at v4.12-rc4 54 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/dax.h> 22#include <linux/buffer_head.h> 23#include <linux/swap.h> 24#include <linux/pagevec.h> 25#include <linux/writeback.h> 26#include <linux/mpage.h> 27#include <linux/mount.h> 28#include <linux/uio.h> 29#include <linux/namei.h> 30#include <linux/log2.h> 31#include <linux/cleancache.h> 32#include <linux/dax.h> 33#include <linux/badblocks.h> 34#include <linux/task_io_accounting_ops.h> 35#include <linux/falloc.h> 36#include <linux/uaccess.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 58{ 59 struct va_format vaf; 60 va_list args; 61 62 va_start(args, fmt); 63 vaf.fmt = fmt; 64 vaf.va = &args; 65 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf); 66 va_end(args); 67} 68 69static void bdev_write_inode(struct block_device *bdev) 70{ 71 struct inode *inode = bdev->bd_inode; 72 int ret; 73 74 spin_lock(&inode->i_lock); 75 while (inode->i_state & I_DIRTY) { 76 spin_unlock(&inode->i_lock); 77 ret = write_inode_now(inode, true); 78 if (ret) { 79 char name[BDEVNAME_SIZE]; 80 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 81 "for block device %s (err=%d).\n", 82 bdevname(bdev, name), ret); 83 } 84 spin_lock(&inode->i_lock); 85 } 86 spin_unlock(&inode->i_lock); 87} 88 89/* Kill _all_ buffers and pagecache , dirty or not.. */ 90void kill_bdev(struct block_device *bdev) 91{ 92 struct address_space *mapping = bdev->bd_inode->i_mapping; 93 94 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 95 return; 96 97 invalidate_bh_lrus(); 98 truncate_inode_pages(mapping, 0); 99} 100EXPORT_SYMBOL(kill_bdev); 101 102/* Invalidate clean unused buffers and pagecache. */ 103void invalidate_bdev(struct block_device *bdev) 104{ 105 struct address_space *mapping = bdev->bd_inode->i_mapping; 106 107 if (mapping->nrpages) { 108 invalidate_bh_lrus(); 109 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 110 invalidate_mapping_pages(mapping, 0, -1); 111 } 112 /* 99% of the time, we don't need to flush the cleancache on the bdev. 113 * But, for the strange corners, lets be cautious 114 */ 115 cleancache_invalidate_inode(mapping); 116} 117EXPORT_SYMBOL(invalidate_bdev); 118 119int set_blocksize(struct block_device *bdev, int size) 120{ 121 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 123 return -EINVAL; 124 125 /* Size cannot be smaller than the size supported by the device */ 126 if (size < bdev_logical_block_size(bdev)) 127 return -EINVAL; 128 129 /* Don't change the size if it is same as current */ 130 if (bdev->bd_block_size != size) { 131 sync_blockdev(bdev); 132 bdev->bd_block_size = size; 133 bdev->bd_inode->i_blkbits = blksize_bits(size); 134 kill_bdev(bdev); 135 } 136 return 0; 137} 138 139EXPORT_SYMBOL(set_blocksize); 140 141int sb_set_blocksize(struct super_block *sb, int size) 142{ 143 if (set_blocksize(sb->s_bdev, size)) 144 return 0; 145 /* If we get here, we know size is power of two 146 * and it's value is between 512 and PAGE_SIZE */ 147 sb->s_blocksize = size; 148 sb->s_blocksize_bits = blksize_bits(size); 149 return sb->s_blocksize; 150} 151 152EXPORT_SYMBOL(sb_set_blocksize); 153 154int sb_min_blocksize(struct super_block *sb, int size) 155{ 156 int minsize = bdev_logical_block_size(sb->s_bdev); 157 if (size < minsize) 158 size = minsize; 159 return sb_set_blocksize(sb, size); 160} 161 162EXPORT_SYMBOL(sb_min_blocksize); 163 164static int 165blkdev_get_block(struct inode *inode, sector_t iblock, 166 struct buffer_head *bh, int create) 167{ 168 bh->b_bdev = I_BDEV(inode); 169 bh->b_blocknr = iblock; 170 set_buffer_mapped(bh); 171 return 0; 172} 173 174static struct inode *bdev_file_inode(struct file *file) 175{ 176 return file->f_mapping->host; 177} 178 179static unsigned int dio_bio_write_op(struct kiocb *iocb) 180{ 181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 182 183 /* avoid the need for a I/O completion work item */ 184 if (iocb->ki_flags & IOCB_DSYNC) 185 op |= REQ_FUA; 186 return op; 187} 188 189#define DIO_INLINE_BIO_VECS 4 190 