Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _ASM_X86_PROCESSOR_H
2#define _ASM_X86_PROCESSOR_H
3
4#include <asm/processor-flags.h>
5
6/* Forward declaration, a strange C thing */
7struct task_struct;
8struct mm_struct;
9struct vm86;
10
11#include <asm/math_emu.h>
12#include <asm/segment.h>
13#include <asm/types.h>
14#include <uapi/asm/sigcontext.h>
15#include <asm/current.h>
16#include <asm/cpufeatures.h>
17#include <asm/page.h>
18#include <asm/pgtable_types.h>
19#include <asm/percpu.h>
20#include <asm/msr.h>
21#include <asm/desc_defs.h>
22#include <asm/nops.h>
23#include <asm/special_insns.h>
24#include <asm/fpu/types.h>
25
26#include <linux/personality.h>
27#include <linux/cache.h>
28#include <linux/threads.h>
29#include <linux/math64.h>
30#include <linux/err.h>
31#include <linux/irqflags.h>
32
33/*
34 * We handle most unaligned accesses in hardware. On the other hand
35 * unaligned DMA can be quite expensive on some Nehalem processors.
36 *
37 * Based on this we disable the IP header alignment in network drivers.
38 */
39#define NET_IP_ALIGN 0
40
41#define HBP_NUM 4
42/*
43 * Default implementation of macro that returns current
44 * instruction pointer ("program counter").
45 */
46static inline void *current_text_addr(void)
47{
48 void *pc;
49
50 asm volatile("mov $1f, %0; 1:":"=r" (pc));
51
52 return pc;
53}
54
55/*
56 * These alignment constraints are for performance in the vSMP case,
57 * but in the task_struct case we must also meet hardware imposed
58 * alignment requirements of the FPU state:
59 */
60#ifdef CONFIG_X86_VSMP
61# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
62# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
63#else
64# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
65# define ARCH_MIN_MMSTRUCT_ALIGN 0
66#endif
67
68enum tlb_infos {
69 ENTRIES,
70 NR_INFO
71};
72
73extern u16 __read_mostly tlb_lli_4k[NR_INFO];
74extern u16 __read_mostly tlb_lli_2m[NR_INFO];
75extern u16 __read_mostly tlb_lli_4m[NR_INFO];
76extern u16 __read_mostly tlb_lld_4k[NR_INFO];
77extern u16 __read_mostly tlb_lld_2m[NR_INFO];
78extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80
81/*
82 * CPU type and hardware bug flags. Kept separately for each CPU.
83 * Members of this structure are referenced in head_32.S, so think twice
84 * before touching them. [mj]
85 */
86
87struct cpuinfo_x86 {
88 __u8 x86; /* CPU family */
89 __u8 x86_vendor; /* CPU vendor */
90 __u8 x86_model;
91 __u8 x86_mask;
92#ifdef CONFIG_X86_64
93 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
94 int x86_tlbsize;
95#endif
96 __u8 x86_virt_bits;
97 __u8 x86_phys_bits;
98 /* CPUID returned core id bits: */
99 __u8 x86_coreid_bits;
100 __u8 cu_id;
101 /* Max extended CPUID function supported: */
102 __u32 extended_cpuid_level;
103 /* Maximum supported CPUID level, -1=no CPUID: */
104 int cpuid_level;
105 __u32 x86_capability[NCAPINTS + NBUGINTS];
106 char x86_vendor_id[16];
107 char x86_model_id[64];
108 /* in KB - valid for CPUS which support this call: */
109 int x86_cache_size;
110 int x86_cache_alignment; /* In bytes */
111 /* Cache QoS architectural values: */
112 int x86_cache_max_rmid; /* max index */
113 int x86_cache_occ_scale; /* scale to bytes */
114 int x86_power;
115 unsigned long loops_per_jiffy;
116 /* cpuid returned max cores value: */
117 u16 x86_max_cores;
118 u16 apicid;
119 u16 initial_apicid;
120 u16 x86_clflush_size;
121 /* number of cores as seen by the OS: */
122 u16 booted_cores;
123 /* Physical processor id: */
