at v4.12 34 kB view raw
1/* 2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix 3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics 4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the version 2 of the GNU General Public License 8 * as published by the Free Software Foundation 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19#include <linux/module.h> 20#include <linux/kernel.h> 21#include <linux/slab.h> 22#include <linux/netdevice.h> 23#include <linux/if_arp.h> 24#include <linux/workqueue.h> 25#include <linux/can.h> 26#include <linux/can/dev.h> 27#include <linux/can/skb.h> 28#include <linux/can/netlink.h> 29#include <linux/can/led.h> 30#include <net/rtnetlink.h> 31 32#define MOD_DESC "CAN device driver interface" 33 34MODULE_DESCRIPTION(MOD_DESC); 35MODULE_LICENSE("GPL v2"); 36MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); 37 38/* CAN DLC to real data length conversion helpers */ 39 40static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7, 41 8, 12, 16, 20, 24, 32, 48, 64}; 42 43/* get data length from can_dlc with sanitized can_dlc */ 44u8 can_dlc2len(u8 can_dlc) 45{ 46 return dlc2len[can_dlc & 0x0F]; 47} 48EXPORT_SYMBOL_GPL(can_dlc2len); 49 50static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */ 51 9, 9, 9, 9, /* 9 - 12 */ 52 10, 10, 10, 10, /* 13 - 16 */ 53 11, 11, 11, 11, /* 17 - 20 */ 54 12, 12, 12, 12, /* 21 - 24 */ 55 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */ 56 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */ 57 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */ 58 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */ 59 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */ 60 61/* map the sanitized data length to an appropriate data length code */ 62u8 can_len2dlc(u8 len) 63{ 64 if (unlikely(len > 64)) 65 return 0xF; 66 67 return len2dlc[len]; 68} 69EXPORT_SYMBOL_GPL(can_len2dlc); 70 71#ifdef CONFIG_CAN_CALC_BITTIMING 72#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ 73#define CAN_CALC_SYNC_SEG 1 74 75/* 76 * Bit-timing calculation derived from: 77 * 78 * Code based on LinCAN sources and H8S2638 project 79 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz 80 * Copyright 2005 Stanislav Marek 81 * email: pisa@cmp.felk.cvut.cz 82 * 83 * Calculates proper bit-timing parameters for a specified bit-rate 84 * and sample-point, which can then be used to set the bit-timing 85 * registers of the CAN controller. You can find more information 86 * in the header file linux/can/netlink.h. 87 */ 88static int can_update_sample_point(const struct can_bittiming_const *btc, 89 unsigned int sample_point_nominal, unsigned int tseg, 90 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr, 91 unsigned int *sample_point_error_ptr) 92{ 93 unsigned int sample_point_error, best_sample_point_error = UINT_MAX; 94 unsigned int sample_point, best_sample_point = 0; 95 unsigned int tseg1, tseg2; 96 int i; 97 98 for (i = 0; i <= 1; i++) { 99 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i; 100 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max); 101 tseg1 = tseg - tseg2; 102 if (tseg1 > btc->tseg1_max) { 103 tseg1 = btc->tseg1_max; 104 tseg2 = tseg - tseg1; 105 } 106 107 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG); 108 sample_point_error = abs(sample_point_nominal - sample_point); 109 110 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) { 111 best_sample_point = sample_point; 112 best_sample_point_error = sample_point_error; 113 *tseg1_ptr = tseg1; 114 *tseg2_ptr = tseg2; 115 } 116 } 117 118 if (sample_point_error_ptr) 119 *sample_point_error_ptr = best_sample_point_error; 120 121 return best_sample_point; 122} 123 124static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 125 const struct can_bittiming_const *btc) 126{ 127 struct can_priv *priv = netdev_priv(dev); 128 unsigned int bitrate; /* current bitrate */ 129 unsigned int bitrate_error; /* difference between current and nominal value */ 130 unsigned int best_bitrate_error = UINT_MAX; 131 unsigned int sample_point_error; /* difference between current and nominal value */ 132 unsigned int best_sample_point_error = UINT_MAX; 133 unsigned int sample_point_nominal; /* nominal sample point */ 134 unsigned int best_tseg = 0; /* current best value for tseg */ 135 unsigned int best_brp = 0; /* current best value for brp */ 136 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0; 137 u64 v64; 138 139 /* Use CiA recommended sample points */ 140 if (bt->sample_point) { 141 sample_point_nominal = bt->sample_point; 142 } else { 143 if (bt->bitrate > 800000) 144 sample_point_nominal = 750; 145 else if (bt->bitrate > 500000) 146 sample_point_nominal = 800; 147 else 148 sample_point_nominal = 875; 149 } 150 151 /* tseg even = round down, odd = round up */ 152 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; 153 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { 154 tsegall = CAN_CALC_SYNC_SEG + tseg / 2; 155 156 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ 157 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; 158 159 /* choose brp step which is possible in system */ 160 brp = (brp / btc->brp_inc) * btc->brp_inc; 161 if ((brp < btc->brp_min) || (brp > btc->brp_max)) 162 continue; 163 164 bitrate = priv->clock.freq / (brp * tsegall); 165 bitrate_error = abs(bt->bitrate - bitrate); 166 167 /* tseg brp biterror */ 168 if (bitrate_error > best_bitrate_error) 169 continue; 170 171 /* reset sample point error if we have a better bitrate */ 172 if (bitrate_error < best_bitrate_error) 173 best_sample_point_error = UINT_MAX; 174 175 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error); 176 if (sample_point_error > best_sample_point_error) 177 continue; 178 179 best_sample_point_error = sample_point_error; 180 best_bitrate_error = bitrate_error; 181 best_tseg = tseg / 2; 182 best_brp = brp; 183 184 if (bitrate_error == 0 && sample_point_error == 0) 185 break; 186 } 187 188 if (best_bitrate_error) { 189 /* Error in one-tenth of a percent */ 190 v64 = (u64)best_bitrate_error * 1000; 191 do_div(v64, bt->bitrate); 192 bitrate_error = (u32)v64; 193 if (bitrate_error > CAN_CALC_MAX_ERROR) { 194 netdev_err(dev, 195 "bitrate error %d.%d%% too high\n", 196 bitrate_error / 10, bitrate_error % 10); 197 return -EDOM; 198 } 199 netdev_warn(dev, "bitrate error %d.%d%%\n", 200 bitrate_error / 10, bitrate_error % 10); 201 } 202 203 /* real sample point */ 204 bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg, 205 &tseg1, &tseg2, NULL); 206 207 v64 = (u64)best_brp * 1000 * 1000 * 1000; 208 do_div(v64, priv->clock.freq); 209 bt->tq = (u32)v64; 210 bt->prop_seg = tseg1 / 2; 211 bt->phase_seg1 = tseg1 - bt->prop_seg; 212 bt->phase_seg2 = tseg2; 213 214 /* check for sjw user settings */ 215 if (!bt->sjw || !btc->sjw_max) { 216 bt->sjw = 1; 217 } else { 218 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ 219 if (bt->sjw > btc->sjw_max) 220 bt->sjw = btc->sjw_max; 221 /* bt->sjw must not be higher than tseg2 */ 222 if (tseg2 < bt->sjw) 223 bt->sjw = tseg2; 224 } 225 226 bt->brp = best_brp; 227 228 /* real bitrate */ 229 bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2)); 230 231 return 0; 232} 233#else /* !CONFIG_CAN_CALC_BITTIMING */ 234static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 235 const struct can_bittiming_const *btc) 236{ 237 netdev_err(dev, "bit-timing calculation not available\n"); 238 return -EINVAL; 239} 240#endif /* CONFIG_CAN_CALC_BITTIMING */ 241 242/* 243 * Checks the validity of the specified bit-timing parameters prop_seg, 244 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate 245 * prescaler value brp. You can find more information in the header 246 * file linux/can/netlink.h. 247 */ 248static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt, 249 const struct can_bittiming_const *btc) 250{ 251 struct can_priv *priv = netdev_priv(dev); 252 int tseg1, alltseg; 253 u64 brp64; 254 255 tseg1 = bt->prop_seg + bt->phase_seg1; 256 if (!bt->sjw) 257 bt->sjw = 1; 258 if (bt->sjw > btc->sjw_max || 259 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || 260 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) 261 return -ERANGE; 262 263 brp64 = (u64)priv->clock.freq * (u64)bt->tq; 264 if (btc->brp_inc > 1) 265 do_div(brp64, btc->brp_inc); 266 brp64 += 500000000UL - 1; 267 do_div(brp64, 1000000000UL); /* the practicable BRP */ 268 if (btc->brp_inc > 1) 269 brp64 *= btc->brp_inc; 270 bt->brp = (u32)brp64; 271 272 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) 273 return -EINVAL; 274 275 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; 276 bt->bitrate = priv->clock.freq / (bt->brp * alltseg); 277 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; 278 279 return 0; 280} 281 282/* Checks the validity of predefined bitrate settings */ 283static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt, 