Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef BLK_INTERNAL_H
2#define BLK_INTERNAL_H
3
4#include <linux/idr.h>
5#include <linux/blk-mq.h>
6#include "blk-mq.h"
7
8/* Amount of time in which a process may batch requests */
9#define BLK_BATCH_TIME (HZ/50UL)
10
11/* Number of requests a "batching" process may submit */
12#define BLK_BATCH_REQ 32
13
14/* Max future timer expiry for timeouts */
15#define BLK_MAX_TIMEOUT (5 * HZ)
16
17#ifdef CONFIG_DEBUG_FS
18extern struct dentry *blk_debugfs_root;
19#endif
20
21struct blk_flush_queue {
22 unsigned int flush_queue_delayed:1;
23 unsigned int flush_pending_idx:1;
24 unsigned int flush_running_idx:1;
25 unsigned long flush_pending_since;
26 struct list_head flush_queue[2];
27 struct list_head flush_data_in_flight;
28 struct request *flush_rq;
29
30 /*
31 * flush_rq shares tag with this rq, both can't be active
32 * at the same time
33 */
34 struct request *orig_rq;
35 spinlock_t mq_flush_lock;
36};
37
38extern struct kmem_cache *blk_requestq_cachep;
39extern struct kmem_cache *request_cachep;
40extern struct kobj_type blk_queue_ktype;
41extern struct ida blk_queue_ida;
42
43static inline struct blk_flush_queue *blk_get_flush_queue(
44 struct request_queue *q, struct blk_mq_ctx *ctx)
45{
46 if (q->mq_ops)
47 return blk_mq_map_queue(q, ctx->cpu)->fq;
48 return q->fq;
49}
50
51static inline void __blk_get_queue(struct request_queue *q)
52{
53 kobject_get(&q->kobj);
54}
55
56struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
57 int node, int cmd_size);
58void blk_free_flush_queue(struct blk_flush_queue *q);
59
60int blk_init_rl(struct request_list *rl, struct request_queue *q,
61 gfp_t gfp_mask);
62void blk_exit_rl(struct request_queue *q, struct request_list *rl);
63void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
64 struct bio *bio);
65void blk_queue_bypass_start(struct request_queue *q);
66void blk_queue_bypass_end(struct request_queue *q);
67void blk_dequeue_request(struct request *rq);
68void __blk_queue_free_tags(struct request_queue *q);
69void blk_freeze_queue(struct request_queue *q);
70
71static inline void blk_queue_enter_live(struct request_queue *q)
72{
73 /*
74 * Given that running in generic_make_request() context
75 * guarantees that a live reference against q_usage_counter has
76 * been established, further references under that same context
77 * need not check that the queue has been frozen (marked dead).
78 */
79 percpu_ref_get(&q->q_usage_counter);
80}
81
82#ifdef CONFIG_BLK_DEV_INTEGRITY
83void blk_flush_integrity(void);
84#else
85static inline void blk_flush_integrity(void)
86{
87}
88#endif
89
90void blk_timeout_work(struct work_struct *work);
91unsigned long blk_rq_timeout(unsigned long timeout);
92void blk_add_timer(struct request *req);
93void blk_delete_timer(struct request *);
94
95
96bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
97 struct bio *bio);
98bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
99 struct bio *bio);
100bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
101 struct bio *bio);
102bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
103 unsigned int *request_count,
104 struct request **same_queue_rq);
105unsigned int blk_plug_queued_count(struct request_queue *q);
106
107void blk_account_io_start(struct request *req, bool new_io);
108void blk_account_io_completion(struct request *req, unsigned int bytes);
109void blk_account_io_done(struct request *req);
110
111/*
112 * Internal atomic flags for request handling
113 */
114enum rq_atomic_flags {
115 REQ_ATOM_COMPLETE = 0,
116 REQ_ATOM_STARTED,
117 REQ_ATOM_POLL_SLEPT,
118};
119
120/*
121 * EH timer and IO completion will both attempt to 'grab' the request, make
122 * sure that only one of them succeeds
123 */
124static inline int blk_mark_rq_complete(struct request *rq)
125{
126 return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
127}
128
129static inline void blk_clear_rq_complete(struct request *rq)
130{
131 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
132}
133
134/*
135 * Internal elevator interface
136 */
137#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
138
139void blk_insert_flush(struct request *rq);
140
141static inline struct request *__elv_next_request(struct request_queue *q)
142{
143 struct request *rq;
144 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
145
146 while (1) {
147 if (!list_empty(&q->queue_head)) {
148 rq = list_entry_rq(q->queue_head.next);
149 return rq;
150 }
151
152 /*
153 * Flush request is running and flush request isn't queueable
154 * in the drive, we can hold the queue till flush request is
155 * finished. Even we don't do this, driver can't dispatch next
156 * requests and will requeue them. And this can improve
157 * throughput too. For example, we have request flush1, write1,
158 * flush 2. flush1 is dispatched, then queue is hold, write1
159 * isn't inserted to queue. After flush1 is finished, flush2
160 * will be dispatched. Since disk cache is already clean,
161 * flush2 will be finished very soon, so looks like flush2 is
162 * folded to flush1.
163 * Since the queue is hold, a flag is set to indicate the queue
164 * should be restarted later. Please see flush_end_io() for
165 * details.
