Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _ASM_X86_PGTABLE_H
2#define _ASM_X86_PGTABLE_H
3
4#include <asm/page.h>
5#include <asm/pgtable_types.h>
6
7/*
8 * Macro to mark a page protection value as UC-
9 */
10#define pgprot_noncached(prot) \
11 ((boot_cpu_data.x86 > 3) \
12 ? (__pgprot(pgprot_val(prot) | \
13 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \
14 : (prot))
15
16#ifndef __ASSEMBLY__
17#include <asm/x86_init.h>
18
19void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd);
20void ptdump_walk_pgd_level_checkwx(void);
21
22#ifdef CONFIG_DEBUG_WX
23#define debug_checkwx() ptdump_walk_pgd_level_checkwx()
24#else
25#define debug_checkwx() do { } while (0)
26#endif
27
28/*
29 * ZERO_PAGE is a global shared page that is always zero: used
30 * for zero-mapped memory areas etc..
31 */
32extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
33 __visible;
34#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
35
36extern spinlock_t pgd_lock;
37extern struct list_head pgd_list;
38
39extern struct mm_struct *pgd_page_get_mm(struct page *page);
40
41#ifdef CONFIG_PARAVIRT
42#include <asm/paravirt.h>
43#else /* !CONFIG_PARAVIRT */
44#define set_pte(ptep, pte) native_set_pte(ptep, pte)
45#define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
46#define set_pmd_at(mm, addr, pmdp, pmd) native_set_pmd_at(mm, addr, pmdp, pmd)
47#define set_pud_at(mm, addr, pudp, pud) native_set_pud_at(mm, addr, pudp, pud)
48
49#define set_pte_atomic(ptep, pte) \
50 native_set_pte_atomic(ptep, pte)
51
52#define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
53
54#ifndef __PAGETABLE_P4D_FOLDED
55#define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
56#define pgd_clear(pgd) native_pgd_clear(pgd)
57#endif
58
59#ifndef set_p4d
60# define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d)
61#endif
62
63#ifndef __PAGETABLE_PUD_FOLDED
64#define p4d_clear(p4d) native_p4d_clear(p4d)
65#endif
66
67#ifndef set_pud
68# define set_pud(pudp, pud) native_set_pud(pudp, pud)
69#endif
70
71#ifndef __PAGETABLE_PUD_FOLDED
72#define pud_clear(pud) native_pud_clear(pud)
73#endif
74
75#define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
76#define pmd_clear(pmd) native_pmd_clear(pmd)
77
78#define pte_update(mm, addr, ptep) do { } while (0)
79
80#define pgd_val(x) native_pgd_val(x)
81#define __pgd(x) native_make_pgd(x)
82
83#ifndef __PAGETABLE_P4D_FOLDED
84#define p4d_val(x) native_p4d_val(x)
85#define __p4d(x) native_make_p4d(x)
86#endif
87
88#ifndef __PAGETABLE_PUD_FOLDED
89#define pud_val(x) native_pud_val(x)
90#define __pud(x) native_make_pud(x)
91#endif
92
93#ifndef __PAGETABLE_PMD_FOLDED
94#define pmd_val(x) native_pmd_val(x)
95#define __pmd(x) native_make_pmd(x)
96#endif
97
98#define pte_val(x) native_pte_val(x)
99#define __pte(x) native_make_pte(x)
100
101#define arch_end_context_switch(prev) do {} while(0)
102
103#endif /* CONFIG_PARAVIRT */
104
105/*
106 * The following only work if pte_present() is true.
107 * Undefined behaviour if not..
