at v4.12-rc7 3142 lines 95 kB view raw
1/* 2 * RocketPort device driver for Linux 3 * 4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000. 5 * 6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of the 11 * License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23/* 24 * Kernel Synchronization: 25 * 26 * This driver has 2 kernel control paths - exception handlers (calls into the driver 27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts 28 * are not used. 29 * 30 * Critical data: 31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of 32 * serial port state information and the xmit_buf circular buffer. Protected by 33 * a per port spinlock. 34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there 35 * is data to be transmitted. Protected by atomic bit operations. 36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations. 37 * 38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against 39 * simultaneous access to the same port by more than one process. 40 */ 41 42/****** Defines ******/ 43#define ROCKET_PARANOIA_CHECK 44#define ROCKET_DISABLE_SIMUSAGE 45 46#undef ROCKET_SOFT_FLOW 47#undef ROCKET_DEBUG_OPEN 48#undef ROCKET_DEBUG_INTR 49#undef ROCKET_DEBUG_WRITE 50#undef ROCKET_DEBUG_FLOW 51#undef ROCKET_DEBUG_THROTTLE 52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT 53#undef ROCKET_DEBUG_RECEIVE 54#undef ROCKET_DEBUG_HANGUP 55#undef REV_PCI_ORDER 56#undef ROCKET_DEBUG_IO 57 58#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */ 59 60/****** Kernel includes ******/ 61 62#include <linux/module.h> 63#include <linux/errno.h> 64#include <linux/major.h> 65#include <linux/kernel.h> 66#include <linux/signal.h> 67#include <linux/slab.h> 68#include <linux/mm.h> 69#include <linux/sched.h> 70#include <linux/timer.h> 71#include <linux/interrupt.h> 72#include <linux/tty.h> 73#include <linux/tty_driver.h> 74#include <linux/tty_flip.h> 75#include <linux/serial.h> 76#include <linux/string.h> 77#include <linux/fcntl.h> 78#include <linux/ptrace.h> 79#include <linux/mutex.h> 80#include <linux/ioport.h> 81#include <linux/delay.h> 82#include <linux/completion.h> 83#include <linux/wait.h> 84#include <linux/pci.h> 85#include <linux/uaccess.h> 86#include <linux/atomic.h> 87#include <asm/unaligned.h> 88#include <linux/bitops.h> 89#include <linux/spinlock.h> 90#include <linux/init.h> 91 92/****** RocketPort includes ******/ 93 94#include "rocket_int.h" 95#include "rocket.h" 96 97#define ROCKET_VERSION "2.09" 98#define ROCKET_DATE "12-June-2003" 99 100/****** RocketPort Local Variables ******/ 101 102static void rp_do_poll(unsigned long dummy); 103 104static struct tty_driver *rocket_driver; 105 106static struct rocket_version driver_version = { 107 ROCKET_VERSION, ROCKET_DATE 108}; 109 110static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */ 111static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */ 112 /* eg. Bit 0 indicates port 0 has xmit data, ... */ 113static atomic_t rp_num_ports_open; /* Number of serial ports open */ 114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0); 115 116static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */ 117static unsigned long board2; 118static unsigned long board3; 119static unsigned long board4; 120static unsigned long controller; 121static bool support_low_speed; 122static unsigned long modem1; 123static unsigned long modem2; 124static unsigned long modem3; 125static unsigned long modem4; 126static unsigned long pc104_1[8]; 127static unsigned long pc104_2[8]; 128static unsigned long pc104_3[8]; 129static unsigned long pc104_4[8]; 130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 }; 131 132static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */ 133static unsigned long rcktpt_io_addr[NUM_BOARDS]; 134static int rcktpt_type[NUM_BOARDS]; 135static int is_PCI[NUM_BOARDS]; 136static rocketModel_t rocketModel[NUM_BOARDS]; 137static int max_board; 138static const struct tty_port_operations rocket_port_ops; 139 140/* 141 * The following arrays define the interrupt bits corresponding to each AIOP. 142 * These bits are different between the ISA and regular PCI boards and the 143 * Universal PCI boards. 144 */ 145 146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = { 147 AIOP_INTR_BIT_0, 148 AIOP_INTR_BIT_1, 149 AIOP_INTR_BIT_2, 150 AIOP_INTR_BIT_3 151}; 152 153#ifdef CONFIG_PCI 154static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = { 155 UPCI_AIOP_INTR_BIT_0, 156 UPCI_AIOP_INTR_BIT_1, 157 UPCI_AIOP_INTR_BIT_2, 158 UPCI_AIOP_INTR_BIT_3 159}; 160#endif 161 162static Byte_t RData[RDATASIZE] = { 163 0x00, 0x09, 0xf6, 0x82, 164 0x02, 0x09, 0x86, 0xfb, 165 0x04, 0x09, 0x00, 0x0a, 166 0x06, 0x09, 0x01, 0x0a, 167 0x08, 0x09, 0x8a, 0x13, 168 0x0a, 0x09, 0xc5, 0x11, 169 0x0c, 0x09, 0x86, 0x85, 170 0x0e, 0x09, 0x20, 0x0a, 171 0x10, 0x09, 0x21, 0x0a, 172 0x12, 0x09, 0x41, 0xff, 173 0x14, 0x09, 0x82, 0x00, 174 0x16, 0x09, 0x82, 0x7b, 175 0x18, 0x09, 0x8a, 0x7d, 176 0x1a, 0x09, 0x88, 0x81, 177 0x1c, 0x09, 0x86, 0x7a, 178 0x1e, 0x09, 0x84, 0x81, 179 0x20, 0x09, 0x82, 0x7c, 180 0x22, 0x09, 0x0a, 0x0a 181}; 182 183static Byte_t RRegData[RREGDATASIZE] = { 184 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */ 185 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */ 186 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */ 187 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */ 188 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */ 189 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */ 190 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */ 191 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */ 192 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */ 193 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */ 194 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */ 195 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */ 196 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */ 197}; 198 199static CONTROLLER_T sController[CTL_SIZE] = { 200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 206 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 207 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}} 208}; 209 210static Byte_t sBitMapClrTbl[8] = { 211 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f 212}; 213 214static Byte_t sBitMapSetTbl[8] = { 215 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 216}; 217 218static int sClockPrescale = 0x14; 219 220/* 221 * Line number is the ttySIx number (x), the Minor number. We 222 * assign them sequentially, starting at zero. The following 223 * array keeps track of the line number assigned to a given board/aiop/channel. 224 */ 225static unsigned char lineNumbers[MAX_RP_PORTS]; 226static unsigned long nextLineNumber; 227 228/***** RocketPort Static Prototypes *********/ 229static int __init init_ISA(int i); 230static void rp_wait_until_sent(struct tty_struct *tty, int timeout); 231static void rp_flush_buffer(struct tty_struct *tty); 232static unsigned char GetLineNumber(int ctrl, int aiop, int ch); 233static unsigned char SetLineNumber(int ctrl, int aiop, int ch); 234static void rp_start(struct tty_struct *tty); 235static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 236 int ChanNum); 237static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode); 238static void sFlushRxFIFO(CHANNEL_T * ChP); 239static void sFlushTxFIFO(CHANNEL_T * ChP); 240static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags); 241static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags); 242static void sModemReset(CONTROLLER_T * CtlP, int chan, int on); 243static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on); 244static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data); 245static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 246 ByteIO_t * AiopIOList, int AiopIOListSize, 247 int IRQNum, Byte_t Frequency, int PeriodicOnly); 248static int sReadAiopID(ByteIO_t io); 249static int sReadAiopNumChan(WordIO_t io); 250 251MODULE_AUTHOR("Theodore Ts'o"); 252MODULE_DESCRIPTION("Comtrol RocketPort driver"); 253module_param_hw(board1, ulong, ioport, 0); 254MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1"); 255module_param_hw(board2, ulong, ioport, 0); 256MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2"); 257module_param_hw(board3, ulong, ioport, 0); 258MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3"); 259module_param_hw(board4, ulong, ioport, 0); 260MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4"); 261module_param_hw(controller, ulong, ioport, 0); 262MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller"); 263module_param(support_low_speed, bool, 0); 264MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud"); 265module_param(modem1, ulong, 0); 266MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem"); 267module_param(modem2, ulong, 0); 268MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem"); 269module_param(modem3, ulong, 0); 270MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem"); 271module_param(modem4, ulong, 0); 272MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem"); 273module_param_array(pc104_1, ulong, NULL, 0); 274MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,..."); 275module_param_array(pc104_2, ulong, NULL, 0); 276MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,..."); 277module_param_array(pc104_3, ulong, NULL, 0); 278MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,..."); 279module_param_array(pc104_4, ulong, NULL, 0); 280MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,..."); 281 282static int rp_init(void); 283static void rp_cleanup_module(void); 284 285module_init(rp_init); 286module_exit(rp_cleanup_module); 287 288 289MODULE_LICENSE("Dual BSD/GPL"); 290 291/*************************************************************************/ 292/* Module code starts here */ 293 294static inline int rocket_paranoia_check(struct r_port *info, 295 const char *routine) 296{ 297#ifdef ROCKET_PARANOIA_CHECK 298 if (!info) 299 return 1; 300 if (info->magic != RPORT_MAGIC) { 301 printk(KERN_WARNING "Warning: bad magic number for rocketport " 302 "struct in %s\n", routine); 303 return 1; 304 } 305#endif 306 return 0; 307} 308 309 310/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals 311 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the 312 * tty layer. 313 */ 314static void rp_do_receive(struct r_port *info, CHANNEL_t *cp, 315 unsigned int ChanStatus) 316{ 317 unsigned int CharNStat; 318 int ToRecv, wRecv, space; 319 unsigned char *cbuf; 320 321 ToRecv = sGetRxCnt(cp); 322#ifdef ROCKET_DEBUG_INTR 323 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv); 324#endif 325 if (ToRecv == 0) 326 return; 327 328 /* 329 * if status indicates there are errored characters in the 330 * FIFO, then enter status mode (a word in FIFO holds 331 * character and status). 332 */ 333 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) { 334 if (!(ChanStatus & STATMODE)) { 335#ifdef ROCKET_DEBUG_RECEIVE 336 printk(KERN_INFO "Entering STATMODE...\n"); 337#endif 338 ChanStatus |= STATMODE; 339 sEnRxStatusMode(cp); 340 } 341 } 342 343 /* 344 * if we previously entered status mode, then read down the 345 * FIFO one word at a time, pulling apart the character and 346 * the status. Update error counters depending on status 347 */ 348 if (ChanStatus & STATMODE) { 349#ifdef ROCKET_DEBUG_RECEIVE 350 printk(KERN_INFO "Ignore %x, read %x...\n", 351 info->ignore_status_mask, info->read_status_mask); 352#endif 353 while (ToRecv) { 354 char flag; 355 356 CharNStat = sInW(sGetTxRxDataIO(cp)); 357#ifdef ROCKET_DEBUG_RECEIVE 358 printk(KERN_INFO "%x...\n", CharNStat); 359#endif 360 if (CharNStat & STMBREAKH) 361 CharNStat &= ~(STMFRAMEH | STMPARITYH); 362 if (CharNStat & info->ignore_status_mask) { 363 ToRecv--; 364 continue; 365 } 366 CharNStat &= info->read_status_mask; 367 if (CharNStat & STMBREAKH) 368 flag = TTY_BREAK; 369 else if (CharNStat & STMPARITYH) 370 flag = TTY_PARITY; 371 else if (CharNStat & STMFRAMEH) 372 flag = TTY_FRAME; 373 else if (CharNStat & STMRCVROVRH) 374 flag = TTY_OVERRUN; 375 else 376 flag = TTY_NORMAL; 377 tty_insert_flip_char(&info->port, CharNStat & 0xff, 378 flag); 379 ToRecv--; 380 } 381 382 /* 383 * after we've emptied the FIFO in status mode, turn 384 * status mode back off 385 */ 386 if (sGetRxCnt(cp) == 0) { 387#ifdef ROCKET_DEBUG_RECEIVE 388 printk(KERN_INFO "Status mode off.