284 const u32 *bitrate_const, 285 const unsigned int bitrate_const_cnt) 286{ 287 struct can_priv *priv = netdev_priv(dev); 288 unsigned int i; 289 290 for (i = 0; i < bitrate_const_cnt; i++) { 291 if (bt->bitrate == bitrate_const[i]) 292 break; 293 } 294 295 if (i >= priv->bitrate_const_cnt) 296 return -EINVAL; 297 298 return 0; 299} 300 301static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt, 302 const struct can_bittiming_const *btc, 303 const u32 *bitrate_const, 304 const unsigned int bitrate_const_cnt) 305{ 306 int err; 307 308 /* 309 * Depending on the given can_bittiming parameter structure the CAN 310 * timing parameters are calculated based on the provided bitrate OR 311 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are 312 * provided directly which are then checked and fixed up. 313 */ 314 if (!bt->tq && bt->bitrate && btc) 315 err = can_calc_bittiming(dev, bt, btc); 316 else if (bt->tq && !bt->bitrate && btc) 317 err = can_fixup_bittiming(dev, bt, btc); 318 else if (!bt->tq && bt->bitrate && bitrate_const) 319 err = can_validate_bitrate(dev, bt, bitrate_const, 320 bitrate_const_cnt); 321 else 322 err = -EINVAL; 323 324 return err; 325} 326 327static void can_update_state_error_stats(struct net_device *dev, 328 enum can_state new_state) 329{ 330 struct can_priv *priv = netdev_priv(dev); 331 332 if (new_state <= priv->state) 333 return; 334 335 switch (new_state) { 336 case CAN_STATE_ERROR_WARNING: 337 priv->can_stats.error_warning++; 338 break; 339 case CAN_STATE_ERROR_PASSIVE: 340 priv->can_stats.error_passive++; 341 break; 342 case CAN_STATE_BUS_OFF: 343 priv->can_stats.bus_off++; 344 break; 345 default: 346 break; 347 } 348} 349 350static int can_tx_state_to_frame(struct net_device *dev, enum can_state state) 351{ 352 switch (state) { 353 case CAN_STATE_ERROR_ACTIVE: 354 return CAN_ERR_CRTL_ACTIVE; 355 case CAN_STATE_ERROR_WARNING: 356 return CAN_ERR_CRTL_TX_WARNING; 357 case CAN_STATE_ERROR_PASSIVE: 358 return CAN_ERR_CRTL_TX_PASSIVE; 359 default: 360 return 0; 361 } 362} 363 364static int can_rx_state_to_frame(struct net_device *dev, enum can_state state) 365{ 366 switch (state) { 367 case CAN_STATE_ERROR_ACTIVE: 368 return CAN_ERR_CRTL_ACTIVE; 369 case CAN_STATE_ERROR_WARNING: 370 return CAN_ERR_CRTL_RX_WARNING; 371 case CAN_STATE_ERROR_PASSIVE: 372 return CAN_ERR_CRTL_RX_PASSIVE; 373 default: 374 return 0; 375 } 376} 377 378void can_change_state(struct net_device *dev, struct can_frame *cf, 379 enum can_state tx_state, enum can_state rx_state) 380{ 381 struct can_priv *priv = netdev_priv(dev); 382 enum can_state new_state = max(tx_state, rx_state); 383 384 if (unlikely(new_state == priv->state)) { 385 netdev_warn(dev, "%s: oops, state did not change", __func__); 386 return; 387 } 388 389 netdev_dbg(dev, "New error state: %d\n", new_state); 390 391 can_update_state_error_stats(dev, new_state); 392 priv->state = new_state; 393 394 if (!cf) 395 return; 396 397 if (unlikely(new_state == CAN_STATE_BUS_OFF)) { 398 cf->can_id |= CAN_ERR_BUSOFF; 399 return; 400 } 401 402 cf->can_id |= CAN_ERR_CRTL; 403 cf->data[1] |= tx_state >= rx_state ? 404 can_tx_state_to_frame(dev, tx_state) : 0; 405 cf->data[1] |= tx_state <= rx_state ? 406 can_rx_state_to_frame(dev, rx_state) : 0; 407} 408EXPORT_SYMBOL_GPL(can_change_state); 409 410/* 411 * Local echo of CAN messages 412 * 413 * CAN network devices *should* support a local echo functionality 414 * (see Documentation/networking/can.txt). To test the handling of CAN 415 * interfaces that do not support the local echo both driver types are 416 * implemented. In the case that the driver does not support the echo 417 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core 418 * to perform the echo as a fallback solution. 419 */ 420static void can_flush_echo_skb(struct net_device *dev) 421{ 422 struct can_priv *priv = netdev_priv(dev); 423 struct net_device_stats *stats = &dev->stats; 424 int i; 425 426 for (i = 0; i < priv->echo_skb_max; i++) { 427 if (priv->echo_skb[i]) { 428 kfree_skb(priv->echo_skb[i]); 429 priv->echo_skb[i] = NULL; 430 stats->tx_dropped++; 431 stats->tx_aborted_errors++; 432 } 433 } 434} 435 436/* 437 * Put the skb on the stack to be looped backed locally lateron 438 * 439 * The function is typically called in the start_xmit function 440 * of the device driver. The driver must protect access to 441 * priv->echo_skb, if necessary. 