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1122{
1123 u32 hcintmsk;
1124
1125 chan->xfer_started = 0;
1126
1127 list_del_init(&chan->split_order_list_entry);
1128
1129 /*
1130 * Clear channel interrupt enables and any unhandled channel interrupt
1131 * conditions
1132 */
1133 dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1134 hcintmsk = 0xffffffff;
1135 hcintmsk &= ~HCINTMSK_RESERVED14_31;
1136 dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1137}
1138
1139/**
1140 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1141 * which frame a periodic transfer should occur
1142 *
1143 * @hsotg: Programming view of DWC_otg controller
1144 * @chan: Identifies the host channel to set up and its properties
1145 * @hcchar: Current value of the HCCHAR register for the specified host channel
1146 *
1147 * This function has no effect on non-periodic transfers
1148 */
1149static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1150 struct dwc2_host_chan *chan, u32 *hcchar)
1151{
1152 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1153 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1154 int host_speed;
1155 int xfer_ns;
1156 int xfer_us;
1157 int bytes_in_fifo;
1158 u16 fifo_space;
1159 u16 frame_number;
1160 u16 wire_frame;
1161
1162 /*
1163 * Try to figure out if we're an even or odd frame. If we set
1164 * even and the current frame number is even the the transfer
1165 * will happen immediately. Similar if both are odd. If one is
1166 * even and the other is odd then the transfer will happen when
1167 * the frame number ticks.
1168 *
1169 * There's a bit of a balancing act to get this right.
1170 * Sometimes we may want to send data in the current frame (AK
1171 * right away). We might want to do this if the frame number
1172 * _just_ ticked, but we might also want to do this in order
1173 * to continue a split transaction that happened late in a
1174 * microframe (so we didn't know to queue the next transfer
1175 * until the frame number had ticked). The problem is that we
1176 * need a lot of knowledge to know if there's actually still
1177 * time to send things or if it would be better to wait until
1178 * the next frame.
1179 *
1180 * We can look at how much time is left in the current frame
1181 * and make a guess about whether we'll have time to transfer.
1182 * We'll do that.
1183 */
1184
1185 /* Get speed host is running at */
1186 host_speed = (chan->speed != USB_SPEED_HIGH &&
1187 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1188
1189 /* See how many bytes are in the periodic FIFO right now */
1190 fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1191 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1192 bytes_in_fifo = sizeof(u32) *
1193 (hsotg->params.host_perio_tx_fifo_size -
1194 fifo_space);
1195
1196 /*
1197 * Roughly estimate bus time for everything in the periodic
1198 * queue + our new transfer. This is "rough" because we're
1199 * using a function that makes takes into account IN/OUT
1200 * and INT/ISO and we're just slamming in one value for all
1201 * transfers. This should be an over-estimate and that should
1202 * be OK, but we can probably tighten it.
1203 */
1204 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1205 chan->xfer_len + bytes_in_fifo);
1206 xfer_us = NS_TO_US(xfer_ns);
1207
1208 /* See what frame number we'll be at by the time we finish */
1209 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1210
1211 /* This is when we were scheduled to be on the wire */
1212 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1213
1214 /*
1215 * If we'd finish _after_ the frame we're scheduled in then
1216 * it's hopeless. Just schedule right away and hope for the
1217 * best. Note that it _might_ be wise to call back into the
1218 * scheduler to pick a better frame, but this is better than
1219 * nothing.
1220 */
1221 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1222 dwc2_sch_vdbg(hsotg,
1223 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1224 chan->qh, wire_frame, frame_number,
1225 dwc2_frame_num_dec(frame_number,
1226 wire_frame));
1227 wire_frame = frame_number;
1228
1229 /*
1230 * We picked a different frame number; communicate this
1231 * back to the scheduler so it doesn't try to schedule
1232 * another in the same frame.
1233 *
1234 * Remember that next_active_frame is 1 before the wire
1235 * frame.
1236 */
1237 chan->qh->next_active_frame =
1238 dwc2_frame_num_dec(frame_number, 1);
1239 }
1240
1241 if (wire_frame & 1)
1242 *hcchar |= HCCHAR_ODDFRM;
1243 else
1244 *hcchar &= ~HCCHAR_ODDFRM;
1245 }
1246}
1247
1248static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1249{
1250 /* Set up the initial PID for the transfer */
1251 if (chan->speed == USB_SPEED_HIGH) {
1252 if (chan->ep_is_in) {
1253 if (chan->multi_count == 1)
1254 chan->data_pid_start = DWC2_HC_PID_DATA0;
1255 else if (chan->multi_count == 2)
1256 chan->data_pid_start = DWC2_HC_PID_DATA1;
1257 else
1258 chan->data_pid_start = DWC2_HC_PID_DATA2;
1259 } else {
1260 if (chan->multi_count == 1)
1261 chan->data_pid_start = DWC2_HC_PID_DATA0;
1262 else
1263 chan->data_pid_start = DWC2_HC_PID_MDATA;
1264 }
1265 } else {
1266 chan->data_pid_start = DWC2_HC_PID_DATA0;
1267 }
1268}
1269
1270/**
1271 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1272 * the Host Channel
1273 *
1274 * @hsotg: Programming view of DWC_otg controller
1275 * @chan: Information needed to initialize the host channel
1276 *
1277 * This function should only be called in Slave mode. For a channel associated
1278 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1279 * associated with a periodic EP, the periodic Tx FIFO is written.
1280 *
1281 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1282 * the number of bytes written to the Tx FIFO.
1283 */
1284static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1285 struct dwc2_host_chan *chan)
1286{
1287 u32 i;
1288 u32 remaining_count;
1289 u32 byte_count;
1290 u32 dword_count;
1291 u32 __iomem *data_fifo;
1292 u32 *data_buf = (u32 *)chan->xfer_buf;
1293
1294 if (dbg_hc(chan))
1295 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1296
1297 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1298
1299 remaining_count = chan->xfer_len - chan->xfer_count;
1300 if (remaining_count > chan->max_packet)
1301 byte_count = chan->max_packet;
1302 else
1303 byte_count = remaining_count;
1304
1305 dword_count = (byte_count + 3) / 4;
1306
1307 if (((unsigned long)data_buf & 0x3) == 0) {
1308 /* xfer_buf is DWORD aligned */
1309 for (i = 0; i < dword_count; i++, data_buf++)
1310 dwc2_writel(*data_buf, data_fifo);
1311 } else {
1312 /* xfer_buf is not DWORD aligned */
1313 for (i = 0; i < dword_count; i++, data_buf++) {
1314 u32 data = data_buf[0] | data_buf[1] << 8 |
1315 data_buf[2] << 16 | data_buf[3] << 24;
1316 dwc2_writel(data, data_fifo);
1317 }
1318 }
1319
1320 chan->xfer_count += byte_count;
1321 chan->xfer_buf += byte_count;
1322}
1323
1324/**
1325 * dwc2_hc_do_ping() - Starts a PING transfer
1326 *
1327 * @hsotg: Programming view of DWC_otg controller
1328 * @chan: Information needed to initialize the host channel
1329 *
1330 * This function should only be called in Slave mode. The Do Ping bit is set in
1331 * the HCTSIZ register, then the channel is enabled.
1332 */
1333static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1334 struct dwc2_host_chan *chan)
1335{
1336 u32 hcchar;
1337 u32 hctsiz;
1338
1339 if (dbg_hc(chan))
1340 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1341 chan->hc_num);
1342
1343 hctsiz = TSIZ_DOPNG;
1344 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1345 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1346
1347 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1348 hcchar |= HCCHAR_CHENA;
1349 hcchar &= ~HCCHAR_CHDIS;
1350 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1351}
1352
1353/**
1354 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1355 * channel and starts the transfer
1356 *
1357 * @hsotg: Programming view of DWC_otg controller
1358 * @chan: Information needed to initialize the host channel. The xfer_len value
1359 * may be reduced to accommodate the max widths of the XferSize and
1360 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1361 * changed to reflect the final xfer_len value.
1362 *
1363 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1364 * the caller must ensure that there is sufficient space in the request queue
1365 * and Tx Data FIFO.
1366 *
1367 * For an OUT transfer in Slave mode, it loads a data packet into the
1368 * appropriate FIFO. If necessary, additional data packets are loaded in the
1369 * Host ISR.
1370 *
1371 * For an IN transfer in Slave mode, a data packet is requested. The data
1372 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1373 * additional data packets are requested in the Host ISR.
1374 *
1375 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1376 * register along with a packet count of 1 and the channel is enabled. This
1377 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1378 * simply set to 0 since no data transfer occurs in this case.
1379 *
1380 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1381 * all the information required to perform the subsequent data transfer. In
1382 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1383 * controller performs the entire PING protocol, then starts the data
1384 * transfer.
1385 */
1386static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1387 struct dwc2_host_chan *chan)
1388{
1389 u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1390 u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1391 u32 hcchar;
1392 u32 hctsiz = 0;
1393 u16 num_packets;
1394 u32 ec_mc;
1395
1396 if (dbg_hc(chan))
1397 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1398
1399 if (chan->do_ping) {
1400 if (!hsotg->params.host_dma) {
1401 if (dbg_hc(chan))
1402 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1403 dwc2_hc_do_ping(hsotg, chan);
1404 chan->xfer_started = 1;
1405 return;
1406 }
1407
1408 if (dbg_hc(chan))
1409 dev_vdbg(hsotg->dev, "ping, DMA\n");
1410
1411 hctsiz |= TSIZ_DOPNG;
1412 }
1413
1414 if (chan->do_split) {
1415 if (dbg_hc(chan))
1416 dev_vdbg(hsotg->dev, "split\n");
1417 num_packets = 1;
1418
1419 if (chan->complete_split && !chan->ep_is_in)
1420 /*
1421 * For CSPLIT OUT Transfer, set the size to 0 so the
1422 * core doesn't expect any data written to the FIFO
1423 */
1424 chan->xfer_len = 0;
1425 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1426 chan->xfer_len = chan->max_packet;
1427 else if (!chan->ep_is_in && chan->xfer_len > 188)
1428 chan->xfer_len = 188;
1429
1430 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1431 TSIZ_XFERSIZE_MASK;
1432
1433 /* For split set ec_mc for immediate retries */
1434 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1435 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1436 ec_mc = 3;
1437 else
1438 ec_mc = 1;
1439 } else {
1440 if (dbg_hc(chan))
1441 dev_vdbg(hsotg->dev, "no split\n");
1442 /*
1443 * Ensure that the transfer length and packet count will fit
1444 * in the widths allocated for them in the HCTSIZn register
1445 */
1446 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1447 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1448 /*
1449 * Make sure the transfer size is no larger than one
1450 * (micro)frame's worth of data. (A check was done
1451 * when the periodic transfer was accepted to ensure
1452 * that a (micro)frame's worth of data can be
1453 * programmed into a channel.)
1454 */
1455 u32 max_periodic_len =
1456 chan->multi_count * chan->max_packet;
1457
1458 if (chan->xfer_len > max_periodic_len)
1459 chan->xfer_len = max_periodic_len;
1460 } else if (chan->xfer_len > max_hc_xfer_size) {
1461 /*
1462 * Make sure that xfer_len is a multiple of max packet
1463 * size
1464 */
1465 chan->xfer_len =
1466 max_hc_xfer_size - chan->max_packet + 1;
1467 }
1468
1469 if (chan->xfer_len > 0) {
1470 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1471 chan->max_packet;
1472 if (num_packets > max_hc_pkt_count) {
1473 num_packets = max_hc_pkt_count;
1474 chan->xfer_len = num_packets * chan->max_packet;
1475 }
1476 } else {
1477 /* Need 1 packet for transfer length of 0 */
1478 num_packets = 1;
1479 }
1480
1481 if (chan->ep_is_in)
1482 /*
1483 * Always program an integral # of max packets for IN
1484 * transfers
1485 */
1486 chan->xfer_len = num_packets * chan->max_packet;
1487
1488 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1489 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1490 /*
1491 * Make sure that the multi_count field matches the
1492 * actual transfer length
1493 */
1494 chan->multi_count = num_packets;
1495
1496 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1497 dwc2_set_pid_isoc(chan);
1498
1499 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1500 TSIZ_XFERSIZE_MASK;
1501
1502 /* The ec_mc gets the multi_count for non-split */
1503 ec_mc = chan->multi_count;
1504 }
1505
1506 chan->start_pkt_count = num_packets;
1507 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1508 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1509 TSIZ_SC_MC_PID_MASK;
1510 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1511 if (dbg_hc(chan)) {
1512 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1513 hctsiz, chan->hc_num);
1514
1515 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1516 chan->hc_num);
1517 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1518 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1519 TSIZ_XFERSIZE_SHIFT);
1520 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1521 (hctsiz & TSIZ_PKTCNT_MASK) >>
1522 TSIZ_PKTCNT_SHIFT);
1523 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1524 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1525 TSIZ_SC_MC_PID_SHIFT);
1526 }
1527
1528 if (hsotg->params.host_dma) {
1529 dwc2_writel((u32)chan->xfer_dma,
1530 hsotg->regs + HCDMA(chan->hc_num));
1531 if (dbg_hc(chan))
1532 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1533 (unsigned long)chan->xfer_dma, chan->hc_num);
1534 }
1535
1536 /* Start the split */
1537 if (chan->do_split) {
1538 u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1539
1540 hcsplt |= HCSPLT_SPLTENA;
1541 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1542 }
1543
1544 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1545 hcchar &= ~HCCHAR_MULTICNT_MASK;
1546 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1547 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1548
1549 if (hcchar & HCCHAR_CHDIS)
1550 dev_warn(hsotg->dev,
1551 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1552 __func__, chan->hc_num, hcchar);
1553
1554 /* Set host channel enable after all other setup is complete */
1555 hcchar |= HCCHAR_CHENA;
1556 hcchar &= ~HCCHAR_CHDIS;
1557
1558 if (dbg_hc(chan))
1559 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1560 (hcchar & HCCHAR_MULTICNT_MASK) >>
1561 HCCHAR_MULTICNT_SHIFT);
1562
1563 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1564 if (dbg_hc(chan))
1565 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1566 chan->hc_num);
1567
1568 chan->xfer_started = 1;
1569 chan->requests++;
1570
1571 if (!hsotg->params.host_dma &&
1572 !chan->ep_is_in && chan->xfer_len > 0)
1573 /* Load OUT packet into the appropriate Tx FIFO */
1574 dwc2_hc_write_packet(hsotg, chan);
1575}
1576
1577/**
1578 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1579 * host channel and starts the transfer in Descriptor DMA mode
1580 *
1581 * @hsotg: Programming view of DWC_otg controller
1582 * @chan: Information needed to initialize the host channel
1583 *
1584 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1585 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1586 * with micro-frame bitmap.
1587 *
1588 * Initializes HCDMA register with descriptor list address and CTD value then
1589 * starts the transfer via enabling the channel.