108 */
109static inline int pte_dirty(pte_t pte)
110{
111 return pte_flags(pte) & _PAGE_DIRTY;
112}
113
114
115static inline u32 read_pkru(void)
116{
117 if (boot_cpu_has(X86_FEATURE_OSPKE))
118 return __read_pkru();
119 return 0;
120}
121
122static inline void write_pkru(u32 pkru)
123{
124 if (boot_cpu_has(X86_FEATURE_OSPKE))
125 __write_pkru(pkru);
126}
127
128static inline int pte_young(pte_t pte)
129{
130 return pte_flags(pte) & _PAGE_ACCESSED;
131}
132
133static inline int pmd_dirty(pmd_t pmd)
134{
135 return pmd_flags(pmd) & _PAGE_DIRTY;
136}
137
138static inline int pmd_young(pmd_t pmd)
139{
140 return pmd_flags(pmd) & _PAGE_ACCESSED;
141}
142
143static inline int pud_dirty(pud_t pud)
144{
145 return pud_flags(pud) & _PAGE_DIRTY;
146}
147
148static inline int pud_young(pud_t pud)
149{
150 return pud_flags(pud) & _PAGE_ACCESSED;
151}
152
153static inline int pte_write(pte_t pte)
154{
155 return pte_flags(pte) & _PAGE_RW;
156}
157
158static inline int pte_huge(pte_t pte)
159{
160 return pte_flags(pte) & _PAGE_PSE;
161}
162
163static inline int pte_global(pte_t pte)
164{
165 return pte_flags(pte) & _PAGE_GLOBAL;
166}
167
168static inline int pte_exec(pte_t pte)
169{
170 return !(pte_flags(pte) & _PAGE_NX);
171}
172
173static inline int pte_special(pte_t pte)
174{
175 return pte_flags(pte) & _PAGE_SPECIAL;
176}
177
178static inline unsigned long pte_pfn(pte_t pte)
179{
180 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
181}
182
183static inline unsigned long pmd_pfn(pmd_t pmd)
184{
185 return (pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
186}
187
188static inline unsigned long pud_pfn(pud_t pud)
189{
190 return (pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT;
191}
192
193static inline unsigned long p4d_pfn(p4d_t p4d)
194{
195 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
196}
197
198static inline int p4d_large(p4d_t p4d)
199{
200 /* No 512 GiB pages yet */
201 return 0;
202}
203
204#define pte_page(pte) pfn_to_page(pte_pfn(pte))
205
206static inline int pmd_large(pmd_t pte)
207{
208 return pmd_flags(pte) & _PAGE_PSE;
209}
210
211#ifdef CONFIG_TRANSPARENT_HUGEPAGE
212static inline int pmd_trans_huge(pmd_t pmd)
213{
214 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
215}
216
217#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
218static inline int pud_trans_huge(pud_t pud)
219{
220 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
221}
222#endif
223
224#define has_transparent_hugepage has_transparent_hugepage
225static inline int has_transparent_hugepage(void)
226{
227 return boot_cpu_has(X86_FEATURE_PSE);
228}
229
230#ifdef __HAVE_ARCH_PTE_DEVMAP
231static inline int pmd_devmap(pmd_t pmd)
232{
233 return !!(pmd_val(pmd) & _PAGE_DEVMAP);
234}
235
236#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
237static inline int pud_devmap(pud_t pud)
238{
239 return !!(pud_val(pud) & _PAGE_DEVMAP);
240}
241#else
242static inline int pud_devmap(pud_t pud)
243{
244 return 0;
245}
246#endif
247#endif
248#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
249
250static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
251{
252 pteval_t v = native_pte_val(pte);
253
254 return native_make_pte(v | set);
255}
256
257static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
258{
259 pteval_t v = native_pte_val(pte);
260
261 return native_make_pte(v & ~clear);
262}
263
264static inline pte_t pte_mkclean(pte_t pte)
265{
266 return pte_clear_flags(pte, _PAGE_DIRTY);
267}
268
269static inline pte_t pte_mkold(pte_t pte)
270{
271 return pte_clear_flags(pte, _PAGE_ACCESSED);
272}
273
