Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11#ifndef _ASM_S390_PGTABLE_H
12#define _ASM_S390_PGTABLE_H
13
14/*
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26#ifndef __ASSEMBLY__
27#include <asm-generic/5level-fixup.h>
28#include <linux/sched.h>
29#include <linux/mm_types.h>
30#include <linux/page-flags.h>
31#include <linux/radix-tree.h>
32#include <linux/atomic.h>
33#include <asm/bug.h>
34#include <asm/page.h>
35
36extern pgd_t swapper_pg_dir[];
37extern void paging_init(void);
38extern void vmem_map_init(void);
39pmd_t *vmem_pmd_alloc(void);
40pte_t *vmem_pte_alloc(void);
41
42enum {
43 PG_DIRECT_MAP_4K = 0,
44 PG_DIRECT_MAP_1M,
45 PG_DIRECT_MAP_2G,
46 PG_DIRECT_MAP_MAX
47};
48
49extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
50
51static inline void update_page_count(int level, long count)
52{
53 if (IS_ENABLED(CONFIG_PROC_FS))
54 atomic_long_add(count, &direct_pages_count[level]);
55}
56
57struct seq_file;
58void arch_report_meminfo(struct seq_file *m);
59
60/*
61 * The S390 doesn't have any external MMU info: the kernel page
62 * tables contain all the necessary information.
63 */
64#define update_mmu_cache(vma, address, ptep) do { } while (0)
65#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
66
67/*
68 * ZERO_PAGE is a global shared page that is always zero; used
69 * for zero-mapped memory areas etc..
70 */
71
72extern unsigned long empty_zero_page;
73extern unsigned long zero_page_mask;
74
75#define ZERO_PAGE(vaddr) \
76 (virt_to_page((void *)(empty_zero_page + \
77 (((unsigned long)(vaddr)) &zero_page_mask))))
78#define __HAVE_COLOR_ZERO_PAGE
79
80/* TODO: s390 cannot support io_remap_pfn_range... */
81#endif /* !__ASSEMBLY__ */
82
83/*
84 * PMD_SHIFT determines the size of the area a second-level page
85 * table can map
86 * PGDIR_SHIFT determines what a third-level page table entry can map
87 */
88#define PMD_SHIFT 20
89#define PUD_SHIFT 31
90#define PGDIR_SHIFT 42
91
92#define PMD_SIZE (1UL << PMD_SHIFT)
93#define PMD_MASK (~(PMD_SIZE-1))
94#define PUD_SIZE (1UL << PUD_SHIFT)
95#define PUD_MASK (~(PUD_SIZE-1))
96#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
97#define PGDIR_MASK (~(PGDIR_SIZE-1))
98
99/*
100 * entries per page directory level: the S390 is two-level, so
101 * we don't really have any PMD directory physically.
102 * for S390 segment-table entries are combined to one PGD
103 * that leads to 1024 pte per pgd
104 */
105#define PTRS_PER_PTE 256
106#define PTRS_PER_PMD 2048
107#define PTRS_PER_PUD 2048
108#define PTRS_PER_PGD 2048
109
110#define FIRST_USER_ADDRESS 0UL
111
112#define pte_ERROR(e) \
113 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
114#define pmd_ERROR(e) \
115 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
116#define pud_ERROR(e) \
117 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
118#define pgd_ERROR(e) \
119 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
120
121#ifndef __ASSEMBLY__
122/*
123 * The vmalloc and module area will always be on the topmost area of the
124 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
125 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
126 * modules will reside. That makes sure that inter module branches always
127 * happen without trampolines and in addition the placement within a 2GB frame
128 * is branch prediction unit friendly.