442 */ 443void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, 444 unsigned int idx) 445{ 446 struct can_priv *priv = netdev_priv(dev); 447 448 BUG_ON(idx >= priv->echo_skb_max); 449 450 /* check flag whether this packet has to be looped back */ 451 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK || 452 (skb->protocol != htons(ETH_P_CAN) && 453 skb->protocol != htons(ETH_P_CANFD))) { 454 kfree_skb(skb); 455 return; 456 } 457 458 if (!priv->echo_skb[idx]) { 459 460 skb = can_create_echo_skb(skb); 461 if (!skb) 462 return; 463 464 /* make settings for echo to reduce code in irq context */ 465 skb->pkt_type = PACKET_BROADCAST; 466 skb->ip_summed = CHECKSUM_UNNECESSARY; 467 skb->dev = dev; 468 469 /* save this skb for tx interrupt echo handling */ 470 priv->echo_skb[idx] = skb; 471 } else { 472 /* locking problem with netif_stop_queue() ?? */ 473 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__); 474 kfree_skb(skb); 475 } 476} 477EXPORT_SYMBOL_GPL(can_put_echo_skb); 478 479/* 480 * Get the skb from the stack and loop it back locally 481 * 482 * The function is typically called when the TX done interrupt 483 * is handled in the device driver. The driver must protect 484 * access to priv->echo_skb, if necessary. 485 */ 486unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx) 487{ 488 struct can_priv *priv = netdev_priv(dev); 489 490 BUG_ON(idx >= priv->echo_skb_max); 491 492 if (priv->echo_skb[idx]) { 493 struct sk_buff *skb = priv->echo_skb[idx]; 494 struct can_frame *cf = (struct can_frame *)skb->data; 495 u8 dlc = cf->can_dlc; 496 497 netif_rx(priv->echo_skb[idx]); 498 priv->echo_skb[idx] = NULL; 499 500 return dlc; 501 } 502 503 return 0; 504} 505EXPORT_SYMBOL_GPL(can_get_echo_skb); 506 507/* 508 * Remove the skb from the stack and free it. 509 * 510 * The function is typically called when TX failed. 511 */ 512void can_free_echo_skb(struct net_device *dev, unsigned int idx) 513{ 514 struct can_priv *priv = netdev_priv(dev); 515 516 BUG_ON(idx >= priv->echo_skb_max); 517 518 if (priv->echo_skb[idx]) { 519 dev_kfree_skb_any(priv->echo_skb[idx]); 520 priv->echo_skb[idx] = NULL; 521 } 522} 523EXPORT_SYMBOL_GPL(can_free_echo_skb); 524 525/* 526 * CAN device restart for bus-off recovery 527 */ 528static void can_restart(struct net_device *dev) 529{ 530 struct can_priv *priv = netdev_priv(dev); 531 struct net_device_stats *stats = &dev->stats; 532 struct sk_buff *skb; 533 struct can_frame *cf; 534 int err; 535 536 BUG_ON(netif_carrier_ok(dev)); 537 538 /* 539 * No synchronization needed because the device is bus-off and 540 * no messages can come in or go out. 541 */ 542 can_flush_echo_skb(dev); 543 544 /* send restart message upstream */ 545 skb = alloc_can_err_skb(dev, &cf); 546 if (skb == NULL) { 547 err = -ENOMEM; 548 goto restart; 549 } 550 cf->can_id |= CAN_ERR_RESTARTED; 551 552 netif_rx(skb); 553 554 stats->rx_packets++; 555 stats->rx_bytes += cf->can_dlc; 556 557restart: 558 netdev_dbg(dev, "restarted\n"); 559 priv->can_stats.restarts++; 560 561 /* Now restart the device */ 562 err = priv->do_set_mode(dev, CAN_MODE_START); 563 564 netif_carrier_on(dev); 565 if (err) 566 netdev_err(dev, "Error %d during restart", err); 567} 568 569static void can_restart_work(struct work_struct *work) 570{ 571 struct delayed_work *dwork = to_delayed_work(work); 572 struct can_priv *priv = container_of(dwork, struct can_priv, restart_work); 573 574 can_restart(priv->dev); 575} 576 577int can_restart_now(struct net_device *dev) 578{ 579 struct can_priv *priv = netdev_priv(dev); 580 581 /* 582 * A manual restart is only permitted if automatic restart is 583 * disabled and the device is in the bus-off state 584 */ 585 if (priv->restart_ms) 586 return -EINVAL; 587 if (priv->state != CAN_STATE_BUS_OFF) 588 return -EBUSY; 589 590 cancel_delayed_work_sync(&priv->restart_work); 591 can_restart(dev); 592 593 return 0; 594} 595 596/* 597 * CAN bus-off 598 * 599 * This functions should be called when the device goes bus-off to 600 * tell the netif layer that no more packets can be sent or received. 601 * If enabled, a timer is started to trigger bus-off recovery. 