at v4.12 522 lines 14 kB view raw
1#ifndef _ASM_X86_BITOPS_H 2#define _ASM_X86_BITOPS_H 3 4/* 5 * Copyright 1992, Linus Torvalds. 6 * 7 * Note: inlines with more than a single statement should be marked 8 * __always_inline to avoid problems with older gcc's inlining heuristics. 9 */ 10 11#ifndef _LINUX_BITOPS_H 12#error only <linux/bitops.h> can be included directly 13#endif 14 15#include <linux/compiler.h> 16#include <asm/alternative.h> 17#include <asm/rmwcc.h> 18#include <asm/barrier.h> 19 20#if BITS_PER_LONG == 32 21# define _BITOPS_LONG_SHIFT 5 22#elif BITS_PER_LONG == 64 23# define _BITOPS_LONG_SHIFT 6 24#else 25# error "Unexpected BITS_PER_LONG" 26#endif 27 28#define BIT_64(n) (U64_C(1) << (n)) 29 30/* 31 * These have to be done with inline assembly: that way the bit-setting 32 * is guaranteed to be atomic. All bit operations return 0 if the bit 33 * was cleared before the operation and != 0 if it was not. 34 * 35 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). 36 */ 37 38#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1) 39/* Technically wrong, but this avoids compilation errors on some gcc 40 versions. */ 41#define BITOP_ADDR(x) "=m" (*(volatile long *) (x)) 42#else 43#define BITOP_ADDR(x) "+m" (*(volatile long *) (x)) 44#endif 45 46#define ADDR BITOP_ADDR(addr) 47 48/* 49 * We do the locked ops that don't return the old value as 50 * a mask operation on a byte. 51 */ 52#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr)) 53#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3)) 54#define CONST_MASK(nr) (1 << ((nr) & 7)) 55 56/** 57 * set_bit - Atomically set a bit in memory 58 * @nr: the bit to set 59 * @addr: the address to start counting from 60 * 61 * This function is atomic and may not be reordered. See __set_bit() 62 * if you do not require the atomic guarantees. 63 * 64 * Note: there are no guarantees that this function will not be reordered 65 * on non x86 architectures, so if you are writing portable code, 66 * make sure not to rely on its reordering guarantees. 67 * 68 * Note that @nr may be almost arbitrarily large; this function is not 69 * restricted to acting on a single-word quantity. 70 */ 71static __always_inline void 72set_bit(long nr, volatile unsigned long *addr) 73{ 74 if (IS_IMMEDIATE(nr)) { 75 asm volatile(LOCK_PREFIX "orb %1,%0" 76 : CONST_MASK_ADDR(nr, addr) 77 : "iq" ((u8)CONST_MASK(nr)) 78 : "memory"); 79 } else { 80 asm volatile(LOCK_PREFIX "bts %1,%0" 81 : BITOP_ADDR(addr) : "Ir" (nr) : "memory"); 82 } 83} 84 85/** 86 * __set_bit - Set a bit in memory 87 * @nr: the bit to set 88 * @addr: the address to start counting from 89 * 90 * Unlike set_bit(), this function is non-atomic and may be reordered. 91 * If it's called on the same region of memory simultaneously, the effect 92 * may be that only one operation succeeds. 93 */ 94static __always_inline void __set_bit(long nr, volatile unsigned long *addr) 95{ 96 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory"); 97} 98 99/** 100 * clear_bit - Clears a bit in memory 101 * @nr: Bit to clear 102 * @addr: Address to start counting from 103 * 104 * clear_bit() is atomic and may not be reordered. However, it does 105 * not contain a memory barrier, so if it is used for locking purposes, 106 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic() 107 * in order to ensure changes are visible on other processors. 108 */ 109static __always_inline void 110clear_bit(long nr, volatile unsigned long *addr) 111{ 112 if (IS_IMMEDIATE(nr)) { 113 asm volatile(LOCK_PREFIX "andb %1,%0" 114 : CONST_MASK_ADDR(nr, addr) 115 : "iq" ((u8)~CONST_MASK(nr))); 116 } else { 117 asm volatile(LOCK_PREFIX "btr %1,%0" 118 : BITOP_ADDR(addr) 119 : "Ir" (nr)); 120 } 121} 122 123/* 124 * clear_bit_unlock - Clears a bit in memory 125 * @nr: Bit to clear 126 * @addr: Address to start counting from 127 * 128 * clear_bit() is atomic and implies release semantics before the memory 129 * operation. It can be used for an unlock. 