129 */
130extern unsigned long VMALLOC_START;
131extern unsigned long VMALLOC_END;
132extern struct page *vmemmap;
133
134#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
135
136extern unsigned long MODULES_VADDR;
137extern unsigned long MODULES_END;
138#define MODULES_VADDR MODULES_VADDR
139#define MODULES_END MODULES_END
140#define MODULES_LEN (1UL << 31)
141
142static inline int is_module_addr(void *addr)
143{
144 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
145 if (addr < (void *)MODULES_VADDR)
146 return 0;
147 if (addr > (void *)MODULES_END)
148 return 0;
149 return 1;
150}
151
152/*
153 * A 64 bit pagetable entry of S390 has following format:
154 * | PFRA |0IPC| OS |
155 * 0000000000111111111122222222223333333333444444444455555555556666
156 * 0123456789012345678901234567890123456789012345678901234567890123
157 *
158 * I Page-Invalid Bit: Page is not available for address-translation
159 * P Page-Protection Bit: Store access not possible for page
160 * C Change-bit override: HW is not required to set change bit
161 *
162 * A 64 bit segmenttable entry of S390 has following format:
163 * | P-table origin | TT
164 * 0000000000111111111122222222223333333333444444444455555555556666
165 * 0123456789012345678901234567890123456789012345678901234567890123
166 *
167 * I Segment-Invalid Bit: Segment is not available for address-translation
168 * C Common-Segment Bit: Segment is not private (PoP 3-30)
169 * P Page-Protection Bit: Store access not possible for page
170 * TT Type 00
171 *
172 * A 64 bit region table entry of S390 has following format:
173 * | S-table origin | TF TTTL
174 * 0000000000111111111122222222223333333333444444444455555555556666
175 * 0123456789012345678901234567890123456789012345678901234567890123
176 *
177 * I Segment-Invalid Bit: Segment is not available for address-translation
178 * TT Type 01
179 * TF
180 * TL Table length
181 *
182 * The 64 bit regiontable origin of S390 has following format:
183 * | region table origon | DTTL
184 * 0000000000111111111122222222223333333333444444444455555555556666
185 * 0123456789012345678901234567890123456789012345678901234567890123
186 *
187 * X Space-Switch event:
188 * G Segment-Invalid Bit:
189 * P Private-Space Bit:
190 * S Storage-Alteration:
191 * R Real space
192 * TL Table-Length:
193 *
194 * A storage key has the following format:
195 * | ACC |F|R|C|0|
196 * 0 3 4 5 6 7
197 * ACC: access key
198 * F : fetch protection bit
199 * R : referenced bit
200 * C : changed bit
201 */
202
203/* Hardware bits in the page table entry */
204#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
205#define _PAGE_PROTECT 0x200 /* HW read-only bit */
206#define _PAGE_INVALID 0x400 /* HW invalid bit */
207#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
208
209/* Software bits in the page table entry */
210#define _PAGE_PRESENT 0x001 /* SW pte present bit */
211#define _PAGE_YOUNG 0x004 /* SW pte young bit */
212#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
213#define _PAGE_READ 0x010 /* SW pte read bit */
214#define _PAGE_WRITE 0x020 /* SW pte write bit */
215#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
216#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
217#define __HAVE_ARCH_PTE_SPECIAL
218
219#ifdef CONFIG_MEM_SOFT_DIRTY
220#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
221#else
222#define _PAGE_SOFT_DIRTY 0x000
223#endif
224
225/* Set of bits not changed in pte_modify */
226#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
227 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
228
229/*
230 * handle_pte_fault uses pte_present and pte_none to find out the pte type
231 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
232 * distinguish present from not-present ptes. It is changed only with the page
233 * table lock held.
234 *
235 * The following table gives the different possible bit combinations for
236 * the pte hardware and software bits in the last 12 bits of a pte
237 * (. unassigned bit, x don't care, t swap type):
238 *
239 * 842100000000
240 * 000084210000
241 * 000000008421
242 * .IR.uswrdy.p
243 * empty .10.00000000
244 * swap .11..ttttt.0
245 * prot-none, clean, old .11.xx0000.1
246 * prot-none, clean, young .11.xx0001.1
247 * prot-none, dirty, old .11.xx0010.1
248 * prot-none, dirty, young .11.xx0011.1
249 * read-only, clean, old .11.xx0100.1
250 * read-only, clean, young .01.xx0101.1
251 * read-only, dirty, old .11.xx0110.1
252 * read-only, dirty, young .01.xx0111.1
253 * read-write, clean, old .11.xx1100.1
254 * read-write, clean, young .01.xx1101.1
255 * read-write, dirty, old .10.xx1110.1
256 * read-write, dirty, young .00.xx1111.1
257 * HW-bits: R read-only, I invalid
258 * SW-bits: p present, y young, d dirty, r read, w write, s special,
259 * u unused, l large
260 *
261 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
262 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
263 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
264 */
265
266/* Bits in the segment/region table address-space-control-element */
267#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
268#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
269#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
270#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
271#define _ASCE_REAL_SPACE 0x20 /* real space control */
272#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
273#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
274#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
275#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
276#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
277#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
278
279/* Bits in the region table entry */
280#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
281#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
282#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
283#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
284#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
285#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
286#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
287#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
288#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
289#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
290
291#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
292#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
293#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
294#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