124 u16 phys_proc_id;
125 /* Logical processor id: */
126 u16 logical_proc_id;
127 /* Core id: */
128 u16 cpu_core_id;
129 /* Index into per_cpu list: */
130 u16 cpu_index;
131 u32 microcode;
132};
133
134struct cpuid_regs {
135 u32 eax, ebx, ecx, edx;
136};
137
138enum cpuid_regs_idx {
139 CPUID_EAX = 0,
140 CPUID_EBX,
141 CPUID_ECX,
142 CPUID_EDX,
143};
144
145#define X86_VENDOR_INTEL 0
146#define X86_VENDOR_CYRIX 1
147#define X86_VENDOR_AMD 2
148#define X86_VENDOR_UMC 3
149#define X86_VENDOR_CENTAUR 5
150#define X86_VENDOR_TRANSMETA 7
151#define X86_VENDOR_NSC 8
152#define X86_VENDOR_NUM 9
153
154#define X86_VENDOR_UNKNOWN 0xff
155
156/*
157 * capabilities of CPUs
158 */
159extern struct cpuinfo_x86 boot_cpu_data;
160extern struct cpuinfo_x86 new_cpu_data;
161
162extern struct tss_struct doublefault_tss;
163extern __u32 cpu_caps_cleared[NCAPINTS];
164extern __u32 cpu_caps_set[NCAPINTS];
165
166#ifdef CONFIG_SMP
167DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
168#define cpu_data(cpu) per_cpu(cpu_info, cpu)
169#else
170#define cpu_info boot_cpu_data
171#define cpu_data(cpu) boot_cpu_data
172#endif
173
174extern const struct seq_operations cpuinfo_op;
175
176#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
177
178extern void cpu_detect(struct cpuinfo_x86 *c);
179
180extern void early_cpu_init(void);
181extern void identify_boot_cpu(void);
182extern void identify_secondary_cpu(struct cpuinfo_x86 *);
183extern void print_cpu_info(struct cpuinfo_x86 *);
184void print_cpu_msr(struct cpuinfo_x86 *);
185extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
186extern u32 get_scattered_cpuid_leaf(unsigned int level,
187 unsigned int sub_leaf,
188 enum cpuid_regs_idx reg);
189extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
190extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
191
192extern void detect_extended_topology(struct cpuinfo_x86 *c);
193extern void detect_ht(struct cpuinfo_x86 *c);
194
195#ifdef CONFIG_X86_32
196extern int have_cpuid_p(void);
197#else
198static inline int have_cpuid_p(void)
199{
200 return 1;
201}
202#endif
203static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
204 unsigned int *ecx, unsigned int *edx)
205{
206 /* ecx is often an input as well as an output. */
207 asm volatile("cpuid"
208 : "=a" (*eax),
209 "=b" (*ebx),
210 "=c" (*ecx),
211 "=d" (*edx)
212 : "0" (*eax), "2" (*ecx)
213 : "memory");
214}
215
216#define native_cpuid_reg(reg) \
217static inline unsigned int native_cpuid_##reg(unsigned int op) \
218{ \
219 unsigned int eax = op, ebx, ecx = 0, edx; \
220 \
221 native_cpuid(&eax, &ebx, &ecx, &edx); \
222 \
223 return reg; \
224}
225
226/*
227 * Native CPUID functions returning a single datum.
228 */
229native_cpuid_reg(eax)
230native_cpuid_reg(ebx)
231native_cpuid_reg(ecx)
232native_cpuid_reg(edx)
233
234static inline void load_cr3(pgd_t *pgdir)
235{
236 write_cr3(__pa(pgdir));
237}
238
239#ifdef CONFIG_X86_32
240/* This is the TSS defined by the hardware. */
241struct x86_hw_tss {
242 unsigned short back_link, __blh;
243 unsigned long sp0;
244 unsigned short ss0, __ss0h;
245 unsigned long sp1;
246
247 /*
248 * We don't use ring 1, so ss1 is a convenient scratch space in
249 * the same cacheline as sp0. We use ss1 to cache the value in
250 * MSR_IA32_SYSENTER_CS. When we context switch
251 * MSR_IA32_SYSENTER_CS, we first check if the new value being
252 * written matches ss1, and, if it's not, then we wrmsr the new
253 * value and update ss1.