274static inline pte_t pte_wrprotect(pte_t pte)
275{
276 return pte_clear_flags(pte, _PAGE_RW);
277}
278
279static inline pte_t pte_mkexec(pte_t pte)
280{
281 return pte_clear_flags(pte, _PAGE_NX);
282}
283
284static inline pte_t pte_mkdirty(pte_t pte)
285{
286 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
287}
288
289static inline pte_t pte_mkyoung(pte_t pte)
290{
291 return pte_set_flags(pte, _PAGE_ACCESSED);
292}
293
294static inline pte_t pte_mkwrite(pte_t pte)
295{
296 return pte_set_flags(pte, _PAGE_RW);
297}
298
299static inline pte_t pte_mkhuge(pte_t pte)
300{
301 return pte_set_flags(pte, _PAGE_PSE);
302}
303
304static inline pte_t pte_clrhuge(pte_t pte)
305{
306 return pte_clear_flags(pte, _PAGE_PSE);
307}
308
309static inline pte_t pte_mkglobal(pte_t pte)
310{
311 return pte_set_flags(pte, _PAGE_GLOBAL);
312}
313
314static inline pte_t pte_clrglobal(pte_t pte)
315{
316 return pte_clear_flags(pte, _PAGE_GLOBAL);
317}
318
319static inline pte_t pte_mkspecial(pte_t pte)
320{
321 return pte_set_flags(pte, _PAGE_SPECIAL);
322}
323
324static inline pte_t pte_mkdevmap(pte_t pte)
325{
326 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
327}
328
329static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
330{
331 pmdval_t v = native_pmd_val(pmd);
332
333 return __pmd(v | set);
334}
335
336static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
337{
338 pmdval_t v = native_pmd_val(pmd);
339
340 return __pmd(v & ~clear);
341}
342
343static inline pmd_t pmd_mkold(pmd_t pmd)
344{
345 return pmd_clear_flags(pmd, _PAGE_ACCESSED);
346}
347
348static inline pmd_t pmd_mkclean(pmd_t pmd)
349{
350 return pmd_clear_flags(pmd, _PAGE_DIRTY);
351}
352
353static inline pmd_t pmd_wrprotect(pmd_t pmd)
354{
355 return pmd_clear_flags(pmd, _PAGE_RW);
356}
357
358static inline pmd_t pmd_mkdirty(pmd_t pmd)
359{
360 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
361}
362
363static inline pmd_t pmd_mkdevmap(pmd_t pmd)
364{
365 return pmd_set_flags(pmd, _PAGE_DEVMAP);
366}
367
368static inline pmd_t pmd_mkhuge(pmd_t pmd)
369{
370 return pmd_set_flags(pmd, _PAGE_PSE);
371}
372
373static inline pmd_t pmd_mkyoung(pmd_t pmd)
374{
375 return pmd_set_flags(pmd, _PAGE_ACCESSED);
376}
377
378static inline pmd_t pmd_mkwrite(pmd_t pmd)
379{
380 return pmd_set_flags(pmd, _PAGE_RW);
381}
382
383static inline pmd_t pmd_mknotpresent(pmd_t pmd)
384{
385 return pmd_clear_flags(pmd, _PAGE_PRESENT | _PAGE_PROTNONE);
386}
387
388static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
389{
390 pudval_t v = native_pud_val(pud);
391
392 return __pud(v | set);
393}
394
395static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
396{
397 pudval_t v = native_pud_val(pud);
398
399 return __pud(v & ~clear);
400}
401
402static inline pud_t pud_mkold(pud_t pud)
403{
404 return pud_clear_flags(pud, _PAGE_ACCESSED);
405}
406
407static inline pud_t pud_mkclean(pud_t pud)
408{
409 return pud_clear_flags(pud, _PAGE_DIRTY);
410}
411
412static inline pud_t pud_wrprotect(pud_t pud)
413{
414 return pud_clear_flags(pud, _PAGE_RW);
415}
416
417static inline pud_t pud_mkdirty(pud_t pud)
418{
419 return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
420}
421
422static inline pud_t pud_mkdevmap(pud_t pud)
423{
424 return pud_set_flags(pud, _PAGE_DEVMAP);
425}
426
427static inline pud_t pud_mkhuge(pud_t pud)
428{
429 return pud_set_flags(pud, _PAGE_PSE);
430}
431
432static inline pud_t pud_mkyoung(pud_t pud)
433{
434 return pud_set_flags(pud, _PAGE_ACCESSED);
435}
436
437static inline pud_t pud_mkwrite(pud_t pud)
438{
439 return pud_set_flags(pud, _PAGE_RW);
440}
441