602 */ 603void can_bus_off(struct net_device *dev) 604{ 605 struct can_priv *priv = netdev_priv(dev); 606 607 netdev_dbg(dev, "bus-off\n"); 608 609 netif_carrier_off(dev); 610 611 if (priv->restart_ms) 612 schedule_delayed_work(&priv->restart_work, 613 msecs_to_jiffies(priv->restart_ms)); 614} 615EXPORT_SYMBOL_GPL(can_bus_off); 616 617static void can_setup(struct net_device *dev) 618{ 619 dev->type = ARPHRD_CAN; 620 dev->mtu = CAN_MTU; 621 dev->hard_header_len = 0; 622 dev->addr_len = 0; 623 dev->tx_queue_len = 10; 624 625 /* New-style flags. */ 626 dev->flags = IFF_NOARP; 627 dev->features = NETIF_F_HW_CSUM; 628} 629 630struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) 631{ 632 struct sk_buff *skb; 633 634 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 635 sizeof(struct can_frame)); 636 if (unlikely(!skb)) 637 return NULL; 638 639 skb->protocol = htons(ETH_P_CAN); 640 skb->pkt_type = PACKET_BROADCAST; 641 skb->ip_summed = CHECKSUM_UNNECESSARY; 642 643 skb_reset_mac_header(skb); 644 skb_reset_network_header(skb); 645 skb_reset_transport_header(skb); 646 647 can_skb_reserve(skb); 648 can_skb_prv(skb)->ifindex = dev->ifindex; 649 can_skb_prv(skb)->skbcnt = 0; 650 651 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame)); 652 memset(*cf, 0, sizeof(struct can_frame)); 653 654 return skb; 655} 656EXPORT_SYMBOL_GPL(alloc_can_skb); 657 658struct sk_buff *alloc_canfd_skb(struct net_device *dev, 659 struct canfd_frame **cfd) 660{ 661 struct sk_buff *skb; 662 663 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 664 sizeof(struct canfd_frame)); 665 if (unlikely(!skb)) 666 return NULL; 667 668 skb->protocol = htons(ETH_P_CANFD); 669 skb->pkt_type = PACKET_BROADCAST; 670 skb->ip_summed = CHECKSUM_UNNECESSARY; 671 672 skb_reset_mac_header(skb); 673 skb_reset_network_header(skb); 674 skb_reset_transport_header(skb); 675 676 can_skb_reserve(skb); 677 can_skb_prv(skb)->ifindex = dev->ifindex; 678 can_skb_prv(skb)->skbcnt = 0; 679 680 *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame)); 681 memset(*cfd, 0, sizeof(struct canfd_frame)); 682 683 return skb; 684} 685EXPORT_SYMBOL_GPL(alloc_canfd_skb); 686 687struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) 688{ 689 struct sk_buff *skb; 690 691 skb = alloc_can_skb(dev, cf); 692 if (unlikely(!skb)) 693 return NULL; 694 695 (*cf)->can_id = CAN_ERR_FLAG; 696 (*cf)->can_dlc = CAN_ERR_DLC; 697 698 return skb; 699} 700EXPORT_SYMBOL_GPL(alloc_can_err_skb); 701 702/* 703 * Allocate and setup space for the CAN network device 704 */ 705struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max) 706{ 707 struct net_device *dev; 708 struct can_priv *priv; 709 int size; 710 711 if (echo_skb_max) 712 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) + 713 echo_skb_max * sizeof(struct sk_buff *); 714 else 715 size = sizeof_priv; 716 717 dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup); 718 if (!dev) 719 return NULL; 720 721 priv = netdev_priv(dev); 722 priv->dev = dev; 723 724 if (echo_skb_max) { 725 priv->echo_skb_max = echo_skb_max; 726 priv->echo_skb = (void *)priv + 727 ALIGN(sizeof_priv, sizeof(struct sk_buff *)); 728 } 729 730 priv->state = CAN_STATE_STOPPED; 731 732 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work); 733 734 return dev; 735} 736EXPORT_SYMBOL_GPL(alloc_candev); 737 738/* 739 * Free space of the CAN network device 740 */ 741void free_candev(struct net_device *dev) 742{ 743 free_netdev(dev); 744} 745EXPORT_SYMBOL_GPL(free_candev); 746 747/* 748 * changing MTU and control mode for CAN/CANFD devices 749 */ 750int can_change_mtu(struct net_device *dev, int new_mtu) 751{ 752 struct can_priv *priv = netdev_priv(dev); 753 754 /* Do not allow changing the MTU while running */ 755 if (dev->flags & IFF_UP) 756 return -EBUSY; 757 758 /* allow change of MTU according to the CANFD ability of the device */ 759 switch (new_mtu) { 760 case CAN_MTU: 761 /* 'CANFD-only' controllers can not switch to CAN_MTU */ 762 if (priv->ctrlmode_static & CAN_CTRLMODE_FD) 763 return -EINVAL; 764 765 priv->ctrlmode &= ~CAN_CTRLMODE_FD; 766 break; 767 768 case CANFD_MTU: 769 /* check for potential CANFD ability */ 770 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) && 771 !(priv->ctrlmode_static & CAN_CTRLMODE_FD)) 772 return -EINVAL; 773 774 priv->ctrlmode |= CAN_CTRLMODE_FD; 775 break; 776 777 default: 778 return -EINVAL; 779 } 780 781 dev->mtu = new_mtu; 782 return 0; 783} 784EXPORT_SYMBOL_GPL(can_change_mtu); 785 786/* 787 * Common open function when the device gets opened. 788 * 789 * This function should be called in the open function of the device 790 * driver. 