254 *
255 * The only reason we context switch MSR_IA32_SYSENTER_CS is
256 * that we set it to zero in vm86 tasks to avoid corrupting the
257 * stack if we were to go through the sysenter path from vm86
258 * mode.
259 */
260 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
261
262 unsigned short __ss1h;
263 unsigned long sp2;
264 unsigned short ss2, __ss2h;
265 unsigned long __cr3;
266 unsigned long ip;
267 unsigned long flags;
268 unsigned long ax;
269 unsigned long cx;
270 unsigned long dx;
271 unsigned long bx;
272 unsigned long sp;
273 unsigned long bp;
274 unsigned long si;
275 unsigned long di;
276 unsigned short es, __esh;
277 unsigned short cs, __csh;
278 unsigned short ss, __ssh;
279 unsigned short ds, __dsh;
280 unsigned short fs, __fsh;
281 unsigned short gs, __gsh;
282 unsigned short ldt, __ldth;
283 unsigned short trace;
284 unsigned short io_bitmap_base;
285
286} __attribute__((packed));
287#else
288struct x86_hw_tss {
289 u32 reserved1;
290 u64 sp0;
291 u64 sp1;
292 u64 sp2;
293 u64 reserved2;
294 u64 ist[7];
295 u32 reserved3;
296 u32 reserved4;
297 u16 reserved5;
298 u16 io_bitmap_base;
299
300} __attribute__((packed));
301#endif
302
303/*
304 * IO-bitmap sizes:
305 */
306#define IO_BITMAP_BITS 65536
307#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
308#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
309#define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap)
310#define INVALID_IO_BITMAP_OFFSET 0x8000
311
312struct tss_struct {
313 /*
314 * The hardware state:
315 */
316 struct x86_hw_tss x86_tss;
317
318 /*
319 * The extra 1 is there because the CPU will access an
320 * additional byte beyond the end of the IO permission
321 * bitmap. The extra byte must be all 1 bits, and must
322 * be within the limit.
323 */
324 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
325
326#ifdef CONFIG_X86_32
327 /*
328 * Space for the temporary SYSENTER stack.
329 */
330 unsigned long SYSENTER_stack_canary;
331 unsigned long SYSENTER_stack[64];
332#endif
333
334} ____cacheline_aligned;
335
336DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
337
338/*
339 * sizeof(unsigned long) coming from an extra "long" at the end
340 * of the iobitmap.
341 *
342 * -1? seg base+limit should be pointing to the address of the
343 * last valid byte
344 */
345#define __KERNEL_TSS_LIMIT \
346 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
347
348#ifdef CONFIG_X86_32
349DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
350#endif
351
352/*
353 * Save the original ist values for checking stack pointers during debugging
354 */
355struct orig_ist {
356 unsigned long ist[7];
357};
358
359#ifdef CONFIG_X86_64
360DECLARE_PER_CPU(struct orig_ist, orig_ist);
361
362union irq_stack_union {
363 char irq_stack[IRQ_STACK_SIZE];
364 /*
365 * GCC hardcodes the stack canary as %gs:40. Since the
366 * irq_stack is the object at %gs:0, we reserve the bottom
367 * 48 bytes of the irq stack for the canary.
368 */
369 struct {
370 char gs_base[40];
371 unsigned long stack_canary;
372 };
373};
374
375DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
376DECLARE_INIT_PER_CPU(irq_stack_union);
377
378DECLARE_PER_CPU(char *, irq_stack_ptr);
379DECLARE_PER_CPU(unsigned int, irq_count);
380extern asmlinkage void ignore_sysret(void);
381#else /* X86_64 */
382#ifdef CONFIG_CC_STACKPROTECTOR
383/*
384 * Make sure stack canary segment base is cached-aligned:
385 * "For Intel Atom processors, avoid non zero segment base address
386 * that is not aligned to cache line boundary at all cost."