191static void blkdev_bio_end_io_simple(struct bio *bio) 192{ 193 struct task_struct *waiter = bio->bi_private; 194 195 WRITE_ONCE(bio->bi_private, NULL); 196 wake_up_process(waiter); 197} 198 199static ssize_t 200__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 201 int nr_pages) 202{ 203 struct file *file = iocb->ki_filp; 204 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 206 loff_t pos = iocb->ki_pos; 207 bool should_dirty = false; 208 struct bio bio; 209 ssize_t ret; 210 blk_qc_t qc; 211 int i; 212 213 if ((pos | iov_iter_alignment(iter)) & 214 (bdev_logical_block_size(bdev) - 1)) 215 return -EINVAL; 216 217 if (nr_pages <= DIO_INLINE_BIO_VECS) 218 vecs = inline_vecs; 219 else { 220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL); 221 if (!vecs) 222 return -ENOMEM; 223 } 224 225 bio_init(&bio, vecs, nr_pages); 226 bio.bi_bdev = bdev; 227 bio.bi_iter.bi_sector = pos >> 9; 228 bio.bi_private = current; 229 bio.bi_end_io = blkdev_bio_end_io_simple; 230 231 ret = bio_iov_iter_get_pages(&bio, iter); 232 if (unlikely(ret)) 233 return ret; 234 ret = bio.bi_iter.bi_size; 235 236 if (iov_iter_rw(iter) == READ) { 237 bio.bi_opf = REQ_OP_READ; 238 if (iter_is_iovec(iter)) 239 should_dirty = true; 240 } else { 241 bio.bi_opf = dio_bio_write_op(iocb); 242 task_io_account_write(ret); 243 } 244 245 qc = submit_bio(&bio); 246 for (;;) { 247 set_current_state(TASK_UNINTERRUPTIBLE); 248 if (!READ_ONCE(bio.bi_private)) 249 break; 250 if (!(iocb->ki_flags & IOCB_HIPRI) || 251 !blk_mq_poll(bdev_get_queue(bdev), qc)) 252 io_schedule(); 253 } 254 __set_current_state(TASK_RUNNING); 255 256 bio_for_each_segment_all(bvec, &bio, i) { 257 if (should_dirty && !PageCompound(bvec->bv_page)) 258 set_page_dirty_lock(bvec->bv_page); 259 put_page(bvec->bv_page); 260 } 261 262 if (vecs != inline_vecs) 263 kfree(vecs); 264 265 if (unlikely(bio.bi_error)) 266 return bio.bi_error; 267 return ret; 268} 269 270struct blkdev_dio { 271 union { 272 struct kiocb *iocb; 273 struct task_struct *waiter; 274 }; 275 size_t size; 276 atomic_t ref; 277 bool multi_bio : 1; 278 bool should_dirty : 1; 279 bool is_sync : 1; 280 struct bio bio; 281}; 282 283static struct bio_set *blkdev_dio_pool __read_mostly; 284 285static void blkdev_bio_end_io(struct bio *bio) 286{ 287 struct blkdev_dio *dio = bio->bi_private; 288 bool should_dirty = dio->should_dirty; 289 290 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) { 291 if (bio->bi_error && !dio->bio.bi_error) 292 dio->bio.bi_error = bio->bi_error; 293 } else { 294 if (!dio->is_sync) { 295 struct kiocb *iocb = dio->iocb; 296 ssize_t ret = dio->bio.bi_error; 297 298 if (likely(!ret)) { 299 ret = dio->size; 300 iocb->ki_pos += ret; 301 } 302 303 dio->iocb->ki_complete(iocb, ret, 0); 304 bio_put(&dio->bio); 305 } else { 306 struct task_struct *waiter = dio->waiter; 307 308 WRITE_ONCE(dio->waiter, NULL); 309 wake_up_process(waiter); 310 } 311 } 312 313 if (should_dirty) { 314 bio_check_pages_dirty(bio); 315 } else { 316 struct bio_vec *bvec; 317 int i; 318 319 bio_for_each_segment_all(bvec, bio, i) 320 put_page(bvec->bv_page); 321 bio_put(bio); 322 } 323} 324 325static ssize_t 326__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 327{ 328 struct file *file = iocb->ki_filp; 329 struct inode *inode = bdev_file_inode(file); 330 struct block_device *bdev = I_BDEV(inode); 331 struct blk_plug plug; 332 struct blkdev_dio *dio; 333 struct bio *bio; 334 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 335 loff_t pos = iocb->ki_pos; 336 blk_qc_t qc = BLK_QC_T_NONE; 337 int ret; 338 339 if ((pos | iov_iter_alignment(iter)) & 340 (bdev_logical_block_size(bdev) - 1)) 341 return -EINVAL; 342 343 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool); 344 bio_get(bio); /* extra ref for the completion handler */ 345 346 dio = container_of(bio, struct blkdev_dio, bio); 347 dio->is_sync = is_sync = is_sync_kiocb(iocb); 348 if (dio->is_sync) 349 dio->waiter = current; 350 else 351 dio->iocb = iocb; 352 353 dio->size = 0; 354 