1590 */
1591void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1592 struct dwc2_host_chan *chan)
1593{
1594 u32 hcchar;
1595 u32 hctsiz = 0;
1596
1597 if (chan->do_ping)
1598 hctsiz |= TSIZ_DOPNG;
1599
1600 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1601 dwc2_set_pid_isoc(chan);
1602
1603 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1604 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1605 TSIZ_SC_MC_PID_MASK;
1606
1607 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1608 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1609
1610 /* Non-zero only for high-speed interrupt endpoints */
1611 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1612
1613 if (dbg_hc(chan)) {
1614 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1615 chan->hc_num);
1616 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1617 chan->data_pid_start);
1618 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1619 }
1620
1621 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1622
1623 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1624 chan->desc_list_sz, DMA_TO_DEVICE);
1625
1626 dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1627
1628 if (dbg_hc(chan))
1629 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1630 &chan->desc_list_addr, chan->hc_num);
1631
1632 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1633 hcchar &= ~HCCHAR_MULTICNT_MASK;
1634 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1635 HCCHAR_MULTICNT_MASK;
1636
1637 if (hcchar & HCCHAR_CHDIS)
1638 dev_warn(hsotg->dev,
1639 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1640 __func__, chan->hc_num, hcchar);
1641
1642 /* Set host channel enable after all other setup is complete */
1643 hcchar |= HCCHAR_CHENA;
1644 hcchar &= ~HCCHAR_CHDIS;
1645
1646 if (dbg_hc(chan))
1647 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1648 (hcchar & HCCHAR_MULTICNT_MASK) >>
1649 HCCHAR_MULTICNT_SHIFT);
1650
1651 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1652 if (dbg_hc(chan))
1653 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1654 chan->hc_num);
1655
1656 chan->xfer_started = 1;
1657 chan->requests++;
1658}
1659
1660/**
1661 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1662 * a previous call to dwc2_hc_start_transfer()
1663 *
1664 * @hsotg: Programming view of DWC_otg controller
1665 * @chan: Information needed to initialize the host channel
1666 *
1667 * The caller must ensure there is sufficient space in the request queue and Tx
1668 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1669 * the controller acts autonomously to complete transfers programmed to a host
1670 * channel.
1671 *
1672 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1673 * if there is any data remaining to be queued. For an IN transfer, another
1674 * data packet is always requested. For the SETUP phase of a control transfer,
1675 * this function does nothing.
1676 *
1677 * Return: 1 if a new request is queued, 0 if no more requests are required
1678 * for this transfer
1679 */
1680static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1681 struct dwc2_host_chan *chan)
1682{
1683 if (dbg_hc(chan))
1684 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1685 chan->hc_num);
1686
1687 if (chan->do_split)
1688 /* SPLITs always queue just once per channel */
1689 return 0;
1690
1691 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1692 /* SETUPs are queued only once since they can't be NAK'd */
1693 return 0;
1694
1695 if (chan->ep_is_in) {
1696 /*
1697 * Always queue another request for other IN transfers. If
1698 * back-to-back INs are issued and NAKs are received for both,
1699 * the driver may still be processing the first NAK when the
1700 * second NAK is received. When the interrupt handler clears
1701 * the NAK interrupt for the first NAK, the second NAK will
1702 * not be seen. So we can't depend on the NAK interrupt
1703 * handler to requeue a NAK'd request. Instead, IN requests
1704 * are issued each time this function is called. When the
1705 * transfer completes, the extra requests for the channel will
1706 * be flushed.
1707 */
1708 u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1709
1710 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1711 hcchar |= HCCHAR_CHENA;
1712 hcchar &= ~HCCHAR_CHDIS;
1713 if (dbg_hc(chan))
1714 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1715 hcchar);
1716 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1717 chan->requests++;
1718 return 1;
1719 }
1720
1721 /* OUT transfers */
1722
1723 if (chan->xfer_count < chan->xfer_len) {
1724 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1725 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1726 u32 hcchar = dwc2_readl(hsotg->regs +
1727 HCCHAR(chan->hc_num));
1728
1729 dwc2_hc_set_even_odd_frame(hsotg, chan,
1730 &hcchar);
1731 }
1732
1733 /* Load OUT packet into the appropriate Tx FIFO */
1734 dwc2_hc_write_packet(hsotg, chan);
1735 chan->requests++;
1736 return 1;
1737 }
1738
1739 return 0;
1740}
1741
1742/*
1743 * =========================================================================
1744 * HCD
1745 * =========================================================================
1746 */
1747
1748/*
1749 * Processes all the URBs in a single list of QHs. Completes them with
1750 * -ETIMEDOUT and frees the QTD.
1751 *
1752 * Must be called with interrupt disabled and spinlock held
1753 */
1754static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1755 struct list_head *qh_list)
1756{
1757 struct dwc2_qh *qh, *qh_tmp;
1758 struct dwc2_qtd *qtd, *qtd_tmp;
1759
1760 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1761 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1762 qtd_list_entry) {
1763 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1764 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1765 }
1766 }
1767}
1768
1769static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1770 struct list_head *qh_list)
1771{
1772 struct dwc2_qtd *qtd, *qtd_tmp;
1773 struct dwc2_qh *qh, *qh_tmp;
1774 unsigned long flags;
1775
1776 if (!qh_list->next)
1777 /* The list hasn't been initialized yet */
1778 return;
1779
1780 spin_lock_irqsave(&hsotg->lock, flags);
1781
1782 /* Ensure there are no QTDs or URBs left */
1783 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1784
1785 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1786 dwc2_hcd_qh_unlink(hsotg, qh);
1787
1788 /* Free each QTD in the QH's QTD list */
1789 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1790 qtd_list_entry)
1791 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1792
1793 if (qh->channel && qh->channel->qh == qh)
1794 qh->channel->qh = NULL;
1795
1796 spin_unlock_irqrestore(&hsotg->lock, flags);
1797 dwc2_hcd_qh_free(hsotg, qh);
1798 spin_lock_irqsave(&hsotg->lock, flags);
1799 }
1800
1801 spin_unlock_irqrestore(&hsotg->lock, flags);
1802}
1803
1804/*
1805 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1806 * and periodic schedules. The QTD associated with each URB is removed from
1807 * the schedule and freed. This function may be called when a disconnect is
1808 * detected or when the HCD is being stopped.
1809 *
1810 * Must be called with interrupt disabled and spinlock held
1811 */
1812static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1813{
1814 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1815 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1816 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1817 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1818 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1819 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1820}
1821
1822/**
1823 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1824 *
1825 * @hsotg: Pointer to struct dwc2_hsotg
1826 */
1827void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1828{
1829 u32 hprt0;
1830
1831 if (hsotg->op_state == OTG_STATE_B_HOST) {
1832 /*
1833 * Reset the port. During a HNP mode switch the reset
1834 * needs to occur within 1ms and have a duration of at
1835 * least 50ms.
1836 */
1837 hprt0 = dwc2_read_hprt0(hsotg);
1838 hprt0 |= HPRT0_RST;
1839 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1840 }
1841
1842 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1843 msecs_to_jiffies(50));
1844}
1845
1846/* Must be called with interrupt disabled and spinlock held */
1847static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1848{
1849 int num_channels = hsotg->params.host_channels;
1850 struct dwc2_host_chan *channel;
1851 u32 hcchar;
1852 int i;
1853
1854 if (!hsotg->params.host_dma) {
1855 /* Flush out any channel requests in slave mode */
1856 for (i = 0; i < num_channels; i++) {
1857 channel = hsotg->hc_ptr_array[i];
1858 if (!list_empty(&channel->hc_list_entry))
1859 continue;
1860 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1861 if (hcchar & HCCHAR_CHENA) {
1862 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1863 hcchar |= HCCHAR_CHDIS;
1864 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1865 }
1866 }
1867 }
1868
1869 for (i = 0; i < num_channels; i++) {
1870 channel = hsotg->hc_ptr_array[i];
1871 if (!list_empty(&channel->hc_list_entry))
1872 continue;
1873 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1874 if (hcchar & HCCHAR_CHENA) {
1875 /* Halt the channel */
1876 hcchar |= HCCHAR_CHDIS;
1877 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1878 }
1879
1880 dwc2_hc_cleanup(hsotg, channel);
1881 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1882 /*
1883 * Added for Descriptor DMA to prevent channel double cleanup in
1884 * release_channel_ddma(), which is called from ep_disable when
1885 * device disconnects
1886 */
1887 channel->qh = NULL;
1888 }
1889 /* All channels have been freed, mark them available */
1890 if (hsotg->params.uframe_sched) {
1891 hsotg->available_host_channels =
1892 hsotg->params.host_channels;
1893 } else {
1894 hsotg->non_periodic_channels = 0;
1895 hsotg->periodic_channels = 0;
1896 }
1897}
1898
1899/**
1900 * dwc2_hcd_connect() - Handles connect of the HCD
1901 *
1902 * @hsotg: Pointer to struct dwc2_hsotg
1903 *
1904 * Must be called with interrupt disabled and spinlock held
1905 */
1906void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1907{
1908 if (hsotg->lx_state != DWC2_L0)
1909 usb_hcd_resume_root_hub(hsotg->priv);
1910
1911 hsotg->flags.b.port_connect_status_change = 1;
1912 hsotg->flags.b.port_connect_status = 1;
1913}
1914
1915/**
1916 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1917 *
1918 * @hsotg: Pointer to struct dwc2_hsotg
1919 * @force: If true, we won't try to reconnect even if we see device connected.
1920 *
1921 * Must be called with interrupt disabled and spinlock held
1922 */
1923void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1924{
1925 u32 intr;
1926 u32 hprt0;
1927
1928 /* Set status flags for the hub driver */
1929 hsotg->flags.b.port_connect_status_change = 1;
1930 hsotg->flags.b.port_connect_status = 0;
1931
1932 /*
1933 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1934 * interrupt mask and status bits and disabling subsequent host
1935 * channel interrupts.
1936 */
1937 intr = dwc2_readl(hsotg->regs + GINTMSK);
1938 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1939 dwc2_writel(intr, hsotg->regs + GINTMSK);
1940 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1941 dwc2_writel(intr, hsotg->regs + GINTSTS);
1942
1943 /*
1944 * Turn off the vbus power only if the core has transitioned to device
1945 * mode. If still in host mode, need to keep power on to detect a
1946 * reconnection.
1947 */
1948 if (dwc2_is_device_mode(hsotg)) {
1949 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1950 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1951 dwc2_writel(0, hsotg->regs + HPRT0);
1952 }
1953
1954 dwc2_disable_host_interrupts(hsotg);
1955 }
1956
1957 /* Respond with an error status to all URBs in the schedule */
1958 dwc2_kill_all_urbs(hsotg);
1959
1960 if (dwc2_is_host_mode(hsotg))
1961 /* Clean up any host channels that were in use */
1962 dwc2_hcd_cleanup_channels(hsotg);
1963
1964 dwc2_host_disconnect(hsotg);
1965
1966 /*
1967 * Add an extra check here to see if we're actually connected but
1968 * we don't have a detection interrupt pending. This can happen if:
1969 * 1. hardware sees connect
1970 * 2. hardware sees disconnect
1971 * 3. hardware sees connect
1972 * 4. dwc2_port_intr() - clears connect interrupt
1973 * 5. dwc2_handle_common_intr() - calls here
1974 *
1975 * Without the extra check here we will end calling disconnect
1976 * and won't get any future interrupts to handle the connect.
1977 */
1978 if (!force) {
1979 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
1980 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1981 dwc2_hcd_connect(hsotg);
1982 }
1983}
1984
1985/**
1986 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1987 *
1988 * @hsotg: Pointer to struct dwc2_hsotg
1989 */
1990static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1991{
1992 if (hsotg->bus_suspended) {
1993 hsotg->flags.b.port_suspend_change = 1;
1994 usb_hcd_resume_root_hub(hsotg->priv);
1995 }
1996
1997 if (hsotg->lx_state == DWC2_L1)
1998 hsotg->flags.b.port_l1_change = 1;
1999}
2000
2001/**
2002 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2003 *
2004 * @hsotg: Pointer to struct dwc2_hsotg
2005 *
2006 * Must be called with interrupt disabled and spinlock held
2007 */
2008void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
2009{
2010 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
2011
2012 /*
2013 * The root hub should be disconnected before this function is called.
2014 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2015 * and the QH lists (via ..._hcd_endpoint_disable).
2016 */
2017
2018 /* Turn off all host-specific interrupts */
2019 dwc2_disable_host_interrupts(hsotg);
2020
2021 /* Turn off the vbus power */
2022 dev_dbg(hsotg->dev, "PortPower off\n");
2023 dwc2_writel(0, hsotg->regs + HPRT0);
2024}
2025
2026/* Caller must hold driver lock */
2027static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2028 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2029 struct dwc2_qtd *qtd)
2030{
2031 u32 intr_mask;
2032 int retval;
2033 int dev_speed;
2034
2035 if (!hsotg->flags.b.port_connect_status) {
2036 /* No longer connected */
2037 dev_err(hsotg->dev, "Not connected\n");
2038 return -ENODEV;
2039 }
2040
2041 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2042
2043 /* Some configurations cannot support LS traffic on a FS root port */
2044 if ((dev_speed == USB_SPEED_LOW) &&
2045 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2046 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2047 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2048 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2049
2050 if (prtspd == HPRT0_SPD_FULL_SPEED)
2051 return -ENODEV;
2052 }
2053
2054 if (!qtd)
2055 return -EINVAL;
2056
2057 dwc2_hcd_qtd_init(qtd, urb);
2058 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2059 if (retval) {
2060 dev_err(hsotg->dev,
2061 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2062 retval);
2063 return retval;
2064 }
2065
2066 intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2067 if (!(intr_mask & GINTSTS_SOF)) {
2068 enum dwc2_transaction_type tr_type;
2069
2070 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2071 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2072 /*
2073 * Do not schedule SG transactions until qtd has
2074 * URB_GIVEBACK_ASAP set
2075 */
2076 return 0;
2077
2078 tr_type = dwc2_hcd_select_transactions(hsotg);
2079 if (tr_type != DWC2_TRANSACTION_NONE)
2080 dwc2_hcd_queue_transactions(hsotg, tr_type);
2081 }
2082
2083 return 0;
2084}
2085
2086/* Must be called with interrupt disabled and spinlock held */
2087static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2088 struct dwc2_hcd_urb *urb)
2089{
2090 struct dwc2_qh *qh;
2091 struct dwc2_qtd *urb_qtd;
2092
2093 urb_qtd = urb->qtd;
2094 if (!urb_qtd) {
2095 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2096 return -EINVAL;
2097 }
2098
2099 qh = urb_qtd->qh;
2100 if (!qh) {
2101 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2102 return -EINVAL;
2103 }
2104
2105 urb->priv = NULL;
2106
2107 if (urb_qtd->in_process && qh->channel) {
2108 dwc2_dump_channel_info(hsotg, qh->channel);
2109
2110 /* The QTD is in process (it has been assigned to a channel) */
2111 if (hsotg->flags.b.port_connect_status)
2112 /*
2113 * If still connected (i.e. in host mode), halt the
2114 * channel so it can be used for other transfers. If
2115 * no longer connected, the host registers can't be
2116 * written to halt the channel since the core is in
2117 * device mode.
2118 */
2119 dwc2_hc_halt(hsotg, qh->channel,
2120 DWC2_HC_XFER_URB_DEQUEUE);
2121 }
2122
2123 /*
2124 * Free the QTD and clean up the associated QH. Leave the QH in the
2125 * schedule if it has any remaining QTDs.
2126 */
2127 if (!hsotg->params.dma_desc_enable) {
2128 u8 in_process = urb_qtd->in_process;
2129
2130 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2131 if (in_process) {
2132 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2133 qh->channel = NULL;
2134 } else if (list_empty(&qh->qtd_list)) {
2135 dwc2_hcd_qh_unlink(hsotg, qh);
2136 }
2137 } else {
2138 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2139 }
2140
2141 return 0;
2142}
2143
2144/* Must NOT be called with interrupt disabled or spinlock held */
2145static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2146 struct usb_host_endpoint *ep, int retry)
2147{
2148 struct dwc2_qtd *qtd, *qtd_tmp;
2149 struct dwc2_qh *qh;
2150 unsigned long flags;
2151 int rc;
2152
2153 spin_lock_irqsave(&hsotg->lock, flags);
2154
2155 qh = ep->hcpriv;
2156 if (!qh) {
2157 rc = -EINVAL;
2158 goto err;
2159 }
2160
2161 while (!list_empty(&qh->qtd_list) && retry--) {
2162 if (retry == 0) {
2163 dev_err(hsotg->dev,
2164 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2165 rc = -EBUSY;
2166 goto err;
2167 }
2168
2169 spin_unlock_irqrestore(&hsotg->lock, flags);
2170 msleep(20);
2171 spin_lock_irqsave(&hsotg->lock, flags);
2172 qh = ep->hcpriv;
2173 if (!qh) {
2174 rc = -EINVAL;
2175 goto err;
2176 }
2177 }
2178
2179 dwc2_hcd_qh_unlink(hsotg, qh);
2180
2181 /* Free each QTD in the QH's QTD list */
2182 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2183 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2184
2185 ep->hcpriv = NULL;
2186
2187 if (qh->channel && qh->channel->qh == qh)
2188 qh->channel->qh = NULL;
2189
2190 spin_unlock_irqrestore(&hsotg->lock, flags);
2191
2192 dwc2_hcd_qh_free(hsotg, qh);
2193
2194 return 0;
2195
2196err:
2197 ep->hcpriv = NULL;
2198 spin_unlock_irqrestore(&hsotg->lock, flags);
2199
2200 return rc;
2201}
2202
2203/* Must be called with interrupt disabled and spinlock held */
2204static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2205 struct usb_host_endpoint *ep)
2206{
2207 struct dwc2_qh *qh = ep->hcpriv;
2208
2209 if (!qh)
2210 return -EINVAL;
2211
2212 qh->data_toggle = DWC2_HC_PID_DATA0;
2213
2214 return 0;
2215}
2216
2217/**
2218 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2219 * prepares the core for device mode or host mode operation
2220 *
2221 * @hsotg: Programming view of the DWC_otg controller
2222 * @initial_setup: If true then this is the first init for this instance.