130 */ 131static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr) 132{ 133 barrier(); 134 clear_bit(nr, addr); 135} 136 137static __always_inline void __clear_bit(long nr, volatile unsigned long *addr) 138{ 139 asm volatile("btr %1,%0" : ADDR : "Ir" (nr)); 140} 141 142static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr) 143{ 144 bool negative; 145 asm volatile(LOCK_PREFIX "andb %2,%1\n\t" 146 CC_SET(s) 147 : CC_OUT(s) (negative), ADDR 148 : "ir" ((char) ~(1 << nr)) : "memory"); 149 return negative; 150} 151 152// Let everybody know we have it 153#define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte 154 155/* 156 * __clear_bit_unlock - Clears a bit in memory 157 * @nr: Bit to clear 158 * @addr: Address to start counting from 159 * 160 * __clear_bit() is non-atomic and implies release semantics before the memory 161 * operation. It can be used for an unlock if no other CPUs can concurrently 162 * modify other bits in the word. 163 * 164 * No memory barrier is required here, because x86 cannot reorder stores past 165 * older loads. Same principle as spin_unlock. 166 */ 167static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr) 168{ 169 barrier(); 170 __clear_bit(nr, addr); 171} 172 173/** 174 * __change_bit - Toggle a bit in memory 175 * @nr: the bit to change 176 * @addr: the address to start counting from 177 * 178 * Unlike change_bit(), this function is non-atomic and may be reordered. 179 * If it's called on the same region of memory simultaneously, the effect 180 * may be that only one operation succeeds. 181 */ 182static __always_inline void __change_bit(long nr, volatile unsigned long *addr) 183{ 184 asm volatile("btc %1,%0" : ADDR : "Ir" (nr)); 185} 186 187/** 188 * change_bit - Toggle a bit in memory 189 * @nr: Bit to change 190 * @addr: Address to start counting from 191 * 192 * change_bit() is atomic and may not be reordered. 193 * Note that @nr may be almost arbitrarily large; this function is not 194 * restricted to acting on a single-word quantity. 195 */ 196static __always_inline void change_bit(long nr, volatile unsigned long *addr) 197{ 198 if (IS_IMMEDIATE(nr)) { 199 asm volatile(LOCK_PREFIX "xorb %1,%0" 200 : CONST_MASK_ADDR(nr, addr) 201 : "iq" ((u8)CONST_MASK(nr))); 202 } else { 203 asm volatile(LOCK_PREFIX "btc %1,%0" 204 : BITOP_ADDR(addr) 205 : "Ir" (nr)); 206 } 207} 208 209/** 210 * test_and_set_bit - Set a bit and return its old value 211 * @nr: Bit to set 212 * @addr: Address to count from 213 * 214 * This operation is atomic and cannot be reordered. 215 * It also implies a memory barrier. 216 */ 217static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr) 218{ 219 GEN_BINARY_RMWcc(LOCK_PREFIX "bts", *addr, "Ir", nr, "%0", c); 220} 221 222/** 223 * test_and_set_bit_lock - Set a bit and return its old value for lock 224 * @nr: Bit to set 225 * @addr: Address to count from 226 * 227 * This is the same as test_and_set_bit on x86. 228 */ 229static __always_inline bool 230test_and_set_bit_lock(long nr, volatile unsigned long *addr) 231{ 232 return test_and_set_bit(nr, addr); 233} 234 235/** 236 * __test_and_set_bit - Set a bit and return its old value 237 * @nr: Bit to set 238 * @addr: Address to count from 239 * 240 * This operation is non-atomic and can be reordered. 