dio->multi_bio = false; 355 dio->should_dirty = is_read && (iter->type == ITER_IOVEC); 356 357 blk_start_plug(&plug); 358 for (;;) { 359 bio->bi_bdev = bdev; 360 bio->bi_iter.bi_sector = pos >> 9; 361 bio->bi_private = dio; 362 bio->bi_end_io = blkdev_bio_end_io; 363 364 ret = bio_iov_iter_get_pages(bio, iter); 365 if (unlikely(ret)) { 366 bio->bi_error = ret; 367 bio_endio(bio); 368 break; 369 } 370 371 if (is_read) { 372 bio->bi_opf = REQ_OP_READ; 373 if (dio->should_dirty) 374 bio_set_pages_dirty(bio); 375 } else { 376 bio->bi_opf = dio_bio_write_op(iocb); 377 task_io_account_write(bio->bi_iter.bi_size); 378 } 379 380 dio->size += bio->bi_iter.bi_size; 381 pos += bio->bi_iter.bi_size; 382 383 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 384 if (!nr_pages) { 385 qc = submit_bio(bio); 386 break; 387 } 388 389 if (!dio->multi_bio) { 390 dio->multi_bio = true; 391 atomic_set(&dio->ref, 2); 392 } else { 393 atomic_inc(&dio->ref); 394 } 395 396 submit_bio(bio); 397 bio = bio_alloc(GFP_KERNEL, nr_pages); 398 } 399 blk_finish_plug(&plug); 400 401 if (!is_sync) 402 return -EIOCBQUEUED; 403 404 for (;;) { 405 set_current_state(TASK_UNINTERRUPTIBLE); 406 if (!READ_ONCE(dio->waiter)) 407 break; 408 409 if (!(iocb->ki_flags & IOCB_HIPRI) || 410 !blk_mq_poll(bdev_get_queue(bdev), qc)) 411 io_schedule(); 412 } 413 __set_current_state(TASK_RUNNING); 414 415 ret = dio->bio.bi_error; 416 if (likely(!ret)) 417 ret = dio->size; 418 419 bio_put(&dio->bio); 420 return ret; 421} 422 423static ssize_t 424blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 425{ 426 int nr_pages; 427 428 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 429 if (!nr_pages) 430 return 0; 431 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 432 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 433 434 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 435} 436 437static __init int blkdev_init(void) 438{ 439 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio)); 440 if (!blkdev_dio_pool) 441 return -ENOMEM; 442 return 0; 443} 444module_init(blkdev_init); 445 446int __sync_blockdev(struct block_device *bdev, int wait) 447{ 448 if (!bdev) 449 return 0; 450 if (!wait) 451 return filemap_flush(bdev->bd_inode->i_mapping); 452 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 453} 454 455/* 456 * Write out and wait upon all the dirty data associated with a block 457 * device via its mapping. Does not take the superblock lock. 458 */ 459int sync_blockdev(struct block_device *bdev) 460{ 461 return __sync_blockdev(bdev, 1); 462} 463EXPORT_SYMBOL(sync_blockdev); 464 465/* 466 * Write out and wait upon all dirty data associated with this 467 * device. Filesystem data as well as the underlying block 468 * device. Takes the superblock lock. 469 */ 470int fsync_bdev(struct block_device *bdev) 471{ 472 struct super_block *sb = get_super(bdev); 473 if (sb) { 474 int res = sync_filesystem(sb); 475 drop_super(sb); 476 return res; 477 } 478 return sync_blockdev(bdev); 479} 480EXPORT_SYMBOL(fsync_bdev); 481 482/** 483 * freeze_bdev -- lock a filesystem and force it into a consistent state 484 * @bdev: blockdevice to lock 485 * 486 * If a superblock is found on this device, we take the s_umount semaphore 487 * on it to make sure nobody unmounts until the snapshot creation is done. 488 * The reference counter (bd_fsfreeze_count) guarantees that only the last 489 * unfreeze process can unfreeze the frozen filesystem actually when multiple 490 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 491 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 492 * actually. 