2223 */
2224static int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2225{
2226 u32 usbcfg, otgctl;
2227 int retval;
2228
2229 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2230
2231 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2232
2233 /* Set ULPI External VBUS bit if needed */
2234 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2235 if (hsotg->params.phy_ulpi_ext_vbus)
2236 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2237
2238 /* Set external TS Dline pulsing bit if needed */
2239 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2240 if (hsotg->params.ts_dline)
2241 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2242
2243 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2244
2245 /*
2246 * Reset the Controller
2247 *
2248 * We only need to reset the controller if this is a re-init.
2249 * For the first init we know for sure that earlier code reset us (it
2250 * needed to in order to properly detect various parameters).
2251 */
2252 if (!initial_setup) {
2253 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
2254 if (retval) {
2255 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2256 __func__);
2257 return retval;
2258 }
2259 }
2260
2261 /*
2262 * This needs to happen in FS mode before any other programming occurs
2263 */
2264 retval = dwc2_phy_init(hsotg, initial_setup);
2265 if (retval)
2266 return retval;
2267
2268 /* Program the GAHBCFG Register */
2269 retval = dwc2_gahbcfg_init(hsotg);
2270 if (retval)
2271 return retval;
2272
2273 /* Program the GUSBCFG register */
2274 dwc2_gusbcfg_init(hsotg);
2275
2276 /* Program the GOTGCTL register */
2277 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2278 otgctl &= ~GOTGCTL_OTGVER;
2279 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2280
2281 /* Clear the SRP success bit for FS-I2c */
2282 hsotg->srp_success = 0;
2283
2284 /* Enable common interrupts */
2285 dwc2_enable_common_interrupts(hsotg);
2286
2287 /*
2288 * Do device or host initialization based on mode during PCD and
2289 * HCD initialization
2290 */
2291 if (dwc2_is_host_mode(hsotg)) {
2292 dev_dbg(hsotg->dev, "Host Mode\n");
2293 hsotg->op_state = OTG_STATE_A_HOST;
2294 } else {
2295 dev_dbg(hsotg->dev, "Device Mode\n");
2296 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2297 }
2298
2299 return 0;
2300}
2301
2302/**
2303 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2304 * Host mode
2305 *
2306 * @hsotg: Programming view of DWC_otg controller
2307 *
2308 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2309 * request queues. Host channels are reset to ensure that they are ready for
2310 * performing transfers.
2311 */
2312static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2313{
2314 u32 hcfg, hfir, otgctl;
2315
2316 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2317
2318 /* Restart the Phy Clock */
2319 dwc2_writel(0, hsotg->regs + PCGCTL);
2320
2321 /* Initialize Host Configuration Register */
2322 dwc2_init_fs_ls_pclk_sel(hsotg);
2323 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2324 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2325 hcfg = dwc2_readl(hsotg->regs + HCFG);
2326 hcfg |= HCFG_FSLSSUPP;
2327 dwc2_writel(hcfg, hsotg->regs + HCFG);
2328 }
2329
2330 /*
2331 * This bit allows dynamic reloading of the HFIR register during
2332 * runtime. This bit needs to be programmed during initial configuration
2333 * and its value must not be changed during runtime.
2334 */
2335 if (hsotg->params.reload_ctl) {
2336 hfir = dwc2_readl(hsotg->regs + HFIR);
2337 hfir |= HFIR_RLDCTRL;
2338 dwc2_writel(hfir, hsotg->regs + HFIR);
2339 }
2340
2341 if (hsotg->params.dma_desc_enable) {
2342 u32 op_mode = hsotg->hw_params.op_mode;
2343
2344 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2345 !hsotg->hw_params.dma_desc_enable ||
2346 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2347 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2348 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2349 dev_err(hsotg->dev,
2350 "Hardware does not support descriptor DMA mode -\n");
2351 dev_err(hsotg->dev,
2352 "falling back to buffer DMA mode.\n");
2353 hsotg->params.dma_desc_enable = false;
2354 } else {
2355 hcfg = dwc2_readl(hsotg->regs + HCFG);
2356 hcfg |= HCFG_DESCDMA;
2357 dwc2_writel(hcfg, hsotg->regs + HCFG);
2358 }
2359 }
2360
2361 /* Configure data FIFO sizes */
2362 dwc2_config_fifos(hsotg);
2363
2364 /* TODO - check this */
2365 /* Clear Host Set HNP Enable in the OTG Control Register */
2366 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2367 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2368 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2369
2370 /* Make sure the FIFOs are flushed */
2371 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2372 dwc2_flush_rx_fifo(hsotg);
2373
2374 /* Clear Host Set HNP Enable in the OTG Control Register */
2375 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2376 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2377 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2378
2379 if (!hsotg->params.dma_desc_enable) {
2380 int num_channels, i;
2381 u32 hcchar;
2382
2383 /* Flush out any leftover queued requests */
2384 num_channels = hsotg->params.host_channels;
2385 for (i = 0; i < num_channels; i++) {
2386 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2387 hcchar &= ~HCCHAR_CHENA;
2388 hcchar |= HCCHAR_CHDIS;
2389 hcchar &= ~HCCHAR_EPDIR;
2390 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2391 }
2392
2393 /* Halt all channels to put them into a known state */
2394 for (i = 0; i < num_channels; i++) {
2395 int count = 0;
2396
2397 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2398 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2399 hcchar &= ~HCCHAR_EPDIR;
2400 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2401 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2402 __func__, i);
2403 do {
2404 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2405 if (++count > 1000) {
2406 dev_err(hsotg->dev,
2407 "Unable to clear enable on channel %d\n",
2408 i);
2409 break;
2410 }
2411 udelay(1);
2412 } while (hcchar & HCCHAR_CHENA);
2413 }
2414 }
2415
2416 /* Turn on the vbus power */
2417 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2418 if (hsotg->op_state == OTG_STATE_A_HOST) {
2419 u32 hprt0 = dwc2_read_hprt0(hsotg);
2420
2421 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2422 !!(hprt0 & HPRT0_PWR));
2423 if (!(hprt0 & HPRT0_PWR)) {
2424 hprt0 |= HPRT0_PWR;
2425 dwc2_writel(hprt0, hsotg->regs + HPRT0);
2426 }
2427 }
2428
2429 dwc2_enable_host_interrupts(hsotg);
2430}
2431
2432/*
2433 * Initializes dynamic portions of the DWC_otg HCD state
2434 *
2435 * Must be called with interrupt disabled and spinlock held
2436 */
2437static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2438{
2439 struct dwc2_host_chan *chan, *chan_tmp;
2440 int num_channels;
2441 int i;
2442
2443 hsotg->flags.d32 = 0;
2444 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2445
2446 if (hsotg->params.uframe_sched) {
2447 hsotg->available_host_channels =
2448 hsotg->params.host_channels;
2449 } else {
2450 hsotg->non_periodic_channels = 0;
2451 hsotg->periodic_channels = 0;
2452 }
2453
2454 /*
2455 * Put all channels in the free channel list and clean up channel
2456 * states
2457 */
2458 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2459 hc_list_entry)
2460 list_del_init(&chan->hc_list_entry);
2461
2462 num_channels = hsotg->params.host_channels;
2463 for (i = 0; i < num_channels; i++) {
2464 chan = hsotg->hc_ptr_array[i];
2465 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2466 dwc2_hc_cleanup(hsotg, chan);
2467 }
2468
2469 /* Initialize the DWC core for host mode operation */
2470 dwc2_core_host_init(hsotg);
2471}
2472
2473static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2474 struct dwc2_host_chan *chan,
2475 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2476{
2477 int hub_addr, hub_port;
2478
2479 chan->do_split = 1;
2480 chan->xact_pos = qtd->isoc_split_pos;
2481 chan->complete_split = qtd->complete_split;
2482 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2483 chan->hub_addr = (u8)hub_addr;
2484 chan->hub_port = (u8)hub_port;
2485}
2486
2487static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2488 struct dwc2_host_chan *chan,
2489 struct dwc2_qtd *qtd)
2490{
2491 struct dwc2_hcd_urb *urb = qtd->urb;
2492 struct dwc2_hcd_iso_packet_desc *frame_desc;
2493
2494 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2495 case USB_ENDPOINT_XFER_CONTROL:
2496 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2497
2498 switch (qtd->control_phase) {
2499 case DWC2_CONTROL_SETUP:
2500 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2501 chan->do_ping = 0;
2502 chan->ep_is_in = 0;
2503 chan->data_pid_start = DWC2_HC_PID_SETUP;
2504 if (hsotg->params.host_dma)
2505 chan->xfer_dma = urb->setup_dma;
2506 else
2507 chan->xfer_buf = urb->setup_packet;
2508 chan->xfer_len = 8;
2509 break;
2510
2511 case DWC2_CONTROL_DATA:
2512 dev_vdbg(hsotg->dev, " Control data transaction\n");
2513 chan->data_pid_start = qtd->data_toggle;
2514 break;
2515
2516 case DWC2_CONTROL_STATUS:
2517 /*
2518 * Direction is opposite of data direction or IN if no
2519 * data
2520 */
2521 dev_vdbg(hsotg->dev, " Control status transaction\n");
2522 if (urb->length == 0)
2523 chan->ep_is_in = 1;
2524 else
2525 chan->ep_is_in =
2526 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2527 if (chan->ep_is_in)
2528 chan->do_ping = 0;
2529 chan->data_pid_start = DWC2_HC_PID_DATA1;
2530 chan->xfer_len = 0;
2531 if (hsotg->params.host_dma)
2532 chan->xfer_dma = hsotg->status_buf_dma;
2533 else
2534 chan->xfer_buf = hsotg->status_buf;
2535 break;
2536 }
2537 break;
2538
2539 case USB_ENDPOINT_XFER_BULK:
2540 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2541 break;
2542
2543 case USB_ENDPOINT_XFER_INT:
2544 chan->ep_type = USB_ENDPOINT_XFER_INT;
2545 break;
2546
2547 case USB_ENDPOINT_XFER_ISOC:
2548 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2549 if (hsotg->params.dma_desc_enable)
2550 break;
2551
2552 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2553 frame_desc->status = 0;
2554
2555 if (hsotg->params.host_dma) {
2556 chan->xfer_dma = urb->dma;
2557 chan->xfer_dma += frame_desc->offset +
2558 qtd->isoc_split_offset;
2559 } else {
2560 chan->xfer_buf = urb->buf;
2561 chan->xfer_buf += frame_desc->offset +
2562 qtd->isoc_split_offset;
2563 }
2564
2565 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2566
2567 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2568 if (chan->xfer_len <= 188)
2569 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2570 else
2571 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2572 }
2573 break;
2574 }
2575}
2576
2577#define DWC2_USB_DMA_ALIGN 4
2578
2579struct dma_aligned_buffer {
2580 void *kmalloc_ptr;
2581 void *old_xfer_buffer;
2582 u8 data[0];
2583};
2584
2585static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2586{
2587 struct dma_aligned_buffer *temp;
2588
2589 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2590 return;
2591
2592 temp = container_of(urb->transfer_buffer,
2593 struct dma_aligned_buffer, data);
2594
2595 if (usb_urb_dir_in(urb))
2596 memcpy(temp->old_xfer_buffer, temp->data,
2597 urb->transfer_buffer_length);
2598 urb->transfer_buffer = temp->old_xfer_buffer;
2599 kfree(temp->kmalloc_ptr);
2600
2601 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2602}
2603
2604static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2605{
2606 struct dma_aligned_buffer *temp, *kmalloc_ptr;
2607 size_t kmalloc_size;
2608
2609 if (urb->num_sgs || urb->sg ||
2610 urb->transfer_buffer_length == 0 ||
2611 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2612 return 0;
2613
2614 /* Allocate a buffer with enough padding for alignment */
2615 kmalloc_size = urb->transfer_buffer_length +
2616 sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2617
2618 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2619 if (!kmalloc_ptr)
2620 return -ENOMEM;
2621
2622 /* Position our struct dma_aligned_buffer such that data is aligned */
2623 temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2624 temp->kmalloc_ptr = kmalloc_ptr;
2625 temp->old_xfer_buffer = urb->transfer_buffer;
2626 if (usb_urb_dir_out(urb))
2627 memcpy(temp->data, urb->transfer_buffer,
2628 urb->transfer_buffer_length);
2629 urb->transfer_buffer = temp->data;
2630
2631 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2632
2633 return 0;
2634}
2635
2636static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2637 gfp_t mem_flags)
2638{
2639 int ret;
2640
2641 /* We assume setup_dma is always aligned; warn if not */
2642 WARN_ON_ONCE(urb->setup_dma &&
2643 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2644
2645 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2646 if (ret)
2647 return ret;
2648
2649 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2650 if (ret)
2651 dwc2_free_dma_aligned_buffer(urb);
2652
2653 return ret;
2654}
2655
2656static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2657{
2658 usb_hcd_unmap_urb_for_dma(hcd, urb);
2659 dwc2_free_dma_aligned_buffer(urb);
2660}
2661
2662/**
2663 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2664 * channel and initializes the host channel to perform the transactions. The
2665 * host channel is removed from the free list.
2666 *
2667 * @hsotg: The HCD state structure
2668 * @qh: Transactions from the first QTD for this QH are selected and assigned
2669 * to a free host channel
2670 */
2671static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2672{
2673 struct dwc2_host_chan *chan;
2674 struct dwc2_hcd_urb *urb;
2675 struct dwc2_qtd *qtd;
2676
2677 if (dbg_qh(qh))
2678 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2679
2680 if (list_empty(&qh->qtd_list)) {
2681 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2682 return -ENOMEM;
2683 }
2684
2685 if (list_empty(&hsotg->free_hc_list)) {
2686 dev_dbg(hsotg->dev, "No free channel to assign\n");
2687 return -ENOMEM;
2688 }
2689
2690 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2691 hc_list_entry);
2692
2693 /* Remove host channel from free list */
2694 list_del_init(&chan->hc_list_entry);
2695
2696 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2697 urb = qtd->urb;
2698 qh->channel = chan;
2699 qtd->in_process = 1;
2700
2701 /*
2702 * Use usb_pipedevice to determine device address. This address is
2703 * 0 before the SET_ADDRESS command and the correct address afterward.
2704 */
2705 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2706 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2707 chan->speed = qh->dev_speed;
2708 chan->max_packet = dwc2_max_packet(qh->maxp);
2709
2710 chan->xfer_started = 0;
2711 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2712 chan->error_state = (qtd->error_count > 0);
2713 chan->halt_on_queue = 0;
2714 chan->halt_pending = 0;
2715 chan->requests = 0;
2716
2717 /*
2718 * The following values may be modified in the transfer type section
2719 * below. The xfer_len value may be reduced when the transfer is
2720 * started to accommodate the max widths of the XferSize and PktCnt
2721 * fields in the HCTSIZn register.
