Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _ASM_X86_BOOTPARAM_H
2#define _ASM_X86_BOOTPARAM_H
3
4/* setup_data types */
5#define SETUP_NONE 0
6#define SETUP_E820_EXT 1
7#define SETUP_DTB 2
8#define SETUP_PCI 3
9#define SETUP_EFI 4
10#define SETUP_APPLE_PROPERTIES 5
11
12/* ram_size flags */
13#define RAMDISK_IMAGE_START_MASK 0x07FF
14#define RAMDISK_PROMPT_FLAG 0x8000
15#define RAMDISK_LOAD_FLAG 0x4000
16
17/* loadflags */
18#define LOADED_HIGH (1<<0)
19#define KASLR_FLAG (1<<1)
20#define QUIET_FLAG (1<<5)
21#define KEEP_SEGMENTS (1<<6)
22#define CAN_USE_HEAP (1<<7)
23
24/* xloadflags */
25#define XLF_KERNEL_64 (1<<0)
26#define XLF_CAN_BE_LOADED_ABOVE_4G (1<<1)
27#define XLF_EFI_HANDOVER_32 (1<<2)
28#define XLF_EFI_HANDOVER_64 (1<<3)
29#define XLF_EFI_KEXEC (1<<4)
30
31#ifndef __ASSEMBLY__
32
33#include <linux/types.h>
34#include <linux/screen_info.h>
35#include <linux/apm_bios.h>
36#include <linux/edd.h>
37#include <asm/ist.h>
38#include <video/edid.h>
39
40/* extensible setup data list node */
41struct setup_data {
42 __u64 next;
43 __u32 type;
44 __u32 len;
45 __u8 data[0];
46};
47
48struct setup_header {
49 __u8 setup_sects;
50 __u16 root_flags;
51 __u32 syssize;
52 __u16 ram_size;
53 __u16 vid_mode;
54 __u16 root_dev;
55 __u16 boot_flag;
56 __u16 jump;
57 __u32 header;
58 __u16 version;
59 __u32 realmode_swtch;
60 __u16 start_sys_seg;
61 __u16 kernel_version;
62 __u8 type_of_loader;
63 __u8 loadflags;
64 __u16 setup_move_size;
65 __u32 code32_start;
66 __u32 ramdisk_image;
67 __u32 ramdisk_size;
68 __u32 bootsect_kludge;
69 __u16 heap_end_ptr;
70 __u8 ext_loader_ver;
71 __u8 ext_loader_type;
72 __u32 cmd_line_ptr;
73 __u32 initrd_addr_max;
74 __u32 kernel_alignment;
75 __u8 relocatable_kernel;
76 __u8 min_alignment;
77 __u16 xloadflags;
78 __u32 cmdline_size;
79 __u32 hardware_subarch;
80 __u64 hardware_subarch_data;
81 __u32 payload_offset;
82 __u32 payload_length;
83 __u64 setup_data;
84 __u64 pref_address;
85 __u32 init_size;
86 __u32 handover_offset;
87} __attribute__((packed));
88
89struct sys_desc_table {
90 __u16 length;
91 __u8 table[14];
92};
93
94/* Gleaned from OFW's set-parameters in cpu/x86/pc/linux.fth */
95struct olpc_ofw_header {
96 __u32 ofw_magic; /* OFW signature */
97 __u32 ofw_version;
98 __u32 cif_handler; /* callback into OFW */
99 __u32 irq_desc_table;
100} __attribute__((packed));
101
102struct efi_info {
103 __u32 efi_loader_signature;
104 __u32 efi_systab;
105 __u32 efi_memdesc_size;
106 __u32 efi_memdesc_version;
107 __u32 efi_memmap;
108 __u32 efi_memmap_size;
109 __u32 efi_systab_hi;
110 __u32 efi_memmap_hi;
111};
112
113/*
114 * This is the maximum number of entries in struct boot_params::e820_table
115 * (the zeropage), which is part of the x86 boot protocol ABI:
116 */
117#define E820_MAX_ENTRIES_ZEROPAGE 128
118
119/*
120 * The E820 memory region entry of the boot protocol ABI:
121 */
122struct boot_e820_entry {
123 __u64 addr;
124 __u64 size;
125 __u32 type;
126} __attribute__((packed));
127
128/* The so-called "zeropage" */
129struct boot_params {
130 struct screen_info screen_info; /* 0x000 */
131 struct apm_bios_info apm_bios_info; /* 0x040 */
132 __u8 _pad2[4]; /* 0x054 */
133 __u64 tboot_addr; /* 0x058 */
134 struct ist_info ist_info; /* 0x060 */
135 __u8 _pad3[16]; /* 0x070 */
136 __u8 hd0_info[16]; /* obsolete! */ /* 0x080 */
137 __u8 hd1_info[16]; /* obsolete! */ /* 0x090 */
138 struct sys_desc_table sys_desc_table; /* obsolete! */ /* 0x0a0 */
139 struct olpc_ofw_header olpc_ofw_header; /* 0x0b0 */
140 __u32 ext_ramdisk_image; /* 0x0c0 */
141 __u32 ext_ramdisk_size; /* 0x0c4 */
142 __u32 ext_cmd_line_ptr; /* 0x0c8 */
143 __u8 _pad4[116]; /* 0x0cc */
144 struct edid_info edid_info; /* 0x140 */
145 struct efi_info efi_info; /* 0x1c0 */
146 __u32 alt_mem_k; /* 0x1e0 */
147 __u32 scratch; /* Scratch field! */ /* 0x1e4 */
148 __u8 e820_entries; /* 0x1e8 */
149 __u8 eddbuf_entries; /* 0x1e9 */
150 __u8 edd_mbr_sig_buf_entries; /* 0x1ea */
151 __u8 kbd_status; /* 0x1eb */
152 __u8 secure_boot; /* 0x1ec */
153 __u8 _pad5[2]; /* 0x1ed */
154 /*
155 * The sentinel is set to a nonzero value (0xff) in header.S.