493 */ 494struct super_block *freeze_bdev(struct block_device *bdev) 495{ 496 struct super_block *sb; 497 int error = 0; 498 499 mutex_lock(&bdev->bd_fsfreeze_mutex); 500 if (++bdev->bd_fsfreeze_count > 1) { 501 /* 502 * We don't even need to grab a reference - the first call 503 * to freeze_bdev grab an active reference and only the last 504 * thaw_bdev drops it. 505 */ 506 sb = get_super(bdev); 507 if (sb) 508 drop_super(sb); 509 mutex_unlock(&bdev->bd_fsfreeze_mutex); 510 return sb; 511 } 512 513 sb = get_active_super(bdev); 514 if (!sb) 515 goto out; 516 if (sb->s_op->freeze_super) 517 error = sb->s_op->freeze_super(sb); 518 else 519 error = freeze_super(sb); 520 if (error) { 521 deactivate_super(sb); 522 bdev->bd_fsfreeze_count--; 523 mutex_unlock(&bdev->bd_fsfreeze_mutex); 524 return ERR_PTR(error); 525 } 526 deactivate_super(sb); 527 out: 528 sync_blockdev(bdev); 529 mutex_unlock(&bdev->bd_fsfreeze_mutex); 530 return sb; /* thaw_bdev releases s->s_umount */ 531} 532EXPORT_SYMBOL(freeze_bdev); 533 534/** 535 * thaw_bdev -- unlock filesystem 536 * @bdev: blockdevice to unlock 537 * @sb: associated superblock 538 * 539 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 540 */ 541int thaw_bdev(struct block_device *bdev, struct super_block *sb) 542{ 543 int error = -EINVAL; 544 545 mutex_lock(&bdev->bd_fsfreeze_mutex); 546 if (!bdev->bd_fsfreeze_count) 547 goto out; 548 549 error = 0; 550 if (--bdev->bd_fsfreeze_count > 0) 551 goto out; 552 553 if (!sb) 554 goto out; 555 556 if (sb->s_op->thaw_super) 557 error = sb->s_op->thaw_super(sb); 558 else 559 error = thaw_super(sb); 560 if (error) 561 bdev->bd_fsfreeze_count++; 562out: 563 mutex_unlock(&bdev->bd_fsfreeze_mutex); 564 return error; 565} 566EXPORT_SYMBOL(thaw_bdev); 567 568static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 569{ 570 return block_write_full_page(page, blkdev_get_block, wbc); 571} 572 573static int blkdev_readpage(struct file * file, struct page * page) 574{ 575 return block_read_full_page(page, blkdev_get_block); 576} 577 578static int blkdev_readpages(struct file *file, struct address_space *mapping, 579 struct list_head *pages, unsigned nr_pages) 580{ 581 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 582} 583 584static int blkdev_write_begin(struct file *file, struct address_space *mapping, 585 loff_t pos, unsigned len, unsigned flags, 586 struct page **pagep, void **fsdata) 587{ 588 return block_write_begin(mapping, pos, len, flags, pagep, 589 blkdev_get_block); 590} 591 592static int blkdev_write_end(struct file *file, struct address_space *mapping, 593 loff_t pos, unsigned len, unsigned copied, 594 struct page *page, void *fsdata) 595{ 596 int ret; 597 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 598 599 unlock_page(page); 600 put_page(page); 601 602 return ret; 603} 604 605/* 606 * private llseek: 607 * for a block special file file_inode(file)->i_size is zero 608 * so we compute the size by hand (just as in block_read/write above) 609 */ 610static loff_t block_llseek(struct file *file, loff_t offset, int whence) 611{ 612 struct inode *bd_inode = bdev_file_inode(file); 613 loff_t retval; 614 615 inode_lock(bd_inode); 616 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 617 inode_unlock(bd_inode); 618 return retval; 619} 620 621int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 622{ 623 struct inode *bd_inode = bdev_file_inode(filp); 624 struct block_device *bdev = I_BDEV(bd_inode); 625 int error; 626 627 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 628 if (error) 629 return error; 630 631 /* 632 * There is no need to serialise calls to blkdev_issue_flush with 633 * i_mutex and doing so causes performance issues with concurrent 634 * O_SYNC writers to a block device. 635 */ 636 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 637 if (error == -EOPNOTSUPP) 638 error = 0; 639 640 return error; 641} 642EXPORT_SYMBOL(blkdev_fsync); 643 644/** 645 * bdev_read_page() - Start reading a page from a block device 646 * @bdev: The device to read the page from 647 * @sector: The offset on the device to read the page to (need not be aligned) 648 * @page: The page to read 649 * 650 * On entry, the page should be locked. It will be unlocked when the page 651 * has been read. If the block driver implements rw_page synchronously, 652 * that will be true on exit from this function, but it need not be. 653 * 654 * Errors returned by this function are usually "soft", eg out of memory, or 655 * queue full; callers should try a different route to read this page rather 656 * than propagate an error back up the stack. 