2722 */
2723
2724 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2725 if (chan->ep_is_in)
2726 chan->do_ping = 0;
2727 else
2728 chan->do_ping = qh->ping_state;
2729
2730 chan->data_pid_start = qh->data_toggle;
2731 chan->multi_count = 1;
2732
2733 if (urb->actual_length > urb->length &&
2734 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2735 urb->actual_length = urb->length;
2736
2737 if (hsotg->params.host_dma)
2738 chan->xfer_dma = urb->dma + urb->actual_length;
2739 else
2740 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2741
2742 chan->xfer_len = urb->length - urb->actual_length;
2743 chan->xfer_count = 0;
2744
2745 /* Set the split attributes if required */
2746 if (qh->do_split)
2747 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2748 else
2749 chan->do_split = 0;
2750
2751 /* Set the transfer attributes */
2752 dwc2_hc_init_xfer(hsotg, chan, qtd);
2753
2754 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2755 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2756 /*
2757 * This value may be modified when the transfer is started
2758 * to reflect the actual transfer length
2759 */
2760 chan->multi_count = dwc2_hb_mult(qh->maxp);
2761
2762 if (hsotg->params.dma_desc_enable) {
2763 chan->desc_list_addr = qh->desc_list_dma;
2764 chan->desc_list_sz = qh->desc_list_sz;
2765 }
2766
2767 dwc2_hc_init(hsotg, chan);
2768 chan->qh = qh;
2769
2770 return 0;
2771}
2772
2773/**
2774 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2775 * schedule and assigns them to available host channels. Called from the HCD
2776 * interrupt handler functions.
2777 *
2778 * @hsotg: The HCD state structure
2779 *
2780 * Return: The types of new transactions that were assigned to host channels
2781 */
2782enum dwc2_transaction_type dwc2_hcd_select_transactions(
2783 struct dwc2_hsotg *hsotg)
2784{
2785 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2786 struct list_head *qh_ptr;
2787 struct dwc2_qh *qh;
2788 int num_channels;
2789
2790#ifdef DWC2_DEBUG_SOF
2791 dev_vdbg(hsotg->dev, " Select Transactions\n");
2792#endif
2793
2794 /* Process entries in the periodic ready list */
2795 qh_ptr = hsotg->periodic_sched_ready.next;
2796 while (qh_ptr != &hsotg->periodic_sched_ready) {
2797 if (list_empty(&hsotg->free_hc_list))
2798 break;
2799 if (hsotg->params.uframe_sched) {
2800 if (hsotg->available_host_channels <= 1)
2801 break;
2802 hsotg->available_host_channels--;
2803 }
2804 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2805 if (dwc2_assign_and_init_hc(hsotg, qh))
2806 break;
2807
2808 /*
2809 * Move the QH from the periodic ready schedule to the
2810 * periodic assigned schedule
2811 */
2812 qh_ptr = qh_ptr->next;
2813 list_move_tail(&qh->qh_list_entry,
2814 &hsotg->periodic_sched_assigned);
2815 ret_val = DWC2_TRANSACTION_PERIODIC;
2816 }
2817
2818 /*
2819 * Process entries in the inactive portion of the non-periodic
2820 * schedule. Some free host channels may not be used if they are
2821 * reserved for periodic transfers.
2822 */
2823 num_channels = hsotg->params.host_channels;
2824 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2825 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2826 if (!hsotg->params.uframe_sched &&
2827 hsotg->non_periodic_channels >= num_channels -
2828 hsotg->periodic_channels)
2829 break;
2830 if (list_empty(&hsotg->free_hc_list))
2831 break;
2832 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2833 if (hsotg->params.uframe_sched) {
2834 if (hsotg->available_host_channels < 1)
2835 break;
2836 hsotg->available_host_channels--;
2837 }
2838
2839 if (dwc2_assign_and_init_hc(hsotg, qh))
2840 break;
2841
2842 /*
2843 * Move the QH from the non-periodic inactive schedule to the
2844 * non-periodic active schedule
2845 */
2846 qh_ptr = qh_ptr->next;
2847 list_move_tail(&qh->qh_list_entry,
2848 &hsotg->non_periodic_sched_active);
2849
2850 if (ret_val == DWC2_TRANSACTION_NONE)
2851 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2852 else
2853 ret_val = DWC2_TRANSACTION_ALL;
2854
2855 if (!hsotg->params.uframe_sched)
2856 hsotg->non_periodic_channels++;
2857 }
2858
2859 return ret_val;
2860}
2861
2862/**
2863 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2864 * a host channel associated with either a periodic or non-periodic transfer
2865 *
2866 * @hsotg: The HCD state structure
2867 * @chan: Host channel descriptor associated with either a periodic or
2868 * non-periodic transfer
2869 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2870 * for periodic transfers or the non-periodic Tx FIFO
2871 * for non-periodic transfers
2872 *
2873 * Return: 1 if a request is queued and more requests may be needed to
2874 * complete the transfer, 0 if no more requests are required for this
2875 * transfer, -1 if there is insufficient space in the Tx FIFO
2876 *
2877 * This function assumes that there is space available in the appropriate
2878 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2879 * it checks whether space is available in the appropriate Tx FIFO.
2880 *
2881 * Must be called with interrupt disabled and spinlock held
2882 */
2883static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2884 struct dwc2_host_chan *chan,
2885 u16 fifo_dwords_avail)
2886{
2887 int retval = 0;
2888
2889 if (chan->do_split)
2890 /* Put ourselves on the list to keep order straight */
2891 list_move_tail(&chan->split_order_list_entry,
2892 &hsotg->split_order);
2893
2894 if (hsotg->params.host_dma) {
2895 if (hsotg->params.dma_desc_enable) {
2896 if (!chan->xfer_started ||
2897 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2898 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2899 chan->qh->ping_state = 0;
2900 }
2901 } else if (!chan->xfer_started) {
2902 dwc2_hc_start_transfer(hsotg, chan);
2903 chan->qh->ping_state = 0;
2904 }
2905 } else if (chan->halt_pending) {
2906 /* Don't queue a request if the channel has been halted */
2907 } else if (chan->halt_on_queue) {
2908 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2909 } else if (chan->do_ping) {
2910 if (!chan->xfer_started)
2911 dwc2_hc_start_transfer(hsotg, chan);
2912 } else if (!chan->ep_is_in ||
2913 chan->data_pid_start == DWC2_HC_PID_SETUP) {
2914 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2915 if (!chan->xfer_started) {
2916 dwc2_hc_start_transfer(hsotg, chan);
2917 retval = 1;
2918 } else {
2919 retval = dwc2_hc_continue_transfer(hsotg, chan);
2920 }
2921 } else {
2922 retval = -1;
2923 }
2924 } else {
2925 if (!chan->xfer_started) {
2926 dwc2_hc_start_transfer(hsotg, chan);
2927 retval = 1;
2928 } else {
2929 retval = dwc2_hc_continue_transfer(hsotg, chan);
2930 }
2931 }
2932
2933 return retval;
2934}
2935
2936/*
2937 * Processes periodic channels for the next frame and queues transactions for
2938 * these channels to the DWC_otg controller. After queueing transactions, the
2939 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2940 * to queue as Periodic Tx FIFO or request queue space becomes available.
2941 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2942 *
2943 * Must be called with interrupt disabled and spinlock held
2944 */
2945static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2946{
2947 struct list_head *qh_ptr;
2948 struct dwc2_qh *qh;
2949 u32 tx_status;
2950 u32 fspcavail;
2951 u32 gintmsk;
2952 int status;
2953 bool no_queue_space = false;
2954 bool no_fifo_space = false;
2955 u32 qspcavail;
2956
2957 /* If empty list then just adjust interrupt enables */
2958 if (list_empty(&hsotg->periodic_sched_assigned))
2959 goto exit;
2960
2961 if (dbg_perio())
2962 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2963
2964 tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2965 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2966 TXSTS_QSPCAVAIL_SHIFT;
2967 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2968 TXSTS_FSPCAVAIL_SHIFT;
2969
2970 if (dbg_perio()) {
2971 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
2972 qspcavail);
2973 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
2974 fspcavail);
2975 }
2976
2977 qh_ptr = hsotg->periodic_sched_assigned.next;
2978 while (qh_ptr != &hsotg->periodic_sched_assigned) {
2979 tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2980 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2981 TXSTS_QSPCAVAIL_SHIFT;
2982 if (qspcavail == 0) {
2983 no_queue_space = true;
2984 break;
2985 }
2986
2987 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2988 if (!qh->channel) {
2989 qh_ptr = qh_ptr->next;
2990 continue;
2991 }
2992
2993 /* Make sure EP's TT buffer is clean before queueing qtds */
2994 if (qh->tt_buffer_dirty) {
2995 qh_ptr = qh_ptr->next;
2996 continue;
2997 }
2998
2999 /*
3000 * Set a flag if we're queuing high-bandwidth in slave mode.
3001 * The flag prevents any halts to get into the request queue in
3002 * the middle of multiple high-bandwidth packets getting queued.
3003 */
3004 if (!hsotg->params.host_dma &&
3005 qh->channel->multi_count > 1)
3006 hsotg->queuing_high_bandwidth = 1;
3007
3008 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3009 TXSTS_FSPCAVAIL_SHIFT;
3010 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3011 if (status < 0) {
3012 no_fifo_space = true;
3013 break;
3014 }
3015
3016 /*
3017 * In Slave mode, stay on the current transfer until there is
3018 * nothing more to do or the high-bandwidth request count is
3019 * reached. In DMA mode, only need to queue one request. The
3020 * controller automatically handles multiple packets for
3021 * high-bandwidth transfers.
3022 */
3023 if (hsotg->params.host_dma || status == 0 ||
3024 qh->channel->requests == qh->channel->multi_count) {
3025 qh_ptr = qh_ptr->next;
3026 /*
3027 * Move the QH from the periodic assigned schedule to
3028 * the periodic queued schedule
3029 */
3030 list_move_tail(&qh->qh_list_entry,
3031 &hsotg->periodic_sched_queued);
3032
3033 /* done queuing high bandwidth */
3034 hsotg->queuing_high_bandwidth = 0;
3035 }
3036 }
3037
3038exit:
3039 if (no_queue_space || no_fifo_space ||
3040 (!hsotg->params.host_dma &&
3041 !list_empty(&hsotg->periodic_sched_assigned))) {
3042 /*
3043 * May need to queue more transactions as the request
3044 * queue or Tx FIFO empties. Enable the periodic Tx
3045 * FIFO empty interrupt. (Always use the half-empty
3046 * level to ensure that new requests are loaded as
3047 * soon as possible.)
3048 */
3049 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3050 if (!(gintmsk & GINTSTS_PTXFEMP)) {
3051 gintmsk |= GINTSTS_PTXFEMP;
3052 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3053 }
3054 } else {
3055 /*
3056 * Disable the Tx FIFO empty interrupt since there are
3057 * no more transactions that need to be queued right
3058 * now. This function is called from interrupt
3059 * handlers to queue more transactions as transfer
3060 * states change.
3061 */
3062 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3063 if (gintmsk & GINTSTS_PTXFEMP) {
3064 gintmsk &= ~GINTSTS_PTXFEMP;
3065 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3066 }
3067 }
3068}
3069
3070/*
3071 * Processes active non-periodic channels and queues transactions for these
3072 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3073 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3074 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3075 * FIFO Empty interrupt is disabled.
3076 *
3077 * Must be called with interrupt disabled and spinlock held
3078 */
3079static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3080{
3081 struct list_head *orig_qh_ptr;
3082 struct dwc2_qh *qh;
3083 u32 tx_status;
3084 u32 qspcavail;
3085 u32 fspcavail;
3086 u32 gintmsk;
3087 int status;
3088 int no_queue_space = 0;
3089 int no_fifo_space = 0;
3090 int more_to_do = 0;
3091
3092 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3093
3094 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3095 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3096 TXSTS_QSPCAVAIL_SHIFT;
3097 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3098 TXSTS_FSPCAVAIL_SHIFT;
3099 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
3100 qspcavail);
3101 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3102 fspcavail);
3103
3104 /*
3105 * Keep track of the starting point. Skip over the start-of-list
3106 * entry.
3107 */
3108 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3109 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3110 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3111
3112 /*
3113 * Process once through the active list or until no more space is
3114 * available in the request queue or the Tx FIFO
3115 */
3116 do {
3117 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3118 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3119 TXSTS_QSPCAVAIL_SHIFT;
3120 if (!hsotg->params.host_dma && qspcavail == 0) {
3121 no_queue_space = 1;
3122 break;
3123 }
3124
3125 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3126 qh_list_entry);
3127 if (!qh->channel)
3128 goto next;
3129
3130 /* Make sure EP's TT buffer is clean before queueing qtds */
3131 if (qh->tt_buffer_dirty)
3132 goto next;
3133
3134 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3135 TXSTS_FSPCAVAIL_SHIFT;
3136 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3137
3138 if (status > 0) {
3139 more_to_do = 1;
3140 } else if (status < 0) {
3141 no_fifo_space = 1;
3142 break;
3143 }
3144next:
3145 /* Advance to next QH, skipping start-of-list entry */
3146 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3147 if (hsotg->non_periodic_qh_ptr ==
3148 &hsotg->non_periodic_sched_active)
3149 hsotg->non_periodic_qh_ptr =
3150 hsotg->non_periodic_qh_ptr->next;
3151 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3152
3153 if (!hsotg->params.host_dma) {
3154 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3155 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3156 TXSTS_QSPCAVAIL_SHIFT;
3157 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3158 TXSTS_FSPCAVAIL_SHIFT;
3159 dev_vdbg(hsotg->dev,
3160 " NP Tx Req Queue Space Avail (after queue): %d\n",
3161 qspcavail);
3162 dev_vdbg(hsotg->dev,
3163 " NP Tx FIFO Space Avail (after queue): %d\n",
3164 fspcavail);
3165
3166 if (more_to_do || no_queue_space || no_fifo_space) {
3167 /*
3168 * May need to queue more transactions as the request
3169 * queue or Tx FIFO empties. Enable the non-periodic
3170 * Tx FIFO empty interrupt. (Always use the half-empty
3171 * level to ensure that new requests are loaded as
3172 * soon as possible.)
3173 */
3174 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3175 gintmsk |= GINTSTS_NPTXFEMP;
3176 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3177 } else {
3178 /*
3179 * Disable the Tx FIFO empty interrupt since there are
3180 * no more transactions that need to be queued right
3181 * now. This function is called from interrupt
3182 * handlers to queue more transactions as transfer
3183 * states change.
3184 */
3185 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3186 gintmsk &= ~GINTSTS_NPTXFEMP;
3187 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3188 }
3189 }
3190}
3191
3192/**
3193 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3194 * and queues transactions for these channels to the DWC_otg controller. Called
3195 * from the HCD interrupt handler functions.