791 */ 792int open_candev(struct net_device *dev) 793{ 794 struct can_priv *priv = netdev_priv(dev); 795 796 if (!priv->bittiming.bitrate) { 797 netdev_err(dev, "bit-timing not yet defined\n"); 798 return -EINVAL; 799 } 800 801 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */ 802 if ((priv->ctrlmode & CAN_CTRLMODE_FD) && 803 (!priv->data_bittiming.bitrate || 804 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) { 805 netdev_err(dev, "incorrect/missing data bit-timing\n"); 806 return -EINVAL; 807 } 808 809 /* Switch carrier on if device was stopped while in bus-off state */ 810 if (!netif_carrier_ok(dev)) 811 netif_carrier_on(dev); 812 813 return 0; 814} 815EXPORT_SYMBOL_GPL(open_candev); 816 817/* 818 * Common close function for cleanup before the device gets closed. 819 * 820 * This function should be called in the close function of the device 821 * driver. 822 */ 823void close_candev(struct net_device *dev) 824{ 825 struct can_priv *priv = netdev_priv(dev); 826 827 cancel_delayed_work_sync(&priv->restart_work); 828 can_flush_echo_skb(dev); 829} 830EXPORT_SYMBOL_GPL(close_candev); 831 832/* 833 * CAN netlink interface 834 */ 835static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { 836 [IFLA_CAN_STATE] = { .type = NLA_U32 }, 837 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) }, 838 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 }, 839 [IFLA_CAN_RESTART] = { .type = NLA_U32 }, 840 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) }, 841 [IFLA_CAN_BITTIMING_CONST] 842 = { .len = sizeof(struct can_bittiming_const) }, 843 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) }, 844 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) }, 845 [IFLA_CAN_DATA_BITTIMING] 846 = { .len = sizeof(struct can_bittiming) }, 847 [IFLA_CAN_DATA_BITTIMING_CONST] 848 = { .len = sizeof(struct can_bittiming_const) }, 849}; 850 851static int can_validate(struct nlattr *tb[], struct nlattr *data[]) 852{ 853 bool is_can_fd = false; 854 855 /* Make sure that valid CAN FD configurations always consist of 856 * - nominal/arbitration bittiming 857 * - data bittiming 858 * - control mode with CAN_CTRLMODE_FD set 859 */ 860 861 if (!data) 862 return 0; 863 864 if (data[IFLA_CAN_CTRLMODE]) { 865 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]); 866 867 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD; 868 } 869 870 if (is_can_fd) { 871 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING]) 872 return -EOPNOTSUPP; 873 } 874 875 if (data[IFLA_CAN_DATA_BITTIMING]) { 876 if (!is_can_fd || !data[IFLA_CAN_BITTIMING]) 877 return -EOPNOTSUPP; 878 } 879 880 return 0; 881} 882 883static int can_changelink(struct net_device *dev, 884 struct nlattr *tb[], struct nlattr *data[]) 885{ 886 struct can_priv *priv = netdev_priv(dev); 887 int err; 888 889 /* We need synchronization with dev->stop() */ 890 ASSERT_RTNL(); 891 892 if (data[IFLA_CAN_BITTIMING]) { 893 struct can_bittiming bt; 894 895 /* Do not allow changing bittiming while running */ 896 if (dev->flags & IFF_UP) 897 return -EBUSY; 898 899 /* Calculate bittiming parameters based on 900 * bittiming_const if set, otherwise pass bitrate 901 * directly via do_set_bitrate(). Bail out if neither 902 * is given. 903 */ 904 if (!priv->bittiming_const && !priv->do_set_bittiming) 905 return -EOPNOTSUPP; 906 907 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); 908 err = can_get_bittiming(dev, &bt, 909 priv->bittiming_const, 910 priv->bitrate_const, 911 priv->bitrate_const_cnt); 912 if (err) 913 return err; 914 memcpy(&priv->bittiming, &bt, sizeof(bt)); 915 916 if (priv->do_set_bittiming) { 917 /* Finally, set the bit-timing registers */ 918 err = priv->do_set_bittiming(dev); 919 if (err) 920 return err; 921 } 922 } 923 924 if (data[IFLA_CAN_CTRLMODE]) { 925 struct can_ctrlmode *cm; 926 u32 ctrlstatic; 927 u32 maskedflags; 928 929 /* Do not allow changing controller mode while running */ 930 if (dev->flags & IFF_UP) 931 return -EBUSY; 932 cm = nla_data(data[IFLA_CAN_CTRLMODE]); 933 ctrlstatic = priv->ctrlmode_static; 934 maskedflags = cm->flags & cm->mask; 935 936 /* check whether provided bits are allowed to be passed */ 937 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic)) 938 return -EOPNOTSUPP; 939 940 /* do not check for static fd-non-iso if 'fd' is disabled */ 941 if (!