\n"); 389#endif 390 sDisRxStatusMode(cp); 391 } 392 } else { 393 /* 394 * we aren't in status mode, so read down the FIFO two 395 * characters at time by doing repeated word IO 396 * transfer. 397 */ 398 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv); 399 if (space < ToRecv) { 400#ifdef ROCKET_DEBUG_RECEIVE 401 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space); 402#endif 403 if (space <= 0) 404 return; 405 ToRecv = space; 406 } 407 wRecv = ToRecv >> 1; 408 if (wRecv) 409 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv); 410 if (ToRecv & 1) 411 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp)); 412 } 413 /* Push the data up to the tty layer */ 414 tty_flip_buffer_push(&info->port); 415} 416 417/* 418 * Serial port transmit data function. Called from the timer polling loop as a 419 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready 420 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is 421 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks. 422 */ 423static void rp_do_transmit(struct r_port *info) 424{ 425 int c; 426 CHANNEL_t *cp = &info->channel; 427 struct tty_struct *tty; 428 unsigned long flags; 429 430#ifdef ROCKET_DEBUG_INTR 431 printk(KERN_DEBUG "%s\n", __func__); 432#endif 433 if (!info) 434 return; 435 tty = tty_port_tty_get(&info->port); 436 437 if (tty == NULL) { 438 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__); 439 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 440 return; 441 } 442 443 spin_lock_irqsave(&info->slock, flags); 444 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 445 446 /* Loop sending data to FIFO until done or FIFO full */ 447 while (1) { 448 if (tty->stopped) 449 break; 450 c = min(info->xmit_fifo_room, info->xmit_cnt); 451 c = min(c, XMIT_BUF_SIZE - info->xmit_tail); 452 if (c <= 0 || info->xmit_fifo_room <= 0) 453 break; 454 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2); 455 if (c & 1) 456 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]); 457 info->xmit_tail += c; 458 info->xmit_tail &= XMIT_BUF_SIZE - 1; 459 info->xmit_cnt -= c; 460 info->xmit_fifo_room -= c; 461#ifdef ROCKET_DEBUG_INTR 462 printk(KERN_INFO "tx %d chars...\n", c); 463#endif 464 } 465 466 if (info->xmit_cnt == 0) 467 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 468 469 if (info->xmit_cnt < WAKEUP_CHARS) { 470 tty_wakeup(tty); 471#ifdef ROCKETPORT_HAVE_POLL_WAIT 472 wake_up_interruptible(&tty->poll_wait); 473#endif 474 } 475 476 spin_unlock_irqrestore(&info->slock, flags); 477 tty_kref_put(tty); 478 479#ifdef ROCKET_DEBUG_INTR 480 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head, 481 info->xmit_tail, info->xmit_fifo_room); 482#endif 483} 484 485/* 486 * Called when a serial port signals it has read data in it's RX FIFO. 487 * It checks what interrupts are pending and services them, including 488 * receiving serial data. 489 */ 490static void rp_handle_port(struct r_port *info) 491{ 492 CHANNEL_t *cp; 493 unsigned int IntMask, ChanStatus; 494 495 if (!info) 496 return; 497 498 if (!tty_port_initialized(&info->port)) { 499 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with " 500 "info->flags & NOT_INIT\n"); 501 return; 502 } 503 504 cp = &info->channel; 505 506 IntMask = sGetChanIntID(cp) & info->intmask; 507#ifdef ROCKET_DEBUG_INTR 508 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask); 509#endif 510 ChanStatus = sGetChanStatus(cp); 511 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */ 512 rp_do_receive(info, cp, ChanStatus); 513 } 514 if (IntMask & DELTA_CD) { /* CD change */ 515#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP)) 516 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line, 517 (ChanStatus & CD_ACT) ? "on" : "off"); 518#endif 519 if (!(ChanStatus & CD_ACT) && info->cd_status) { 520#ifdef ROCKET_DEBUG_HANGUP 521 printk(KERN_INFO "CD drop, calling hangup.\n"); 522#endif 523 tty_port_tty_hangup(&info->port, false); 524 } 525 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0; 526 wake_up_interruptible(&info->port.open_wait); 527 } 528#ifdef ROCKET_DEBUG_INTR 529 if (IntMask & DELTA_CTS) { /* CTS change */ 530 printk(KERN_INFO "CTS change...\n"); 531 } 532 if (IntMask & DELTA_DSR) { /* DSR change */ 533 printk(KERN_INFO "DSR change...\n"); 534 } 535#endif 536} 537 538/* 539 * The top level polling routine. Repeats every 1/100 HZ (10ms). 540 */ 541static void rp_do_poll(unsigned long dummy) 542{ 543 CONTROLLER_t *ctlp; 544 int ctrl, aiop, ch, line; 545 unsigned int xmitmask, i; 546 unsigned int CtlMask; 547 unsigned char AiopMask; 548 Word_t bit; 549 550 /* Walk through all the boards (ctrl's) */ 551 for (ctrl = 0; ctrl < max_board; ctrl++) { 552 if (rcktpt_io_addr[ctrl] <= 0) 553 continue; 554 555 /* Get a ptr to the board's control struct */ 556 ctlp = sCtlNumToCtlPtr(ctrl); 557 558 /* Get the interrupt status from the board */ 559#ifdef CONFIG_PCI 560 if (ctlp->BusType == isPCI) 561 CtlMask = sPCIGetControllerIntStatus(ctlp); 562 else 563#endif 564 CtlMask = sGetControllerIntStatus(ctlp); 565 566 /* Check if any AIOP read bits are set */ 567 for (aiop = 0; CtlMask; aiop++) { 568 bit = ctlp->AiopIntrBits[aiop]; 569 if (CtlMask & bit) { 570 CtlMask &= ~bit; 571 AiopMask = sGetAiopIntStatus(ctlp, aiop); 572 573 /* Check if any port read bits are set */ 574 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) { 575 if (AiopMask & 1) { 576 577 /* Get the line number (/dev/ttyRx number). */ 578 /* Read the data from the port. */ 579 line = GetLineNumber(ctrl, aiop, ch); 580 rp_handle_port(rp_table[line]); 581 } 582 } 583 } 584 } 585 586 xmitmask = xmit_flags[ctrl]; 587 588 /* 589 * xmit_flags contains bit-significant flags, indicating there is data 590 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 591 * 1, ... (32 total possible). The variable i has the aiop and ch 592 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc). 593 */ 594 if (xmitmask) { 595 for (i = 0; i < rocketModel[ctrl].numPorts; i++) { 596 if (xmitmask & (1 << i)) { 597 aiop = (i & 0x18) >> 3; 598 ch = i & 0x07; 599 line = GetLineNumber(ctrl, aiop, ch); 600 rp_do_transmit(rp_table[line]); 601 } 602 } 603 } 604 } 605 606 /* 607 * Reset the timer so we get called at the next clock tick (10ms). 608 */ 609 if (atomic_read(&rp_num_ports_open)) 610 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 611} 612 613/* 614 * Initializes the r_port structure for a port, as well as enabling the port on 615 * the board. 616 * Inputs: board, aiop, chan numbers 617 */ 618static void __init 619init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev) 620{ 621 unsigned rocketMode; 622 struct r_port *info; 623 int line; 624 CONTROLLER_T *ctlp; 625 626 /* Get the next available line number */ 627 line = SetLineNumber(board, aiop, chan); 628 629 ctlp = sCtlNumToCtlPtr(board); 630 631 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */ 632 info = kzalloc(sizeof (struct r_port), GFP_KERNEL); 633 if (!info) { 634 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n", 635 line); 636 return; 637 } 638 639 info->magic = RPORT_MAGIC; 640 info->line = line; 641 info->ctlp = ctlp; 642 info->board = board; 643 info->aiop = aiop; 644 info->chan = chan; 645 tty_port_init(&info->port); 646 info->port.ops = &rocket_port_ops; 647 info->flags &= ~ROCKET_MODE_MASK; 648 switch (pc104[board][line]) { 649 case 422: 650 info->flags |= ROCKET_MODE_RS422; 651 break; 652 case 485: 653 info->flags |= ROCKET_MODE_RS485; 654 break; 655 case 232: 656 default: 657 info->flags |= ROCKET_MODE_RS232; 658 break; 659 } 660 661 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR; 662 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) { 663 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n", 664 board, aiop, chan); 665 tty_port_destroy(&info->port); 666 kfree(info); 667 return; 668 } 669 670 rocketMode = info->flags & ROCKET_MODE_MASK; 671 672 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485)) 673 sEnRTSToggle(&info->channel); 674 else 675 sDisRTSToggle(&info->channel); 676 677 if (ctlp->boardType == ROCKET_TYPE_PC104) { 678 switch (rocketMode) { 679 case ROCKET_MODE_RS485: 680 sSetInterfaceMode(&info->channel, InterfaceModeRS485); 681 break; 682 case ROCKET_MODE_RS422: 683 sSetInterfaceMode(&info->channel, InterfaceModeRS422); 684 break; 685 case ROCKET_MODE_RS232: 686 default: 687 if (info->flags & ROCKET_RTS_TOGGLE) 688 sSetInterfaceMode(&info->channel, InterfaceModeRS232T); 689 else 690 sSetInterfaceMode(&info->channel, InterfaceModeRS232); 691 break; 692 } 693 } 694 spin_lock_init(&info->slock); 695 mutex_init(&info->write_mtx); 696 rp_table[line] = info; 697 tty_port_register_device(&info->port, rocket_driver, line, 698 pci_dev ? &pci_dev->dev : NULL); 699} 700 701/* 702 * Configures a rocketport port according to its termio settings. Called from 703 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected. 704 */ 705static void configure_r_port(struct tty_struct *tty, struct r_port *info, 706 struct ktermios *old_termios) 707{ 708 unsigned cflag; 709 unsigned long flags; 710 unsigned rocketMode; 711 int bits, baud, divisor; 712 CHANNEL_t *cp; 713 struct ktermios *t = &tty->termios; 714 715 cp = &info->channel; 716 cflag = t->c_cflag; 717 718 /* Byte size and parity */ 719 if ((cflag & CSIZE) == CS8) { 720 sSetData8(cp); 721 bits = 10; 722 } else { 723 sSetData7(cp); 724 bits = 9; 725 } 726 if (cflag & CSTOPB) { 727 sSetStop2(cp); 728 bits++; 729 } else { 730 sSetStop1(cp); 731 } 732 733 if (cflag & PARENB) { 734 sEnParity(cp); 735 bits++; 736 if (cflag & PARODD) { 737 sSetOddParity(cp); 738 } else { 739 sSetEvenParity(cp); 740 } 741 } else { 742 sDisParity(cp); 743 } 744 745 /* baud rate */ 746 baud = tty_get_baud_rate(tty); 747 if (!baud) 748 baud = 9600; 749 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1; 750 if ((divisor >= 8192 || divisor < 0) && old_termios) { 751 baud = tty_termios_baud_rate(old_termios); 752 if (!baud) 753 baud = 9600; 754 divisor = (rp_baud_base[info->board] / baud) - 1; 755 } 756 if (divisor >= 8192 || divisor < 0) { 757 baud = 9600; 758 divisor = (rp_baud_base[info->board] / baud) - 1; 759 } 760 info->cps = baud / bits; 761 sSetBaud(cp, divisor); 762 763 /* FIXME: Should really back compute a baud rate from the divisor */ 764 tty_encode_baud_rate(tty, baud, baud); 765 766 if (cflag & CRTSCTS) { 767 info->intmask |= DELTA_CTS; 768 sEnCTSFlowCtl(cp); 769 } else { 770 info->intmask &= ~DELTA_CTS; 771 sDisCTSFlowCtl(cp); 772 } 773 if (cflag & CLOCAL) { 774 info->intmask &= ~DELTA_CD; 775 } else { 776 spin_lock_irqsave(&info->slock, flags); 777 if (sGetChanStatus(cp) & CD_ACT) 778 info->cd_status = 1; 779 else 780 info->cd_status = 0; 781 info->intmask |= DELTA_CD; 782 spin_unlock_irqrestore(&info->slock, flags); 783 } 784 785 /* 786 * Handle software flow control in the board 787 */ 788#ifdef ROCKET_SOFT_FLOW 789 if (I_IXON(tty)) { 790 sEnTxSoftFlowCtl(cp); 791 if (I_IXANY(tty)) { 792 sEnIXANY(cp); 793 } else { 794 sDisIXANY(cp); 795 } 796 sSetTxXONChar(cp, START_CHAR(tty)); 797 sSetTxXOFFChar(cp, STOP_CHAR(tty)); 798 } else { 799 sDisTxSoftFlowCtl(cp); 800 sDisIXANY(cp); 801 sClrTxXOFF(cp); 802 } 803#endif 804 805 /* 806 * Set up ignore/read mask words 807 */ 808 info->read_status_mask = STMRCVROVRH | 0xFF; 809 if (I_INPCK(tty)) 810 info->read_status_mask |= STMFRAMEH | STMPARITYH; 811 if (I_BRKINT(tty) || I_PARMRK(tty)) 812 info->read_status_mask |= STMBREAKH; 813 814 /* 815 * Characters to ignore 816 */ 817 info->ignore_status_mask = 0; 818 if (I_IGNPAR(tty)) 819 info->ignore_status_mask |= STMFRAMEH | STMPARITYH; 820 if (I_IGNBRK(tty)) { 821 info->ignore_status_mask |= STMBREAKH; 822 /* 823 * If we're ignoring parity and break indicators, 824 * ignore overruns too. (For real raw support). 