295#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
296#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
297
298#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
299#define _REGION3_ENTRY_ORIGIN ~0x7ffUL/* region third table origin */
300
301#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
302#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
303#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
304#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
305#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
306
307#ifdef CONFIG_MEM_SOFT_DIRTY
308#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
309#else
310#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
311#endif
312
313#define _REGION_ENTRY_BITS 0xfffffffffffff227UL
314#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL
315
316/* Bits in the segment table entry */
317#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
318#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
319#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
320#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
321#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
322#define _SEGMENT_ENTRY_NOEXEC 0x100 /* region no-execute bit */
323#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
324
325#define _SEGMENT_ENTRY (0)
326#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
327
328#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
329#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
330#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
331#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
332#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
333
334#ifdef CONFIG_MEM_SOFT_DIRTY
335#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
336#else
337#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
338#endif
339
340/*
341 * Segment table and region3 table entry encoding
342 * (R = read-only, I = invalid, y = young bit):
343 * dy..R...I...wr
344 * prot-none, clean, old 00..1...1...00
345 * prot-none, clean, young 01..1...1...00
346 * prot-none, dirty, old 10..1...1...00
347 * prot-none, dirty, young 11..1...1...00
348 * read-only, clean, old 00..1...1...01
349 * read-only, clean, young 01..1...0...01
350 * read-only, dirty, old 10..1...1...01
351 * read-only, dirty, young 11..1...0...01
352 * read-write, clean, old 00..1...1...11
353 * read-write, clean, young 01..1...0...11
354 * read-write, dirty, old 10..0...1...11
355 * read-write, dirty, young 11..0...0...11
356 * The segment table origin is used to distinguish empty (origin==0) from
357 * read-write, old segment table entries (origin!=0)
358 * HW-bits: R read-only, I invalid
359 * SW-bits: y young, d dirty, r read, w write
360 */
361
362/* Page status table bits for virtualization */
363#define PGSTE_ACC_BITS 0xf000000000000000UL
364#define PGSTE_FP_BIT 0x0800000000000000UL
365#define PGSTE_PCL_BIT 0x0080000000000000UL
366#define PGSTE_HR_BIT 0x0040000000000000UL
367#define PGSTE_HC_BIT 0x0020000000000000UL
368#define PGSTE_GR_BIT 0x0004000000000000UL
369#define PGSTE_GC_BIT 0x0002000000000000UL
370#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
371#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
372#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
373
374/* Guest Page State used for virtualization */
375#define _PGSTE_GPS_ZERO 0x0000000080000000UL
376#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
377#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
378#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
379#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
380#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
381
382/*
383 * A user page table pointer has the space-switch-event bit, the
384 * private-space-control bit and the storage-alteration-event-control
385 * bit set. A kernel page table pointer doesn't need them.
386 */
387#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
388 _ASCE_ALT_EVENT)
389
390/*
391 * Page protection definitions.
392 */
393#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
394#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
395 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
396#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
397 _PAGE_INVALID | _PAGE_PROTECT)
398#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
399 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
400#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
401 _PAGE_INVALID | _PAGE_PROTECT)
402
403#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
404 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
405#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
406 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
407#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
408 _PAGE_PROTECT | _PAGE_NOEXEC)
409#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 _PAGE_YOUNG | _PAGE_DIRTY)
411
412/*
413 * On s390 the page table entry has an invalid bit and a read-only bit.
414 * Read permission implies execute permission and write permission
415 * implies read permission.
416 */
417 /*xwr*/
418#define __P000 PAGE_NONE
419#define __P001 PAGE_RO
420#define __P010 PAGE_RO
421#define __P011 PAGE_RO
422#define __P100 PAGE_RX
423#define __P101 PAGE_RX
424#define __P110 PAGE_RX
425#define __P111 PAGE_RX
426
427#define __S000 PAGE_NONE
428#define __S001 PAGE_RO
429#define __S010 PAGE_RW
430#define __S011 PAGE_RW
431#define __S100 PAGE_RX
432#define __S101 PAGE_RX
433#define __S110 PAGE_RWX
434#define __S111 PAGE_RWX
435
436/*
437 * Segment entry (large page) protection definitions.
438 */
439#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
440 _SEGMENT_ENTRY_PROTECT)
441#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
442 _SEGMENT_ENTRY_READ | \
443 _SEGMENT_ENTRY_NOEXEC)
444#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
445 _SEGMENT_ENTRY_READ)
446#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
447 _SEGMENT_ENTRY_WRITE | \
448 _SEGMENT_ENTRY_NOEXEC)
449#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
450 _SEGMENT_ENTRY_WRITE)
451#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
452 _SEGMENT_ENTRY_LARGE | \
453 _SEGMENT_ENTRY_READ | \
454 _SEGMENT_ENTRY_WRITE | \
455 _SEGMENT_ENTRY_YOUNG | \
456 _SEGMENT_ENTRY_DIRTY | \
457 _SEGMENT_ENTRY_NOEXEC)
458#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
459 _SEGMENT_ENTRY_LARGE | \
460 _SEGMENT_ENTRY_READ | \
461 _SEGMENT_ENTRY_YOUNG | \
462 _SEGMENT_ENTRY_PROTECT | \
463 _SEGMENT_ENTRY_NOEXEC)
464
465/*
466 * Region3 entry (large page) protection definitions.