387 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
388 */
389struct stack_canary {
390 char __pad[20]; /* canary at %gs:20 */
391 unsigned long canary;
392};
393DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
394#endif
395/*
396 * per-CPU IRQ handling stacks
397 */
398struct irq_stack {
399 u32 stack[THREAD_SIZE/sizeof(u32)];
400} __aligned(THREAD_SIZE);
401
402DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
403DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
404#endif /* X86_64 */
405
406extern unsigned int fpu_kernel_xstate_size;
407extern unsigned int fpu_user_xstate_size;
408
409struct perf_event;
410
411typedef struct {
412 unsigned long seg;
413} mm_segment_t;
414
415struct thread_struct {
416 /* Cached TLS descriptors: */
417 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
418 unsigned long sp0;
419 unsigned long sp;
420#ifdef CONFIG_X86_32
421 unsigned long sysenter_cs;
422#else
423 unsigned short es;
424 unsigned short ds;
425 unsigned short fsindex;
426 unsigned short gsindex;
427#endif
428
429 u32 status; /* thread synchronous flags */
430
431#ifdef CONFIG_X86_64
432 unsigned long fsbase;
433 unsigned long gsbase;
434#else
435 /*
436 * XXX: this could presumably be unsigned short. Alternatively,
437 * 32-bit kernels could be taught to use fsindex instead.
438 */
439 unsigned long fs;
440 unsigned long gs;
441#endif
442
443 /* Save middle states of ptrace breakpoints */
444 struct perf_event *ptrace_bps[HBP_NUM];
445 /* Debug status used for traps, single steps, etc... */
446 unsigned long debugreg6;
447 /* Keep track of the exact dr7 value set by the user */
448 unsigned long ptrace_dr7;
449 /* Fault info: */
450 unsigned long cr2;
451 unsigned long trap_nr;
452 unsigned long error_code;
453#ifdef CONFIG_VM86
454 /* Virtual 86 mode info */
455 struct vm86 *vm86;
456#endif
457 /* IO permissions: */
458 unsigned long *io_bitmap_ptr;
459 unsigned long iopl;
460 /* Max allowed port in the bitmap, in bytes: */
461 unsigned io_bitmap_max;
462
463 mm_segment_t addr_limit;
464
465 unsigned int sig_on_uaccess_err:1;
466 unsigned int uaccess_err:1; /* uaccess failed */
467
468 /* Floating point and extended processor state */
469 struct fpu fpu;
470 /*
471 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
472 * the end.
473 */
474};
475
476/*
477 * Thread-synchronous status.
478 *
479 * This is different from the flags in that nobody else
480 * ever touches our thread-synchronous status, so we don't
481 * have to worry about atomic accesses.
482 */
483#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
484
485/*
486 * Set IOPL bits in EFLAGS from given mask
487 */
488static inline void native_set_iopl_mask(unsigned mask)
489{
490#ifdef CONFIG_X86_32
491 unsigned int reg;
492
493 asm volatile ("pushfl;"
494 "popl %0;"
495 "andl %1, %0;"
496 "orl %2, %0;"
497 "pushl %0;"
498 "popfl"
499 : "=&r" (reg)
500 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
501#endif
502}
503
504static inline void
505native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
506{
507 tss->x86_tss.sp0 = thread->sp0;
508#ifdef CONFIG_X86_32
509 /* Only happens when SEP is enabled, no need to test "SEP"arately: */
510 if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
511 tss->x86_tss.ss1 = thread->sysenter_cs;
512 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
513 }
514#endif
515}
516
517static inline void native_swapgs(void)
518{
519#ifdef CONFIG_X86_64
520 asm volatile("swapgs" ::: "memory");
521#endif
522}
523
524static inline unsigned long current_top_of_stack(void)
525{
526#ifdef CONFIG_X86_64
527 return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
528#else
529 /* sp0 on x86_32 is special in and around vm86 mode. */
530 return this_cpu_read_stable(cpu_current_top_of_stack);
531#endif
532}
533
534#ifdef CONFIG_PARAVIRT
535#include <asm/paravirt.h>
536#else
537#define __cpuid native_cpuid
538
539static inline void load_sp0(struct tss_struct *tss,
540 struct thread_struct *thread)
541{
542 native_load_sp0(tss, thread);
543}
544
545#define set_iopl_mask native_set_iopl_mask
546#endif /* CONFIG_PARAVIRT */
547
548/* Free all resources held by a thread. */
549extern void release_thread(struct task_struct *);
550
551unsigned long get_wchan(struct task_struct *p);
552
553/*
554 * Generic CPUID function
555 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
556 * resulting in stale register contents being returned.