657 * 658 * Return: negative errno if an error occurs, 0 if submission was successful. 659 */ 660int bdev_read_page(struct block_device *bdev, sector_t sector, 661 struct page *page) 662{ 663 const struct block_device_operations *ops = bdev->bd_disk->fops; 664 int result = -EOPNOTSUPP; 665 666 if (!ops->rw_page || bdev_get_integrity(bdev)) 667 return result; 668 669 result = blk_queue_enter(bdev->bd_queue, false); 670 if (result) 671 return result; 672 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false); 673 blk_queue_exit(bdev->bd_queue); 674 return result; 675} 676EXPORT_SYMBOL_GPL(bdev_read_page); 677 678/** 679 * bdev_write_page() - Start writing a page to a block device 680 * @bdev: The device to write the page to 681 * @sector: The offset on the device to write the page to (need not be aligned) 682 * @page: The page to write 683 * @wbc: The writeback_control for the write 684 * 685 * On entry, the page should be locked and not currently under writeback. 686 * On exit, if the write started successfully, the page will be unlocked and 687 * under writeback. If the write failed already (eg the driver failed to 688 * queue the page to the device), the page will still be locked. If the 689 * caller is a ->writepage implementation, it will need to unlock the page. 690 * 691 * Errors returned by this function are usually "soft", eg out of memory, or 692 * queue full; callers should try a different route to write this page rather 693 * than propagate an error back up the stack. 694 * 695 * Return: negative errno if an error occurs, 0 if submission was successful. 696 */ 697int bdev_write_page(struct block_device *bdev, sector_t sector, 698 struct page *page, struct writeback_control *wbc) 699{ 700 int result; 701 const struct block_device_operations *ops = bdev->bd_disk->fops; 702 703 if (!ops->rw_page || bdev_get_integrity(bdev)) 704 return -EOPNOTSUPP; 705 result = blk_queue_enter(bdev->bd_queue, false); 706 if (result) 707 return result; 708 709 set_page_writeback(page); 710 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true); 711 if (result) 712 end_page_writeback(page); 713 else 714 unlock_page(page); 715 blk_queue_exit(bdev->bd_queue); 716 return result; 717} 718EXPORT_SYMBOL_GPL(bdev_write_page); 719 720/* 721 * pseudo-fs 722 */ 723 724static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 725static struct kmem_cache * bdev_cachep __read_mostly; 726 727static struct inode *bdev_alloc_inode(struct super_block *sb) 728{ 729 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 730 if (!ei) 731 return NULL; 732 return &ei->vfs_inode; 733} 734 735static void bdev_i_callback(struct rcu_head *head) 736{ 737 struct inode *inode = container_of(head, struct inode, i_rcu); 738 struct bdev_inode *bdi = BDEV_I(inode); 739 740 kmem_cache_free(bdev_cachep, bdi); 741} 742 743static void bdev_destroy_inode(struct inode *inode) 744{ 745 call_rcu(&inode->i_rcu, bdev_i_callback); 746} 747 748static void init_once(void *foo) 749{ 750 struct bdev_inode *ei = (struct bdev_inode *) foo; 751 struct block_device *bdev = &ei->bdev; 752 753 memset(bdev, 0, sizeof(*bdev)); 754 mutex_init(&bdev->bd_mutex); 755 INIT_LIST_HEAD(&bdev->bd_list); 756#ifdef CONFIG_SYSFS 757 INIT_LIST_HEAD(&bdev->bd_holder_disks); 758#endif 759 bdev->bd_bdi = &noop_backing_dev_info; 760 inode_init_once(&ei->vfs_inode); 761 /* Initialize mutex for freeze. */ 762 mutex_init(&bdev->bd_fsfreeze_mutex); 763} 764 765static void bdev_evict_inode(struct inode *inode) 766{ 767 struct block_device *bdev = &BDEV_I(inode)->bdev; 768 truncate_inode_pages_final(&inode->i_data); 769 invalidate_inode_buffers(inode); /* is it needed here? */ 770 clear_inode(inode); 771 spin_lock(&bdev_lock); 772 list_del_init(&bdev->bd_list); 773 spin_unlock(&bdev_lock); 774 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 