442static inline pud_t pud_mknotpresent(pud_t pud)
443{
444 return pud_clear_flags(pud, _PAGE_PRESENT | _PAGE_PROTNONE);
445}
446
447#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
448static inline int pte_soft_dirty(pte_t pte)
449{
450 return pte_flags(pte) & _PAGE_SOFT_DIRTY;
451}
452
453static inline int pmd_soft_dirty(pmd_t pmd)
454{
455 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
456}
457
458static inline int pud_soft_dirty(pud_t pud)
459{
460 return pud_flags(pud) & _PAGE_SOFT_DIRTY;
461}
462
463static inline pte_t pte_mksoft_dirty(pte_t pte)
464{
465 return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
466}
467
468static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
469{
470 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
471}
472
473static inline pud_t pud_mksoft_dirty(pud_t pud)
474{
475 return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
476}
477
478static inline pte_t pte_clear_soft_dirty(pte_t pte)
479{
480 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
481}
482
483static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
484{
485 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
486}
487
488static inline pud_t pud_clear_soft_dirty(pud_t pud)
489{
490 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
491}
492
493#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
494
495/*
496 * Mask out unsupported bits in a present pgprot. Non-present pgprots
497 * can use those bits for other purposes, so leave them be.
498 */
499static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
500{
501 pgprotval_t protval = pgprot_val(pgprot);
502
503 if (protval & _PAGE_PRESENT)
504 protval &= __supported_pte_mask;
505
506 return protval;
507}
508
509static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
510{
511 return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
512 massage_pgprot(pgprot));
513}
514
515static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
516{
517 return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
518 massage_pgprot(pgprot));
519}
520
521static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
522{
523 return __pud(((phys_addr_t)page_nr << PAGE_SHIFT) |
524 massage_pgprot(pgprot));
525}
526
527static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
528{
529 pteval_t val = pte_val(pte);
530
531 /*
532 * Chop off the NX bit (if present), and add the NX portion of
533 * the newprot (if present):
534 */
535 val &= _PAGE_CHG_MASK;
536 val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
537
538 return __pte(val);
539}
540
541static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
542{
543 pmdval_t val = pmd_val(pmd);
544
545 val &= _HPAGE_CHG_MASK;
546 val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
547
548 return __pmd(val);
549}
550
551/* mprotect needs to preserve PAT bits when updating vm_page_prot */
552#define pgprot_modify pgprot_modify
553static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
554{
555 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
556 pgprotval_t addbits = pgprot_val(newprot);
557 return __pgprot(preservebits | addbits);
558}
559
560#define pte_pgprot(x) __pgprot(pte_flags(x))
561#define pmd_pgprot(x) __pgprot(pmd_flags(x))
562#define pud_pgprot(x) __pgprot(pud_flags(x))
563#define p4d_pgprot(x) __pgprot(p4d_flags(x))
564
565#define canon_pgprot(p) __pgprot(massage_pgprot(p))
566
567static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
568 enum page_cache_mode pcm,
569 enum page_cache_mode new_pcm)
570{
571 /*
572 * PAT type is always WB for untracked ranges, so no need to check.