557 */
558static inline void cpuid(unsigned int op,
559 unsigned int *eax, unsigned int *ebx,
560 unsigned int *ecx, unsigned int *edx)
561{
562 *eax = op;
563 *ecx = 0;
564 __cpuid(eax, ebx, ecx, edx);
565}
566
567/* Some CPUID calls want 'count' to be placed in ecx */
568static inline void cpuid_count(unsigned int op, int count,
569 unsigned int *eax, unsigned int *ebx,
570 unsigned int *ecx, unsigned int *edx)
571{
572 *eax = op;
573 *ecx = count;
574 __cpuid(eax, ebx, ecx, edx);
575}
576
577/*
578 * CPUID functions returning a single datum
579 */
580static inline unsigned int cpuid_eax(unsigned int op)
581{
582 unsigned int eax, ebx, ecx, edx;
583
584 cpuid(op, &eax, &ebx, &ecx, &edx);
585
586 return eax;
587}
588
589static inline unsigned int cpuid_ebx(unsigned int op)
590{
591 unsigned int eax, ebx, ecx, edx;
592
593 cpuid(op, &eax, &ebx, &ecx, &edx);
594
595 return ebx;
596}
597
598static inline unsigned int cpuid_ecx(unsigned int op)
599{
600 unsigned int eax, ebx, ecx, edx;
601
602 cpuid(op, &eax, &ebx, &ecx, &edx);
603
604 return ecx;
605}
606
607static inline unsigned int cpuid_edx(unsigned int op)
608{
609 unsigned int eax, ebx, ecx, edx;
610
611 cpuid(op, &eax, &ebx, &ecx, &edx);
612
613 return edx;
614}
615
616/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
617static __always_inline void rep_nop(void)
618{
619 asm volatile("rep; nop" ::: "memory");
620}
621
622static __always_inline void cpu_relax(void)
623{
624 rep_nop();
625}
626
627/*
628 * This function forces the icache and prefetched instruction stream to
629 * catch up with reality in two very specific cases:
630 *
631 * a) Text was modified using one virtual address and is about to be executed
632 * from the same physical page at a different virtual address.
633 *
634 * b) Text was modified on a different CPU, may subsequently be
635 * executed on this CPU, and you want to make sure the new version
636 * gets executed. This generally means you're calling this in a IPI.
637 *
638 * If you're calling this for a different reason, you're probably doing
639 * it wrong.
640 */
641static inline void sync_core(void)
642{
643 /*
644 * There are quite a few ways to do this. IRET-to-self is nice
645 * because it works on every CPU, at any CPL (so it's compatible
646 * with paravirtualization), and it never exits to a hypervisor.
647 * The only down sides are that it's a bit slow (it seems to be
648 * a bit more than 2x slower than the fastest options) and that
649 * it unmasks NMIs. The "push %cs" is needed because, in
650 * paravirtual environments, __KERNEL_CS may not be a valid CS
651 * value when we do IRET directly.
652 *
653 * In case NMI unmasking or performance ever becomes a problem,
654 * the next best option appears to be MOV-to-CR2 and an
655 * unconditional jump. That sequence also works on all CPUs,
656 * but it will fault at CPL3 (i.e. Xen PV and lguest).
657 *
658 * CPUID is the conventional way, but it's nasty: it doesn't
659 * exist on some 486-like CPUs, and it usually exits to a
660 * hypervisor.