241 * If two examples of this operation race, one can appear to succeed 242 * but actually fail. You must protect multiple accesses with a lock. 243 */ 244static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr) 245{ 246 bool oldbit; 247 248 asm("bts %2,%1\n\t" 249 CC_SET(c) 250 : CC_OUT(c) (oldbit), ADDR 251 : "Ir" (nr)); 252 return oldbit; 253} 254 255/** 256 * test_and_clear_bit - Clear a bit and return its old value 257 * @nr: Bit to clear 258 * @addr: Address to count from 259 * 260 * This operation is atomic and cannot be reordered. 261 * It also implies a memory barrier. 262 */ 263static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr) 264{ 265 GEN_BINARY_RMWcc(LOCK_PREFIX "btr", *addr, "Ir", nr, "%0", c); 266} 267 268/** 269 * __test_and_clear_bit - Clear a bit and return its old value 270 * @nr: Bit to clear 271 * @addr: Address to count from 272 * 273 * This operation is non-atomic and can be reordered. 274 * If two examples of this operation race, one can appear to succeed 275 * but actually fail. You must protect multiple accesses with a lock. 276 * 277 * Note: the operation is performed atomically with respect to 278 * the local CPU, but not other CPUs. Portable code should not 279 * rely on this behaviour. 280 * KVM relies on this behaviour on x86 for modifying memory that is also 281 * accessed from a hypervisor on the same CPU if running in a VM: don't change 282 * this without also updating arch/x86/kernel/kvm.c 283 */ 284static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr) 285{ 286 bool oldbit; 287 288 asm volatile("btr %2,%1\n\t" 289 CC_SET(c) 290 : CC_OUT(c) (oldbit), ADDR 291 : "Ir" (nr)); 292 return oldbit; 293} 294 295/* WARNING: non atomic and it can be reordered! */ 296static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr) 297{ 298 bool oldbit; 299 300 asm volatile("btc %2,%1\n\t" 301 CC_SET(c) 302 : CC_OUT(c) (oldbit), ADDR 303 : "Ir" (nr) : "memory"); 304 305 return oldbit; 306} 307 308/** 309 * test_and_change_bit - Change a bit and return its old value 310 * @nr: Bit to change 311 * @addr: Address to count from 312 * 313 * This operation is atomic and cannot be reordered. 314 * It also implies a memory barrier. 315 */ 316static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr) 317{ 318 GEN_BINARY_RMWcc(LOCK_PREFIX "btc", *addr, "Ir", nr, "%0", c); 319} 320 321static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr) 322{ 323 return ((1UL << (nr & (BITS_PER_LONG-1))) & 324 (addr[nr >> _BITOPS_LONG_SHIFT])) != 0; 325} 326 327static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr) 328{ 329 bool oldbit; 330 331 asm volatile("bt %2,%1\n\t" 332 CC_SET(c) 333 : CC_OUT(c) (oldbit) 334 : "m" (*(unsigned long *)addr), "Ir" (nr)); 335 336 return oldbit; 337} 338 339#if 0 /* Fool kernel-doc since it doesn't do macros yet */ 340/** 341 * test_bit - Determine whether a bit is set 342 * @nr: bit number to test 343 * @addr: Address to start counting from 344 */ 345static bool test_bit(int nr, const volatile unsigned long *addr); 346#endif 347 348#define test_bit(nr, addr) \ 349 (__builtin_constant_p((nr)) \ 350 ? constant_test_bit((nr), (addr)) \ 351 : variable_test_bit((nr), (addr))) 352 353/** 354 * __ffs - find first set bit in word 355 * @word: The word to search 356 * 357 * Undefined if no bit exists, so code should check against 0 first. 358 */ 359static __always_inline unsigned long __ffs(unsigned long word) 360{ 361 asm("rep; bsf %1,%0" 362 : "=r" (word) 363 : "rm" (word)); 364 return word; 365} 366 367/** 368 * ffz - find first zero bit in word 369 * @word: The word to search 370 * 371 * Undefined if no zero exists, so code should check against ~0UL first. 372 */ 373static __always_inline unsigned long ffz(unsigned long word) 374{ 375 asm("rep; bsf %1,%0" 376 : "=r" (word) 377 : "r" (~word)); 378 return word; 379} 380 381/* 382 * __fls: find last set bit in word 383 * @word: The word to search 384 * 385 * Undefined if no set bit exists, so code should check against 0 first. 