775 inode_detach_wb(inode); 776 if (bdev->bd_bdi != &noop_backing_dev_info) { 777 bdi_put(bdev->bd_bdi); 778 bdev->bd_bdi = &noop_backing_dev_info; 779 } 780} 781 782static const struct super_operations bdev_sops = { 783 .statfs = simple_statfs, 784 .alloc_inode = bdev_alloc_inode, 785 .destroy_inode = bdev_destroy_inode, 786 .drop_inode = generic_delete_inode, 787 .evict_inode = bdev_evict_inode, 788}; 789 790static struct dentry *bd_mount(struct file_system_type *fs_type, 791 int flags, const char *dev_name, void *data) 792{ 793 struct dentry *dent; 794 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 795 if (!IS_ERR(dent)) 796 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 797 return dent; 798} 799 800static struct file_system_type bd_type = { 801 .name = "bdev", 802 .mount = bd_mount, 803 .kill_sb = kill_anon_super, 804}; 805 806struct super_block *blockdev_superblock __read_mostly; 807EXPORT_SYMBOL_GPL(blockdev_superblock); 808 809void __init bdev_cache_init(void) 810{ 811 int err; 812 static struct vfsmount *bd_mnt; 813 814 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 815 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 816 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 817 init_once); 818 err = register_filesystem(&bd_type); 819 if (err) 820 panic("Cannot register bdev pseudo-fs"); 821 bd_mnt = kern_mount(&bd_type); 822 if (IS_ERR(bd_mnt)) 823 panic("Cannot create bdev pseudo-fs"); 824 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 825} 826 827/* 828 * Most likely _very_ bad one - but then it's hardly critical for small 829 * /dev and can be fixed when somebody will need really large one. 830 * Keep in mind that it will be fed through icache hash function too. 831 */ 832static inline unsigned long hash(dev_t dev) 833{ 834 return MAJOR(dev)+MINOR(dev); 835} 836 837static int bdev_test(struct inode *inode, void *data) 838{ 839 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 840} 841 842static int bdev_set(struct inode *inode, void *data) 843{ 844 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 845 return 0; 846} 847 848static LIST_HEAD(all_bdevs); 849 850/* 851 * If there is a bdev inode for this device, unhash it so that it gets evicted 852 * as soon as last inode reference is dropped. 853 */ 854void bdev_unhash_inode(dev_t dev) 855{ 856 struct inode *inode; 857 858 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev); 859 if (inode) { 860 remove_inode_hash(inode); 861 iput(inode); 862 } 863} 864 865struct block_device *bdget(dev_t dev) 866{ 867 struct block_device *bdev; 868 struct inode *inode; 869 870 inode = iget5_locked(blockdev_superblock, hash(dev), 871 bdev_test, bdev_set, &dev); 872 873 if (!inode) 874 return NULL; 875 876 bdev = &BDEV_I(inode)->bdev; 877 878 if (inode->i_state & I_NEW) { 879 bdev->bd_contains = NULL; 880 bdev->bd_super = NULL; 881 bdev->bd_inode = inode; 882 bdev->bd_block_size = i_blocksize(inode); 883 bdev->bd_part_count = 0; 884 bdev->bd_invalidated = 0; 885 inode->i_mode = S_IFBLK; 886 inode->i_rdev = dev; 887 inode->i_bdev = bdev; 888 inode->i_data.a_ops = &def_blk_aops; 889 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 890 spin_lock(&bdev_lock); 891 list_add(&bdev->bd_list, &all_bdevs); 892 spin_unlock(&bdev_lock); 893 unlock_new_inode(inode); 894 } 895 return bdev; 896} 897 898EXPORT_SYMBOL(bdget); 899 900/** 901 * bdgrab -- Grab a reference to an already referenced block device 902 * @bdev: Block device to grab a reference to. 903 */ 904struct block_device *bdgrab(struct block_device *bdev) 905{ 906 ihold(bdev->bd_inode); 907 return bdev; 908} 909EXPORT_SYMBOL(bdgrab); 910 911long nr_blockdev_pages(void) 912{ 913 struct block_device *bdev; 914 long ret = 0; 915 spin_lock(&bdev_lock); 916 list_for_each_entry(bdev, &all_bdevs, bd_list) { 917 ret += bdev->bd_inode->i_mapping->nrpages; 918 } 919 spin_unlock(&bdev_lock); 920 return ret; 921} 922 923void bdput(struct block_device *bdev) 924{ 925 iput(bdev->bd_inode); 926} 