661 *
662 * Like all of Linux's memory ordering operations, this is a
663 * compiler barrier as well.
664 */
665 register void *__sp asm(_ASM_SP);
666
667#ifdef CONFIG_X86_32
668 asm volatile (
669 "pushfl\n\t"
670 "pushl %%cs\n\t"
671 "pushl $1f\n\t"
672 "iret\n\t"
673 "1:"
674 : "+r" (__sp) : : "memory");
675#else
676 unsigned int tmp;
677
678 asm volatile (
679 "mov %%ss, %0\n\t"
680 "pushq %q0\n\t"
681 "pushq %%rsp\n\t"
682 "addq $8, (%%rsp)\n\t"
683 "pushfq\n\t"
684 "mov %%cs, %0\n\t"
685 "pushq %q0\n\t"
686 "pushq $1f\n\t"
687 "iretq\n\t"
688 "1:"
689 : "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
690#endif
691}
692
693extern void select_idle_routine(const struct cpuinfo_x86 *c);
694extern void amd_e400_c1e_apic_setup(void);
695
696extern unsigned long boot_option_idle_override;
697
698enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
699 IDLE_POLL};
700
701extern void enable_sep_cpu(void);
702extern int sysenter_setup(void);
703
704extern void early_trap_init(void);
705void early_trap_pf_init(void);
706
707/* Defined in head.S */
708extern struct desc_ptr early_gdt_descr;
709
710extern void cpu_set_gdt(int);
711extern void switch_to_new_gdt(int);
712extern void load_direct_gdt(int);
713extern void load_fixmap_gdt(int);
714extern void load_percpu_segment(int);
715extern void cpu_init(void);
716
717static inline unsigned long get_debugctlmsr(void)
718{
719 unsigned long debugctlmsr = 0;
720
721#ifndef CONFIG_X86_DEBUGCTLMSR
722 if (boot_cpu_data.x86 < 6)
723 return 0;
724#endif
725 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
726
727 return debugctlmsr;
728}
729
730static inline void update_debugctlmsr(unsigned long debugctlmsr)
731{
732#ifndef CONFIG_X86_DEBUGCTLMSR
733 if (boot_cpu_data.x86 < 6)
734 return;
735#endif
736 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
737}
738
739extern void set_task_blockstep(struct task_struct *task, bool on);
740
741/* Boot loader type from the setup header: */
742extern int bootloader_type;
743extern int bootloader_version;
744
745extern char ignore_fpu_irq;
746
747#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
748#define ARCH_HAS_PREFETCHW
749#define ARCH_HAS_SPINLOCK_PREFETCH
750
751#ifdef CONFIG_X86_32
752# define BASE_PREFETCH ""
753# define ARCH_HAS_PREFETCH
754#else
755# define BASE_PREFETCH "prefetcht0 %P1"
756#endif
757
758/*
759 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
760 *
761 * It's not worth to care about 3dnow prefetches for the K6
762 * because they are microcoded there and very slow.
763 */
764static inline void prefetch(const void *x)
765{
766 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
767 X86_FEATURE_XMM,
768 "m" (*(const char *)x));
769}
770
771/*
772 * 3dnow prefetch to get an exclusive cache line.
773 * Useful for spinlocks to avoid one state transition in the
774 * cache coherency protocol:
775 */
776static inline void prefetchw(const void *x)
777{
778 alternative_input(BASE_PREFETCH, "prefetchw %P1",
779 X86_FEATURE_3DNOWPREFETCH,
780 "m" (*(const char *)x));
781}
782
783static inline void spin_lock_prefetch(const void *x)
784{
785 prefetchw(x);
786}
787
788#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
789 TOP_OF_KERNEL_STACK_PADDING)
790
791#ifdef CONFIG_X86_32
792/*
793 * User space process size: 3GB (default).