467 */
468
469#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
470 _REGION3_ENTRY_LARGE | \
471 _REGION3_ENTRY_READ | \
472 _REGION3_ENTRY_WRITE | \
473 _REGION3_ENTRY_YOUNG | \
474 _REGION3_ENTRY_DIRTY | \
475 _REGION_ENTRY_NOEXEC)
476#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
477 _REGION3_ENTRY_LARGE | \
478 _REGION3_ENTRY_READ | \
479 _REGION3_ENTRY_YOUNG | \
480 _REGION_ENTRY_PROTECT | \
481 _REGION_ENTRY_NOEXEC)
482
483static inline int mm_has_pgste(struct mm_struct *mm)
484{
485#ifdef CONFIG_PGSTE
486 if (unlikely(mm->context.has_pgste))
487 return 1;
488#endif
489 return 0;
490}
491
492static inline int mm_alloc_pgste(struct mm_struct *mm)
493{
494#ifdef CONFIG_PGSTE
495 if (unlikely(mm->context.alloc_pgste))
496 return 1;
497#endif
498 return 0;
499}
500
501/*
502 * In the case that a guest uses storage keys
503 * faults should no longer be backed by zero pages
504 */
505#define mm_forbids_zeropage mm_use_skey
506static inline int mm_use_skey(struct mm_struct *mm)
507{
508#ifdef CONFIG_PGSTE
509 if (mm->context.use_skey)
510 return 1;
511#endif
512 return 0;
513}
514
515static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
516{
517 register unsigned long reg2 asm("2") = old;
518 register unsigned long reg3 asm("3") = new;
519 unsigned long address = (unsigned long)ptr | 1;
520
521 asm volatile(
522 " csp %0,%3"
523 : "+d" (reg2), "+m" (*ptr)
524 : "d" (reg3), "d" (address)
525 : "cc");
526}
527
528static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
529{
530 register unsigned long reg2 asm("2") = old;
531 register unsigned long reg3 asm("3") = new;
532 unsigned long address = (unsigned long)ptr | 1;
533
534 asm volatile(
535 " .insn rre,0xb98a0000,%0,%3"
536 : "+d" (reg2), "+m" (*ptr)
537 : "d" (reg3), "d" (address)
538 : "cc");
539}
540
541#define CRDTE_DTT_PAGE 0x00UL
542#define CRDTE_DTT_SEGMENT 0x10UL
543#define CRDTE_DTT_REGION3 0x14UL
544#define CRDTE_DTT_REGION2 0x18UL
545#define CRDTE_DTT_REGION1 0x1cUL
546
547static inline void crdte(unsigned long old, unsigned long new,
548 unsigned long table, unsigned long dtt,
549 unsigned long address, unsigned long asce)
550{
551 register unsigned long reg2 asm("2") = old;
552 register unsigned long reg3 asm("3") = new;
553 register unsigned long reg4 asm("4") = table | dtt;
554 register unsigned long reg5 asm("5") = address;
555
556 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
557 : "+d" (reg2)
558 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
559 : "memory", "cc");
560}
561
562/*
563 * pgd/pmd/pte query functions
564 */
565static inline int pgd_present(pgd_t pgd)
566{
567 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
568 return 1;
569 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
570}
571
572static inline int pgd_none(pgd_t pgd)
573{
574 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
575 return 0;
576 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
577}
578
579static inline int pgd_bad(pgd_t pgd)
580{
581 /*
582 * With dynamic page table levels the pgd can be a region table
583 * entry or a segment table entry. Check for the bit that are
584 * invalid for either table entry.
585 */
586 unsigned long mask =
587 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
588 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
589 return (pgd_val(pgd) & mask) != 0;
590}
591
592static inline int pud_present(pud_t pud)
593{
594 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
595 return 1;
596 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
597}
598
599static inline int pud_none(pud_t pud)
600{
601 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
602 return 0;
603 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
604}
605
606static inline int pud_large(pud_t pud)
607{
608 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
609 return 0;
610 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
611}
612
613static inline unsigned long pud_pfn(pud_t pud)
614{
615 unsigned long origin_mask;
616
617 origin_mask = _REGION3_ENTRY_ORIGIN;
618 if (pud_large(pud))
619 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
620 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
621}
622
623static inline int pmd_large(pmd_t pmd)
624{
625 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
626}
627
628static inline int pmd_bad(pmd_t pmd)
629{
630 if (pmd_large(pmd))
631 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
632 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
633}
634
635static inline int pud_bad(pud_t pud)
636{
637 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
638 return pmd_bad(__pmd(pud_val(pud)));
639 if (pud_large(pud))
640 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
641 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
642}
643
644static inline int pmd_present(pmd_t pmd)
645{
646 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
647}
648
649static inline int pmd_none(pmd_t pmd)
650{
651 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
652}
653
654static inline unsigned long pmd_pfn(pmd_t pmd)
655{
656 unsigned long origin_mask;
657
658 origin_mask = _SEGMENT_ENTRY_ORIGIN;
659 if (pmd_large(pmd))
660 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
661 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
662}
663
664#define __HAVE_ARCH_PMD_WRITE
665static inline int pmd_write(pmd_t pmd)
666{
667 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
668}
669
670static inline int pmd_dirty(pmd_t pmd)
671{
672 int dirty = 1;
673 if (pmd_large(pmd))
674 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
675 return dirty;
676}
677
678static inline int pmd_young(pmd_t pmd)
679{
680 int young = 1;