573 */
574 if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
575 return 1;
576
577 /*
578 * Certain new memtypes are not allowed with certain
579 * requested memtype:
580 * - request is uncached, return cannot be write-back
581 * - request is write-combine, return cannot be write-back
582 * - request is write-through, return cannot be write-back
583 * - request is write-through, return cannot be write-combine
584 */
585 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
586 new_pcm == _PAGE_CACHE_MODE_WB) ||
587 (pcm == _PAGE_CACHE_MODE_WC &&
588 new_pcm == _PAGE_CACHE_MODE_WB) ||
589 (pcm == _PAGE_CACHE_MODE_WT &&
590 new_pcm == _PAGE_CACHE_MODE_WB) ||
591 (pcm == _PAGE_CACHE_MODE_WT &&
592 new_pcm == _PAGE_CACHE_MODE_WC)) {
593 return 0;
594 }
595
596 return 1;
597}
598
599pmd_t *populate_extra_pmd(unsigned long vaddr);
600pte_t *populate_extra_pte(unsigned long vaddr);
601#endif /* __ASSEMBLY__ */
602
603#ifdef CONFIG_X86_32
604# include <asm/pgtable_32.h>
605#else
606# include <asm/pgtable_64.h>
607#endif
608
609#ifndef __ASSEMBLY__
610#include <linux/mm_types.h>
611#include <linux/mmdebug.h>
612#include <linux/log2.h>
613#include <asm/fixmap.h>
614
615static inline int pte_none(pte_t pte)
616{
617 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
618}
619
620#define __HAVE_ARCH_PTE_SAME
621static inline int pte_same(pte_t a, pte_t b)
622{
623 return a.pte == b.pte;
624}
625
626static inline int pte_present(pte_t a)
627{
628 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
629}
630
631#ifdef __HAVE_ARCH_PTE_DEVMAP
632static inline int pte_devmap(pte_t a)
633{
634 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
635}
636#endif
637
638#define pte_accessible pte_accessible
639static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
640{
641 if (pte_flags(a) & _PAGE_PRESENT)
642 return true;
643
644 if ((pte_flags(a) & _PAGE_PROTNONE) &&
645 mm_tlb_flush_pending(mm))
646 return true;
647
648 return false;
649}
650
651static inline int pte_hidden(pte_t pte)
652{
653 return pte_flags(pte) & _PAGE_HIDDEN;
654}
655
656static inline int pmd_present(pmd_t pmd)
657{
658 /*
659 * Checking for _PAGE_PSE is needed too because
660 * split_huge_page will temporarily clear the present bit (but
661 * the _PAGE_PSE flag will remain set at all times while the
662 * _PAGE_PRESENT bit is clear).
663 */
664 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
665}
666
667#ifdef CONFIG_NUMA_BALANCING
668/*
669 * These work without NUMA balancing but the kernel does not care. See the
670 * comment in include/asm-generic/pgtable.h
671 */
672static inline int pte_protnone(pte_t pte)
673{
674 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
675 == _PAGE_PROTNONE;
676}
677
678static inline int pmd_protnone(pmd_t pmd)
679{
680 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
681 == _PAGE_PROTNONE;
682}
683#endif /* CONFIG_NUMA_BALANCING */
684
685static inline int pmd_none(pmd_t pmd)
686{
687 /* Only check low word on 32-bit platforms, since it might be
688 out of sync with upper half. */
689 unsigned long val = native_pmd_val(pmd);
690 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
691}
692
693static inline unsigned long pmd_page_vaddr(pmd_t pmd)
694{
695 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
696}
697
698/*
699 * Currently stuck as a macro due to indirect forward reference to
700 * linux/mmzone.h's __section_mem_map_addr() definition:
701 */
702#define pmd_page(pmd) \
703 pfn_to_page((pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT)
704
705/*
706 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
707 *
708 * this macro returns the index of the entry in the pmd page which would
709 * control the given virtual address
710 */
711static inline unsigned long pmd_index(unsigned long address)
712{
713 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
714}
715
716/*
717 * Conversion functions: convert a page and protection to a page entry,
718 * and a page entry and page directory to the page they refer to.