794 */
795#define IA32_PAGE_OFFSET PAGE_OFFSET
796#define TASK_SIZE PAGE_OFFSET
797#define TASK_SIZE_MAX TASK_SIZE
798#define STACK_TOP TASK_SIZE
799#define STACK_TOP_MAX STACK_TOP
800
801#define INIT_THREAD { \
802 .sp0 = TOP_OF_INIT_STACK, \
803 .sysenter_cs = __KERNEL_CS, \
804 .io_bitmap_ptr = NULL, \
805 .addr_limit = KERNEL_DS, \
806}
807
808/*
809 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
810 * This is necessary to guarantee that the entire "struct pt_regs"
811 * is accessible even if the CPU haven't stored the SS/ESP registers
812 * on the stack (interrupt gate does not save these registers
813 * when switching to the same priv ring).
814 * Therefore beware: accessing the ss/esp fields of the
815 * "struct pt_regs" is possible, but they may contain the
816 * completely wrong values.
817 */
818#define task_pt_regs(task) \
819({ \
820 unsigned long __ptr = (unsigned long)task_stack_page(task); \
821 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
822 ((struct pt_regs *)__ptr) - 1; \
823})
824
825#define KSTK_ESP(task) (task_pt_regs(task)->sp)
826
827#else
828/*
829 * User space process size. 47bits minus one guard page. The guard
830 * page is necessary on Intel CPUs: if a SYSCALL instruction is at
831 * the highest possible canonical userspace address, then that
832 * syscall will enter the kernel with a non-canonical return
833 * address, and SYSRET will explode dangerously. We avoid this
834 * particular problem by preventing anything from being mapped
835 * at the maximum canonical address.
836 */
837#define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE)
838
839/* This decides where the kernel will search for a free chunk of vm
840 * space during mmap's.
841 */
842#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
843 0xc0000000 : 0xFFFFe000)
844
845#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
846 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
847#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
848 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
849
850#define STACK_TOP TASK_SIZE
851#define STACK_TOP_MAX TASK_SIZE_MAX
852
853#define INIT_THREAD { \
854 .sp0 = TOP_OF_INIT_STACK, \
855 .addr_limit = KERNEL_DS, \
856}
857
858#define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1)
859extern unsigned long KSTK_ESP(struct task_struct *task);
860
861#endif /* CONFIG_X86_64 */
862
863extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
864 unsigned long new_sp);
865
866/*
867 * This decides where the kernel will search for a free chunk of vm
868 * space during mmap's.
869 */
870#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
871#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE)
872
873#define KSTK_EIP(task) (task_pt_regs(task)->ip)
874
875/* Get/set a process' ability to use the timestamp counter instruction */
876#define GET_TSC_CTL(adr) get_tsc_mode((adr))
877#define SET_TSC_CTL(val) set_tsc_mode((val))
878
879extern int get_tsc_mode(unsigned long adr);
880extern int set_tsc_mode(unsigned int val);
881
882DECLARE_PER_CPU(u64, msr_misc_features_shadow);
883
884/* Register/unregister a process' MPX related resource */
885#define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
886#define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
887
888#ifdef CONFIG_X86_INTEL_MPX
889extern int mpx_enable_management(void);
890extern int mpx_disable_management(void);
891#else
892static inline int mpx_enable_management(void)
893{
894 return -EINVAL;
895}
896static inline int mpx_disable_management(void)
897{
898 return -EINVAL;
899}
900#endif /* CONFIG_X86_INTEL_MPX */
901
902extern u16 amd_get_nb_id(int cpu);
903extern u32 amd_get_nodes_per_socket(void);
904
905static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
906{
907 uint32_t base, eax, signature[3];
908
909 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
910 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
911
912 if (!memcmp(sig, signature, 12) &&
913 (leaves == 0 || ((eax - base) >= leaves)))
914 return base;
915 }
916
917 return 0;
918}
919
920extern unsigned long arch_align_stack(unsigned long sp);
921extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
922
923void default_idle(void);
924#ifdef CONFIG_XEN
925bool xen_set_default_idle(void);
926#else
927#define xen_set_default_idle 0
928#endif
929
930void stop_this_cpu(void *dummy);
931void df_debug(struct pt_regs *regs, long error_code);
932#endif /* _ASM_X86_PROCESSOR_H */