(maskedflags & CAN_CTRLMODE_FD)) 942 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO; 943 944 /* make sure static options are provided by configuration */ 945 if ((maskedflags & ctrlstatic) != ctrlstatic) 946 return -EOPNOTSUPP; 947 948 /* clear bits to be modified and copy the flag values */ 949 priv->ctrlmode &= ~cm->mask; 950 priv->ctrlmode |= maskedflags; 951 952 /* CAN_CTRLMODE_FD can only be set when driver supports FD */ 953 if (priv->ctrlmode & CAN_CTRLMODE_FD) 954 dev->mtu = CANFD_MTU; 955 else 956 dev->mtu = CAN_MTU; 957 } 958 959 if (data[IFLA_CAN_RESTART_MS]) { 960 /* Do not allow changing restart delay while running */ 961 if (dev->flags & IFF_UP) 962 return -EBUSY; 963 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); 964 } 965 966 if (data[IFLA_CAN_RESTART]) { 967 /* Do not allow a restart while not running */ 968 if (!(dev->flags & IFF_UP)) 969 return -EINVAL; 970 err = can_restart_now(dev); 971 if (err) 972 return err; 973 } 974 975 if (data[IFLA_CAN_DATA_BITTIMING]) { 976 struct can_bittiming dbt; 977 978 /* Do not allow changing bittiming while running */ 979 if (dev->flags & IFF_UP) 980 return -EBUSY; 981 982 /* Calculate bittiming parameters based on 983 * data_bittiming_const if set, otherwise pass bitrate 984 * directly via do_set_bitrate(). Bail out if neither 985 * is given. 986 */ 987 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming) 988 return -EOPNOTSUPP; 989 990 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]), 991 sizeof(dbt)); 992 err = can_get_bittiming(dev, &dbt, 993 priv->data_bittiming_const, 994 priv->data_bitrate_const, 995 priv->data_bitrate_const_cnt); 996 if (err) 997 return err; 998 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt)); 999 1000 if (priv->do_set_data_bittiming) { 1001 /* Finally, set the bit-timing registers */ 1002 err = priv->do_set_data_bittiming(dev); 1003 if (err) 1004 return err; 1005 } 1006 } 1007 1008 if (data[IFLA_CAN_TERMINATION]) { 1009 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]); 1010 const unsigned int num_term = priv->termination_const_cnt; 1011 unsigned int i; 1012 1013 if (!priv->do_set_termination) 1014 return -EOPNOTSUPP; 1015 1016 /* check whether given value is supported by the interface */ 1017 for (i = 0; i < num_term; i++) { 1018 if (termval == priv->termination_const[i]) 1019 break; 1020 } 1021 if (i >= num_term) 1022 return -EINVAL; 1023 1024 /* Finally, set the termination value */ 1025 err = priv->do_set_termination(dev, termval); 1026 if (err) 1027 return err; 1028 1029 priv->termination = termval; 1030 } 1031 1032 return 0; 1033} 1034 1035static size_t can_get_size(const struct net_device *dev) 1036{ 1037 struct can_priv *priv = netdev_priv(dev); 1038 size_t size = 0; 1039 1040 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */ 1041 size += nla_total_size(sizeof(struct can_bittiming)); 1042 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */ 1043 size += nla_total_size(sizeof(struct can_bittiming_const)); 1044 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */ 1045 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */ 1046 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */ 1047 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */ 1048 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */ 1049 size += nla_total_size(sizeof(struct can_berr_counter)); 1050 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */ 1051 size += nla_total_size(sizeof(struct can_bittiming)); 1052 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */ 1053 size += nla_total_size(sizeof(struct can_bittiming_const)); 1054 if (priv->termination_const) { 1055 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */ 1056 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */ 1057 priv->termination_const_cnt); 1058 } 1059 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */ 1060 size += nla_total_size(sizeof(*priv->bitrate_const) * 1061 priv->bitrate_const_cnt); 1062 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */ 1063 size += nla_total_size(sizeof(*priv->data_bitrate_const) * 1064 priv->data_bitrate_const_cnt); 1065 1066 return size; 1067} 1068 1069static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) 1070{ 1071 struct can_priv *priv = netdev_priv(dev); 1072 struct can_ctrlmode cm = {.flags = priv->ctrlmode}; 1073 struct can_berr_counter bec; 1074 enum can_state state = priv->state; 1075 1076 if (priv->do_get_state) 1077 priv->do_get_state(dev, &state); 1078 1079 if ((priv->bittiming.bitrate && 1080 nla_put(skb, IFLA_CAN_BITTIMING, 1081 sizeof(priv->bittiming), &priv->bittiming)) || 1082 1083 (priv->bittiming_const && 1084 nla_put(skb, IFLA_CAN_BITTIMING_CONST, 