3196 *
3197 * @hsotg: The HCD state structure
3198 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3199 * or both)
3200 *
3201 * Must be called with interrupt disabled and spinlock held
3202 */
3203void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3204 enum dwc2_transaction_type tr_type)
3205{
3206#ifdef DWC2_DEBUG_SOF
3207 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3208#endif
3209 /* Process host channels associated with periodic transfers */
3210 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3211 tr_type == DWC2_TRANSACTION_ALL)
3212 dwc2_process_periodic_channels(hsotg);
3213
3214 /* Process host channels associated with non-periodic transfers */
3215 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3216 tr_type == DWC2_TRANSACTION_ALL) {
3217 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3218 dwc2_process_non_periodic_channels(hsotg);
3219 } else {
3220 /*
3221 * Ensure NP Tx FIFO empty interrupt is disabled when
3222 * there are no non-periodic transfers to process
3223 */
3224 u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3225
3226 gintmsk &= ~GINTSTS_NPTXFEMP;
3227 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3228 }
3229 }
3230}
3231
3232static void dwc2_conn_id_status_change(struct work_struct *work)
3233{
3234 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3235 wf_otg);
3236 u32 count = 0;
3237 u32 gotgctl;
3238 unsigned long flags;
3239
3240 dev_dbg(hsotg->dev, "%s()\n", __func__);
3241
3242 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3243 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3244 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3245 !!(gotgctl & GOTGCTL_CONID_B));
3246
3247 /* B-Device connector (Device Mode) */
3248 if (gotgctl & GOTGCTL_CONID_B) {
3249 /* Wait for switch to device mode */
3250 dev_dbg(hsotg->dev, "connId B\n");
3251 if (hsotg->bus_suspended) {
3252 dev_info(hsotg->dev,
3253 "Do port resume before switching to device mode\n");
3254 dwc2_port_resume(hsotg);
3255 }
3256 while (!dwc2_is_device_mode(hsotg)) {
3257 dev_info(hsotg->dev,
3258 "Waiting for Peripheral Mode, Mode=%s\n",
3259 dwc2_is_host_mode(hsotg) ? "Host" :
3260 "Peripheral");
3261 msleep(20);
3262 /*
3263 * Sometimes the initial GOTGCTRL read is wrong, so
3264 * check it again and jump to host mode if that was
3265 * the case.
3266 */
3267 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3268 if (!(gotgctl & GOTGCTL_CONID_B))
3269 goto host;
3270 if (++count > 250)
3271 break;
3272 }
3273 if (count > 250)
3274 dev_err(hsotg->dev,
3275 "Connection id status change timed out\n");
3276 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3277 dwc2_core_init(hsotg, false);
3278 dwc2_enable_global_interrupts(hsotg);
3279 spin_lock_irqsave(&hsotg->lock, flags);
3280 dwc2_hsotg_disconnect(hsotg);
3281 dwc2_hsotg_core_init_disconnected(hsotg, false);
3282 spin_unlock_irqrestore(&hsotg->lock, flags);
3283 dwc2_hsotg_core_connect(hsotg);
3284 } else {
3285host:
3286 /* A-Device connector (Host Mode) */
3287 dev_dbg(hsotg->dev, "connId A\n");
3288 while (!dwc2_is_host_mode(hsotg)) {
3289 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3290 dwc2_is_host_mode(hsotg) ?
3291 "Host" : "Peripheral");
3292 msleep(20);
3293 if (++count > 250)
3294 break;
3295 }
3296 if (count > 250)
3297 dev_err(hsotg->dev,
3298 "Connection id status change timed out\n");
3299 hsotg->op_state = OTG_STATE_A_HOST;
3300
3301 /* Initialize the Core for Host mode */
3302 dwc2_core_init(hsotg, false);
3303 dwc2_enable_global_interrupts(hsotg);
3304 dwc2_hcd_start(hsotg);
3305 }
3306}
3307
3308static void dwc2_wakeup_detected(unsigned long data)
3309{
3310 struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
3311 u32 hprt0;
3312
3313 dev_dbg(hsotg->dev, "%s()\n", __func__);
3314
3315 /*
3316 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3317 * so that OPT tests pass with all PHYs.)
3318 */
3319 hprt0 = dwc2_read_hprt0(hsotg);
3320 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3321 hprt0 &= ~HPRT0_RES;
3322 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3323 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3324 dwc2_readl(hsotg->regs + HPRT0));
3325
3326 dwc2_hcd_rem_wakeup(hsotg);
3327 hsotg->bus_suspended = false;
3328
3329 /* Change to L0 state */
3330 hsotg->lx_state = DWC2_L0;
3331}
3332
3333static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3334{
3335 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3336
3337 return hcd->self.b_hnp_enable;
3338}
3339
3340/* Must NOT be called with interrupt disabled or spinlock held */
3341static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3342{
3343 unsigned long flags;
3344 u32 hprt0;
3345 u32 pcgctl;
3346 u32 gotgctl;
3347
3348 dev_dbg(hsotg->dev, "%s()\n", __func__);
3349
3350 spin_lock_irqsave(&hsotg->lock, flags);
3351
3352 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3353 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3354 gotgctl |= GOTGCTL_HSTSETHNPEN;
3355 dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3356 hsotg->op_state = OTG_STATE_A_SUSPEND;
3357 }
3358
3359 hprt0 = dwc2_read_hprt0(hsotg);
3360 hprt0 |= HPRT0_SUSP;
3361 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3362
3363 hsotg->bus_suspended = true;
3364
3365 /*
3366 * If hibernation is supported, Phy clock will be suspended
3367 * after registers are backuped.
3368 */
3369 if (!hsotg->params.hibernation) {
3370 /* Suspend the Phy Clock */
3371 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3372 pcgctl |= PCGCTL_STOPPCLK;
3373 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3374 udelay(10);
3375 }
3376
3377 /* For HNP the bus must be suspended for at least 200ms */
3378 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3379 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3380 pcgctl &= ~PCGCTL_STOPPCLK;
3381 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3382
3383 spin_unlock_irqrestore(&hsotg->lock, flags);
3384
3385 msleep(200);
3386 } else {
3387 spin_unlock_irqrestore(&hsotg->lock, flags);
3388 }
3389}
3390
3391/* Must NOT be called with interrupt disabled or spinlock held */
3392static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3393{
3394 unsigned long flags;
3395 u32 hprt0;
3396 u32 pcgctl;
3397
3398 spin_lock_irqsave(&hsotg->lock, flags);
3399
3400 /*
3401 * If hibernation is supported, Phy clock is already resumed
3402 * after registers restore.
3403 */
3404 if (!hsotg->params.hibernation) {
3405 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3406 pcgctl &= ~PCGCTL_STOPPCLK;
3407 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3408 spin_unlock_irqrestore(&hsotg->lock, flags);
3409 msleep(20);
3410 spin_lock_irqsave(&hsotg->lock, flags);
3411 }
3412
3413 hprt0 = dwc2_read_hprt0(hsotg);
3414 hprt0 |= HPRT0_RES;
3415 hprt0 &= ~HPRT0_SUSP;
3416 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3417 spin_unlock_irqrestore(&hsotg->lock, flags);
3418
3419 msleep(USB_RESUME_TIMEOUT);
3420
3421 spin_lock_irqsave(&hsotg->lock, flags);
3422 hprt0 = dwc2_read_hprt0(hsotg);
3423 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3424 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3425 hsotg->bus_suspended = false;
3426 spin_unlock_irqrestore(&hsotg->lock, flags);
3427}
3428
3429/* Handles hub class-specific requests */
3430static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3431 u16 wvalue, u16 windex, char *buf, u16 wlength)
3432{
3433 struct usb_hub_descriptor *hub_desc;
3434 int retval = 0;
3435 u32 hprt0;
3436 u32 port_status;
3437 u32 speed;
3438 u32 pcgctl;
3439
3440 switch (typereq) {
3441 case ClearHubFeature:
3442 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3443
3444 switch (wvalue) {
3445 case C_HUB_LOCAL_POWER:
3446 case C_HUB_OVER_CURRENT:
3447 /* Nothing required here */
3448 break;
3449
3450 default:
3451 retval = -EINVAL;
3452 dev_err(hsotg->dev,
3453 "ClearHubFeature request %1xh unknown\n",
3454 wvalue);
3455 }
3456 break;
3457
3458 case ClearPortFeature:
3459 if (wvalue != USB_PORT_FEAT_L1)
3460 if (!windex || windex > 1)
3461 goto error;
3462 switch (wvalue) {
3463 case USB_PORT_FEAT_ENABLE:
3464 dev_dbg(hsotg->dev,
3465 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3466 hprt0 = dwc2_read_hprt0(hsotg);
3467 hprt0 |= HPRT0_ENA;
3468 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3469 break;
3470
3471 case USB_PORT_FEAT_SUSPEND:
3472 dev_dbg(hsotg->dev,
3473 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3474
3475 if (hsotg->bus_suspended)
3476 dwc2_port_resume(hsotg);
3477 break;
3478
3479 case USB_PORT_FEAT_POWER:
3480 dev_dbg(hsotg->dev,
3481 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3482 hprt0 = dwc2_read_hprt0(hsotg);
3483 hprt0 &= ~HPRT0_PWR;
3484 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3485 break;
3486
3487 case USB_PORT_FEAT_INDICATOR:
3488 dev_dbg(hsotg->dev,
3489 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3490 /* Port indicator not supported */
3491 break;
3492
3493 case USB_PORT_FEAT_C_CONNECTION:
3494 /*
3495 * Clears driver's internal Connect Status Change flag
3496 */
3497 dev_dbg(hsotg->dev,
3498 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3499 hsotg->flags.b.port_connect_status_change = 0;
3500 break;
3501
3502 case USB_PORT_FEAT_C_RESET:
3503 /* Clears driver's internal Port Reset Change flag */
3504 dev_dbg(hsotg->dev,
3505 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3506 hsotg->flags.b.port_reset_change = 0;
3507 break;
3508
3509 case USB_PORT_FEAT_C_ENABLE:
3510 /*
3511 * Clears the driver's internal Port Enable/Disable
3512 * Change flag
3513 */
3514 dev_dbg(hsotg->dev,
3515 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3516 hsotg->flags.b.port_enable_change = 0;
3517 break;
3518
3519 case USB_PORT_FEAT_C_SUSPEND:
3520 /*
3521 * Clears the driver's internal Port Suspend Change
3522 * flag, which is set when resume signaling on the host
3523 * port is complete
3524 */
3525 dev_dbg(hsotg->dev,
3526 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3527 hsotg->flags.b.port_suspend_change = 0;
3528 break;
3529
3530 case USB_PORT_FEAT_C_PORT_L1:
3531 dev_dbg(hsotg->dev,
3532 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3533 hsotg->flags.b.port_l1_change = 0;
3534 break;
3535
3536 case USB_PORT_FEAT_C_OVER_CURRENT:
3537 dev_dbg(hsotg->dev,
3538 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3539 hsotg->flags.b.port_over_current_change = 0;
3540 break;
3541
3542 default:
3543 retval = -EINVAL;
3544 dev_err(hsotg->dev,
3545 "ClearPortFeature request %1xh unknown or unsupported\n",
3546 wvalue);
3547 }
3548 break;
3549
3550 case GetHubDescriptor:
3551 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3552 hub_desc = (struct usb_hub_descriptor *)buf;
3553 hub_desc->bDescLength = 9;
3554 hub_desc->bDescriptorType = USB_DT_HUB;
3555 hub_desc->bNbrPorts = 1;
3556 hub_desc->wHubCharacteristics =
3557 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3558 HUB_CHAR_INDV_PORT_OCPM);
3559 hub_desc->bPwrOn2PwrGood = 1;
3560 hub_desc->bHubContrCurrent = 0;
3561 hub_desc->u.hs.DeviceRemovable[0] = 0;
3562 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3563 break;
3564
3565 case GetHubStatus:
3566 dev_dbg(hsotg->dev, "GetHubStatus\n");
3567 memset(buf, 0, 4);
3568 break;
3569
3570 case GetPortStatus:
3571 dev_vdbg(hsotg->dev,
3572 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3573 hsotg->flags.d32);
3574 if (!windex || windex > 1)
3575 goto error;
3576
3577 port_status = 0;
3578 if (hsotg->flags.b.port_connect_status_change)
3579 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3580 if (hsotg->flags.b.port_enable_change)
3581 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3582 if (hsotg->flags.b.port_suspend_change)
3583 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3584 if (hsotg->flags.b.port_l1_change)
3585 port_status |= USB_PORT_STAT_C_L1 << 16;
3586 if (hsotg->flags.b.port_reset_change)
3587 port_status |= USB_PORT_STAT_C_RESET << 16;
3588 if (hsotg->flags.b.port_over_current_change) {
3589 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3590 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3591 }
3592
3593 if (!hsotg->flags.b.port_connect_status) {
3594 /*
3595 * The port is disconnected, which means the core is
3596 * either in device mode or it soon will be. Just
3597 * return 0's for the remainder of the port status
3598 * since the port register can't be read if the core
3599 * is in device mode.
3600 */
3601 *(__le32 *)buf = cpu_to_le32(port_status);
3602 break;
3603 }
3604
3605 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3606 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3607
3608 if (hprt0 & HPRT0_CONNSTS)
3609 port_status |= USB_PORT_STAT_CONNECTION;
3610 if (hprt0 & HPRT0_ENA)
3611 port_status |= USB_PORT_STAT_ENABLE;
3612 if (hprt0 & HPRT0_SUSP)
3613 port_status |= USB_PORT_STAT_SUSPEND;
3614 if (hprt0 & HPRT0_OVRCURRACT)
3615 port_status |= USB_PORT_STAT_OVERCURRENT;
3616 if (hprt0 & HPRT0_RST)
3617 port_status |= USB_PORT_STAT_RESET;
3618 if (hprt0 & HPRT0_PWR)
3619 port_status |= USB_PORT_STAT_POWER;
3620
3621 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3622 if (speed == HPRT0_SPD_HIGH_SPEED)
3623 port_status |= USB_PORT_STAT_HIGH_SPEED;
3624 else if (speed == HPRT0_SPD_LOW_SPEED)
3625 port_status |= USB_PORT_STAT_LOW_SPEED;
3626
3627 if (hprt0 & HPRT0_TSTCTL_MASK)
3628 port_status |= USB_PORT_STAT_TEST;
3629 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3630
3631 if (hsotg->params.dma_desc_fs_enable) {
3632 /*
3633 * Enable descriptor DMA only if a full speed
3634 * device is connected.
3635 */
3636 if (hsotg->new_connection &&
3637 ((port_status &
3638 (USB_PORT_STAT_CONNECTION |
3639 USB_PORT_STAT_HIGH_SPEED |
3640 USB_PORT_STAT_LOW_SPEED)) ==
3641 USB_PORT_STAT_CONNECTION)) {
3642 u32 hcfg;
3643
3644 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3645 hsotg->params.dma_desc_enable = true;
3646 hcfg = dwc2_readl(hsotg->regs + HCFG);
3647 hcfg |= HCFG_DESCDMA;
3648 dwc2_writel(hcfg, hsotg->regs + HCFG);
3649 hsotg->new_connection = false;
3650 }
3651 }
3652
3653 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3654 *(__le32 *)buf = cpu_to_le32(port_status);
3655 break;
3656
3657 case SetHubFeature:
3658 dev_dbg(hsotg->dev, "SetHubFeature\n");
3659 /* No HUB features supported */
3660 break;
3661
3662 case SetPortFeature:
3663 dev_dbg(hsotg->dev, "SetPortFeature\n");
3664 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3665 goto error;
3666
3667 if (!hsotg->flags.b.port_connect_status) {
3668 /*
3669 * The port is disconnected, which means the core is
3670 * either in device mode or it soon will be. Just
3671 * return without doing anything since the port
3672 * register can't be written if the core is in device
3673 * mode.