927 928EXPORT_SYMBOL(bdput); 929 930static struct block_device *bd_acquire(struct inode *inode) 931{ 932 struct block_device *bdev; 933 934 spin_lock(&bdev_lock); 935 bdev = inode->i_bdev; 936 if (bdev && !inode_unhashed(bdev->bd_inode)) { 937 bdgrab(bdev); 938 spin_unlock(&bdev_lock); 939 return bdev; 940 } 941 spin_unlock(&bdev_lock); 942 943 /* 944 * i_bdev references block device inode that was already shut down 945 * (corresponding device got removed). Remove the reference and look 946 * up block device inode again just in case new device got 947 * reestablished under the same device number. 948 */ 949 if (bdev) 950 bd_forget(inode); 951 952 bdev = bdget(inode->i_rdev); 953 if (bdev) { 954 spin_lock(&bdev_lock); 955 if (!inode->i_bdev) { 956 /* 957 * We take an additional reference to bd_inode, 958 * and it's released in clear_inode() of inode. 959 * So, we can access it via ->i_mapping always 960 * without igrab(). 961 */ 962 bdgrab(bdev); 963 inode->i_bdev = bdev; 964 inode->i_mapping = bdev->bd_inode->i_mapping; 965 } 966 spin_unlock(&bdev_lock); 967 } 968 return bdev; 969} 970 971/* Call when you free inode */ 972 973void bd_forget(struct inode *inode) 974{ 975 struct block_device *bdev = NULL; 976 977 spin_lock(&bdev_lock); 978 if (!sb_is_blkdev_sb(inode->i_sb)) 979 bdev = inode->i_bdev; 980 inode->i_bdev = NULL; 981 inode->i_mapping = &inode->i_data; 982 spin_unlock(&bdev_lock); 983 984 if (bdev) 985 bdput(bdev); 986} 987 988/** 989 * bd_may_claim - test whether a block device can be claimed 990 * @bdev: block device of interest 991 * @whole: whole block device containing @bdev, may equal @bdev 992 * @holder: holder trying to claim @bdev 993 * 994 * Test whether @bdev can be claimed by @holder. 995 * 996 * CONTEXT: 997 * spin_lock(&bdev_lock). 998 * 999 * RETURNS: 1000 * %true if @bdev can be claimed, %false otherwise. 1001 */ 1002static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1003 void *holder) 1004{ 1005 if (bdev->bd_holder == holder) 1006 return true; /* already a holder */ 1007 else if (bdev->bd_holder != NULL) 1008 return false; /* held by someone else */ 1009 else if (whole == bdev) 1010 return true; /* is a whole device which isn't held */ 1011 1012 else if (whole->bd_holder == bd_may_claim) 1013 return true; /* is a partition of a device that is being partitioned */ 1014 else if (whole->bd_holder != NULL) 1015 return false; /* is a partition of a held device */ 1016 else 1017 return true; /* is a partition of an un-held device */ 1018} 1019 1020/** 1021 * bd_prepare_to_claim - prepare to claim a block device 1022 * @bdev: block device of interest 1023 * @whole: the whole device containing @bdev, may equal @bdev 1024 * @holder: holder trying to claim @bdev 1025 * 1026 * Prepare to claim @bdev. This function fails if @bdev is already 1027 * claimed by another holder and waits if another claiming is in 1028 * progress. This function doesn't actually claim. On successful 1029 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1030 * 1031 * CONTEXT: 1032 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1033 * it multiple times. 1034 * 1035 * RETURNS: 1036 * 0 if @bdev can be claimed, -EBUSY otherwise. 1037 */ 1038static int bd_prepare_to_claim(struct block_device *bdev, 1039 struct block_device *whole, void *holder) 1040{ 1041retry: 1042 /* if someone else claimed, fail */ 1043 if (!bd_may_claim(bdev, whole, holder)) 1044 return -EBUSY; 1045 1046 /* if claiming is already in progress, wait for it to finish */ 1047 if (whole->bd_claiming) { 1048 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1049 DEFINE_WAIT(wait); 1050 1051 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1052 spin_unlock(&bdev_lock); 1053 schedule(); 1054 finish_wait(wq, &wait); 1055 spin_lock(&bdev_lock); 1056 goto retry; 1057 } 1058 1059 /* yay, all mine */ 1060 return 0; 1061} 1062 1063/** 1064 * bd_start_claiming - start claiming a block device 1065 * @bdev: block device of interest 1066 * @holder: holder trying to claim @bdev 1067 * 1068 * @bdev is about to be opened exclusively. Check @bdev can be opened 1069 * exclusively and mark that an exclusive open is in progress. Each 1070 * successful call to this function must be matched with a call to 1071 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1072 * fail). 