681 if (pmd_large(pmd))
682 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
683 return young;
684}
685
686static inline int pte_present(pte_t pte)
687{
688 /* Bit pattern: (pte & 0x001) == 0x001 */
689 return (pte_val(pte) & _PAGE_PRESENT) != 0;
690}
691
692static inline int pte_none(pte_t pte)
693{
694 /* Bit pattern: pte == 0x400 */
695 return pte_val(pte) == _PAGE_INVALID;
696}
697
698static inline int pte_swap(pte_t pte)
699{
700 /* Bit pattern: (pte & 0x201) == 0x200 */
701 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
702 == _PAGE_PROTECT;
703}
704
705static inline int pte_special(pte_t pte)
706{
707 return (pte_val(pte) & _PAGE_SPECIAL);
708}
709
710#define __HAVE_ARCH_PTE_SAME
711static inline int pte_same(pte_t a, pte_t b)
712{
713 return pte_val(a) == pte_val(b);
714}
715
716#ifdef CONFIG_NUMA_BALANCING
717static inline int pte_protnone(pte_t pte)
718{
719 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
720}
721
722static inline int pmd_protnone(pmd_t pmd)
723{
724 /* pmd_large(pmd) implies pmd_present(pmd) */
725 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
726}
727#endif
728
729static inline int pte_soft_dirty(pte_t pte)
730{
731 return pte_val(pte) & _PAGE_SOFT_DIRTY;
732}
733#define pte_swp_soft_dirty pte_soft_dirty
734
735static inline pte_t pte_mksoft_dirty(pte_t pte)
736{
737 pte_val(pte) |= _PAGE_SOFT_DIRTY;
738 return pte;
739}
740#define pte_swp_mksoft_dirty pte_mksoft_dirty
741
742static inline pte_t pte_clear_soft_dirty(pte_t pte)
743{
744 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
745 return pte;
746}
747#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
748
749static inline int pmd_soft_dirty(pmd_t pmd)
750{
751 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
752}
753
754static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
755{
756 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
757 return pmd;
758}
759
760static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
761{
762 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
763 return pmd;
764}
765
766/*
767 * query functions pte_write/pte_dirty/pte_young only work if
768 * pte_present() is true. Undefined behaviour if not..
769 */
770static inline int pte_write(pte_t pte)
771{
772 return (pte_val(pte) & _PAGE_WRITE) != 0;
773}
774
775static inline int pte_dirty(pte_t pte)
776{
777 return (pte_val(pte) & _PAGE_DIRTY) != 0;
778}
779
780static inline int pte_young(pte_t pte)
781{
782 return (pte_val(pte) & _PAGE_YOUNG) != 0;
783}
784
785#define __HAVE_ARCH_PTE_UNUSED
786static inline int pte_unused(pte_t pte)
787{
788 return pte_val(pte) & _PAGE_UNUSED;
789}
790
791/*
792 * pgd/pmd/pte modification functions
793 */
794
795static inline void pgd_clear(pgd_t *pgd)
796{
797 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
798 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
799}
800
801static inline void pud_clear(pud_t *pud)
802{
803 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
804 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
805}
806
807static inline void pmd_clear(pmd_t *pmdp)
808{
809 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
810}
811
812static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
813{
814 pte_val(*ptep) = _PAGE_INVALID;
815}
816
817/*
818 * The following pte modification functions only work if
819 * pte_present() is true. Undefined behaviour if not..
820 */
821static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
822{
823 pte_val(pte) &= _PAGE_CHG_MASK;
824 pte_val(pte) |= pgprot_val(newprot);
825 /*
826 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
827 * has the invalid bit set, clear it again for readable, young pages
828 */
829 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
830 pte_val(pte) &= ~_PAGE_INVALID;
831 /*
832 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
833 * protection bit set, clear it again for writable, dirty pages
834 */
835 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
836 pte_val(pte) &= ~_PAGE_PROTECT;
837 return pte;
838}
839
840static inline pte_t pte_wrprotect(pte_t pte)
841{
842 pte_val(pte) &= ~_PAGE_WRITE;
843 pte_val(pte) |= _PAGE_PROTECT;
844 return pte;
845}
846
847static inline pte_t pte_mkwrite(pte_t pte)
848{
849 pte_val(pte) |= _PAGE_WRITE;
850 if (pte_val(pte) & _PAGE_DIRTY)
851 pte_val(pte) &= ~_PAGE_PROTECT;
852 return pte;
853}
854
855static inline pte_t pte_mkclean(pte_t pte)
856{
857 pte_val(pte) &= ~_PAGE_DIRTY;
858 pte_val(pte) |= _PAGE_PROTECT;
859 return pte;
860}
861
862static inline pte_t pte_mkdirty(pte_t pte)
863{
864 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
865 if (pte_val(pte) & _PAGE_WRITE)
866 pte_val(pte) &= ~_PAGE_PROTECT;
867 return pte;
868}
869
870static inline pte_t pte_mkold(pte_t pte)
871{
872 pte_val(pte) &= ~_PAGE_YOUNG;
873 pte_val(pte) |= _PAGE_INVALID;
874 return pte;
875}
876
877static inline pte_t pte_mkyoung(pte_t pte)
878{
879 pte_val(pte) |= _PAGE_YOUNG;
880 if (pte_val(pte) & _PAGE_READ)
881 pte_val(pte) &= ~_PAGE_INVALID;
882 return pte;
883}
884
885static inline pte_t pte_mkspecial(pte_t pte)
886{
887 pte_val(pte) |= _PAGE_SPECIAL;
888 return pte;
889}
890
891#ifdef CONFIG_HUGETLB_PAGE
892static inline pte_t pte_mkhuge(pte_t pte)
893{
894 pte_val(pte) |= _PAGE_LARGE;
895 return pte;
896}
897#endif
898
899#define IPTE_GLOBAL 0
900#define IPTE_LOCAL 1
901
902static inline void __ptep_ipte(unsigned long address, pte_t *ptep, int local)
903{
904 unsigned long pto = (unsigned long) ptep;
905
906 /* Invalidation + TLB flush for the pte */
907 asm volatile(
908 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
909 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