719 *
720 * (Currently stuck as a macro because of indirect forward reference
721 * to linux/mm.h:page_to_nid())
722 */
723#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
724
725/*
726 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
727 *
728 * this function returns the index of the entry in the pte page which would
729 * control the given virtual address
730 */
731static inline unsigned long pte_index(unsigned long address)
732{
733 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
734}
735
736static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
737{
738 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
739}
740
741static inline int pmd_bad(pmd_t pmd)
742{
743 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
744}
745
746static inline unsigned long pages_to_mb(unsigned long npg)
747{
748 return npg >> (20 - PAGE_SHIFT);
749}
750
751#if CONFIG_PGTABLE_LEVELS > 2
752static inline int pud_none(pud_t pud)
753{
754 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
755}
756
757static inline int pud_present(pud_t pud)
758{
759 return pud_flags(pud) & _PAGE_PRESENT;
760}
761
762static inline unsigned long pud_page_vaddr(pud_t pud)
763{
764 return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud));
765}
766
767/*
768 * Currently stuck as a macro due to indirect forward reference to
769 * linux/mmzone.h's __section_mem_map_addr() definition:
770 */
771#define pud_page(pud) \
772 pfn_to_page((pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT)
773
774/* Find an entry in the second-level page table.. */
775static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
776{
777 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
778}
779
780static inline int pud_large(pud_t pud)
781{
782 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
783 (_PAGE_PSE | _PAGE_PRESENT);
784}
785
786static inline int pud_bad(pud_t pud)
787{
788 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
789}
790#else
791static inline int pud_large(pud_t pud)
792{
793 return 0;
794}
795#endif /* CONFIG_PGTABLE_LEVELS > 2 */
796
797static inline unsigned long pud_index(unsigned long address)
798{
799 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
800}
801
802#if CONFIG_PGTABLE_LEVELS > 3
803static inline int p4d_none(p4d_t p4d)
804{
805 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
806}
807
808static inline int p4d_present(p4d_t p4d)
809{
810 return p4d_flags(p4d) & _PAGE_PRESENT;
811}
812
813static inline unsigned long p4d_page_vaddr(p4d_t p4d)
814{
815 return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
816}
817
818/*
819 * Currently stuck as a macro due to indirect forward reference to
820 * linux/mmzone.h's __section_mem_map_addr() definition:
821 */
822#define p4d_page(p4d) \
823 pfn_to_page((p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT)
824
825/* Find an entry in the third-level page table.. */
826static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
827{
828 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
829}
830
831static inline int p4d_bad(p4d_t p4d)
832{
833 return (p4d_flags(p4d) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
834}
835#endif /* CONFIG_PGTABLE_LEVELS > 3 */
836
837static inline unsigned long p4d_index(unsigned long address)
838{
839 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
840}
841
842#if CONFIG_PGTABLE_LEVELS > 4
843static inline int pgd_present(pgd_t pgd)
844{
845 return pgd_flags(pgd) & _PAGE_PRESENT;
846}
847
848static inline unsigned long pgd_page_vaddr(pgd_t pgd)
849{
850 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
851}
852
853/*
854 * Currently stuck as a macro due to indirect forward reference to
855 * linux/mmzone.h's __section_mem_map_addr() definition:
856 */
857#define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT)
858
859/* to find an entry in a page-table-directory. */
860static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
861{
862 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
863}
864
865static inline int pgd_bad(pgd_t pgd)
866{
867 return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE;
868}
869
870static inline int pgd_none(pgd_t pgd)
871{
872 /*
873 * There is no need to do a workaround for the KNL stray
874 * A/D bit erratum here. PGDs only point to page tables
875 * except on 32-bit non-PAE which is not supported on
876 * KNL.