166 */
167 if (fq->flush_pending_idx != fq->flush_running_idx &&
168 !queue_flush_queueable(q)) {
169 fq->flush_queue_delayed = 1;
170 return NULL;
171 }
172 if (unlikely(blk_queue_bypass(q)) ||
173 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
174 return NULL;
175 }
176}
177
178static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
179{
180 struct elevator_queue *e = q->elevator;
181
182 if (e->type->ops.sq.elevator_activate_req_fn)
183 e->type->ops.sq.elevator_activate_req_fn(q, rq);
184}
185
186static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
187{
188 struct elevator_queue *e = q->elevator;
189
190 if (e->type->ops.sq.elevator_deactivate_req_fn)
191 e->type->ops.sq.elevator_deactivate_req_fn(q, rq);
192}
193
194#ifdef CONFIG_FAIL_IO_TIMEOUT
195int blk_should_fake_timeout(struct request_queue *);
196ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
197ssize_t part_timeout_store(struct device *, struct device_attribute *,
198 const char *, size_t);
199#else
200static inline int blk_should_fake_timeout(struct request_queue *q)
201{
202 return 0;
203}
204#endif
205
206int ll_back_merge_fn(struct request_queue *q, struct request *req,
207 struct bio *bio);
208int ll_front_merge_fn(struct request_queue *q, struct request *req,
209 struct bio *bio);
210struct request *attempt_back_merge(struct request_queue *q, struct request *rq);
211struct request *attempt_front_merge(struct request_queue *q, struct request *rq);
212int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
213 struct request *next);
214void blk_recalc_rq_segments(struct request *rq);
215void blk_rq_set_mixed_merge(struct request *rq);
216bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
217enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
218
219void blk_queue_congestion_threshold(struct request_queue *q);
220
221int blk_dev_init(void);
222
223
224/*
225 * Return the threshold (number of used requests) at which the queue is
226 * considered to be congested. It include a little hysteresis to keep the
227 * context switch rate down.
228 */
229static inline int queue_congestion_on_threshold(struct request_queue *q)
230{
231 return q->nr_congestion_on;
232}
233
234/*
235 * The threshold at which a queue is considered to be uncongested
236 */
237static inline int queue_congestion_off_threshold(struct request_queue *q)
238{
239 return q->nr_congestion_off;
240}
241
242extern int blk_update_nr_requests(struct request_queue *, unsigned int);
243
244/*
245 * Contribute to IO statistics IFF:
246 *
247 * a) it's attached to a gendisk, and
248 * b) the queue had IO stats enabled when this request was started, and
249 * c) it's a file system request
250 */
251static inline int blk_do_io_stat(struct request *rq)
252{
253 return rq->rq_disk &&
254 (rq->rq_flags & RQF_IO_STAT) &&
255 !blk_rq_is_passthrough(rq);
256}
257
258static inline void req_set_nomerge(struct request_queue *q, struct request *req)
259{
260 req->cmd_flags |= REQ_NOMERGE;
261 if (req == q->last_merge)
262 q->last_merge = NULL;
263}
264
265/*
266 * Internal io_context interface
267 */
268void get_io_context(struct io_context *ioc);
269struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
270struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
271 gfp_t gfp_mask);
272void ioc_clear_queue(struct request_queue *q);
273
274int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
275
276/**
277 * rq_ioc - determine io_context for request allocation
278 * @bio: request being allocated is for this bio (can be %NULL)
279 *
280 * Determine io_context to use for request allocation for @bio. May return
281 * %NULL if %current->io_context doesn't exist.
282 */
283static inline struct io_context *rq_ioc(struct bio *bio)
284{
285#ifdef CONFIG_BLK_CGROUP
286 if (bio && bio->bi_ioc)
287 return bio->bi_ioc;
288#endif
289 return current->io_context;
290}
291
292/**
293 * create_io_context - try to create task->io_context
294 * @gfp_mask: allocation mask
295 * @node: allocation node
296 *
297 * If %current->io_context is %NULL, allocate a new io_context and install
298 * it. Returns the current %current->io_context which may be %NULL if
299 * allocation failed.
300 *
301 * Note that this function can't be called with IRQ disabled because
302 * task_lock which protects %current->io_context is IRQ-unsafe.
303 */
304static inline struct io_context *create_io_context(gfp_t gfp_mask, int node)
305{
306 WARN_ON_ONCE(irqs_disabled());
307 if (unlikely(!current->io_context))
308 create_task_io_context(current, gfp_mask, node);
309 return current->io_context;
310}
311
312/*
313 * Internal throttling interface
314 */
315#ifdef CONFIG_BLK_DEV_THROTTLING
316extern void blk_throtl_drain(struct request_queue *q);
317extern int blk_throtl_init(struct request_queue *q);
318extern void blk_throtl_exit(struct request_queue *q);
319extern void blk_throtl_register_queue(struct request_queue *q);
320#else /* CONFIG_BLK_DEV_THROTTLING */
321static inline void blk_throtl_drain(struct request_queue *q) { }
322static inline int blk_throtl_init(struct request_queue *q) { return 0; }
323static inline void blk_throtl_exit(struct request_queue *q) { }
324static inline void blk_throtl_register_queue(struct request_queue *q) { }
325#endif /* CONFIG_BLK_DEV_THROTTLING */
326#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
327extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
328extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
329 const char *page, size_t count);
330extern void blk_throtl_bio_endio(struct bio *bio);
331extern void blk_throtl_stat_add(struct request *rq, u64 time);
332#else
333static inline void blk_throtl_bio_endio(struct bio *bio) { }
334static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
335#endif
336
337#endif /* BLK_INTERNAL_H */