3674 */
3675 break;
3676 }
3677
3678 switch (wvalue) {
3679 case USB_PORT_FEAT_SUSPEND:
3680 dev_dbg(hsotg->dev,
3681 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3682 if (windex != hsotg->otg_port)
3683 goto error;
3684 dwc2_port_suspend(hsotg, windex);
3685 break;
3686
3687 case USB_PORT_FEAT_POWER:
3688 dev_dbg(hsotg->dev,
3689 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3690 hprt0 = dwc2_read_hprt0(hsotg);
3691 hprt0 |= HPRT0_PWR;
3692 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3693 break;
3694
3695 case USB_PORT_FEAT_RESET:
3696 hprt0 = dwc2_read_hprt0(hsotg);
3697 dev_dbg(hsotg->dev,
3698 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3699 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3700 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3701 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3702 /* ??? Original driver does this */
3703 dwc2_writel(0, hsotg->regs + PCGCTL);
3704
3705 hprt0 = dwc2_read_hprt0(hsotg);
3706 /* Clear suspend bit if resetting from suspend state */
3707 hprt0 &= ~HPRT0_SUSP;
3708
3709 /*
3710 * When B-Host the Port reset bit is set in the Start
3711 * HCD Callback function, so that the reset is started
3712 * within 1ms of the HNP success interrupt
3713 */
3714 if (!dwc2_hcd_is_b_host(hsotg)) {
3715 hprt0 |= HPRT0_PWR | HPRT0_RST;
3716 dev_dbg(hsotg->dev,
3717 "In host mode, hprt0=%08x\n", hprt0);
3718 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3719 }
3720
3721 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3722 msleep(50);
3723 hprt0 &= ~HPRT0_RST;
3724 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3725 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3726 break;
3727
3728 case USB_PORT_FEAT_INDICATOR:
3729 dev_dbg(hsotg->dev,
3730 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3731 /* Not supported */
3732 break;
3733
3734 case USB_PORT_FEAT_TEST:
3735 hprt0 = dwc2_read_hprt0(hsotg);
3736 dev_dbg(hsotg->dev,
3737 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3738 hprt0 &= ~HPRT0_TSTCTL_MASK;
3739 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3740 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3741 break;
3742
3743 default:
3744 retval = -EINVAL;
3745 dev_err(hsotg->dev,
3746 "SetPortFeature %1xh unknown or unsupported\n",
3747 wvalue);
3748 break;
3749 }
3750 break;
3751
3752 default:
3753error:
3754 retval = -EINVAL;
3755 dev_dbg(hsotg->dev,
3756 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3757 typereq, windex, wvalue);
3758 break;
3759 }
3760
3761 return retval;
3762}
3763
3764static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3765{
3766 int retval;
3767
3768 if (port != 1)
3769 return -EINVAL;
3770
3771 retval = (hsotg->flags.b.port_connect_status_change ||
3772 hsotg->flags.b.port_reset_change ||
3773 hsotg->flags.b.port_enable_change ||
3774 hsotg->flags.b.port_suspend_change ||
3775 hsotg->flags.b.port_over_current_change);
3776
3777 if (retval) {
3778 dev_dbg(hsotg->dev,
3779 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3780 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3781 hsotg->flags.b.port_connect_status_change);
3782 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3783 hsotg->flags.b.port_reset_change);
3784 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3785 hsotg->flags.b.port_enable_change);
3786 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3787 hsotg->flags.b.port_suspend_change);
3788 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3789 hsotg->flags.b.port_over_current_change);
3790 }
3791
3792 return retval;
3793}
3794
3795int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3796{
3797 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3798
3799#ifdef DWC2_DEBUG_SOF
3800 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3801 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3802#endif
3803 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3804}
3805
3806int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3807{
3808 u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3809 u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3810 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3811 unsigned int us_per_frame;
3812 unsigned int frame_number;
3813 unsigned int remaining;
3814 unsigned int interval;
3815 unsigned int phy_clks;
3816
3817 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3818 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3819
3820 /* Extract fields */
3821 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3822 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3823 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3824
3825 /*
3826 * Number of phy clocks since the last tick of the frame number after
3827 * "us" has passed.
3828 */
3829 phy_clks = (interval - remaining) +
3830 DIV_ROUND_UP(interval * us, us_per_frame);
3831
3832 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3833}
3834
3835int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3836{
3837 return hsotg->op_state == OTG_STATE_B_HOST;
3838}
3839
3840static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3841 int iso_desc_count,
3842 gfp_t mem_flags)
3843{
3844 struct dwc2_hcd_urb *urb;
3845 u32 size = sizeof(*urb) + iso_desc_count *
3846 sizeof(struct dwc2_hcd_iso_packet_desc);
3847
3848 urb = kzalloc(size, mem_flags);
3849 if (urb)
3850 urb->packet_count = iso_desc_count;
3851 return urb;
3852}
3853
3854static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3855 struct dwc2_hcd_urb *urb, u8 dev_addr,
3856 u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3857{
3858 if (dbg_perio() ||
3859 ep_type == USB_ENDPOINT_XFER_BULK ||
3860 ep_type == USB_ENDPOINT_XFER_CONTROL)
3861 dev_vdbg(hsotg->dev,
3862 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3863 dev_addr, ep_num, ep_dir, ep_type, mps);
3864 urb->pipe_info.dev_addr = dev_addr;
3865 urb->pipe_info.ep_num = ep_num;
3866 urb->pipe_info.pipe_type = ep_type;
3867 urb->pipe_info.pipe_dir = ep_dir;
3868 urb->pipe_info.mps = mps;
3869}
3870
3871/*
3872 * NOTE: This function will be removed once the peripheral controller code
3873 * is integrated and the driver is stable
3874 */
3875void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3876{
3877#ifdef DEBUG
3878 struct dwc2_host_chan *chan;
3879 struct dwc2_hcd_urb *urb;
3880 struct dwc2_qtd *qtd;
3881 int num_channels;
3882 u32 np_tx_status;
3883 u32 p_tx_status;
3884 int i;
3885
3886 num_channels = hsotg->params.host_channels;
3887 dev_dbg(hsotg->dev, "\n");
3888 dev_dbg(hsotg->dev,
3889 "************************************************************\n");
3890 dev_dbg(hsotg->dev, "HCD State:\n");
3891 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
3892
3893 for (i = 0; i < num_channels; i++) {
3894 chan = hsotg->hc_ptr_array[i];
3895 dev_dbg(hsotg->dev, " Channel %d:\n", i);
3896 dev_dbg(hsotg->dev,
3897 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3898 chan->dev_addr, chan->ep_num, chan->ep_is_in);
3899 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
3900 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
3901 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
3902 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
3903 chan->data_pid_start);
3904 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
3905 dev_dbg(hsotg->dev, " xfer_started: %d\n",
3906 chan->xfer_started);
3907 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
3908 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
3909 (unsigned long)chan->xfer_dma);
3910 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
3911 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
3912 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
3913 chan->halt_on_queue);
3914 dev_dbg(hsotg->dev, " halt_pending: %d\n",
3915 chan->halt_pending);
3916 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
3917 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
3918 dev_dbg(hsotg->dev, " complete_split: %d\n",
3919 chan->complete_split);
3920 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
3921 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
3922 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
3923 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
3924 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
3925
3926 if (chan->xfer_started) {
3927 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3928
3929 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3930 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
3931 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
3932 hcint = dwc2_readl(hsotg->regs + HCINT(i));
3933 hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
3934 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
3935 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
3936 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
3937 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
3938 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
3939 }
3940
3941 if (!(chan->xfer_started && chan->qh))
3942 continue;
3943
3944 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3945 if (!qtd->in_process)
3946 break;
3947 urb = qtd->urb;
3948 dev_dbg(hsotg->dev, " URB Info:\n");
3949 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
3950 qtd, urb);
3951 if (urb) {
3952 dev_dbg(hsotg->dev,
3953 " Dev: %d, EP: %d %s\n",
3954 dwc2_hcd_get_dev_addr(&urb->pipe_info),
3955 dwc2_hcd_get_ep_num(&urb->pipe_info),
3956 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3957 "IN" : "OUT");
3958 dev_dbg(hsotg->dev,
3959 " Max packet size: %d\n",
3960 dwc2_hcd_get_mps(&urb->pipe_info));
3961 dev_dbg(hsotg->dev,
3962 " transfer_buffer: %p\n",
3963 urb->buf);
3964 dev_dbg(hsotg->dev,
3965 " transfer_dma: %08lx\n",
3966 (unsigned long)urb->dma);
3967 dev_dbg(hsotg->dev,
3968 " transfer_buffer_length: %d\n",
3969 urb->length);
3970 dev_dbg(hsotg->dev, " actual_length: %d\n",
3971 urb->actual_length);
3972 }
3973 }
3974 }
3975
3976 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
3977 hsotg->non_periodic_channels);
3978 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
3979 hsotg->periodic_channels);
3980 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
3981 np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3982 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
3983 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3984 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
3985 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3986 p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3987 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
3988 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3989 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
3990 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3991 dwc2_hcd_dump_frrem(hsotg);
3992 dwc2_dump_global_registers(hsotg);
3993 dwc2_dump_host_registers(hsotg);
3994 dev_dbg(hsotg->dev,
3995 "************************************************************\n");
3996 dev_dbg(hsotg->dev, "\n");
3997#endif
3998}
3999
4000/*
4001 * NOTE: This function will be removed once the peripheral controller code
4002 * is integrated and the driver is stable
4003 */
4004void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
4005{
4006#ifdef DWC2_DUMP_FRREM
4007 dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
4008 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4009 hsotg->frrem_samples, hsotg->frrem_accum,
4010 hsotg->frrem_samples > 0 ?
4011 hsotg->frrem_accum / hsotg->frrem_samples : 0);
4012 dev_dbg(hsotg->dev, "\n");
4013 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
4014 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4015 hsotg->hfnum_7_samples,
4016 hsotg->hfnum_7_frrem_accum,
4017 hsotg->hfnum_7_samples > 0 ?
4018 hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
4019 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
4020 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4021 hsotg->hfnum_0_samples,
4022 hsotg->hfnum_0_frrem_accum,
4023 hsotg->hfnum_0_samples > 0 ?
4024 hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
4025 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
4026 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4027 hsotg->hfnum_other_samples,
4028 hsotg->hfnum_other_frrem_accum,
4029 hsotg->hfnum_other_samples > 0 ?
4030 hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
4031 0);
4032 dev_dbg(hsotg->dev, "\n");
4033 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
4034 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4035 hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
4036 hsotg->hfnum_7_samples_a > 0 ?
4037 hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
4038 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
4039 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4040 hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
4041 hsotg->hfnum_0_samples_a > 0 ?
4042 hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
4043 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
4044 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4045 hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
4046 hsotg->hfnum_other_samples_a > 0 ?
4047 hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
4048 : 0);
4049 dev_dbg(hsotg->dev, "\n");
4050 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
4051 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4052 hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
4053 hsotg->hfnum_7_samples_b > 0 ?
4054 hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
4055 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
4056 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4057 hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
4058 (hsotg->hfnum_0_samples_b > 0) ?
4059 hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
4060 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
4061 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4062 hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
4063 (hsotg->hfnum_other_samples_b > 0) ?
4064 hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
4065 : 0);
4066#endif
4067}
4068
4069struct wrapper_priv_data {
4070 struct dwc2_hsotg *hsotg;
4071};
4072
4073/* Gets the dwc2_hsotg from a usb_hcd */
4074static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4075{
4076 struct wrapper_priv_data *p;
4077
4078 p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4079 return p->hsotg;
4080}
4081
4082/**
4083 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4084 *
4085 * This will get the dwc2_tt structure (and ttport) associated with the given
4086 * context (which is really just a struct urb pointer).
4087 *
4088 * The first time this is called for a given TT we allocate memory for our
4089 * structure. When everyone is done and has called dwc2_host_put_tt_info()
4090 * then the refcount for the structure will go to 0 and we'll free it.
4091 *
4092 * @hsotg: The HCD state structure for the DWC OTG controller.
4093 * @qh: The QH structure.
4094 * @context: The priv pointer from a struct dwc2_hcd_urb.
4095 * @mem_flags: Flags for allocating memory.
4096 * @ttport: We'll return this device's port number here. That's used to
4097 * reference into the bitmap if we're on a multi_tt hub.
4098 *
4099 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4100 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4101 */
4102
4103struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4104 gfp_t mem_flags, int *ttport)
4105{
4106 struct urb *urb = context;
4107 struct dwc2_tt *dwc_tt = NULL;
4108
4109 if (urb->dev->tt) {
4110 *ttport = urb->dev->ttport;
4111
4112 dwc_tt = urb->dev->tt->hcpriv;
4113 if (!dwc_tt) {
4114 size_t bitmap_size;
4115
4116 /*
4117 * For single_tt we need one schedule. For multi_tt
4118 * we need one per port.
4119 */
4120 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4121 sizeof(dwc_tt->periodic_bitmaps[0]);
4122 if (urb->dev->tt->multi)
4123 bitmap_size *= urb->dev->tt->hub->maxchild;
4124
4125 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4126 mem_flags);
4127 if (!dwc_tt)
4128 return NULL;
4129
4130 dwc_tt->usb_tt = urb->dev->tt;
4131 dwc_tt->usb_tt->hcpriv = dwc_tt;
4132 }
4133
4134 dwc_tt->refcount++;
4135 }
4136
4137 return dwc_tt;
4138}
4139
4140/**
4141 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4142 *
4143 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4144 * of the structure are done.
4145 *
4146 * It's OK to call this with NULL.
4147 *
4148 * @hsotg: The HCD state structure for the DWC OTG controller.
4149 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4150 */
4151void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4152{
4153 /* Model kfree and make put of NULL a no-op */
4154 if (!dwc_tt)
4155 return;
4156
4157 WARN_ON(dwc_tt->refcount < 1);
4158
4159 dwc_tt->refcount--;
4160 if (!dwc_tt->refcount) {
4161 dwc_tt->usb_tt->hcpriv = NULL;
4162 kfree(dwc_tt);
4163 }
4164}
4165
4166int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4167{
4168 struct urb *urb = context;
4169
4170 return urb->dev->speed;
4171}
4172
4173static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4174 struct urb *urb)
4175{
4176 struct usb_bus *bus = hcd_to_bus(hcd);
4177
4178 if (urb->interval)
4179 bus->bandwidth_allocated += bw / urb->interval;
4180 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4181 bus->bandwidth_isoc_reqs++;
4182 else
4183 bus->bandwidth_int_reqs++;
4184}
4185
4186static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4187 struct urb *urb)
4188{
4189 struct usb_bus *bus = hcd_to_bus(hcd);
4190
4191 if (urb->interval)
4192 bus->bandwidth_allocated -= bw / urb->interval;
4193 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4194 bus->bandwidth_isoc_reqs--;
4195 else
4196 bus->bandwidth_int_reqs--;
4197}
4198
4199/*
4200 * Sets the final status of an URB and returns it to the upper layer. Any
4201 * required cleanup of the URB is performed.
4202 *
4203 * Must be called with interrupt disabled and spinlock held
4204 */
4205void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4206 int status)
4207{
4208 struct urb *urb;
4209 int i;
4210
4211 if (!qtd) {
4212 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4213 return;
4214 }
4215
4216 if (!qtd->urb) {
4217 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4218 return;
4219 }
4220
4221 urb = qtd->urb->priv;
4222 if (!urb) {
4223 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4224 return;
4225 }
4226
4227 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4228
4229 if (dbg_urb(urb))
4230 dev_vdbg(hsotg->dev,
4231 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4232 __func__, urb, usb_pipedevice(urb->pipe),
4233 usb_pipeendpoint(urb->pipe),
4234 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4235 urb->actual_length);
4236
4237 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4238 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4239 for (i = 0; i < urb->number_of_packets; ++i) {
4240 urb->iso_frame_desc[i].actual_length =
4241 dwc2_hcd_urb_get_iso_desc_actual_length(
4242 qtd->urb, i);
4243 urb->iso_frame_desc[i].status =
4244 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4245 }
4246 }
4247
4248 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4249 for (i = 0; i < urb->number_of_packets; i++)
4250 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4251 i, urb->iso_frame_desc[i].status);
4252 }
4253
4254 urb->status = status;
4255 if (!status) {
4256 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4257 urb->actual_length < urb->transfer_buffer_length)
4258 urb->status = -EREMOTEIO;
4259 }
4260
4261 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4262 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4263 struct usb_host_endpoint *ep = urb->ep;
4264
4265 if (ep)
4266 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4267 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4268 urb);
4269 }
4270
4271 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4272 urb->hcpriv = NULL;
4273 kfree(qtd->urb);
4274 qtd->urb = NULL;
4275
4276 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4277}
4278
4279/*
4280 * Work queue function for starting the HCD when A-Cable is connected
4281 */
4282static void dwc2_hcd_start_func(struct work_struct *work)
4283{
4284 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4285 start_work.work);
4286
4287 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4288 dwc2_host_start(hsotg);
4289}
4290
4291/*
4292 * Reset work queue function
4293 */
4294static void dwc2_hcd_reset_func(struct work_struct *work)
4295{
4296 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4297 reset_work.work);
4298 unsigned long flags;
4299 u32 hprt0;
4300
4301 dev_dbg(hsotg->dev, "USB RESET function called\n");
4302
4303 spin_lock_irqsave(&hsotg->lock, flags);
4304
4305 hprt0 = dwc2_read_hprt0(hsotg);
4306 hprt0 &= ~HPRT0_RST;
4307 dwc2_writel(hprt0, hsotg->regs + HPRT0);
4308 hsotg->flags.b.port_reset_change = 1;
4309
4310 spin_unlock_irqrestore(&hsotg->lock, flags);
4311}
4312
4313/*
4314 * =========================================================================
4315 * Linux HC Driver Functions
4316 * =========================================================================
4317 */
4318
4319/*
4320 * Initializes the DWC_otg controller and its root hub and prepares it for host
4321 * mode operation. Activates the root port. Returns 0 on success and a negative
4322 * error code on failure.