386 */ 387static __always_inline unsigned long __fls(unsigned long word) 388{ 389 asm("bsr %1,%0" 390 : "=r" (word) 391 : "rm" (word)); 392 return word; 393} 394 395#undef ADDR 396 397#ifdef __KERNEL__ 398/** 399 * ffs - find first set bit in word 400 * @x: the word to search 401 * 402 * This is defined the same way as the libc and compiler builtin ffs 403 * routines, therefore differs in spirit from the other bitops. 404 * 405 * ffs(value) returns 0 if value is 0 or the position of the first 406 * set bit if value is nonzero. The first (least significant) bit 407 * is at position 1. 408 */ 409static __always_inline int ffs(int x) 410{ 411 int r; 412 413#ifdef CONFIG_X86_64 414 /* 415 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the 416 * dest reg is undefined if x==0, but their CPU architect says its 417 * value is written to set it to the same as before, except that the 418 * top 32 bits will be cleared. 419 * 420 * We cannot do this on 32 bits because at the very least some 421 * 486 CPUs did not behave this way. 422 */ 423 asm("bsfl %1,%0" 424 : "=r" (r) 425 : "rm" (x), "0" (-1)); 426#elif defined(CONFIG_X86_CMOV) 427 asm("bsfl %1,%0\n\t" 428 "cmovzl %2,%0" 429 : "=&r" (r) : "rm" (x), "r" (-1)); 430#else 431 asm("bsfl %1,%0\n\t" 432 "jnz 1f\n\t" 433 "movl $-1,%0\n" 434 "1:" : "=r" (r) : "rm" (x)); 435#endif 436 return r + 1; 437} 438 439/** 440 * fls - find last set bit in word 441 * @x: the word to search 442 * 443 * This is defined in a similar way as the libc and compiler builtin 444 * ffs, but returns the position of the most significant set bit. 445 * 446 * fls(value) returns 0 if value is 0 or the position of the last 447 * set bit if value is nonzero. The last (most significant) bit is 448 * at position 32. 449 */ 450static __always_inline int fls(int x) 451{ 452 int r; 453 454#ifdef CONFIG_X86_64 455 /* 456 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the 457 * dest reg is undefined if x==0, but their CPU architect says its 458 * value is written to set it to the same as before, except that the 459 * top 32 bits will be cleared. 460 * 461 * We cannot do this on 32 bits because at the very least some 462 * 486 CPUs did not behave this way. 463 */ 464 asm("bsrl %1,%0" 465 : "=r" (r) 466 : "rm" (x), "0" (-1)); 467#elif defined(CONFIG_X86_CMOV) 468 asm("bsrl %1,%0\n\t" 469 "cmovzl %2,%0" 470 : "=&r" (r) : "rm" (x), "rm" (-1)); 471#else 472 asm("bsrl %1,%0\n\t" 473 "jnz 1f\n\t" 474 "movl $-1,%0\n" 475 "1:" : "=r" (r) : "rm" (x)); 476#endif 477 return r + 1; 478} 479 480/** 481 * fls64 - find last set bit in a 64-bit word 482 * @x: the word to search 483 * 484 * This is defined in a similar way as the libc and compiler builtin 485 * ffsll, but returns the position of the most significant set bit. 486 * 487 * fls64(value) returns 0 if value is 0 or the position of the last 488 * set bit if value is nonzero. The last (most significant) bit is 489 * at position 64. 490 */ 491#ifdef CONFIG_X86_64 492static __always_inline int fls64(__u64 x) 493{ 494 int bitpos = -1; 495 /* 496 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the 497 * dest reg is undefined if x==0, but their CPU architect says its 498 * value is written to set it to the same as before. 499 */ 500 asm("bsrq %1,%q0" 501 : "+r" (bitpos) 502 : "rm" (x)); 503 return bitpos + 1; 504} 505#else 506#include <asm-generic/bitops/fls64.h> 507#endif 508 509#include <asm-generic/bitops/find.h> 510 511#include <asm-generic/bitops/sched.h> 512 513#include <asm/arch_hweight.h> 514 515#include <asm-generic/bitops/const_hweight.h> 516 517#include <asm-generic/bitops/le.h> 518 519#include <asm-generic/bitops/ext2-atomic-setbit.h> 520 521#endif /* __KERNEL__ */ 522#endif /* _ASM_X86_BITOPS_H */