825 */ 826 if (I_IGNPAR(tty)) 827 info->ignore_status_mask |= STMRCVROVRH; 828 } 829 830 rocketMode = info->flags & ROCKET_MODE_MASK; 831 832 if ((info->flags & ROCKET_RTS_TOGGLE) 833 || (rocketMode == ROCKET_MODE_RS485)) 834 sEnRTSToggle(cp); 835 else 836 sDisRTSToggle(cp); 837 838 sSetRTS(&info->channel); 839 840 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) { 841 switch (rocketMode) { 842 case ROCKET_MODE_RS485: 843 sSetInterfaceMode(cp, InterfaceModeRS485); 844 break; 845 case ROCKET_MODE_RS422: 846 sSetInterfaceMode(cp, InterfaceModeRS422); 847 break; 848 case ROCKET_MODE_RS232: 849 default: 850 if (info->flags & ROCKET_RTS_TOGGLE) 851 sSetInterfaceMode(cp, InterfaceModeRS232T); 852 else 853 sSetInterfaceMode(cp, InterfaceModeRS232); 854 break; 855 } 856 } 857} 858 859static int carrier_raised(struct tty_port *port) 860{ 861 struct r_port *info = container_of(port, struct r_port, port); 862 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0; 863} 864 865static void dtr_rts(struct tty_port *port, int on) 866{ 867 struct r_port *info = container_of(port, struct r_port, port); 868 if (on) { 869 sSetDTR(&info->channel); 870 sSetRTS(&info->channel); 871 } else { 872 sClrDTR(&info->channel); 873 sClrRTS(&info->channel); 874 } 875} 876 877/* 878 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in 879 * port's r_port struct. Initializes the port hardware. 880 */ 881static int rp_open(struct tty_struct *tty, struct file *filp) 882{ 883 struct r_port *info; 884 struct tty_port *port; 885 int retval; 886 CHANNEL_t *cp; 887 unsigned long page; 888 889 info = rp_table[tty->index]; 890 if (info == NULL) 891 return -ENXIO; 892 port = &info->port; 893 894 page = __get_free_page(GFP_KERNEL); 895 if (!page) 896 return -ENOMEM; 897 898 /* 899 * We must not sleep from here until the port is marked fully in use. 900 */ 901 if (info->xmit_buf) 902 free_page(page); 903 else 904 info->xmit_buf = (unsigned char *) page; 905 906 tty->driver_data = info; 907 tty_port_tty_set(port, tty); 908 909 if (port->count++ == 0) { 910 atomic_inc(&rp_num_ports_open); 911 912#ifdef ROCKET_DEBUG_OPEN 913 printk(KERN_INFO "rocket mod++ = %d...\n", 914 atomic_read(&rp_num_ports_open)); 915#endif 916 } 917#ifdef ROCKET_DEBUG_OPEN 918 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count); 919#endif 920 921 /* 922 * Info->count is now 1; so it's safe to sleep now. 923 */ 924 if (!tty_port_initialized(port)) { 925 cp = &info->channel; 926 sSetRxTrigger(cp, TRIG_1); 927 if (sGetChanStatus(cp) & CD_ACT) 928 info->cd_status = 1; 929 else 930 info->cd_status = 0; 931 sDisRxStatusMode(cp); 932 sFlushRxFIFO(cp); 933 sFlushTxFIFO(cp); 934 935 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 936 sSetRxTrigger(cp, TRIG_1); 937 938 sGetChanStatus(cp); 939 sDisRxStatusMode(cp); 940 sClrTxXOFF(cp); 941 942 sDisCTSFlowCtl(cp); 943 sDisTxSoftFlowCtl(cp); 944 945 sEnRxFIFO(cp); 946 sEnTransmit(cp); 947 948 tty_port_set_initialized(&info->port, 1); 949 950 /* 951 * Set up the tty->alt_speed kludge 952 */ 953 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI) 954 tty->alt_speed = 57600; 955 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI) 956 tty->alt_speed = 115200; 957 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI) 958 tty->alt_speed = 230400; 959 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP) 960 tty->alt_speed = 460800; 961 962 configure_r_port(tty, info, NULL); 963 if (C_BAUD(tty)) { 964 sSetDTR(cp); 965 sSetRTS(cp); 966 } 967 } 968 /* Starts (or resets) the maint polling loop */ 969 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 970 971 retval = tty_port_block_til_ready(port, tty, filp); 972 if (retval) { 973#ifdef ROCKET_DEBUG_OPEN 974 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval); 975#endif 976 return retval; 977 } 978 return 0; 979} 980 981/* 982 * Exception handler that closes a serial port. info->port.count is considered critical. 983 */ 984static void rp_close(struct tty_struct *tty, struct file *filp) 985{ 986 struct r_port *info = tty->driver_data; 987 struct tty_port *port = &info->port; 988 int timeout; 989 CHANNEL_t *cp; 990 991 if (rocket_paranoia_check(info, "rp_close")) 992 return; 993 994#ifdef ROCKET_DEBUG_OPEN 995 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count); 996#endif 997 998 if (tty_port_close_start(port, tty, filp) == 0) 999 return; 1000 1001 mutex_lock(&port->mutex); 1002 cp = &info->channel; 1003 /* 1004 * Before we drop DTR, make sure the UART transmitter 1005 * has completely drained; this is especially 1006 * important if there is a transmit FIFO! 1007 */ 1008 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps; 1009 if (timeout == 0) 1010 timeout = 1; 1011 rp_wait_until_sent(tty, timeout); 1012 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1013 1014 sDisTransmit(cp); 1015 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1016 sDisCTSFlowCtl(cp); 1017 sDisTxSoftFlowCtl(cp); 1018 sClrTxXOFF(cp); 1019 sFlushRxFIFO(cp); 1020 sFlushTxFIFO(cp); 1021 sClrRTS(cp); 1022 if (C_HUPCL(tty)) 1023 sClrDTR(cp); 1024 1025 rp_flush_buffer(tty); 1026 1027 tty_ldisc_flush(tty); 1028 1029 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1030 1031 /* We can't yet use tty_port_close_end as the buffer handling in this 1032 driver is a bit different to the usual */ 1033 1034 if (port->blocked_open) { 1035 if (port->close_delay) { 1036 msleep_interruptible(jiffies_to_msecs(port->close_delay)); 1037 } 1038 wake_up_interruptible(&port->open_wait); 1039 } else { 1040 if (info->xmit_buf) { 1041 free_page((unsigned long) info->xmit_buf); 1042 info->xmit_buf = NULL; 1043 } 1044 } 1045 spin_lock_irq(&port->lock); 1046 tty->closing = 0; 1047 spin_unlock_irq(&port->lock); 1048 tty_port_set_initialized(port, 0); 1049 tty_port_set_active(port, 0); 1050 mutex_unlock(&port->mutex); 1051 tty_port_tty_set(port, NULL); 1052 1053 atomic_dec(&rp_num_ports_open); 1054 1055#ifdef ROCKET_DEBUG_OPEN 1056 printk(KERN_INFO "rocket mod-- = %d...\n", 1057 atomic_read(&rp_num_ports_open)); 1058 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line); 1059#endif 1060 1061} 1062 1063static void rp_set_termios(struct tty_struct *tty, 1064 struct ktermios *old_termios) 1065{ 1066 struct r_port *info = tty->driver_data; 1067 CHANNEL_t *cp; 1068 unsigned cflag; 1069 1070 if (rocket_paranoia_check(info, "rp_set_termios")) 1071 return; 1072 1073 cflag = tty->termios.c_cflag; 1074 1075 /* 1076 * This driver doesn't support CS5 or CS6 1077 */ 1078 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6)) 1079 tty->termios.c_cflag = 1080 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE)); 1081 /* Or CMSPAR */ 1082 tty->termios.c_cflag &= ~CMSPAR; 1083 1084 configure_r_port(tty, info, old_termios); 1085 1086 cp = &info->channel; 1087 1088 /* Handle transition to B0 status */ 1089 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) { 1090 sClrDTR(cp); 1091 sClrRTS(cp); 1092 } 1093 1094 /* Handle transition away from B0 status */ 1095 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) { 1096 sSetRTS(cp); 1097 sSetDTR(cp); 1098 } 1099 1100 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty)) 1101 rp_start(tty); 1102} 1103 1104static int rp_break(struct tty_struct *tty, int break_state) 1105{ 1106 struct r_port *info = tty->driver_data; 1107 unsigned long flags; 1108 1109 if (rocket_paranoia_check(info, "rp_break")) 1110 return -EINVAL; 1111 1112 spin_lock_irqsave(&info->slock, flags); 1113 if (break_state == -1) 1114 sSendBreak(&info->channel); 1115 else 1116 sClrBreak(&info->channel); 1117 spin_unlock_irqrestore(&info->slock, flags); 1118 return 0; 1119} 1120 1121/* 1122 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for 1123 * the UPCI boards was added, it was decided to make this a function because 1124 * the macro was getting too complicated. All cases except the first one 1125 * (UPCIRingInd) are taken directly from the original macro. 1126 */ 1127static int sGetChanRI(CHANNEL_T * ChP) 1128{ 1129 CONTROLLER_t *CtlP = ChP->CtlP; 1130 int ChanNum = ChP->ChanNum; 1131 int RingInd = 0; 1132 1133 if (CtlP->UPCIRingInd) 1134 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]); 1135 else if (CtlP->AltChanRingIndicator) 1136 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT; 1137 else if (CtlP->boardType == ROCKET_TYPE_PC104) 1138 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]); 1139 1140 return RingInd; 1141} 1142 1143/********************************************************************************************/ 1144/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */ 1145 1146/* 1147 * Returns the state of the serial modem control lines. These next 2 functions 1148 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs. 1149 */ 1150static int rp_tiocmget(struct tty_struct *tty) 1151{ 1152 struct r_port *info = tty->driver_data; 1153 unsigned int control, result, ChanStatus; 1154 1155 ChanStatus = sGetChanStatusLo(&info->channel); 1156 control = info->channel.TxControl[3]; 1157 result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 1158 ((control & SET_DTR) ? TIOCM_DTR : 0) | 1159 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) | 1160 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) | 1161 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) | 1162 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0); 1163 1164 return result; 1165} 1166 1167/* 1168 * Sets the modem control lines 1169 */ 1170static int rp_tiocmset(struct tty_struct *tty, 1171 unsigned int set, unsigned int clear) 1172{ 1173 struct r_port *info = tty->driver_data; 1174 1175 if (set & TIOCM_RTS) 1176 info->channel.TxControl[3] |= SET_RTS; 1177 if (set & TIOCM_DTR) 1178 info->channel.TxControl[3] |= SET_DTR; 1179 if (clear & TIOCM_RTS) 1180 info->channel.TxControl[3] &= ~SET_RTS; 1181 if (clear & TIOCM_DTR) 1182 info->channel.TxControl[3] &= ~SET_DTR; 1183 1184 out32(info->channel.IndexAddr, info->channel.TxControl); 1185 return 0; 1186} 1187 1188static int get_config(struct r_port *info, struct rocket_config __user *retinfo) 1189{ 1190 struct rocket_config tmp; 1191 1192 memset(&tmp, 0, sizeof (tmp)); 1193 mutex_lock(&info->port.mutex); 1194 tmp.line = info->line; 1195 tmp.flags = info->flags; 1196 tmp.close_delay = info->port.close_delay; 1197 tmp.closing_wait = info->port.closing_wait; 1198 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3]; 1199 mutex_unlock(&info->port.mutex); 1200 1201 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo))) 1202 return -EFAULT; 1203 return 0; 1204} 1205 1206static int set_config(struct tty_struct *tty, struct r_port *info, 1207 struct rocket_config __user *new_info) 1208{ 1209 struct rocket_config new_serial; 1210 1211 if (copy_from_user(&new_serial, new_info, sizeof (new_serial))) 1212 return -EFAULT; 1213 1214 mutex_lock(&info->port.mutex); 1215 if (!capable(CAP_SYS_ADMIN)) 1216 { 1217 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) { 1218 mutex_unlock(&info->port.mutex); 1219 return -EPERM; 1220 } 1221 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK)); 1222 configure_r_port(tty, info, NULL); 1223 mutex_unlock(&info->port.mutex); 1224 return 0; 1225 } 1226 1227 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS)); 1228 info->port.close_delay = new_serial.close_delay; 1229 info->port.closing_wait = new_serial.closing_wait; 1230 1231 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI) 1232 tty->alt_speed = 57600; 1233 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI) 1234 tty->alt_speed = 115200; 1235 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI) 1236 tty->alt_speed = 230400; 1237 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP) 1238 tty->alt_speed = 460800; 1239 mutex_unlock(&info->port.mutex); 1240 1241 configure_r_port(tty, info, NULL); 1242 return 0; 1243} 1244 1245/* 1246 * This function fills in a rocket_ports struct with information 1247 * about what boards/ports are in the system. This info is passed 1248 * to user space. See setrocket.c where the info is used to create 1249 * the /dev/ttyRx ports. 