4323 */
4324static int _dwc2_hcd_start(struct usb_hcd *hcd)
4325{
4326 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4327 struct usb_bus *bus = hcd_to_bus(hcd);
4328 unsigned long flags;
4329
4330 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4331
4332 spin_lock_irqsave(&hsotg->lock, flags);
4333 hsotg->lx_state = DWC2_L0;
4334 hcd->state = HC_STATE_RUNNING;
4335 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4336
4337 if (dwc2_is_device_mode(hsotg)) {
4338 spin_unlock_irqrestore(&hsotg->lock, flags);
4339 return 0; /* why 0 ?? */
4340 }
4341
4342 dwc2_hcd_reinit(hsotg);
4343
4344 /* Initialize and connect root hub if one is not already attached */
4345 if (bus->root_hub) {
4346 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4347 /* Inform the HUB driver to resume */
4348 usb_hcd_resume_root_hub(hcd);
4349 }
4350
4351 spin_unlock_irqrestore(&hsotg->lock, flags);
4352 return 0;
4353}
4354
4355/*
4356 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4357 * stopped.
4358 */
4359static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4360{
4361 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4362 unsigned long flags;
4363
4364 /* Turn off all host-specific interrupts */
4365 dwc2_disable_host_interrupts(hsotg);
4366
4367 /* Wait for interrupt processing to finish */
4368 synchronize_irq(hcd->irq);
4369
4370 spin_lock_irqsave(&hsotg->lock, flags);
4371 /* Ensure hcd is disconnected */
4372 dwc2_hcd_disconnect(hsotg, true);
4373 dwc2_hcd_stop(hsotg);
4374 hsotg->lx_state = DWC2_L3;
4375 hcd->state = HC_STATE_HALT;
4376 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4377 spin_unlock_irqrestore(&hsotg->lock, flags);
4378
4379 usleep_range(1000, 3000);
4380}
4381
4382static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4383{
4384 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4385 unsigned long flags;
4386 int ret = 0;
4387 u32 hprt0;
4388
4389 spin_lock_irqsave(&hsotg->lock, flags);
4390
4391 if (hsotg->lx_state != DWC2_L0)
4392 goto unlock;
4393
4394 if (!HCD_HW_ACCESSIBLE(hcd))
4395 goto unlock;
4396
4397 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4398 goto unlock;
4399
4400 if (!hsotg->params.hibernation)
4401 goto skip_power_saving;
4402
4403 /*
4404 * Drive USB suspend and disable port Power
4405 * if usb bus is not suspended.
4406 */
4407 if (!hsotg->bus_suspended) {
4408 hprt0 = dwc2_read_hprt0(hsotg);
4409 hprt0 |= HPRT0_SUSP;
4410 hprt0 &= ~HPRT0_PWR;
4411 dwc2_writel(hprt0, hsotg->regs + HPRT0);
4412 }
4413
4414 /* Enter hibernation */
4415 ret = dwc2_enter_hibernation(hsotg);
4416 if (ret) {
4417 if (ret != -ENOTSUPP)
4418 dev_err(hsotg->dev,
4419 "enter hibernation failed\n");
4420 goto skip_power_saving;
4421 }
4422
4423 /* Ask phy to be suspended */
4424 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4425 spin_unlock_irqrestore(&hsotg->lock, flags);
4426 usb_phy_set_suspend(hsotg->uphy, true);
4427 spin_lock_irqsave(&hsotg->lock, flags);
4428 }
4429
4430 /* After entering hibernation, hardware is no more accessible */
4431 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4432
4433skip_power_saving:
4434 hsotg->lx_state = DWC2_L2;
4435unlock:
4436 spin_unlock_irqrestore(&hsotg->lock, flags);
4437
4438 return ret;
4439}
4440
4441static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4442{
4443 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4444 unsigned long flags;
4445 int ret = 0;
4446
4447 spin_lock_irqsave(&hsotg->lock, flags);
4448
4449 if (hsotg->lx_state != DWC2_L2)
4450 goto unlock;
4451
4452 if (!hsotg->params.hibernation) {
4453 hsotg->lx_state = DWC2_L0;
4454 goto unlock;
4455 }
4456
4457 /*
4458 * Set HW accessible bit before powering on the controller
4459 * since an interrupt may rise.
4460 */
4461 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4462
4463 /*
4464 * Enable power if not already done.
4465 * This must not be spinlocked since duration
4466 * of this call is unknown.
4467 */
4468 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4469 spin_unlock_irqrestore(&hsotg->lock, flags);
4470 usb_phy_set_suspend(hsotg->uphy, false);
4471 spin_lock_irqsave(&hsotg->lock, flags);
4472 }
4473
4474 /* Exit hibernation */
4475 ret = dwc2_exit_hibernation(hsotg, true);
4476 if (ret && (ret != -ENOTSUPP))
4477 dev_err(hsotg->dev, "exit hibernation failed\n");
4478
4479 hsotg->lx_state = DWC2_L0;
4480
4481 spin_unlock_irqrestore(&hsotg->lock, flags);
4482
4483 if (hsotg->bus_suspended) {
4484 spin_lock_irqsave(&hsotg->lock, flags);
4485 hsotg->flags.b.port_suspend_change = 1;
4486 spin_unlock_irqrestore(&hsotg->lock, flags);
4487 dwc2_port_resume(hsotg);
4488 } else {
4489 /* Wait for controller to correctly update D+/D- level */
4490 usleep_range(3000, 5000);
4491
4492 /*
4493 * Clear Port Enable and Port Status changes.
4494 * Enable Port Power.
4495 */
4496 dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4497 HPRT0_ENACHG, hsotg->regs + HPRT0);
4498 /* Wait for controller to detect Port Connect */
4499 usleep_range(5000, 7000);
4500 }
4501
4502 return ret;
4503unlock:
4504 spin_unlock_irqrestore(&hsotg->lock, flags);
4505
4506 return ret;
4507}
4508
4509/* Returns the current frame number */
4510static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4511{
4512 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4513
4514 return dwc2_hcd_get_frame_number(hsotg);
4515}
4516
4517static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4518 char *fn_name)
4519{
4520#ifdef VERBOSE_DEBUG
4521 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4522 char *pipetype = NULL;
4523 char *speed = NULL;
4524
4525 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4526 dev_vdbg(hsotg->dev, " Device address: %d\n",
4527 usb_pipedevice(urb->pipe));
4528 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4529 usb_pipeendpoint(urb->pipe),
4530 usb_pipein(urb->pipe) ? "IN" : "OUT");
4531
4532 switch (usb_pipetype(urb->pipe)) {
4533 case PIPE_CONTROL:
4534 pipetype = "CONTROL";
4535 break;
4536 case PIPE_BULK:
4537 pipetype = "BULK";
4538 break;
4539 case PIPE_INTERRUPT:
4540 pipetype = "INTERRUPT";
4541 break;
4542 case PIPE_ISOCHRONOUS:
4543 pipetype = "ISOCHRONOUS";
4544 break;
4545 }
4546
4547 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4548 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4549 "IN" : "OUT");
4550
4551 switch (urb->dev->speed) {
4552 case USB_SPEED_HIGH:
4553 speed = "HIGH";
4554 break;
4555 case USB_SPEED_FULL:
4556 speed = "FULL";
4557 break;
4558 case USB_SPEED_LOW:
4559 speed = "LOW";
4560 break;
4561 default:
4562 speed = "UNKNOWN";
4563 break;
4564 }
4565
4566 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4567 dev_vdbg(hsotg->dev, " Max packet size: %d\n",
4568 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4569 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4570 urb->transfer_buffer_length);
4571 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4572 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4573 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4574 urb->setup_packet, (unsigned long)urb->setup_dma);
4575 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4576
4577 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4578 int i;
4579
4580 for (i = 0; i < urb->number_of_packets; i++) {
4581 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4582 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4583 urb->iso_frame_desc[i].offset,
4584 urb->iso_frame_desc[i].length);
4585 }
4586 }
4587#endif
4588}
4589
4590/*
4591 * Starts processing a USB transfer request specified by a USB Request Block
4592 * (URB). mem_flags indicates the type of memory allocation to use while
4593 * processing this URB.
4594 */
4595static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4596 gfp_t mem_flags)
4597{
4598 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4599 struct usb_host_endpoint *ep = urb->ep;
4600 struct dwc2_hcd_urb *dwc2_urb;
4601 int i;
4602 int retval;
4603 int alloc_bandwidth = 0;
4604 u8 ep_type = 0;
4605 u32 tflags = 0;
4606 void *buf;
4607 unsigned long flags;
4608 struct dwc2_qh *qh;
4609 bool qh_allocated = false;
4610 struct dwc2_qtd *qtd;
4611
4612 if (dbg_urb(urb)) {
4613 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4614 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4615 }
4616
4617 if (!ep)
4618 return -EINVAL;
4619
4620 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4621 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4622 spin_lock_irqsave(&hsotg->lock, flags);
4623 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4624 alloc_bandwidth = 1;
4625 spin_unlock_irqrestore(&hsotg->lock, flags);
4626 }
4627
4628 switch (usb_pipetype(urb->pipe)) {
4629 case PIPE_CONTROL:
4630 ep_type = USB_ENDPOINT_XFER_CONTROL;
4631 break;
4632 case PIPE_ISOCHRONOUS:
4633 ep_type = USB_ENDPOINT_XFER_ISOC;
4634 break;
4635 case PIPE_BULK:
4636 ep_type = USB_ENDPOINT_XFER_BULK;
4637 break;
4638 case PIPE_INTERRUPT:
4639 ep_type = USB_ENDPOINT_XFER_INT;
4640 break;
4641 }
4642
4643 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4644 mem_flags);
4645 if (!dwc2_urb)
4646 return -ENOMEM;
4647
4648 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4649 usb_pipeendpoint(urb->pipe), ep_type,
4650 usb_pipein(urb->pipe),
4651 usb_maxpacket(urb->dev, urb->pipe,
4652 !(usb_pipein(urb->pipe))));
4653
4654 buf = urb->transfer_buffer;
4655
4656 if (hcd->self.uses_dma) {
4657 if (!buf && (urb->transfer_dma & 3)) {
4658 dev_err(hsotg->dev,
4659 "%s: unaligned transfer with no transfer_buffer",
4660 __func__);
4661 retval = -EINVAL;
4662 goto fail0;
4663 }
4664 }
4665
4666 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4667 tflags |= URB_GIVEBACK_ASAP;
4668 if (urb->transfer_flags & URB_ZERO_PACKET)
4669 tflags |= URB_SEND_ZERO_PACKET;
4670
4671 dwc2_urb->priv = urb;
4672 dwc2_urb->buf = buf;
4673 dwc2_urb->dma = urb->transfer_dma;
4674 dwc2_urb->length = urb->transfer_buffer_length;
4675 dwc2_urb->setup_packet = urb->setup_packet;
4676 dwc2_urb->setup_dma = urb->setup_dma;
4677 dwc2_urb->flags = tflags;
4678 dwc2_urb->interval = urb->interval;
4679 dwc2_urb->status = -EINPROGRESS;
4680
4681 for (i = 0; i < urb->number_of_packets; ++i)
4682 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4683 urb->iso_frame_desc[i].offset,
4684 urb->iso_frame_desc[i].length);
4685
4686 urb->hcpriv = dwc2_urb;
4687 qh = (struct dwc2_qh *)ep->hcpriv;
4688 /* Create QH for the endpoint if it doesn't exist */
4689 if (!qh) {
4690 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4691 if (!qh) {
4692 retval = -ENOMEM;
4693 goto fail0;
4694 }
4695 ep->hcpriv = qh;
4696 qh_allocated = true;
4697 }
4698
4699 qtd = kzalloc(sizeof(*qtd), mem_flags);
4700 if (!qtd) {
4701 retval = -ENOMEM;
4702 goto fail1;
4703 }
4704
4705 spin_lock_irqsave(&hsotg->lock, flags);
4706 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4707 if (retval)
4708 goto fail2;
4709
4710 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4711 if (retval)
4712 goto fail3;
4713
4714 if (alloc_bandwidth) {
4715 dwc2_allocate_bus_bandwidth(hcd,
4716 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4717 urb);
4718 }
4719
4720 spin_unlock_irqrestore(&hsotg->lock, flags);
4721
4722 return 0;
4723
4724fail3:
4725 dwc2_urb->priv = NULL;
4726 usb_hcd_unlink_urb_from_ep(hcd, urb);
4727 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4728 qh->channel->qh = NULL;
4729fail2:
4730 spin_unlock_irqrestore(&hsotg->lock, flags);
4731 urb->hcpriv = NULL;
4732 kfree(qtd);
4733 qtd = NULL;
4734fail1:
4735 if (qh_allocated) {
4736 struct dwc2_qtd *qtd2, *qtd2_tmp;
4737
4738 ep->hcpriv = NULL;
4739 dwc2_hcd_qh_unlink(hsotg, qh);
4740 /* Free each QTD in the QH's QTD list */
4741 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4742 qtd_list_entry)
4743 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4744 dwc2_hcd_qh_free(hsotg, qh);
4745 }
4746fail0:
4747 kfree(dwc2_urb);
4748
4749 return retval;
4750}
4751
4752/*
4753 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4754 */
4755static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4756 int status)
4757{
4758 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4759 int rc;
4760 unsigned long flags;
4761
4762 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4763 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4764
4765 spin_lock_irqsave(&hsotg->lock, flags);
4766
4767 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4768 if (rc)
4769 goto out;
4770
4771 if (!urb->hcpriv) {
4772 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4773 goto out;
4774 }
4775
4776 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4777
4778 usb_hcd_unlink_urb_from_ep(hcd, urb);
4779
4780 kfree(urb->hcpriv);
4781 urb->hcpriv = NULL;
4782
4783 /* Higher layer software sets URB status */
4784 spin_unlock(&hsotg->lock);
4785 usb_hcd_giveback_urb(hcd, urb, status);
4786 spin_lock(&hsotg->lock);
4787
4788 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4789 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4790out:
4791 spin_unlock_irqrestore(&hsotg->lock, flags);
4792
4793 return rc;
4794}
4795
4796/*
4797 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4798 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4799 * must already be dequeued.
4800 */
4801static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4802 struct usb_host_endpoint *ep)
4803{
4804 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4805
4806 dev_dbg(hsotg->dev,
4807 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4808 ep->desc.bEndpointAddress, ep->hcpriv);
4809 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4810}
4811
4812/*
4813 * Resets endpoint specific parameter values, in current version used to reset
4814 * the data toggle (as a WA). This function can be called from usb_clear_halt
4815 * routine.