910 [m4] "i" (local));
911}
912
913static inline void __ptep_ipte_range(unsigned long address, int nr,
914 pte_t *ptep, int local)
915{
916 unsigned long pto = (unsigned long) ptep;
917
918 /* Invalidate a range of ptes + TLB flush of the ptes */
919 do {
920 asm volatile(
921 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
922 : [r2] "+a" (address), [r3] "+a" (nr)
923 : [r1] "a" (pto), [m4] "i" (local) : "memory");
924 } while (nr != 255);
925}
926
927/*
928 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
929 * both clear the TLB for the unmapped pte. The reason is that
930 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
931 * to modify an active pte. The sequence is
932 * 1) ptep_get_and_clear
933 * 2) set_pte_at
934 * 3) flush_tlb_range
935 * On s390 the tlb needs to get flushed with the modification of the pte
936 * if the pte is active. The only way how this can be implemented is to
937 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
938 * is a nop.
939 */
940pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
941pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
942
943#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
944static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
945 unsigned long addr, pte_t *ptep)
946{
947 pte_t pte = *ptep;
948
949 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
950 return pte_young(pte);
951}
952
953#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
954static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
955 unsigned long address, pte_t *ptep)
956{
957 return ptep_test_and_clear_young(vma, address, ptep);
958}
959
960#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
961static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
962 unsigned long addr, pte_t *ptep)
963{
964 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
965}
966
967#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
968pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
969void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
970
971#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
972static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
973 unsigned long addr, pte_t *ptep)
974{
975 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
976}
977
978/*
979 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
980 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
981 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
982 * cannot be accessed while the batched unmap is running. In this case
983 * full==1 and a simple pte_clear is enough. See tlb.h.
984 */
985#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
986static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
987 unsigned long addr,
988 pte_t *ptep, int full)
989{
990 if (full) {
991 pte_t pte = *ptep;
992 *ptep = __pte(_PAGE_INVALID);
993 return pte;
994 }
995 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
996}
997
998#define __HAVE_ARCH_PTEP_SET_WRPROTECT
999static inline void ptep_set_wrprotect(struct mm_struct *mm,
1000 unsigned long addr, pte_t *ptep)
1001{
1002 pte_t pte = *ptep;
1003
1004 if (pte_write(pte))
1005 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1006}
1007
1008#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1009static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1010 unsigned long addr, pte_t *ptep,
1011 pte_t entry, int dirty)
1012{
1013 if (pte_same(*ptep, entry))
1014 return 0;
1015 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1016 return 1;
1017}
1018
1019/*
1020 * Additional functions to handle KVM guest page tables
1021 */
1022void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1023 pte_t *ptep, pte_t entry);
1024void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1025void ptep_notify(struct mm_struct *mm, unsigned long addr,
1026 pte_t *ptep, unsigned long bits);
1027int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1028 pte_t *ptep, int prot, unsigned long bit);
1029void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1030 pte_t *ptep , int reset);
1031void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1032int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1033 pte_t *sptep, pte_t *tptep, pte_t pte);
1034void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1035
1036bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1037int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1038 unsigned char key, bool nq);
1039int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1040 unsigned char key, unsigned char *oldkey,
1041 bool nq, bool mr, bool mc);
1042int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1043int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1044 unsigned char *key);
1045
1046int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1047 unsigned long bits, unsigned long value);
1048int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1049int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1050 unsigned long *oldpte, unsigned long *oldpgste);
1051
1052/*
1053 * Certain architectures need to do special things when PTEs
1054 * within a page table are directly modified. Thus, the following
1055 * hook is made available.
1056 */
1057static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1058 pte_t *ptep, pte_t entry)
1059{
1060 if (!MACHINE_HAS_NX)
1061 pte_val(entry) &= ~_PAGE_NOEXEC;
1062 if (pte_present(entry))
1063 pte_val(entry) &= ~_PAGE_UNUSED;
1064 if (mm_has_pgste(mm))
1065 ptep_set_pte_at(mm, addr, ptep, entry);
1066 else
1067 *ptep = entry;
1068}
1069
1070/*
1071 * Conversion functions: convert a page and protection to a page entry,
1072 * and a page entry and page directory to the page they refer to.