1250 */ 1251static int get_ports(struct r_port *info, struct rocket_ports __user *retports) 1252{ 1253 struct rocket_ports tmp; 1254 int board; 1255 1256 memset(&tmp, 0, sizeof (tmp)); 1257 tmp.tty_major = rocket_driver->major; 1258 1259 for (board = 0; board < 4; board++) { 1260 tmp.rocketModel[board].model = rocketModel[board].model; 1261 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString); 1262 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts; 1263 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2; 1264 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber; 1265 } 1266 if (copy_to_user(retports, &tmp, sizeof (*retports))) 1267 return -EFAULT; 1268 return 0; 1269} 1270 1271static int reset_rm2(struct r_port *info, void __user *arg) 1272{ 1273 int reset; 1274 1275 if (!capable(CAP_SYS_ADMIN)) 1276 return -EPERM; 1277 1278 if (copy_from_user(&reset, arg, sizeof (int))) 1279 return -EFAULT; 1280 if (reset) 1281 reset = 1; 1282 1283 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII && 1284 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII) 1285 return -EINVAL; 1286 1287 if (info->ctlp->BusType == isISA) 1288 sModemReset(info->ctlp, info->chan, reset); 1289 else 1290 sPCIModemReset(info->ctlp, info->chan, reset); 1291 1292 return 0; 1293} 1294 1295static int get_version(struct r_port *info, struct rocket_version __user *retvers) 1296{ 1297 if (copy_to_user(retvers, &driver_version, sizeof (*retvers))) 1298 return -EFAULT; 1299 return 0; 1300} 1301 1302/* IOCTL call handler into the driver */ 1303static int rp_ioctl(struct tty_struct *tty, 1304 unsigned int cmd, unsigned long arg) 1305{ 1306 struct r_port *info = tty->driver_data; 1307 void __user *argp = (void __user *)arg; 1308 int ret = 0; 1309 1310 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl")) 1311 return -ENXIO; 1312 1313 switch (cmd) { 1314 case RCKP_GET_STRUCT: 1315 if (copy_to_user(argp, info, sizeof (struct r_port))) 1316 ret = -EFAULT; 1317 break; 1318 case RCKP_GET_CONFIG: 1319 ret = get_config(info, argp); 1320 break; 1321 case RCKP_SET_CONFIG: 1322 ret = set_config(tty, info, argp); 1323 break; 1324 case RCKP_GET_PORTS: 1325 ret = get_ports(info, argp); 1326 break; 1327 case RCKP_RESET_RM2: 1328 ret = reset_rm2(info, argp); 1329 break; 1330 case RCKP_GET_VERSION: 1331 ret = get_version(info, argp); 1332 break; 1333 default: 1334 ret = -ENOIOCTLCMD; 1335 } 1336 return ret; 1337} 1338 1339static void rp_send_xchar(struct tty_struct *tty, char ch) 1340{ 1341 struct r_port *info = tty->driver_data; 1342 CHANNEL_t *cp; 1343 1344 if (rocket_paranoia_check(info, "rp_send_xchar")) 1345 return; 1346 1347 cp = &info->channel; 1348 if (sGetTxCnt(cp)) 1349 sWriteTxPrioByte(cp, ch); 1350 else 1351 sWriteTxByte(sGetTxRxDataIO(cp), ch); 1352} 1353 1354static void rp_throttle(struct tty_struct *tty) 1355{ 1356 struct r_port *info = tty->driver_data; 1357 1358#ifdef ROCKET_DEBUG_THROTTLE 1359 printk(KERN_INFO "throttle %s ....\n", tty->name); 1360#endif 1361 1362 if (rocket_paranoia_check(info, "rp_throttle")) 1363 return; 1364 1365 if (I_IXOFF(tty)) 1366 rp_send_xchar(tty, STOP_CHAR(tty)); 1367 1368 sClrRTS(&info->channel); 1369} 1370 1371static void rp_unthrottle(struct tty_struct *tty) 1372{ 1373 struct r_port *info = tty->driver_data; 1374#ifdef ROCKET_DEBUG_THROTTLE 1375 printk(KERN_INFO "unthrottle %s ....\n", tty->name); 1376#endif 1377 1378 if (rocket_paranoia_check(info, "rp_unthrottle")) 1379 return; 1380 1381 if (I_IXOFF(tty)) 1382 rp_send_xchar(tty, START_CHAR(tty)); 1383 1384 sSetRTS(&info->channel); 1385} 1386 1387/* 1388 * ------------------------------------------------------------ 1389 * rp_stop() and rp_start() 1390 * 1391 * This routines are called before setting or resetting tty->stopped. 1392 * They enable or disable transmitter interrupts, as necessary. 1393 * ------------------------------------------------------------ 1394 */ 1395static void rp_stop(struct tty_struct *tty) 1396{ 1397 struct r_port *info = tty->driver_data; 1398 1399#ifdef ROCKET_DEBUG_FLOW 1400 printk(KERN_INFO "stop %s: %d %d....\n", tty->name, 1401 info->xmit_cnt, info->xmit_fifo_room); 1402#endif 1403 1404 if (rocket_paranoia_check(info, "rp_stop")) 1405 return; 1406 1407 if (sGetTxCnt(&info->channel)) 1408 sDisTransmit(&info->channel); 1409} 1410 1411static void rp_start(struct tty_struct *tty) 1412{ 1413 struct r_port *info = tty->driver_data; 1414 1415#ifdef ROCKET_DEBUG_FLOW 1416 printk(KERN_INFO "start %s: %d %d....\n", tty->name, 1417 info->xmit_cnt, info->xmit_fifo_room); 1418#endif 1419 1420 if (rocket_paranoia_check(info, "rp_stop")) 1421 return; 1422 1423 sEnTransmit(&info->channel); 1424 set_bit((info->aiop * 8) + info->chan, 1425 (void *) &xmit_flags[info->board]); 1426} 1427 1428/* 1429 * rp_wait_until_sent() --- wait until the transmitter is empty 1430 */ 1431static void rp_wait_until_sent(struct tty_struct *tty, int timeout) 1432{ 1433 struct r_port *info = tty->driver_data; 1434 CHANNEL_t *cp; 1435 unsigned long orig_jiffies; 1436 int check_time, exit_time; 1437 int txcnt; 1438 1439 if (rocket_paranoia_check(info, "rp_wait_until_sent")) 1440 return; 1441 1442 cp = &info->channel; 1443 1444 orig_jiffies = jiffies; 1445#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1446 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout, 1447 jiffies); 1448 printk(KERN_INFO "cps=%d...\n", info->cps); 1449#endif 1450 while (1) { 1451 txcnt = sGetTxCnt(cp); 1452 if (!txcnt) { 1453 if (sGetChanStatusLo(cp) & TXSHRMT) 1454 break; 1455 check_time = (HZ / info->cps) / 5; 1456 } else { 1457 check_time = HZ * txcnt / info->cps; 1458 } 1459 if (timeout) { 1460 exit_time = orig_jiffies + timeout - jiffies; 1461 if (exit_time <= 0) 1462 break; 1463 if (exit_time < check_time) 1464 check_time = exit_time; 1465 } 1466 if (check_time == 0) 1467 check_time = 1; 1468#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1469 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt, 1470 jiffies, check_time); 1471#endif 1472 msleep_interruptible(jiffies_to_msecs(check_time)); 1473 if (signal_pending(current)) 1474 break; 1475 } 1476 __set_current_state(TASK_RUNNING); 1477#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1478 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies); 1479#endif 1480} 1481 1482/* 1483 * rp_hangup() --- called by tty_hangup() when a hangup is signaled. 1484 */ 1485static void rp_hangup(struct tty_struct *tty) 1486{ 1487 CHANNEL_t *cp; 1488 struct r_port *info = tty->driver_data; 1489 unsigned long flags; 1490 1491 if (rocket_paranoia_check(info, "rp_hangup")) 1492 return; 1493 1494#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP)) 1495 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line); 1496#endif 1497 rp_flush_buffer(tty); 1498 spin_lock_irqsave(&info->port.lock, flags); 1499 if (info->port.count) 1500 atomic_dec(&rp_num_ports_open); 1501 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1502 spin_unlock_irqrestore(&info->port.lock, flags); 1503 1504 tty_port_hangup(&info->port); 1505 1506 cp = &info->channel; 1507 sDisRxFIFO(cp); 1508 sDisTransmit(cp); 1509 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1510 sDisCTSFlowCtl(cp); 1511 sDisTxSoftFlowCtl(cp); 1512 sClrTxXOFF(cp); 1513 tty_port_set_initialized(&info->port, 0); 1514 1515 wake_up_interruptible(&info->port.open_wait); 1516} 1517 1518/* 1519 * Exception handler - write char routine. The RocketPort driver uses a 1520 * double-buffering strategy, with the twist that if the in-memory CPU 1521 * buffer is empty, and there's space in the transmit FIFO, the 1522 * writing routines will write directly to transmit FIFO. 1523 * Write buffer and counters protected by spinlocks 1524 */ 1525static int rp_put_char(struct tty_struct *tty, unsigned char ch) 1526{ 1527 struct r_port *info = tty->driver_data; 1528 CHANNEL_t *cp; 1529 unsigned long flags; 1530 1531 if (rocket_paranoia_check(info, "rp_put_char")) 1532 return 0; 1533 1534 /* 1535 * Grab the port write mutex, locking out other processes that try to 1536 * write to this port 1537 */ 1538 mutex_lock(&info->write_mtx); 1539 1540#ifdef ROCKET_DEBUG_WRITE 1541 printk(KERN_INFO "rp_put_char %c...\n", ch); 1542#endif 1543 1544 spin_lock_irqsave(&info->slock, flags); 1545 cp = &info->channel; 1546 1547 if (!tty->stopped && info->xmit_fifo_room == 0) 1548 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1549 1550 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) { 1551 info->xmit_buf[info->xmit_head++] = ch; 1552 info->xmit_head &= XMIT_BUF_SIZE - 1; 1553 info->xmit_cnt++; 1554 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1555 } else { 1556 sOutB(sGetTxRxDataIO(cp), ch); 1557 info->xmit_fifo_room--; 1558 } 1559 spin_unlock_irqrestore(&info->slock, flags); 1560 mutex_unlock(&info->write_mtx); 1561 return 1; 1562} 1563 1564/* 1565 * Exception handler - write routine, called when user app writes to the device. 1566 * A per port write mutex is used to protect from another process writing to 1567 * this port at the same time. This other process could be running on the other CPU 1568 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 1569 * Spinlocks protect the info xmit members. 1570 */ 1571static int rp_write(struct tty_struct *tty, 1572 const unsigned char *buf, int count) 1573{ 1574 struct r_port *info = tty->driver_data; 1575 CHANNEL_t *cp; 1576 const unsigned char *b; 1577 int c, retval = 0; 1578 unsigned long flags; 1579 1580 if (count <= 0 || rocket_paranoia_check(info, "rp_write")) 1581 return 0; 1582 1583 if (mutex_lock_interruptible(&info->write_mtx)) 1584 return -ERESTARTSYS; 1585 1586#ifdef ROCKET_DEBUG_WRITE 1587 printk(KERN_INFO "rp_write %d chars...\n", count); 1588#endif 1589 cp = &info->channel; 1590 1591 if (!tty->stopped && info->xmit_fifo_room < count) 1592 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1593 1594 /* 1595 * If the write queue for the port is empty, and there is FIFO space, stuff bytes 1596 * into FIFO. Use the write queue for temp storage. 1597 */ 1598 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) { 1599 c = min(count, info->xmit_fifo_room); 1600 b = buf; 1601 1602 /* Push data into FIFO, 2 bytes at a time */ 1603 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2); 1604 1605 /* If there is a byte remaining, write it */ 1606 if (c & 1) 1607 sOutB(sGetTxRxDataIO(cp), b[c - 1]); 1608 1609 retval += c; 1610 buf += c; 1611 count -= c; 1612 1613 spin_lock_irqsave(&info->slock, flags); 1614 info->xmit_fifo_room -= c; 1615 spin_unlock_irqrestore(&info->slock, flags); 1616 } 1617 1618 /* If count is zero, we wrote it all and are done */ 1619 if (!count) 1620 goto end; 1621 1622 /* Write remaining data into the port's xmit_buf */ 1623 while (1) { 1624 /* Hung up ? */ 1625 if (!tty_port_active(&info->port)) 1626 goto end; 1627 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1); 1628 c = min(c, XMIT_BUF_SIZE - info->xmit_head); 1629 if (c <= 0) 1630 break; 1631 1632 b = buf; 1633 memcpy(info->xmit_buf + info->xmit_head, b, c); 1634 1635 spin_lock_irqsave(&info->slock, flags); 1636 info->xmit_head = 1637 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1); 1638 info->xmit_cnt += c; 1639 spin_unlock_irqrestore(&info->slock, flags); 1640 1641 buf += c; 1642 count -= c; 1643 retval += c; 1644 } 1645 1646 if ((retval > 0) && !tty->stopped) 1647 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1648 1649end: 1650 if (info->xmit_cnt < WAKEUP_CHARS) { 1651 tty_wakeup(tty); 1652#ifdef ROCKETPORT_HAVE_POLL_WAIT 1653 wake_up_interruptible(&tty->poll_wait); 1654#endif 1655 } 1656 mutex_unlock(&info->write_mtx); 1657 return retval; 1658} 1659 1660/* 1661 * Return the number of characters that can be sent. We estimate 1662 * only using the in-memory transmit buffer only, and ignore the 1663 * potential space in the transmit FIFO. 1664 */ 1665static int rp_write_room(struct tty_struct *tty) 1666{ 1667 struct r_port *info = tty->driver_data; 1668 int ret; 1669 1670 if (rocket_paranoia_check(info, "rp_write_room")) 1671 return 0; 1672 1673 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1; 1674 if (ret < 0) 1675 ret = 0; 1676#ifdef ROCKET_DEBUG_WRITE 1677 printk(KERN_INFO "rp_write_room returns %d...\n", ret); 1678#endif 1679 return ret; 1680} 1681 1682/* 1683 * Return the number of characters in the buffer. Again, this only 1684 * counts those characters in the in-memory transmit buffer. 