877 */
878 return !native_pgd_val(pgd);
879}
880#endif /* CONFIG_PGTABLE_LEVELS > 4 */
881
882#endif /* __ASSEMBLY__ */
883
884/*
885 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
886 *
887 * this macro returns the index of the entry in the pgd page which would
888 * control the given virtual address
889 */
890#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
891
892/*
893 * pgd_offset() returns a (pgd_t *)
894 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
895 */
896#define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
897/*
898 * a shortcut which implies the use of the kernel's pgd, instead
899 * of a process's
900 */
901#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
902
903
904#define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
905#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
906
907#ifndef __ASSEMBLY__
908
909extern int direct_gbpages;
910void init_mem_mapping(void);
911void early_alloc_pgt_buf(void);
912extern void memblock_find_dma_reserve(void);
913
914#ifdef CONFIG_X86_64
915/* Realmode trampoline initialization. */
916extern pgd_t trampoline_pgd_entry;
917static inline void __meminit init_trampoline_default(void)
918{
919 /* Default trampoline pgd value */
920 trampoline_pgd_entry = init_level4_pgt[pgd_index(__PAGE_OFFSET)];
921}
922# ifdef CONFIG_RANDOMIZE_MEMORY
923void __meminit init_trampoline(void);
924# else
925# define init_trampoline init_trampoline_default
926# endif
927#else
928static inline void init_trampoline(void) { }
929#endif
930
931/* local pte updates need not use xchg for locking */
932static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
933{
934 pte_t res = *ptep;
935
936 /* Pure native function needs no input for mm, addr */
937 native_pte_clear(NULL, 0, ptep);
938 return res;
939}
940
941static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
942{
943 pmd_t res = *pmdp;
944
945 native_pmd_clear(pmdp);
946 return res;
947}
948
949static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
950{
951 pud_t res = *pudp;
952
953 native_pud_clear(pudp);
954 return res;
955}
956
957static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
958 pte_t *ptep , pte_t pte)
959{
960 native_set_pte(ptep, pte);
961}
962
963static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr,
964 pmd_t *pmdp , pmd_t pmd)
965{
966 native_set_pmd(pmdp, pmd);
967}
968
969static inline void native_set_pud_at(struct mm_struct *mm, unsigned long addr,
970 pud_t *pudp, pud_t pud)
971{
972 native_set_pud(pudp, pud);
973}
974
975#ifndef CONFIG_PARAVIRT
976/*
977 * Rules for using pte_update - it must be called after any PTE update which
978 * has not been done using the set_pte / clear_pte interfaces. It is used by
979 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
980 * updates should either be sets, clears, or set_pte_atomic for P->P
981 * transitions, which means this hook should only be called for user PTEs.
982 * This hook implies a P->P protection or access change has taken place, which
983 * requires a subsequent TLB flush.
984 */
985#define pte_update(mm, addr, ptep) do { } while (0)
986#endif
987
988/*
989 * We only update the dirty/accessed state if we set
990 * the dirty bit by hand in the kernel, since the hardware
991 * will do the accessed bit for us, and we don't want to
992 * race with other CPU's that might be updating the dirty
993 * bit at the same time.