1073 */
1074static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1075{
1076 pte_t __pte;
1077 pte_val(__pte) = physpage + pgprot_val(pgprot);
1078 return pte_mkyoung(__pte);
1079}
1080
1081static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1082{
1083 unsigned long physpage = page_to_phys(page);
1084 pte_t __pte = mk_pte_phys(physpage, pgprot);
1085
1086 if (pte_write(__pte) && PageDirty(page))
1087 __pte = pte_mkdirty(__pte);
1088 return __pte;
1089}
1090
1091#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1092#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1093#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1094#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1095
1096#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1097#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1098
1099#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1100#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1101#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1102
1103static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1104{
1105 pud_t *pud = (pud_t *) pgd;
1106 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1107 pud = (pud_t *) pgd_deref(*pgd);
1108 return pud + pud_index(address);
1109}
1110
1111static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1112{
1113 pmd_t *pmd = (pmd_t *) pud;
1114 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1115 pmd = (pmd_t *) pud_deref(*pud);
1116 return pmd + pmd_index(address);
1117}
1118
1119#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1120#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1121#define pte_page(x) pfn_to_page(pte_pfn(x))
1122
1123#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1124#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1125
1126/* Find an entry in the lowest level page table.. */
1127#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1128#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1129#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1130#define pte_unmap(pte) do { } while (0)
1131
1132static inline pmd_t pmd_wrprotect(pmd_t pmd)
1133{
1134 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1135 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1136 return pmd;
1137}
1138
1139static inline pmd_t pmd_mkwrite(pmd_t pmd)
1140{
1141 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1142 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1143 return pmd;
1144 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1145 return pmd;
1146}
1147
1148static inline pmd_t pmd_mkclean(pmd_t pmd)
1149{
1150 if (pmd_large(pmd)) {
1151 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1152 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1153 }
1154 return pmd;
1155}
1156
1157static inline pmd_t pmd_mkdirty(pmd_t pmd)
1158{
1159 if (pmd_large(pmd)) {
1160 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1161 _SEGMENT_ENTRY_SOFT_DIRTY;
1162 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1163 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1164 }
1165 return pmd;
1166}
1167
1168static inline pud_t pud_wrprotect(pud_t pud)
1169{
1170 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1171 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1172 return pud;
1173}
1174
1175static inline pud_t pud_mkwrite(pud_t pud)
1176{
1177 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1178 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1179 return pud;
1180 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1181 return pud;
1182}
1183
1184static inline pud_t pud_mkclean(pud_t pud)
1185{
1186 if (pud_large(pud)) {
1187 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1188 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1189 }
1190 return pud;
1191}
1192
1193static inline pud_t pud_mkdirty(pud_t pud)
1194{
1195 if (pud_large(pud)) {
1196 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1197 _REGION3_ENTRY_SOFT_DIRTY;
1198 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1199 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1200 }
1201 return pud;
1202}
1203
1204#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1205static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1206{
1207 /*
1208 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1209 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1210 */
1211 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1212 return pgprot_val(SEGMENT_NONE);
1213 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1214 return pgprot_val(SEGMENT_RO);
1215 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1216 return pgprot_val(SEGMENT_RX);
1217 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1218 return pgprot_val(SEGMENT_RW);
1219 return pgprot_val(SEGMENT_RWX);
1220}
1221
1222static inline pmd_t pmd_mkyoung(pmd_t pmd)
1223{
1224 if (pmd_large(pmd)) {
1225 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1226 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1227 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1228 }
1229 return pmd;
1230}
1231
1232static inline pmd_t pmd_mkold(pmd_t pmd)
1233{
1234 if (pmd_large(pmd)) {
1235 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1236 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1237 }
1238 return pmd;
1239}
1240
1241static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1242{
1243 if (pmd_large(pmd)) {
1244 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1245 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1246 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1247 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1248 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1249 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1250 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1251 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1252 return pmd;
1253 }
1254 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1255 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1256 return pmd;
1257}
1258
1259static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1260{
1261 pmd_t __pmd;
1262 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1263 return __pmd;
1264}
1265
1266#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1267
1268static inline void __pmdp_csp(pmd_t *pmdp)
1269{
1270 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1271 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1272}
1273
1274#define IDTE_GLOBAL 0
1275#define IDTE_LOCAL 1
1276
1277static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp, int local)
1278{
1279 unsigned long sto;
1280
1281 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1282 asm volatile(
1283 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1284 : "+m" (*pmdp)
1285 : [r1] "a" (sto), [r2] "a" ((address & HPAGE_MASK)),
1286 [m4] "i" (local)
1287 : "cc" );
1288}
1289