1685 */ 1686static int rp_chars_in_buffer(struct tty_struct *tty) 1687{ 1688 struct r_port *info = tty->driver_data; 1689 1690 if (rocket_paranoia_check(info, "rp_chars_in_buffer")) 1691 return 0; 1692 1693#ifdef ROCKET_DEBUG_WRITE 1694 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt); 1695#endif 1696 return info->xmit_cnt; 1697} 1698 1699/* 1700 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the 1701 * r_port struct for the port. Note that spinlock are used to protect info members, 1702 * do not call this function if the spinlock is already held. 1703 */ 1704static void rp_flush_buffer(struct tty_struct *tty) 1705{ 1706 struct r_port *info = tty->driver_data; 1707 CHANNEL_t *cp; 1708 unsigned long flags; 1709 1710 if (rocket_paranoia_check(info, "rp_flush_buffer")) 1711 return; 1712 1713 spin_lock_irqsave(&info->slock, flags); 1714 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; 1715 spin_unlock_irqrestore(&info->slock, flags); 1716 1717#ifdef ROCKETPORT_HAVE_POLL_WAIT 1718 wake_up_interruptible(&tty->poll_wait); 1719#endif 1720 tty_wakeup(tty); 1721 1722 cp = &info->channel; 1723 sFlushTxFIFO(cp); 1724} 1725 1726#ifdef CONFIG_PCI 1727 1728static const struct pci_device_id rocket_pci_ids[] = { 1729 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) }, 1730 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) }, 1731 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) }, 1732 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) }, 1733 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) }, 1734 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) }, 1735 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) }, 1736 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) }, 1737 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) }, 1738 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) }, 1739 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) }, 1740 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) }, 1741 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) }, 1742 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) }, 1743 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) }, 1744 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) }, 1745 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) }, 1746 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) }, 1747 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) }, 1748 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) }, 1749 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) }, 1750 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) }, 1751 { } 1752}; 1753MODULE_DEVICE_TABLE(pci, rocket_pci_ids); 1754 1755/* Resets the speaker controller on RocketModem II and III devices */ 1756static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model) 1757{ 1758 ByteIO_t addr; 1759 1760 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */ 1761 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) { 1762 addr = CtlP->AiopIO[0] + 0x4F; 1763 sOutB(addr, 0); 1764 } 1765 1766 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */ 1767 if ((model == MODEL_UPCI_RM3_8PORT) 1768 || (model == MODEL_UPCI_RM3_4PORT)) { 1769 addr = CtlP->AiopIO[0] + 0x88; 1770 sOutB(addr, 0); 1771 } 1772} 1773 1774/*************************************************************************** 1775Function: sPCIInitController 1776Purpose: Initialization of controller global registers and controller 1777 structure. 1778Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize, 1779 IRQNum,Frequency,PeriodicOnly) 1780 CONTROLLER_T *CtlP; Ptr to controller structure 1781 int CtlNum; Controller number 1782 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 1783 This list must be in the order the AIOPs will be found on the 1784 controller. Once an AIOP in the list is not found, it is 1785 assumed that there are no more AIOPs on the controller. 1786 int AiopIOListSize; Number of addresses in AiopIOList 1787 int IRQNum; Interrupt Request number. Can be any of the following: 1788 0: Disable global interrupts 1789 3: IRQ 3 1790 4: IRQ 4 1791 5: IRQ 5 1792 9: IRQ 9 1793 10: IRQ 10 1794 11: IRQ 11 1795 12: IRQ 12 1796 15: IRQ 15 1797 Byte_t Frequency: A flag identifying the frequency 1798 of the periodic interrupt, can be any one of the following: 1799 FREQ_DIS - periodic interrupt disabled 1800 FREQ_137HZ - 137 Hertz 1801 FREQ_69HZ - 69 Hertz 1802 FREQ_34HZ - 34 Hertz 1803 FREQ_17HZ - 17 Hertz 1804 FREQ_9HZ - 9 Hertz 1805 FREQ_4HZ - 4 Hertz 1806 If IRQNum is set to 0 the Frequency parameter is 1807 overidden, it is forced to a value of FREQ_DIS. 1808 int PeriodicOnly: 1 if all interrupts except the periodic 1809 interrupt are to be blocked. 1810 0 is both the periodic interrupt and 1811 other channel interrupts are allowed. 1812 If IRQNum is set to 0 the PeriodicOnly parameter is 1813 overidden, it is forced to a value of 0. 1814Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 1815 initialization failed. 1816 1817Comments: 1818 If periodic interrupts are to be disabled but AIOP interrupts 1819 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 1820 1821 If interrupts are to be completely disabled set IRQNum to 0. 1822 1823 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 1824 invalid combination. 1825 1826 This function performs initialization of global interrupt modes, 1827 but it does not actually enable global interrupts. To enable 1828 and disable global interrupts use functions sEnGlobalInt() and 1829 sDisGlobalInt(). Enabling of global interrupts is normally not 1830 done until all other initializations are complete. 1831 1832 Even if interrupts are globally enabled, they must also be 1833 individually enabled for each channel that is to generate 1834 interrupts. 1835 1836Warnings: No range checking on any of the parameters is done. 1837 1838 No context switches are allowed while executing this function. 1839 1840 After this function all AIOPs on the controller are disabled, 1841 they can be enabled with sEnAiop(). 1842*/ 1843static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum, 1844 ByteIO_t * AiopIOList, int AiopIOListSize, 1845 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency, 1846 int PeriodicOnly, int altChanRingIndicator, 1847 int UPCIRingInd) 1848{ 1849 int i; 1850 ByteIO_t io; 1851 1852 CtlP->AltChanRingIndicator = altChanRingIndicator; 1853 CtlP->UPCIRingInd = UPCIRingInd; 1854 CtlP->CtlNum = CtlNum; 1855 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 1856 CtlP->BusType = isPCI; /* controller release 1 */ 1857 1858 if (ConfigIO) { 1859 CtlP->isUPCI = 1; 1860 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL; 1861 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL; 1862 CtlP->AiopIntrBits = upci_aiop_intr_bits; 1863 } else { 1864 CtlP->isUPCI = 0; 1865 CtlP->PCIIO = 1866 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC); 1867 CtlP->AiopIntrBits = aiop_intr_bits; 1868 } 1869 1870 sPCIControllerEOI(CtlP); /* clear EOI if warm init */ 1871 /* Init AIOPs */ 1872 CtlP->NumAiop = 0; 1873 for (i = 0; i < AiopIOListSize; i++) { 1874 io = AiopIOList[i]; 1875 CtlP->AiopIO[i] = (WordIO_t) io; 1876 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 1877 1878 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 1879 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 1880 break; /* done looking for AIOPs */ 1881 1882 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 1883 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 1884 sOutB(io + _INDX_DATA, sClockPrescale); 1885 CtlP->NumAiop++; /* bump count of AIOPs */ 1886 } 1887 1888 if (CtlP->NumAiop == 0) 1889 return (-1); 1890 else 1891 return (CtlP->NumAiop); 1892} 1893 1894/* 1895 * Called when a PCI card is found. Retrieves and stores model information, 1896 * init's aiopic and serial port hardware. 1897 * Inputs: i is the board number (0-n) 1898 */ 1899static __init int register_PCI(int i, struct pci_dev *dev) 1900{ 1901 int num_aiops, aiop, max_num_aiops, num_chan, chan; 1902 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 1903 CONTROLLER_t *ctlp; 1904 1905 int fast_clock = 0; 1906 int altChanRingIndicator = 0; 1907 int ports_per_aiop = 8; 1908 WordIO_t ConfigIO = 0; 1909 ByteIO_t UPCIRingInd = 0; 1910 1911 if (!dev || !pci_match_id(rocket_pci_ids, dev) || 1912 pci_enable_device(dev)) 1913 return 0; 1914 1915 rcktpt_io_addr[i] = pci_resource_start(dev, 0); 1916 1917 rcktpt_type[i] = ROCKET_TYPE_NORMAL; 1918 rocketModel[i].loadrm2 = 0; 1919 rocketModel[i].startingPortNumber = nextLineNumber; 1920 1921 /* Depending on the model, set up some config variables */ 1922 switch (dev->device) { 1923 case PCI_DEVICE_ID_RP4QUAD: 1924 max_num_aiops = 1; 1925 ports_per_aiop = 4; 1926 rocketModel[i].model = MODEL_RP4QUAD; 1927 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable"); 1928 rocketModel[i].numPorts = 4; 1929 break; 1930 case PCI_DEVICE_ID_RP8OCTA: 1931 max_num_aiops = 1; 1932 rocketModel[i].model = MODEL_RP8OCTA; 1933 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable"); 1934 rocketModel[i].numPorts = 8; 1935 break; 1936 case PCI_DEVICE_ID_URP8OCTA: 1937 max_num_aiops = 1; 1938 rocketModel[i].model = MODEL_UPCI_RP8OCTA; 1939 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable"); 1940 rocketModel[i].numPorts = 8; 1941 break; 1942 case PCI_DEVICE_ID_RP8INTF: 1943 max_num_aiops = 1; 1944 rocketModel[i].model = MODEL_RP8INTF; 1945 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F"); 1946 rocketModel[i].numPorts = 8; 1947 break; 1948 case PCI_DEVICE_ID_URP8INTF: 1949 max_num_aiops = 1; 1950 rocketModel[i].model = MODEL_UPCI_RP8INTF; 1951 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F"); 1952 rocketModel[i].numPorts = 8; 1953 break; 1954 case PCI_DEVICE_ID_RP8J: 1955 max_num_aiops = 1; 1956 rocketModel[i].model = MODEL_RP8J; 1957 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors"); 1958 rocketModel[i].numPorts = 8; 1959 break; 1960 case PCI_DEVICE_ID_RP4J: 1961 max_num_aiops = 1; 1962 ports_per_aiop = 4; 1963 rocketModel[i].model = MODEL_RP4J; 1964 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors"); 1965 rocketModel[i].numPorts = 4; 1966 break; 1967 case PCI_DEVICE_ID_RP8SNI: 1968 max_num_aiops = 1; 1969 rocketModel[i].model = MODEL_RP8SNI; 1970 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78"); 1971 rocketModel[i].numPorts = 8; 1972 break; 1973 case PCI_DEVICE_ID_RP16SNI: 1974 max_num_aiops = 2; 1975 rocketModel[i].model = MODEL_RP16SNI; 1976 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78"); 1977 rocketModel[i].numPorts = 16; 1978 break; 1979 case PCI_DEVICE_ID_RP16INTF: 1980 max_num_aiops = 2; 1981 rocketModel[i].model = MODEL_RP16INTF; 1982 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F"); 1983 rocketModel[i].numPorts = 16; 1984 break; 1985 case PCI_DEVICE_ID_URP16INTF: 1986 max_num_aiops = 2; 1987 rocketModel[i].model = MODEL_UPCI_RP16INTF; 1988 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F"); 1989 rocketModel[i].numPorts = 16; 1990 break; 1991 case PCI_DEVICE_ID_CRP16INTF: 1992 max_num_aiops = 2; 1993 rocketModel[i].model = MODEL_CPCI_RP16INTF; 1994 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F"); 1995 rocketModel[i].numPorts = 16; 1996 break; 1997 case PCI_DEVICE_ID_RP32INTF: 1998 max_num_aiops = 4; 1999 rocketModel[i].model = MODEL_RP32INTF; 2000 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F"); 2001 rocketModel[i].numPorts = 32; 2002 break; 2003 case PCI_DEVICE_ID_URP32INTF: 2004 max_num_aiops = 4; 2005 rocketModel[i].model = MODEL_UPCI_RP32INTF; 2006 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F"); 2007 rocketModel[i].numPorts = 32; 2008 break; 2009 case PCI_DEVICE_ID_RPP4: 2010 max_num_aiops = 1; 2011 ports_per_aiop = 4; 2012 altChanRingIndicator++; 2013 fast_clock++; 2014 rocketModel[i].model = MODEL_RPP4; 2015 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port"); 2016 rocketModel[i].numPorts = 4; 2017 break; 2018 case PCI_DEVICE_ID_RPP8: 2019 max_num_aiops = 2; 2020 ports_per_aiop = 4; 2021 altChanRingIndicator++; 2022 fast_clock++; 2023 rocketModel[i].model = MODEL_RPP8; 2024 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port"); 2025 rocketModel[i].numPorts = 8; 2026 break; 2027 case PCI_DEVICE_ID_RP2_232: 2028 max_num_aiops = 1; 2029 ports_per_aiop = 2; 2030 altChanRingIndicator++; 2031 fast_clock++; 2032 rocketModel[i].model = MODEL_RP2_232; 2033 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232"); 2034 rocketModel[i].numPorts = 2; 2035 break; 2036 case PCI_DEVICE_ID_RP2_422: 2037 max_num_aiops = 1; 2038 ports_per_aiop = 2; 2039 altChanRingIndicator++; 2040 fast_clock++; 2041 rocketModel[i].model = MODEL_RP2_422; 2042 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422"); 2043 rocketModel[i].numPorts = 2; 2044 break; 2045 case PCI_DEVICE_ID_RP6M: 2046 2047 max_num_aiops = 1; 2048 ports_per_aiop = 6; 2049 2050 /* If revision is 1, the rocketmodem flash must be loaded. 