994 */
995struct vm_area_struct;
996
997#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
998extern int ptep_set_access_flags(struct vm_area_struct *vma,
999 unsigned long address, pte_t *ptep,
1000 pte_t entry, int dirty);
1001
1002#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1003extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1004 unsigned long addr, pte_t *ptep);
1005
1006#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1007extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1008 unsigned long address, pte_t *ptep);
1009
1010#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1011static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1012 pte_t *ptep)
1013{
1014 pte_t pte = native_ptep_get_and_clear(ptep);
1015 pte_update(mm, addr, ptep);
1016 return pte;
1017}
1018
1019#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1020static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1021 unsigned long addr, pte_t *ptep,
1022 int full)
1023{
1024 pte_t pte;
1025 if (full) {
1026 /*
1027 * Full address destruction in progress; paravirt does not
1028 * care about updates and native needs no locking
1029 */
1030 pte = native_local_ptep_get_and_clear(ptep);
1031 } else {
1032 pte = ptep_get_and_clear(mm, addr, ptep);
1033 }
1034 return pte;
1035}
1036
1037#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1038static inline void ptep_set_wrprotect(struct mm_struct *mm,
1039 unsigned long addr, pte_t *ptep)
1040{
1041 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
1042 pte_update(mm, addr, ptep);
1043}
1044
1045#define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
1046
1047#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1048
1049#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1050extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1051 unsigned long address, pmd_t *pmdp,
1052 pmd_t entry, int dirty);
1053extern int pudp_set_access_flags(struct vm_area_struct *vma,
1054 unsigned long address, pud_t *pudp,
1055 pud_t entry, int dirty);
1056
1057#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1058extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1059 unsigned long addr, pmd_t *pmdp);
1060extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1061 unsigned long addr, pud_t *pudp);
1062
1063#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1064extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1065 unsigned long address, pmd_t *pmdp);
1066
1067
1068#define __HAVE_ARCH_PMD_WRITE
1069static inline int pmd_write(pmd_t pmd)
1070{
1071 return pmd_flags(pmd) & _PAGE_RW;
1072}
1073
1074#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1075static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1076 pmd_t *pmdp)
1077{
1078 return native_pmdp_get_and_clear(pmdp);
1079}
1080
1081#define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1082static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1083 unsigned long addr, pud_t *pudp)
1084{
1085 return native_pudp_get_and_clear(pudp);
1086}
1087
1088#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1089static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1090 unsigned long addr, pmd_t *pmdp)
1091{
1092 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
1093}
1094
1095/*
1096 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1097 *
1098 * dst - pointer to pgd range anwhere on a pgd page
1099 * src - ""
1100 * count - the number of pgds to copy.
1101 *
1102 * dst and src can be on the same page, but the range must not overlap,
1103 * and must not cross a page boundary.
1104 */
1105static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1106{
1107 memcpy(dst, src, count * sizeof(pgd_t));
1108}
1109
1110#define PTE_SHIFT ilog2(PTRS_PER_PTE)
1111static inline int page_level_shift(enum pg_level level)
1112{
1113 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1114}
1115static inline unsigned long page_level_size(enum pg_level level)
1116{
1117 return 1UL << page_level_shift(level);
1118}
1119static inline unsigned long page_level_mask(enum pg_level level)
1120{
1121 return ~(page_level_size(level) - 1);
1122}
1123
1124/*
1125 * The x86 doesn't have any external MMU info: the kernel page
1126 * tables contain all the necessary information.
1127 */
1128static inline void update_mmu_cache(struct vm_area_struct *vma,
1129 unsigned long addr, pte_t *ptep)
1130{
1131}
1132static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1133 unsigned long addr, pmd_t *pmd)
1134{
1135}
1136static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1137 unsigned long addr, pud_t *pud)
1138{
1139}
1140
1141#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1142static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1143{
1144 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1145}
1146
1147static inline int pte_swp_soft_dirty(pte_t pte)
1148{
1149 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1150}
1151
1152static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1153{
1154 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1155}
1156#endif
1157
1158#define PKRU_AD_BIT 0x1
1159#define PKRU_WD_BIT 0x2
1160#define PKRU_BITS_PER_PKEY 2
1161
1162static inline bool __pkru_allows_read(u32 pkru, u16 pkey)
1163{
1164 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1165 return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits));
1166}
1167
1168static inline bool __pkru_allows_write(u32 pkru, u16 pkey)
1169{
1170 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1171 /*
1172 * Access-disable disables writes too so we need to check
1173 * both bits here.
1174 */
1175 return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits));
1176}
1177
1178static inline u16 pte_flags_pkey(unsigned long pte_flags)
1179{
1180#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1181 /* ifdef to avoid doing 59-bit shift on 32-bit values */
1182 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1183#else
1184 return 0;
1185#endif
1186}
1187
1188#include <asm-generic/pgtable.h>
1189#endif /* __ASSEMBLY__ */
1190
1191#endif /* _ASM_X86_PGTABLE_H */