4816 */
4817static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4818 struct usb_host_endpoint *ep)
4819{
4820 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4821 unsigned long flags;
4822
4823 dev_dbg(hsotg->dev,
4824 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4825 ep->desc.bEndpointAddress);
4826
4827 spin_lock_irqsave(&hsotg->lock, flags);
4828 dwc2_hcd_endpoint_reset(hsotg, ep);
4829 spin_unlock_irqrestore(&hsotg->lock, flags);
4830}
4831
4832/*
4833 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4834 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4835 * interrupt.
4836 *
4837 * This function is called by the USB core when an interrupt occurs
4838 */
4839static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4840{
4841 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4842
4843 return dwc2_handle_hcd_intr(hsotg);
4844}
4845
4846/*
4847 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4848 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4849 * is the status change indicator for the single root port. Returns 1 if either
4850 * change indicator is 1, otherwise returns 0.
4851 */
4852static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4853{
4854 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4855
4856 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4857 return buf[0] != 0;
4858}
4859
4860/* Handles hub class-specific requests */
4861static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4862 u16 windex, char *buf, u16 wlength)
4863{
4864 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4865 wvalue, windex, buf, wlength);
4866 return retval;
4867}
4868
4869/* Handles hub TT buffer clear completions */
4870static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4871 struct usb_host_endpoint *ep)
4872{
4873 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4874 struct dwc2_qh *qh;
4875 unsigned long flags;
4876
4877 qh = ep->hcpriv;
4878 if (!qh)
4879 return;
4880
4881 spin_lock_irqsave(&hsotg->lock, flags);
4882 qh->tt_buffer_dirty = 0;
4883
4884 if (hsotg->flags.b.port_connect_status)
4885 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4886
4887 spin_unlock_irqrestore(&hsotg->lock, flags);
4888}
4889
4890/*
4891 * HPRT0_SPD_HIGH_SPEED: high speed
4892 * HPRT0_SPD_FULL_SPEED: full speed
4893 */
4894static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4895{
4896 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4897
4898 if (hsotg->params.speed == speed)
4899 return;
4900
4901 hsotg->params.speed = speed;
4902 queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4903}
4904
4905static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4906{
4907 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4908
4909 if (!hsotg->params.change_speed_quirk)
4910 return;
4911
4912 /*
4913 * On removal, set speed to default high-speed.
4914 */
4915 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4916 udev->parent->speed < USB_SPEED_HIGH) {
4917 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4918 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4919 }
4920}
4921
4922static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4923{
4924 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4925
4926 if (!hsotg->params.change_speed_quirk)
4927 return 0;
4928
4929 if (udev->speed == USB_SPEED_HIGH) {
4930 dev_info(hsotg->dev, "Set speed to high-speed\n");
4931 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4932 } else if ((udev->speed == USB_SPEED_FULL ||
4933 udev->speed == USB_SPEED_LOW)) {
4934 /*
4935 * Change speed setting to full-speed if there's
4936 * a full-speed or low-speed device plugged in.
4937 */
4938 dev_info(hsotg->dev, "Set speed to full-speed\n");
4939 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4940 }
4941
4942 return 0;
4943}
4944
4945static struct hc_driver dwc2_hc_driver = {
4946 .description = "dwc2_hsotg",
4947 .product_desc = "DWC OTG Controller",
4948 .hcd_priv_size = sizeof(struct wrapper_priv_data),
4949
4950 .irq = _dwc2_hcd_irq,
4951 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4952
4953 .start = _dwc2_hcd_start,
4954 .stop = _dwc2_hcd_stop,
4955 .urb_enqueue = _dwc2_hcd_urb_enqueue,
4956 .urb_dequeue = _dwc2_hcd_urb_dequeue,
4957 .endpoint_disable = _dwc2_hcd_endpoint_disable,
4958 .endpoint_reset = _dwc2_hcd_endpoint_reset,
4959 .get_frame_number = _dwc2_hcd_get_frame_number,
4960
4961 .hub_status_data = _dwc2_hcd_hub_status_data,
4962 .hub_control = _dwc2_hcd_hub_control,
4963 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4964
4965 .bus_suspend = _dwc2_hcd_suspend,
4966 .bus_resume = _dwc2_hcd_resume,
4967
4968 .map_urb_for_dma = dwc2_map_urb_for_dma,
4969 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
4970};
4971
4972/*
4973 * Frees secondary storage associated with the dwc2_hsotg structure contained
4974 * in the struct usb_hcd field
4975 */
4976static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4977{
4978 u32 ahbcfg;
4979 u32 dctl;
4980 int i;
4981
4982 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4983
4984 /* Free memory for QH/QTD lists */
4985 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4986 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4987 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4988 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4989 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4990 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4991
4992 /* Free memory for the host channels */
4993 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4994 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4995
4996 if (chan) {
4997 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4998 i, chan);
4999 hsotg->hc_ptr_array[i] = NULL;
5000 kfree(chan);
5001 }
5002 }
5003
5004 if (hsotg->params.host_dma) {
5005 if (hsotg->status_buf) {
5006 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5007 hsotg->status_buf,
5008 hsotg->status_buf_dma);
5009 hsotg->status_buf = NULL;
5010 }
5011 } else {
5012 kfree(hsotg->status_buf);
5013 hsotg->status_buf = NULL;
5014 }
5015
5016 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
5017
5018 /* Disable all interrupts */
5019 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5020 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
5021 dwc2_writel(0, hsotg->regs + GINTMSK);
5022
5023 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5024 dctl = dwc2_readl(hsotg->regs + DCTL);
5025 dctl |= DCTL_SFTDISCON;
5026 dwc2_writel(dctl, hsotg->regs + DCTL);
5027 }
5028
5029 if (hsotg->wq_otg) {
5030 if (!cancel_work_sync(&hsotg->wf_otg))
5031 flush_workqueue(hsotg->wq_otg);
5032 destroy_workqueue(hsotg->wq_otg);
5033 }
5034
5035 del_timer(&hsotg->wkp_timer);
5036}
5037
5038static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5039{
5040 /* Turn off all host-specific interrupts */
5041 dwc2_disable_host_interrupts(hsotg);
5042
5043 dwc2_hcd_free(hsotg);
5044}
5045
5046/*
5047 * Initializes the HCD. This function allocates memory for and initializes the
5048 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5049 * USB bus with the core and calls the hc_driver->start() function. It returns
5050 * a negative error on failure.
5051 */
5052int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5053{
5054 struct platform_device *pdev = to_platform_device(hsotg->dev);
5055 struct resource *res;
5056 struct usb_hcd *hcd;
5057 struct dwc2_host_chan *channel;
5058 u32 hcfg;
5059 int i, num_channels;
5060 int retval;
5061
5062 if (usb_disabled())
5063 return -ENODEV;
5064
5065 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5066
5067 retval = -ENOMEM;
5068
5069 hcfg = dwc2_readl(hsotg->regs + HCFG);
5070 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5071
5072#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5073 hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
5074 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
5075 if (!hsotg->frame_num_array)
5076 goto error1;
5077 hsotg->last_frame_num_array = kzalloc(
5078 sizeof(*hsotg->last_frame_num_array) *
5079 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
5080 if (!hsotg->last_frame_num_array)
5081 goto error1;
5082#endif
5083 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5084
5085 /* Check if the bus driver or platform code has setup a dma_mask */
5086 if (hsotg->params.host_dma &&
5087 !hsotg->dev->dma_mask) {
5088 dev_warn(hsotg->dev,
5089 "dma_mask not set, disabling DMA\n");
5090 hsotg->params.host_dma = false;
5091 hsotg->params.dma_desc_enable = false;
5092 }
5093
5094 /* Set device flags indicating whether the HCD supports DMA */
5095 if (hsotg->params.host_dma) {
5096 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5097 dev_warn(hsotg->dev, "can't set DMA mask\n");
5098 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5099 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5100 }
5101
5102 if (hsotg->params.change_speed_quirk) {
5103 dwc2_hc_driver.free_dev = dwc2_free_dev;
5104 dwc2_hc_driver.reset_device = dwc2_reset_device;
5105 }
5106
5107 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5108 if (!hcd)
5109 goto error1;
5110
5111 if (!hsotg->params.host_dma)
5112 hcd->self.uses_dma = 0;
5113
5114 hcd->has_tt = 1;
5115
5116 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5117 hcd->rsrc_start = res->start;
5118 hcd->rsrc_len = resource_size(res);
5119
5120 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5121 hsotg->priv = hcd;
5122
5123 /*
5124 * Disable the global interrupt until all the interrupt handlers are
5125 * installed
5126 */
5127 dwc2_disable_global_interrupts(hsotg);
5128
5129 /* Initialize the DWC_otg core, and select the Phy type */
5130 retval = dwc2_core_init(hsotg, true);
5131 if (retval)
5132 goto error2;
5133
5134 /* Create new workqueue and init work */
5135 retval = -ENOMEM;
5136 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5137 if (!hsotg->wq_otg) {
5138 dev_err(hsotg->dev, "Failed to create workqueue\n");
5139 goto error2;
5140 }
5141 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5142
5143 setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
5144 (unsigned long)hsotg);
5145
5146 /* Initialize the non-periodic schedule */
5147 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5148 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5149
5150 /* Initialize the periodic schedule */
5151 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5152 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5153 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5154 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5155
5156 INIT_LIST_HEAD(&hsotg->split_order);
5157
5158 /*
5159 * Create a host channel descriptor for each host channel implemented
5160 * in the controller. Initialize the channel descriptor array.
5161 */
5162 INIT_LIST_HEAD(&hsotg->free_hc_list);
5163 num_channels = hsotg->params.host_channels;
5164 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5165
5166 for (i = 0; i < num_channels; i++) {
5167 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5168 if (!channel)
5169 goto error3;
5170 channel->hc_num = i;
5171 INIT_LIST_HEAD(&channel->split_order_list_entry);
5172 hsotg->hc_ptr_array[i] = channel;
5173 }
5174
5175 /* Initialize hsotg start work */
5176 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5177
5178 /* Initialize port reset work */
5179 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5180
5181 /*
5182 * Allocate space for storing data on status transactions. Normally no
5183 * data is sent, but this space acts as a bit bucket. This must be
5184 * done after usb_add_hcd since that function allocates the DMA buffer
5185 * pool.
5186 */
5187 if (hsotg->params.host_dma)
5188 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5189 DWC2_HCD_STATUS_BUF_SIZE,
5190 &hsotg->status_buf_dma, GFP_KERNEL);
5191 else
5192 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5193 GFP_KERNEL);
5194
5195 if (!hsotg->status_buf)
5196 goto error3;
5197
5198 /*
5199 * Create kmem caches to handle descriptor buffers in descriptor
5200 * DMA mode.
5201 * Alignment must be set to 512 bytes.
5202 */
5203 if (hsotg->params.dma_desc_enable ||
5204 hsotg->params.dma_desc_fs_enable) {
5205 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5206 sizeof(struct dwc2_dma_desc) *
5207 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5208 NULL);
5209 if (!hsotg->desc_gen_cache) {
5210 dev_err(hsotg->dev,
5211 "unable to create dwc2 generic desc cache\n");
5212
5213 /*
5214 * Disable descriptor dma mode since it will not be
5215 * usable.
5216 */
5217 hsotg->params.dma_desc_enable = false;
5218 hsotg->params.dma_desc_fs_enable = false;
5219 }
5220
5221 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5222 sizeof(struct dwc2_dma_desc) *
5223 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5224 if (!hsotg->desc_hsisoc_cache) {
5225 dev_err(hsotg->dev,
5226 "unable to create dwc2 hs isoc desc cache\n");
5227
5228 kmem_cache_destroy(hsotg->desc_gen_cache);
5229
5230 /*
5231 * Disable descriptor dma mode since it will not be
5232 * usable.
5233 */
5234 hsotg->params.dma_desc_enable = false;
5235 hsotg->params.dma_desc_fs_enable = false;
5236 }
5237 }
5238
5239 hsotg->otg_port = 1;
5240 hsotg->frame_list = NULL;
5241 hsotg->frame_list_dma = 0;
5242 hsotg->periodic_qh_count = 0;
5243
5244 /* Initiate lx_state to L3 disconnected state */
5245 hsotg->lx_state = DWC2_L3;
5246
5247 hcd->self.otg_port = hsotg->otg_port;
5248
5249 /* Don't support SG list at this point */
5250 hcd->self.sg_tablesize = 0;
5251
5252 if (!IS_ERR_OR_NULL(hsotg->uphy))
5253 otg_set_host(hsotg->uphy->otg, &hcd->self);
5254
5255 /*
5256 * Finish generic HCD initialization and start the HCD. This function
5257 * allocates the DMA buffer pool, registers the USB bus, requests the
5258 * IRQ line, and calls hcd_start method.
5259 */
5260 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5261 if (retval < 0)
5262 goto error4;
5263
5264 device_wakeup_enable(hcd->self.controller);
5265
5266 dwc2_hcd_dump_state(hsotg);
5267
5268 dwc2_enable_global_interrupts(hsotg);
5269
5270 return 0;
5271
5272error4:
5273 kmem_cache_destroy(hsotg->desc_gen_cache);
5274 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5275error3:
5276 dwc2_hcd_release(hsotg);
5277error2:
5278 usb_put_hcd(hcd);
5279error1:
5280
5281#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5282 kfree(hsotg->last_frame_num_array);
5283 kfree(hsotg->frame_num_array);
5284#endif
5285
5286 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5287 return retval;
5288}
5289
5290/*
5291 * Removes the HCD.
5292 * Frees memory and resources associated with the HCD and deregisters the bus.
5293 */
5294void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5295{
5296 struct usb_hcd *hcd;
5297
5298 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5299
5300 hcd = dwc2_hsotg_to_hcd(hsotg);
5301 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5302
5303 if (!hcd) {
5304 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5305 __func__);
5306 return;
5307 }
5308
5309 if (!IS_ERR_OR_NULL(hsotg->uphy))
5310 otg_set_host(hsotg->uphy->otg, NULL);
5311
5312 usb_remove_hcd(hcd);
5313 hsotg->priv = NULL;
5314
5315 kmem_cache_destroy(hsotg->desc_gen_cache);
5316 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5317
5318 dwc2_hcd_release(hsotg);
5319 usb_put_hcd(hcd);
5320
5321#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5322 kfree(hsotg->last_frame_num_array);
5323 kfree(hsotg->frame_num_array);
5324#endif
5325}
5326
5327/**
5328 * dwc2_backup_host_registers() - Backup controller host registers.
5329 * When suspending usb bus, registers needs to be backuped
5330 * if controller power is disabled once suspended.
5331 *
5332 * @hsotg: Programming view of the DWC_otg controller
5333 */
5334int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5335{
5336 struct dwc2_hregs_backup *hr;
5337 int i;
5338
5339 dev_dbg(hsotg->dev, "%s\n", __func__);
5340
5341 /* Backup Host regs */
5342 hr = &hsotg->hr_backup;
5343 hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5344 hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5345 for (i = 0; i < hsotg->params.host_channels; ++i)
5346 hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5347
5348 hr->hprt0 = dwc2_read_hprt0(hsotg);
5349 hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5350 hr->valid = true;
5351
5352 return 0;
5353}
5354
5355/**
5356 * dwc2_restore_host_registers() - Restore controller host registers.
5357 * When resuming usb bus, device registers needs to be restored
5358 * if controller power were disabled.
5359 *
5360 * @hsotg: Programming view of the DWC_otg controller
5361 */
5362int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5363{
5364 struct dwc2_hregs_backup *hr;
5365 int i;
5366
5367 dev_dbg(hsotg->dev, "%s\n", __func__);
5368
5369 /* Restore host regs */
5370 hr = &hsotg->hr_backup;
5371 if (!hr->valid) {
5372 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5373 __func__);
5374 return -EINVAL;
5375 }
5376 hr->valid = false;
5377
5378 dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5379 dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5380
5381 for (i = 0; i < hsotg->params.host_channels; ++i)
5382 dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5383
5384 dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5385 dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5386 hsotg->frame_number = 0;
5387
5388 return 0;
5389}