2051 * If it is 2 it is a "socketed" version. */ 2052 if (dev->revision == 1) { 2053 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2054 rocketModel[i].loadrm2 = 1; 2055 } else { 2056 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2057 } 2058 2059 rocketModel[i].model = MODEL_RP6M; 2060 strcpy(rocketModel[i].modelString, "RocketModem 6 port"); 2061 rocketModel[i].numPorts = 6; 2062 break; 2063 case PCI_DEVICE_ID_RP4M: 2064 max_num_aiops = 1; 2065 ports_per_aiop = 4; 2066 if (dev->revision == 1) { 2067 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2068 rocketModel[i].loadrm2 = 1; 2069 } else { 2070 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2071 } 2072 2073 rocketModel[i].model = MODEL_RP4M; 2074 strcpy(rocketModel[i].modelString, "RocketModem 4 port"); 2075 rocketModel[i].numPorts = 4; 2076 break; 2077 default: 2078 max_num_aiops = 0; 2079 break; 2080 } 2081 2082 /* 2083 * Check for UPCI boards. 2084 */ 2085 2086 switch (dev->device) { 2087 case PCI_DEVICE_ID_URP32INTF: 2088 case PCI_DEVICE_ID_URP8INTF: 2089 case PCI_DEVICE_ID_URP16INTF: 2090 case PCI_DEVICE_ID_CRP16INTF: 2091 case PCI_DEVICE_ID_URP8OCTA: 2092 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2093 ConfigIO = pci_resource_start(dev, 1); 2094 if (dev->device == PCI_DEVICE_ID_URP8OCTA) { 2095 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2096 2097 /* 2098 * Check for octa or quad cable. 2099 */ 2100 if (! 2101 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) & 2102 PCI_GPIO_CTRL_8PORT)) { 2103 ports_per_aiop = 4; 2104 rocketModel[i].numPorts = 4; 2105 } 2106 } 2107 break; 2108 case PCI_DEVICE_ID_UPCI_RM3_8PORT: 2109 max_num_aiops = 1; 2110 rocketModel[i].model = MODEL_UPCI_RM3_8PORT; 2111 strcpy(rocketModel[i].modelString, "RocketModem III 8 port"); 2112 rocketModel[i].numPorts = 8; 2113 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2114 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2115 ConfigIO = pci_resource_start(dev, 1); 2116 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2117 break; 2118 case PCI_DEVICE_ID_UPCI_RM3_4PORT: 2119 max_num_aiops = 1; 2120 rocketModel[i].model = MODEL_UPCI_RM3_4PORT; 2121 strcpy(rocketModel[i].modelString, "RocketModem III 4 port"); 2122 rocketModel[i].numPorts = 4; 2123 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2124 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2125 ConfigIO = pci_resource_start(dev, 1); 2126 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2127 break; 2128 default: 2129 break; 2130 } 2131 2132 if (fast_clock) { 2133 sClockPrescale = 0x12; /* mod 2 (divide by 3) */ 2134 rp_baud_base[i] = 921600; 2135 } else { 2136 /* 2137 * If support_low_speed is set, use the slow clock 2138 * prescale, which supports 50 bps 2139 */ 2140 if (support_low_speed) { 2141 /* mod 9 (divide by 10) prescale */ 2142 sClockPrescale = 0x19; 2143 rp_baud_base[i] = 230400; 2144 } else { 2145 /* mod 4 (divide by 5) prescale */ 2146 sClockPrescale = 0x14; 2147 rp_baud_base[i] = 460800; 2148 } 2149 } 2150 2151 for (aiop = 0; aiop < max_num_aiops; aiop++) 2152 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40); 2153 ctlp = sCtlNumToCtlPtr(i); 2154 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd); 2155 for (aiop = 0; aiop < max_num_aiops; aiop++) 2156 ctlp->AiopNumChan[aiop] = ports_per_aiop; 2157 2158 dev_info(&dev->dev, "comtrol PCI controller #%d found at " 2159 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n", 2160 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString, 2161 rocketModel[i].startingPortNumber, 2162 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1); 2163 2164 if (num_aiops <= 0) { 2165 rcktpt_io_addr[i] = 0; 2166 return (0); 2167 } 2168 is_PCI[i] = 1; 2169 2170 /* Reset the AIOPIC, init the serial ports */ 2171 for (aiop = 0; aiop < num_aiops; aiop++) { 2172 sResetAiopByNum(ctlp, aiop); 2173 num_chan = ports_per_aiop; 2174 for (chan = 0; chan < num_chan; chan++) 2175 init_r_port(i, aiop, chan, dev); 2176 } 2177 2178 /* Rocket modems must be reset */ 2179 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || 2180 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) || 2181 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) { 2182 num_chan = ports_per_aiop; 2183 for (chan = 0; chan < num_chan; chan++) 2184 sPCIModemReset(ctlp, chan, 1); 2185 msleep(500); 2186 for (chan = 0; chan < num_chan; chan++) 2187 sPCIModemReset(ctlp, chan, 0); 2188 msleep(500); 2189 rmSpeakerReset(ctlp, rocketModel[i].model); 2190 } 2191 return (1); 2192} 2193 2194/* 2195 * Probes for PCI cards, inits them if found 2196 * Input: board_found = number of ISA boards already found, or the 2197 * starting board number 2198 * Returns: Number of PCI boards found 2199 */ 2200static int __init init_PCI(int boards_found) 2201{ 2202 struct pci_dev *dev = NULL; 2203 int count = 0; 2204 2205 /* Work through the PCI device list, pulling out ours */ 2206 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) { 2207 if (register_PCI(count + boards_found, dev)) 2208 count++; 2209 } 2210 return (count); 2211} 2212 2213#endif /* CONFIG_PCI */ 2214 2215/* 2216 * Probes for ISA cards 2217 * Input: i = the board number to look for 2218 * Returns: 1 if board found, 0 else 2219 */ 2220static int __init init_ISA(int i) 2221{ 2222 int num_aiops, num_chan = 0, total_num_chan = 0; 2223 int aiop, chan; 2224 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 2225 CONTROLLER_t *ctlp; 2226 char *type_string; 2227 2228 /* If io_addr is zero, no board configured */ 2229 if (rcktpt_io_addr[i] == 0) 2230 return (0); 2231 2232 /* Reserve the IO region */ 2233 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) { 2234 printk(KERN_ERR "Unable to reserve IO region for configured " 2235 "ISA RocketPort at address 0x%lx, board not " 2236 "installed...\n", rcktpt_io_addr[i]); 2237 rcktpt_io_addr[i] = 0; 2238 return (0); 2239 } 2240 2241 ctlp = sCtlNumToCtlPtr(i); 2242 2243 ctlp->boardType = rcktpt_type[i]; 2244 2245 switch (rcktpt_type[i]) { 2246 case ROCKET_TYPE_PC104: 2247 type_string = "(PC104)"; 2248 break; 2249 case ROCKET_TYPE_MODEM: 2250 type_string = "(RocketModem)"; 2251 break; 2252 case ROCKET_TYPE_MODEMII: 2253 type_string = "(RocketModem II)"; 2254 break; 2255 default: 2256 type_string = ""; 2257 break; 2258 } 2259 2260 /* 2261 * If support_low_speed is set, use the slow clock prescale, 2262 * which supports 50 bps 2263 */ 2264 if (support_low_speed) { 2265 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */ 2266 rp_baud_base[i] = 230400; 2267 } else { 2268 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */ 2269 rp_baud_base[i] = 460800; 2270 } 2271 2272 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++) 2273 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400); 2274 2275 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0); 2276 2277 if (ctlp->boardType == ROCKET_TYPE_PC104) { 2278 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */ 2279 sEnAiop(ctlp, 3); /* CSels used for other stuff */ 2280 } 2281 2282 /* If something went wrong initing the AIOP's release the ISA IO memory */ 2283 if (num_aiops <= 0) { 2284 release_region(rcktpt_io_addr[i], 64); 2285 rcktpt_io_addr[i] = 0; 2286 return (0); 2287 } 2288 2289 rocketModel[i].startingPortNumber = nextLineNumber; 2290 2291 for (aiop = 0; aiop < num_aiops; aiop++) { 2292 sResetAiopByNum(ctlp, aiop); 2293 sEnAiop(ctlp, aiop); 2294 num_chan = sGetAiopNumChan(ctlp, aiop); 2295 total_num_chan += num_chan; 2296 for (chan = 0; chan < num_chan; chan++) 2297 init_r_port(i, aiop, chan, NULL); 2298 } 2299 is_PCI[i] = 0; 2300 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) { 2301 num_chan = sGetAiopNumChan(ctlp, 0); 2302 total_num_chan = num_chan; 2303 for (chan = 0; chan < num_chan; chan++) 2304 sModemReset(ctlp, chan, 1); 2305 msleep(500); 2306 for (chan = 0; chan < num_chan; chan++) 2307 sModemReset(ctlp, chan, 0); 2308 msleep(500); 2309 strcpy(rocketModel[i].modelString, "RocketModem ISA"); 2310 } else { 2311 strcpy(rocketModel[i].modelString, "RocketPort ISA"); 2312 } 2313 rocketModel[i].numPorts = total_num_chan; 2314 rocketModel[i].model = MODEL_ISA; 2315 2316 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 2317 i, rcktpt_io_addr[i], num_aiops, type_string); 2318 2319 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n", 2320 rocketModel[i].modelString, 2321 rocketModel[i].startingPortNumber, 2322 rocketModel[i].startingPortNumber + 2323 rocketModel[i].numPorts - 1); 2324 2325 return (1); 2326} 2327 2328static const struct tty_operations rocket_ops = { 2329 .open = rp_open, 2330 .close = rp_close, 2331 .write = rp_write, 2332 .put_char = rp_put_char, 2333 .write_room = rp_write_room, 2334 .chars_in_buffer = rp_chars_in_buffer, 2335 .flush_buffer = rp_flush_buffer, 2336 .ioctl = rp_ioctl, 2337 .throttle = rp_throttle, 2338 .unthrottle = rp_unthrottle, 2339 .set_termios = rp_set_termios, 2340 .stop = rp_stop, 2341 .start = rp_start, 2342 .hangup = rp_hangup, 2343 .break_ctl = rp_break, 2344 .send_xchar = rp_send_xchar, 2345 .wait_until_sent = rp_wait_until_sent, 2346 .tiocmget = rp_tiocmget, 2347 .tiocmset = rp_tiocmset, 2348}; 2349 2350static const struct tty_port_operations rocket_port_ops = { 2351 .carrier_raised = carrier_raised, 2352 .dtr_rts = dtr_rts, 2353}; 2354 2355/* 2356 * The module "startup" routine; it's run when the module is loaded. 2357 */ 2358static int __init rp_init(void) 2359{ 2360 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i; 2361 2362 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n", 2363 ROCKET_VERSION, ROCKET_DATE); 2364 2365 rocket_driver = alloc_tty_driver(MAX_RP_PORTS); 2366 if (!rocket_driver) 2367 goto err; 2368 2369 /* 2370 * If board 1 is non-zero, there is at least one ISA configured. If controller is 2371 * zero, use the default controller IO address of board1 + 0x40. 2372 */ 2373 if (board1) { 2374 if (controller == 0) 2375 controller = board1 + 0x40; 2376 } else { 2377 controller = 0; /* Used as a flag, meaning no ISA boards */ 2378 } 2379 2380 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */ 2381 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) { 2382 printk(KERN_ERR "Unable to reserve IO region for first " 2383 "configured ISA RocketPort controller 0x%lx. " 2384 "Driver exiting\n", controller); 2385 ret = -EBUSY; 2386 goto err_tty; 2387 } 2388 2389 /* Store ISA variable retrieved from command line or .conf file. */ 2390 rcktpt_io_addr[0] = board1; 2391 rcktpt_io_addr[1] = board2; 2392 rcktpt_io_addr[2] = board3; 2393 rcktpt_io_addr[3] = board4; 2394 2395 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2396 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0]; 2397 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2398 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1]; 2399 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2400 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2]; 2401 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2402 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3]; 2403 2404 /* 2405 * Set up the tty driver structure and then register this 2406 * driver with the tty layer. 2407 */ 2408 2409 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV; 2410 rocket_driver->name = "ttyR"; 2411 rocket_driver->driver_name = "Comtrol RocketPort"; 2412 rocket_driver->major = TTY_ROCKET_MAJOR; 2413 rocket_driver->minor_start = 0; 2414 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL; 2415 rocket_driver->subtype = SERIAL_TYPE_NORMAL; 2416 rocket_driver->init_termios = tty_std_termios; 2417 rocket_driver->init_termios.c_cflag = 2418 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 2419 rocket_driver->init_termios.c_ispeed = 9600; 2420 rocket_driver->init_termios.c_ospeed = 9600; 2421#ifdef ROCKET_SOFT_FLOW 2422 rocket_driver->flags |= TTY_DRIVER_REAL_RAW; 2423#endif 2424 tty_set_operations(rocket_driver, &rocket_ops); 2425 2426 ret = tty_register_driver(rocket_driver); 2427 if (ret < 0) { 2428 printk(KERN_ERR "Couldn't install tty RocketPort driver\n"); 2429 goto err_controller; 2430 } 2431 2432#ifdef ROCKET_DEBUG_OPEN 2433 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major); 2434#endif 2435 2436 /* 2437 * OK, let's probe each of the controllers looking for boards. Any boards found 2438 * will be initialized here. 2439 */ 2440 isa_boards_found = 0; 2441 pci_boards_found = 0; 2442 2443 for (i = 0; i < NUM_BOARDS; i++) { 2444 if (init_ISA(i)) 2445 isa_boards_found++; 2446 } 2447 2448#ifdef CONFIG_PCI 2449 if (isa_boards_found < NUM_BOARDS) 2450 pci_boards_found = init_PCI(isa_boards_found); 2451#endif 2452 2453 max_board = pci_boards_found + isa_boards_found; 2454 2455 if (max_board == 0) { 2456 printk(KERN_ERR "No rocketport ports found; unloading driver\n"); 2457 ret = -ENXIO; 2458 goto err_ttyu; 2459 } 2460 2461 return 0; 2462err_ttyu: 2463 tty_unregister_driver(rocket_driver); 2464err_controller: 2465 if (controller) 2466 release_region(controller, 4); 2467err_tty: 2468 put_tty_driver(rocket_driver); 2469err: 2470 return ret; 2471} 2472 2473 2474static void rp_cleanup_module(void) 2475{ 2476 int retval; 2477 int i; 2478 2479 del_timer_sync(&rocket_timer); 2480 2481 retval = tty_unregister_driver(rocket_driver); 2482 if (retval) 2483 printk(KERN_ERR "Error %d while trying to unregister " 2484 "rocketport driver\n", -retval); 2485 2486 for (i = 0; i < MAX_RP_PORTS; i++) 2487 if (rp_table[i]) { 2488 tty_unregister_device(rocket_driver, i); 2489 tty_port_destroy(&rp_table[i]->port); 2490 kfree(rp_table[i]); 2491 } 2492 2493 put_tty_driver(rocket_driver); 2494 2495 for (i = 0; i < NUM_BOARDS; i++) { 2496 if (rcktpt_io_addr[i] <= 0 || is_PCI[i]) 2497 continue; 2498 release_region(rcktpt_io_addr[i], 64); 2499 } 2500 if (controller) 2501 release_region(controller, 4); 2502} 2503 2504/*************************************************************************** 2505Function: sInitController 2506Purpose: Initialization of controller global registers and controller 2507 structure. 