156 *
157 * A bootloader is supposed to only take setup_header and put
158 * it into a clean boot_params buffer. If it turns out that
159 * it is clumsy or too generous with the buffer, it most
160 * probably will pick up the sentinel variable too. The fact
161 * that this variable then is still 0xff will let kernel
162 * know that some variables in boot_params are invalid and
163 * kernel should zero out certain portions of boot_params.
164 */
165 __u8 sentinel; /* 0x1ef */
166 __u8 _pad6[1]; /* 0x1f0 */
167 struct setup_header hdr; /* setup header */ /* 0x1f1 */
168 __u8 _pad7[0x290-0x1f1-sizeof(struct setup_header)];
169 __u32 edd_mbr_sig_buffer[EDD_MBR_SIG_MAX]; /* 0x290 */
170 struct boot_e820_entry e820_table[E820_MAX_ENTRIES_ZEROPAGE]; /* 0x2d0 */
171 __u8 _pad8[48]; /* 0xcd0 */
172 struct edd_info eddbuf[EDDMAXNR]; /* 0xd00 */
173 __u8 _pad9[276]; /* 0xeec */
174} __attribute__((packed));
175
176/**
177 * enum x86_hardware_subarch - x86 hardware subarchitecture
178 *
179 * The x86 hardware_subarch and hardware_subarch_data were added as of the x86
180 * boot protocol 2.07 to help distinguish and support custom x86 boot
181 * sequences. This enum represents accepted values for the x86
182 * hardware_subarch. Custom x86 boot sequences (not X86_SUBARCH_PC) do not
183 * have or simply *cannot* make use of natural stubs like BIOS or EFI, the
184 * hardware_subarch can be used on the Linux entry path to revector to a
185 * subarchitecture stub when needed. This subarchitecture stub can be used to
186 * set up Linux boot parameters or for special care to account for nonstandard
187 * handling of page tables.
188 *
189 * These enums should only ever be used by x86 code, and the code that uses
190 * it should be well contained and compartamentalized.
191 *
192 * KVM and Xen HVM do not have a subarch as these are expected to follow
193 * standard x86 boot entries. If there is a genuine need for "hypervisor" type
194 * that should be considered separately in the future. Future guest types
195 * should seriously consider working with standard x86 boot stubs such as
196 * the BIOS or EFI boot stubs.
197 *
198 * WARNING: this enum is only used for legacy hacks, for platform features that
199 * are not easily enumerated or discoverable. You should not ever use
200 * this for new features.
201 *
202 * @X86_SUBARCH_PC: Should be used if the hardware is enumerable using standard
203 * PC mechanisms (PCI, ACPI) and doesn't need a special boot flow.
204 * @X86_SUBARCH_LGUEST: Used for x86 hypervisor demo, lguest
205 * @X86_SUBARCH_XEN: Used for Xen guest types which follow the PV boot path,
206 * which start at asm startup_xen() entry point and later jump to the C
207 * xen_start_kernel() entry point. Both domU and dom0 type of guests are
208 * currently supportd through this PV boot path.
209 * @X86_SUBARCH_INTEL_MID: Used for Intel MID (Mobile Internet Device) platform
210 * systems which do not have the PCI legacy interfaces.
211 * @X86_SUBARCH_CE4100: Used for Intel CE media processor (CE4100) SoC for
212 * for settop boxes and media devices, the use of a subarch for CE4100
213 * is more of a hack...
214 */
215enum x86_hardware_subarch {
216 X86_SUBARCH_PC = 0,
217 X86_SUBARCH_LGUEST,
218 X86_SUBARCH_XEN,
219 X86_SUBARCH_INTEL_MID,
220 X86_SUBARCH_CE4100,
221 X86_NR_SUBARCHS,
222};
223
224#endif /* __ASSEMBLY__ */
225
226#endif /* _ASM_X86_BOOTPARAM_H */