1085 sizeof(*priv->bittiming_const), priv->bittiming_const)) || 1086 1087 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) || 1088 nla_put_u32(skb, IFLA_CAN_STATE, state) || 1089 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) || 1090 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) || 1091 1092 (priv->do_get_berr_counter && 1093 !priv->do_get_berr_counter(dev, &bec) && 1094 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) || 1095 1096 (priv->data_bittiming.bitrate && 1097 nla_put(skb, IFLA_CAN_DATA_BITTIMING, 1098 sizeof(priv->data_bittiming), &priv->data_bittiming)) || 1099 1100 (priv->data_bittiming_const && 1101 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST, 1102 sizeof(*priv->data_bittiming_const), 1103 priv->data_bittiming_const)) || 1104 1105 (priv->termination_const && 1106 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) || 1107 nla_put(skb, IFLA_CAN_TERMINATION_CONST, 1108 sizeof(*priv->termination_const) * 1109 priv->termination_const_cnt, 1110 priv->termination_const))) || 1111 1112 (priv->bitrate_const && 1113 nla_put(skb, IFLA_CAN_BITRATE_CONST, 1114 sizeof(*priv->bitrate_const) * 1115 priv->bitrate_const_cnt, 1116 priv->bitrate_const)) || 1117 1118 (priv->data_bitrate_const && 1119 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST, 1120 sizeof(*priv->data_bitrate_const) * 1121 priv->data_bitrate_const_cnt, 1122 priv->data_bitrate_const)) 1123 ) 1124 1125 return -EMSGSIZE; 1126 1127 return 0; 1128} 1129 1130static size_t can_get_xstats_size(const struct net_device *dev) 1131{ 1132 return sizeof(struct can_device_stats); 1133} 1134 1135static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) 1136{ 1137 struct can_priv *priv = netdev_priv(dev); 1138 1139 if (nla_put(skb, IFLA_INFO_XSTATS, 1140 sizeof(priv->can_stats), &priv->can_stats)) 1141 goto nla_put_failure; 1142 return 0; 1143 1144nla_put_failure: 1145 return -EMSGSIZE; 1146} 1147 1148static int can_newlink(struct net *src_net, struct net_device *dev, 1149 struct nlattr *tb[], struct nlattr *data[]) 1150{ 1151 return -EOPNOTSUPP; 1152} 1153 1154static void can_dellink(struct net_device *dev, struct list_head *head) 1155{ 1156 return; 1157} 1158 1159static struct rtnl_link_ops can_link_ops __read_mostly = { 1160 .kind = "can", 1161 .maxtype = IFLA_CAN_MAX, 1162 .policy = can_policy, 1163 .setup = can_setup, 1164 .validate = can_validate, 1165 .newlink = can_newlink, 1166 .changelink = can_changelink, 1167 .dellink = can_dellink, 1168 .get_size = can_get_size, 1169 .fill_info = can_fill_info, 1170 .get_xstats_size = can_get_xstats_size, 1171 .fill_xstats = can_fill_xstats, 1172}; 1173 1174/* 1175 * Register the CAN network device 1176 */ 1177int register_candev(struct net_device *dev) 1178{ 1179 struct can_priv *priv = netdev_priv(dev); 1180 1181 /* Ensure termination_const, termination_const_cnt and 1182 * do_set_termination consistency. All must be either set or 1183 * unset. 1184 */ 1185 if ((!priv->termination_const != !priv->termination_const_cnt) || 1186 (!priv->termination_const != !priv->do_set_termination)) 1187 return -EINVAL; 1188 1189 if (!priv->bitrate_const != !priv->bitrate_const_cnt) 1190 return -EINVAL; 1191 1192 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt) 1193 return -EINVAL; 1194 1195 dev->rtnl_link_ops = &can_link_ops; 1196 return register_netdev(dev); 1197} 1198EXPORT_SYMBOL_GPL(register_candev); 1199 1200/* 1201 * Unregister the CAN network device 1202 */ 1203void unregister_candev(struct net_device *dev) 1204{ 1205 unregister_netdev(dev); 1206} 1207EXPORT_SYMBOL_GPL(unregister_candev); 1208 1209/* 1210 * Test if a network device is a candev based device 1211 * and return the can_priv* if so. 1212 */ 1213struct can_priv *safe_candev_priv(struct net_device *dev) 1214{ 1215 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops)) 1216 return NULL; 1217 1218 return netdev_priv(dev); 1219} 1220EXPORT_SYMBOL_GPL(safe_candev_priv); 1221 1222static __init int can_dev_init(void) 1223{ 1224 int err; 1225 1226 can_led_notifier_init(); 1227 1228 err = rtnl_link_register(&can_link_ops); 1229 if (!err) 1230 printk(KERN_INFO MOD_DESC "\n"); 1231 1232 return err; 1233} 1234module_init(can_dev_init); 1235 1236static __exit void can_dev_exit(void) 1237{ 1238 rtnl_link_unregister(&can_link_ops); 1239 1240 can_led_notifier_exit(); 1241} 1242module_exit(can_dev_exit); 1243 1244MODULE_ALIAS_RTNL_LINK("can");