2508Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize, 2509 IRQNum,Frequency,PeriodicOnly) 2510 CONTROLLER_T *CtlP; Ptr to controller structure 2511 int CtlNum; Controller number 2512 ByteIO_t MudbacIO; Mudbac base I/O address. 2513 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 2514 This list must be in the order the AIOPs will be found on the 2515 controller. Once an AIOP in the list is not found, it is 2516 assumed that there are no more AIOPs on the controller. 2517 int AiopIOListSize; Number of addresses in AiopIOList 2518 int IRQNum; Interrupt Request number. Can be any of the following: 2519 0: Disable global interrupts 2520 3: IRQ 3 2521 4: IRQ 4 2522 5: IRQ 5 2523 9: IRQ 9 2524 10: IRQ 10 2525 11: IRQ 11 2526 12: IRQ 12 2527 15: IRQ 15 2528 Byte_t Frequency: A flag identifying the frequency 2529 of the periodic interrupt, can be any one of the following: 2530 FREQ_DIS - periodic interrupt disabled 2531 FREQ_137HZ - 137 Hertz 2532 FREQ_69HZ - 69 Hertz 2533 FREQ_34HZ - 34 Hertz 2534 FREQ_17HZ - 17 Hertz 2535 FREQ_9HZ - 9 Hertz 2536 FREQ_4HZ - 4 Hertz 2537 If IRQNum is set to 0 the Frequency parameter is 2538 overidden, it is forced to a value of FREQ_DIS. 2539 int PeriodicOnly: 1 if all interrupts except the periodic 2540 interrupt are to be blocked. 2541 0 is both the periodic interrupt and 2542 other channel interrupts are allowed. 2543 If IRQNum is set to 0 the PeriodicOnly parameter is 2544 overidden, it is forced to a value of 0. 2545Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 2546 initialization failed. 2547 2548Comments: 2549 If periodic interrupts are to be disabled but AIOP interrupts 2550 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 2551 2552 If interrupts are to be completely disabled set IRQNum to 0. 2553 2554 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 2555 invalid combination. 2556 2557 This function performs initialization of global interrupt modes, 2558 but it does not actually enable global interrupts. To enable 2559 and disable global interrupts use functions sEnGlobalInt() and 2560 sDisGlobalInt(). Enabling of global interrupts is normally not 2561 done until all other initializations are complete. 2562 2563 Even if interrupts are globally enabled, they must also be 2564 individually enabled for each channel that is to generate 2565 interrupts. 2566 2567Warnings: No range checking on any of the parameters is done. 2568 2569 No context switches are allowed while executing this function. 2570 2571 After this function all AIOPs on the controller are disabled, 2572 they can be enabled with sEnAiop(). 2573*/ 2574static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 2575 ByteIO_t * AiopIOList, int AiopIOListSize, 2576 int IRQNum, Byte_t Frequency, int PeriodicOnly) 2577{ 2578 int i; 2579 ByteIO_t io; 2580 int done; 2581 2582 CtlP->AiopIntrBits = aiop_intr_bits; 2583 CtlP->AltChanRingIndicator = 0; 2584 CtlP->CtlNum = CtlNum; 2585 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 2586 CtlP->BusType = isISA; 2587 CtlP->MBaseIO = MudbacIO; 2588 CtlP->MReg1IO = MudbacIO + 1; 2589 CtlP->MReg2IO = MudbacIO + 2; 2590 CtlP->MReg3IO = MudbacIO + 3; 2591#if 1 2592 CtlP->MReg2 = 0; /* interrupt disable */ 2593 CtlP->MReg3 = 0; /* no periodic interrupts */ 2594#else 2595 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */ 2596 CtlP->MReg2 = 0; /* interrupt disable */ 2597 CtlP->MReg3 = 0; /* no periodic interrupts */ 2598 } else { 2599 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */ 2600 CtlP->MReg3 = Frequency; /* set frequency */ 2601 if (PeriodicOnly) { /* periodic interrupt only */ 2602 CtlP->MReg3 |= PERIODIC_ONLY; 2603 } 2604 } 2605#endif 2606 sOutB(CtlP->MReg2IO, CtlP->MReg2); 2607 sOutB(CtlP->MReg3IO, CtlP->MReg3); 2608 sControllerEOI(CtlP); /* clear EOI if warm init */ 2609 /* Init AIOPs */ 2610 CtlP->NumAiop = 0; 2611 for (i = done = 0; i < AiopIOListSize; i++) { 2612 io = AiopIOList[i]; 2613 CtlP->AiopIO[i] = (WordIO_t) io; 2614 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 2615 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */ 2616 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */ 2617 if (done) 2618 continue; 2619 sEnAiop(CtlP, i); /* enable the AIOP */ 2620 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 2621 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 2622 done = 1; /* done looking for AIOPs */ 2623 else { 2624 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 2625 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 2626 sOutB(io + _INDX_DATA, sClockPrescale); 2627 CtlP->NumAiop++; /* bump count of AIOPs */ 2628 } 2629 sDisAiop(CtlP, i); /* disable AIOP */ 2630 } 2631 2632 if (CtlP->NumAiop == 0) 2633 return (-1); 2634 else 2635 return (CtlP->NumAiop); 2636} 2637 2638/*************************************************************************** 2639Function: sReadAiopID 2640Purpose: Read the AIOP idenfication number directly from an AIOP. 2641Call: sReadAiopID(io) 2642 ByteIO_t io: AIOP base I/O address 2643Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X 2644 is replace by an identifying number. 2645 Flag AIOPID_NULL if no valid AIOP is found 2646Warnings: No context switches are allowed while executing this function. 2647 2648*/ 2649static int sReadAiopID(ByteIO_t io) 2650{ 2651 Byte_t AiopID; /* ID byte from AIOP */ 2652 2653 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */ 2654 sOutB(io + _CMD_REG, 0x0); 2655 AiopID = sInW(io + _CHN_STAT0) & 0x07; 2656 if (AiopID == 0x06) 2657 return (1); 2658 else /* AIOP does not exist */ 2659 return (-1); 2660} 2661 2662/*************************************************************************** 2663Function: sReadAiopNumChan 2664Purpose: Read the number of channels available in an AIOP directly from 2665 an AIOP. 2666Call: sReadAiopNumChan(io) 2667 WordIO_t io: AIOP base I/O address 2668Return: int: The number of channels available 2669Comments: The number of channels is determined by write/reads from identical 2670 offsets within the SRAM address spaces for channels 0 and 4. 2671 If the channel 4 space is mirrored to channel 0 it is a 4 channel 2672 AIOP, otherwise it is an 8 channel. 2673Warnings: No context switches are allowed while executing this function. 2674*/ 2675static int sReadAiopNumChan(WordIO_t io) 2676{ 2677 Word_t x; 2678 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 }; 2679 2680 /* write to chan 0 SRAM */ 2681 out32((DWordIO_t) io + _INDX_ADDR, R); 2682 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */ 2683 x = sInW(io + _INDX_DATA); 2684 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */ 2685 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */ 2686 return (8); 2687 else 2688 return (4); 2689} 2690 2691/*************************************************************************** 2692Function: sInitChan 2693Purpose: Initialization of a channel and channel structure 2694Call: sInitChan(CtlP,ChP,AiopNum,ChanNum) 2695 CONTROLLER_T *CtlP; Ptr to controller structure 2696 CHANNEL_T *ChP; Ptr to channel structure 2697 int AiopNum; AIOP number within controller 2698 int ChanNum; Channel number within AIOP 2699Return: int: 1 if initialization succeeded, 0 if it fails because channel 2700 number exceeds number of channels available in AIOP. 2701Comments: This function must be called before a channel can be used. 2702Warnings: No range checking on any of the parameters is done. 2703 2704 No context switches are allowed while executing this function. 2705*/ 2706static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 2707 int ChanNum) 2708{ 2709 int i; 2710 WordIO_t AiopIO; 2711 WordIO_t ChIOOff; 2712 Byte_t *ChR; 2713 Word_t ChOff; 2714 static Byte_t R[4]; 2715 int brd9600; 2716 2717 if (ChanNum >= CtlP->AiopNumChan[AiopNum]) 2718 return 0; /* exceeds num chans in AIOP */ 2719 2720 /* Channel, AIOP, and controller identifiers */ 2721 ChP->CtlP = CtlP; 2722 ChP->ChanID = CtlP->AiopID[AiopNum]; 2723 ChP->AiopNum = AiopNum; 2724 ChP->ChanNum = ChanNum; 2725 2726 /* Global direct addresses */ 2727 AiopIO = CtlP->AiopIO[AiopNum]; 2728 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG; 2729 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN; 2730 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK; 2731 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR; 2732 ChP->IndexData = AiopIO + _INDX_DATA; 2733 2734 /* Channel direct addresses */ 2735 ChIOOff = AiopIO + ChP->ChanNum * 2; 2736 ChP->TxRxData = ChIOOff + _TD0; 2737 ChP->ChanStat = ChIOOff + _CHN_STAT0; 2738 ChP->TxRxCount = ChIOOff + _FIFO_CNT0; 2739 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0; 2740 2741 /* Initialize the channel from the RData array */ 2742 for (i = 0; i < RDATASIZE; i += 4) { 2743 R[0] = RData[i]; 2744 R[1] = RData[i + 1] + 0x10 * ChanNum; 2745 R[2] = RData[i + 2]; 2746 R[3] = RData[i + 3]; 2747 out32(ChP->IndexAddr, R); 2748 } 2749 2750 ChR = ChP->R; 2751 for (i = 0; i < RREGDATASIZE; i += 4) { 2752 ChR[i] = RRegData[i]; 2753 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum; 2754 ChR[i + 2] = RRegData[i + 2]; 2755 ChR[i + 3] = RRegData[i + 3]; 2756 } 2757 2758 /* Indexed registers */ 2759 ChOff = (Word_t) ChanNum *0x1000; 2760 2761 if (sClockPrescale == 0x14) 2762 brd9600 = 47; 2763 else 2764 brd9600 = 23; 2765 2766 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD); 2767 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8); 2768 ChP->BaudDiv[2] = (Byte_t) brd9600; 2769 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8); 2770 out32(ChP->IndexAddr, ChP->BaudDiv); 2771 2772 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL); 2773 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8); 2774 ChP->TxControl[2] = 0; 2775 ChP->TxControl[3] = 0; 2776 out32(ChP->IndexAddr, ChP->TxControl); 2777 2778 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL); 2779 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8); 2780 ChP->RxControl[2] = 0; 2781 ChP->RxControl[3] = 0; 2782 out32(ChP->IndexAddr, ChP->RxControl); 2783 2784 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS); 2785 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8); 2786 ChP->TxEnables[2] = 0; 2787 ChP->TxEnables[3] = 0; 2788 out32(ChP->IndexAddr, ChP->TxEnables); 2789 2790 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1); 2791 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8); 2792 ChP->TxCompare[2] = 0; 2793 ChP->TxCompare[3] = 0; 2794 out32(ChP->IndexAddr, ChP->TxCompare); 2795 2796 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1); 2797 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8); 2798 ChP->TxReplace1[2] = 0; 2799 ChP->TxReplace1[3] = 0; 2800 out32(ChP->IndexAddr, ChP->TxReplace1); 2801 2802 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2); 2803 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8); 2804 ChP->TxReplace2[2] = 0; 2805 ChP->TxReplace2[3] = 0; 2806 out32(ChP->IndexAddr, ChP->TxReplace2); 2807 2808 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP; 2809 ChP->TxFIFO = ChOff + _TX_FIFO; 2810 2811 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */ 2812 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */ 2813 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2814 sOutW(ChP->IndexData, 0); 2815 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP; 2816 ChP->RxFIFO = ChOff + _RX_FIFO; 2817 2818 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */ 2819 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */ 2820 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2821 sOutW(ChP->IndexData, 0); 2822 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2823 sOutW(ChP->IndexData, 0); 2824 ChP->TxPrioCnt = ChOff + _TXP_CNT; 2825 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt); 2826 sOutB(ChP->IndexData, 0); 2827 ChP->TxPrioPtr = ChOff + _TXP_PNTR; 2828 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr); 2829 sOutB(ChP->IndexData, 0); 2830 ChP->TxPrioBuf = ChOff + _TXP_BUF; 2831 sEnRxProcessor(ChP); /* start the Rx processor */ 2832 2833 return 1; 2834} 2835 2836/*************************************************************************** 2837Function: sStopRxProcessor 2838Purpose: Stop the receive processor from processing a channel. 