1290static inline void __pudp_idte(unsigned long address, pud_t *pudp, int local)
1291{
1292 unsigned long r3o;
1293
1294 r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
1295 r3o |= _ASCE_TYPE_REGION3;
1296 asm volatile(
1297 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1298 : "+m" (*pudp)
1299 : [r1] "a" (r3o), [r2] "a" ((address & PUD_MASK)),
1300 [m4] "i" (local)
1301 : "cc");
1302}
1303
1304pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1305pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1306pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1307
1308#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1309
1310#define __HAVE_ARCH_PGTABLE_DEPOSIT
1311void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1312 pgtable_t pgtable);
1313
1314#define __HAVE_ARCH_PGTABLE_WITHDRAW
1315pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1316
1317#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1318static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1319 unsigned long addr, pmd_t *pmdp,
1320 pmd_t entry, int dirty)
1321{
1322 VM_BUG_ON(addr & ~HPAGE_MASK);
1323
1324 entry = pmd_mkyoung(entry);
1325 if (dirty)
1326 entry = pmd_mkdirty(entry);
1327 if (pmd_val(*pmdp) == pmd_val(entry))
1328 return 0;
1329 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1330 return 1;
1331}
1332
1333#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1334static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1335 unsigned long addr, pmd_t *pmdp)
1336{
1337 pmd_t pmd = *pmdp;
1338
1339 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1340 return pmd_young(pmd);
1341}
1342
1343#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1344static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1345 unsigned long addr, pmd_t *pmdp)
1346{
1347 VM_BUG_ON(addr & ~HPAGE_MASK);
1348 return pmdp_test_and_clear_young(vma, addr, pmdp);
1349}
1350
1351static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1352 pmd_t *pmdp, pmd_t entry)
1353{
1354 if (!MACHINE_HAS_NX)
1355 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1356 *pmdp = entry;
1357}
1358
1359static inline pmd_t pmd_mkhuge(pmd_t pmd)
1360{
1361 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1362 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1363 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1364 return pmd;
1365}
1366
1367#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1368static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1369 unsigned long addr, pmd_t *pmdp)
1370{
1371 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1372}
1373
1374#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1375static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1376 unsigned long addr,
1377 pmd_t *pmdp, int full)
1378{
1379 if (full) {
1380 pmd_t pmd = *pmdp;
1381 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1382 return pmd;
1383 }
1384 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1385}
1386
1387#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1388static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1389 unsigned long addr, pmd_t *pmdp)
1390{
1391 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1392}
1393
1394#define __HAVE_ARCH_PMDP_INVALIDATE
1395static inline void pmdp_invalidate(struct vm_area_struct *vma,
1396 unsigned long addr, pmd_t *pmdp)
1397{
1398 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1399}
1400
1401#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1402static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1403 unsigned long addr, pmd_t *pmdp)
1404{
1405 pmd_t pmd = *pmdp;
1406
1407 if (pmd_write(pmd))
1408 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1409}
1410
1411static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1412 unsigned long address,
1413 pmd_t *pmdp)
1414{
1415 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1416}
1417#define pmdp_collapse_flush pmdp_collapse_flush
1418
1419#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1420#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1421
1422static inline int pmd_trans_huge(pmd_t pmd)
1423{
1424 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1425}
1426
1427#define has_transparent_hugepage has_transparent_hugepage
1428static inline int has_transparent_hugepage(void)
1429{
1430 return MACHINE_HAS_EDAT1 ? 1 : 0;
1431}
1432#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1433
1434/*
1435 * 64 bit swap entry format:
1436 * A page-table entry has some bits we have to treat in a special way.
1437 * Bits 52 and bit 55 have to be zero, otherwise a specification
1438 * exception will occur instead of a page translation exception. The
1439 * specification exception has the bad habit not to store necessary
1440 * information in the lowcore.
1441 * Bits 54 and 63 are used to indicate the page type.
1442 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1443 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1444 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1445 * for the offset.
1446 * | offset |01100|type |00|
1447 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1448 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1449 */
1450
1451#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1452#define __SWP_OFFSET_SHIFT 12
1453#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1454#define __SWP_TYPE_SHIFT 2
1455
1456static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1457{
1458 pte_t pte;
1459
1460 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1461 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1462 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1463 return pte;
1464}
1465
1466static inline unsigned long __swp_type(swp_entry_t entry)
1467{
1468 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1469}
1470
1471static inline unsigned long __swp_offset(swp_entry_t entry)
1472{
1473 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1474}
1475
1476static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1477{
1478 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1479}
1480
1481#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1482#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1483
1484#endif /* !__ASSEMBLY__ */
1485
1486#define kern_addr_valid(addr) (1)
1487
1488extern int vmem_add_mapping(unsigned long start, unsigned long size);
1489extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1490extern int s390_enable_sie(void);
1491extern int s390_enable_skey(void);
1492extern void s390_reset_cmma(struct mm_struct *mm);
1493
1494/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1495#define HAVE_ARCH_UNMAPPED_AREA
1496#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1497
1498/*
1499 * No page table caches to initialise
1500 */
1501static inline void pgtable_cache_init(void) { }
1502static inline void check_pgt_cache(void) { }
1503
1504#include <asm-generic/pgtable.h>
1505
1506#endif /* _S390_PAGE_H */