2839Call: sStopRxProcessor(ChP) 2840 CHANNEL_T *ChP; Ptr to channel structure 2841 2842Comments: The receive processor can be started again with sStartRxProcessor(). 2843 This function causes the receive processor to skip over the 2844 stopped channel. It does not stop it from processing other channels. 2845 2846Warnings: No context switches are allowed while executing this function. 2847 2848 Do not leave the receive processor stopped for more than one 2849 character time. 2850 2851 After calling this function a delay of 4 uS is required to ensure 2852 that the receive processor is no longer processing this channel. 2853*/ 2854static void sStopRxProcessor(CHANNEL_T * ChP) 2855{ 2856 Byte_t R[4]; 2857 2858 R[0] = ChP->R[0]; 2859 R[1] = ChP->R[1]; 2860 R[2] = 0x0a; 2861 R[3] = ChP->R[3]; 2862 out32(ChP->IndexAddr, R); 2863} 2864 2865/*************************************************************************** 2866Function: sFlushRxFIFO 2867Purpose: Flush the Rx FIFO 2868Call: sFlushRxFIFO(ChP) 2869 CHANNEL_T *ChP; Ptr to channel structure 2870Return: void 2871Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2872 while it is being flushed the receive processor is stopped 2873 and the transmitter is disabled. After these operations a 2874 4 uS delay is done before clearing the pointers to allow 2875 the receive processor to stop. These items are handled inside 2876 this function. 2877Warnings: No context switches are allowed while executing this function. 2878*/ 2879static void sFlushRxFIFO(CHANNEL_T * ChP) 2880{ 2881 int i; 2882 Byte_t Ch; /* channel number within AIOP */ 2883 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */ 2884 2885 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */ 2886 return; /* don't need to flush */ 2887 2888 RxFIFOEnabled = 0; 2889 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */ 2890 RxFIFOEnabled = 1; 2891 sDisRxFIFO(ChP); /* disable it */ 2892 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */ 2893 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2894 } 2895 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */ 2896 Ch = (Byte_t) sGetChanNum(ChP); 2897 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */ 2898 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */ 2899 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2900 sOutW(ChP->IndexData, 0); 2901 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2902 sOutW(ChP->IndexData, 0); 2903 if (RxFIFOEnabled) 2904 sEnRxFIFO(ChP); /* enable Rx FIFO */ 2905} 2906 2907/*************************************************************************** 2908Function: sFlushTxFIFO 2909Purpose: Flush the Tx FIFO 2910Call: sFlushTxFIFO(ChP) 2911 CHANNEL_T *ChP; Ptr to channel structure 2912Return: void 2913Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2914 while it is being flushed the receive processor is stopped 2915 and the transmitter is disabled. After these operations a 2916 4 uS delay is done before clearing the pointers to allow 2917 the receive processor to stop. These items are handled inside 2918 this function. 2919Warnings: No context switches are allowed while executing this function. 2920*/ 2921static void sFlushTxFIFO(CHANNEL_T * ChP) 2922{ 2923 int i; 2924 Byte_t Ch; /* channel number within AIOP */ 2925 int TxEnabled; /* 1 if transmitter enabled */ 2926 2927 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */ 2928 return; /* don't need to flush */ 2929 2930 TxEnabled = 0; 2931 if (ChP->TxControl[3] & TX_ENABLE) { 2932 TxEnabled = 1; 2933 sDisTransmit(ChP); /* disable transmitter */ 2934 } 2935 sStopRxProcessor(ChP); /* stop Rx processor */ 2936 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */ 2937 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2938 Ch = (Byte_t) sGetChanNum(ChP); 2939 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */ 2940 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */ 2941 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2942 sOutW(ChP->IndexData, 0); 2943 if (TxEnabled) 2944 sEnTransmit(ChP); /* enable transmitter */ 2945 sStartRxProcessor(ChP); /* restart Rx processor */ 2946} 2947 2948/*************************************************************************** 2949Function: sWriteTxPrioByte 2950Purpose: Write a byte of priority transmit data to a channel 2951Call: sWriteTxPrioByte(ChP,Data) 2952 CHANNEL_T *ChP; Ptr to channel structure 2953 Byte_t Data; The transmit data byte 2954 2955Return: int: 1 if the bytes is successfully written, otherwise 0. 2956 2957Comments: The priority byte is transmitted before any data in the Tx FIFO. 2958 2959Warnings: No context switches are allowed while executing this function. 2960*/ 2961static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data) 2962{ 2963 Byte_t DWBuf[4]; /* buffer for double word writes */ 2964 Word_t *WordPtr; /* must be far because Win SS != DS */ 2965 register DWordIO_t IndexAddr; 2966 2967 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */ 2968 IndexAddr = ChP->IndexAddr; 2969 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */ 2970 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */ 2971 return (0); /* nothing sent */ 2972 2973 WordPtr = (Word_t *) (&DWBuf[0]); 2974 *WordPtr = ChP->TxPrioBuf; /* data byte address */ 2975 2976 DWBuf[2] = Data; /* data byte value */ 2977 out32(IndexAddr, DWBuf); /* write it out */ 2978 2979 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */ 2980 2981 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */ 2982 DWBuf[3] = 0; /* priority buffer pointer */ 2983 out32(IndexAddr, DWBuf); /* write it out */ 2984 } else { /* write it to Tx FIFO */ 2985 2986 sWriteTxByte(sGetTxRxDataIO(ChP), Data); 2987 } 2988 return (1); /* 1 byte sent */ 2989} 2990 2991/*************************************************************************** 2992Function: sEnInterrupts 2993Purpose: Enable one or more interrupts for a channel 2994Call: sEnInterrupts(ChP,Flags) 2995 CHANNEL_T *ChP; Ptr to channel structure 2996 Word_t Flags: Interrupt enable flags, can be any combination 2997 of the following flags: 2998 TXINT_EN: Interrupt on Tx FIFO empty 2999 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3000 sSetRxTrigger()) 3001 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3002 MCINT_EN: Interrupt on modem input change 3003 CHANINT_EN: Allow channel interrupt signal to the AIOP's 3004 Interrupt Channel Register. 3005Return: void 3006Comments: If an interrupt enable flag is set in Flags, that interrupt will be 3007 enabled. If an interrupt enable flag is not set in Flags, that 3008 interrupt will not be changed. Interrupts can be disabled with 3009 function sDisInterrupts(). 3010 3011 This function sets the appropriate bit for the channel in the AIOP's 3012 Interrupt Mask Register if the CHANINT_EN flag is set. This allows 3013 this channel's bit to be set in the AIOP's Interrupt Channel Register. 3014 3015 Interrupts must also be globally enabled before channel interrupts 3016 will be passed on to the host. This is done with function 3017 sEnGlobalInt(). 3018 3019 In some cases it may be desirable to disable interrupts globally but 3020 enable channel interrupts. This would allow the global interrupt 3021 status register to be used to determine which AIOPs need service. 3022*/ 3023static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags) 3024{ 3025 Byte_t Mask; /* Interrupt Mask Register */ 3026 3027 ChP->RxControl[2] |= 3028 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3029 3030 out32(ChP->IndexAddr, ChP->RxControl); 3031 3032 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN); 3033 3034 out32(ChP->IndexAddr, ChP->TxControl); 3035 3036 if (Flags & CHANINT_EN) { 3037 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum]; 3038 sOutB(ChP->IntMask, Mask); 3039 } 3040} 3041 3042/*************************************************************************** 3043Function: sDisInterrupts 3044Purpose: Disable one or more interrupts for a channel 3045Call: sDisInterrupts(ChP,Flags) 3046 CHANNEL_T *ChP; Ptr to channel structure 3047 Word_t Flags: Interrupt flags, can be any combination 3048 of the following flags: 3049 TXINT_EN: Interrupt on Tx FIFO empty 3050 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3051 sSetRxTrigger()) 3052 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3053 MCINT_EN: Interrupt on modem input change 3054 CHANINT_EN: Disable channel interrupt signal to the 3055 AIOP's Interrupt Channel Register. 3056Return: void 3057Comments: If an interrupt flag is set in Flags, that interrupt will be 3058 disabled. If an interrupt flag is not set in Flags, that 3059 interrupt will not be changed. Interrupts can be enabled with 3060 function sEnInterrupts(). 3061 3062 This function clears the appropriate bit for the channel in the AIOP's 3063 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks 3064 this channel's bit from being set in the AIOP's Interrupt Channel 3065 Register. 3066*/ 3067static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags) 3068{ 3069 Byte_t Mask; /* Interrupt Mask Register */ 3070 3071 ChP->RxControl[2] &= 3072 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3073 out32(ChP->IndexAddr, ChP->RxControl); 3074 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN); 3075 out32(ChP->IndexAddr, ChP->TxControl); 3076 3077 if (Flags & CHANINT_EN) { 3078 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum]; 3079 sOutB(ChP->IntMask, Mask); 3080 } 3081} 3082 3083static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode) 3084{ 3085 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum); 3086} 3087 3088/* 3089 * Not an official SSCI function, but how to reset RocketModems. 3090 * ISA bus version 3091 */ 3092static void sModemReset(CONTROLLER_T * CtlP, int chan, int on) 3093{ 3094 ByteIO_t addr; 3095 Byte_t val; 3096 3097 addr = CtlP->AiopIO[0] + 0x400; 3098 val = sInB(CtlP->MReg3IO); 3099 /* if AIOP[1] is not enabled, enable it */ 3100 if ((val & 2) == 0) { 3101 val = sInB(CtlP->MReg2IO); 3102 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03)); 3103 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6)); 3104 } 3105 3106 sEnAiop(CtlP, 1); 3107 if (!on) 3108 addr += 8; 3109 sOutB(addr + chan, 0); /* apply or remove reset */ 3110 sDisAiop(CtlP, 1); 3111} 3112 3113/* 3114 * Not an official SSCI function, but how to reset RocketModems. 3115 * PCI bus version 3116 */ 3117static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on) 3118{ 3119 ByteIO_t addr; 3120 3121 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */ 3122 if (!on) 3123 addr += 8; 3124 sOutB(addr + chan, 0); /* apply or remove reset */ 3125} 3126 3127/* Returns the line number given the controller (board), aiop and channel number */ 3128static unsigned char GetLineNumber(int ctrl, int aiop, int ch) 3129{ 3130 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch]; 3131} 3132 3133/* 3134 * Stores the line number associated with a given controller (board), aiop 3135 * and channel number. 3136 * Returns: The line number assigned 3137 */ 3138static unsigned char SetLineNumber(int ctrl, int aiop, int ch) 3139{ 3140 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++; 3141 return (nextLineNumber - 1); 3142}