1073 * 1074 * This function is used to gain exclusive access to the block device 1075 * without actually causing other exclusive open attempts to fail. It 1076 * should be used when the open sequence itself requires exclusive 1077 * access but may subsequently fail. 1078 * 1079 * CONTEXT: 1080 * Might sleep. 1081 * 1082 * RETURNS: 1083 * Pointer to the block device containing @bdev on success, ERR_PTR() 1084 * value on failure. 1085 */ 1086static struct block_device *bd_start_claiming(struct block_device *bdev, 1087 void *holder) 1088{ 1089 struct gendisk *disk; 1090 struct block_device *whole; 1091 int partno, err; 1092 1093 might_sleep(); 1094 1095 /* 1096 * @bdev might not have been initialized properly yet, look up 1097 * and grab the outer block device the hard way. 1098 */ 1099 disk = get_gendisk(bdev->bd_dev, &partno); 1100 if (!disk) 1101 return ERR_PTR(-ENXIO); 1102 1103 /* 1104 * Normally, @bdev should equal what's returned from bdget_disk() 1105 * if partno is 0; however, some drivers (floppy) use multiple 1106 * bdev's for the same physical device and @bdev may be one of the 1107 * aliases. Keep @bdev if partno is 0. This means claimer 1108 * tracking is broken for those devices but it has always been that 1109 * way. 1110 */ 1111 if (partno) 1112 whole = bdget_disk(disk, 0); 1113 else 1114 whole = bdgrab(bdev); 1115 1116 module_put(disk->fops->owner); 1117 put_disk(disk); 1118 if (!whole) 1119 return ERR_PTR(-ENOMEM); 1120 1121 /* prepare to claim, if successful, mark claiming in progress */ 1122 spin_lock(&bdev_lock); 1123 1124 err = bd_prepare_to_claim(bdev, whole, holder); 1125 if (err == 0) { 1126 whole->bd_claiming = holder; 1127 spin_unlock(&bdev_lock); 1128 return whole; 1129 } else { 1130 spin_unlock(&bdev_lock); 1131 bdput(whole); 1132 return ERR_PTR(err); 1133 } 1134} 1135 1136#ifdef CONFIG_SYSFS 1137struct bd_holder_disk { 1138 struct list_head list; 1139 struct gendisk *disk; 1140 int refcnt; 1141}; 1142 1143static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1144 struct gendisk *disk) 1145{ 1146 struct bd_holder_disk *holder; 1147 1148 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1149 if (holder->disk == disk) 1150 return holder; 1151 return NULL; 1152} 1153 1154static int add_symlink(struct kobject *from, struct kobject *to) 1155{ 1156 return sysfs_create_link(from, to, kobject_name(to)); 1157} 1158 1159static void del_symlink(struct kobject *from, struct kobject *to) 1160{ 1161 sysfs_remove_link(from, kobject_name(to)); 1162} 1163 1164/** 1165 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1166 * @bdev: the claimed slave bdev 1167 * @disk: the holding disk 1168 * 1169 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1170 * 1171 * This functions creates the following sysfs symlinks. 1172 * 1173 * - from "slaves" directory of the holder @disk to the claimed @bdev 1174 * - from "holders" directory of the @bdev to the holder @disk 1175 * 1176 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1177 * passed to bd_link_disk_holder(), then: 1178 * 1179 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1180 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1181 * 1182 * The caller must have claimed @bdev before calling this function and 1183 * ensure that both @bdev and @disk are valid during the creation and 1184 * lifetime of these symlinks. 1185 * 1186 * CONTEXT: 1187 * Might sleep. 1188 * 1189 * RETURNS: 1190 * 0 on success, -errno on failure. 1191 */ 1192int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1193{ 1194 struct bd_holder_disk *holder; 1195 int ret = 0; 1196 1197 mutex_lock(&bdev->bd_mutex); 1198 1199 WARN_ON_ONCE(!bdev->bd_holder); 1200 1201 /* FIXME: remove the following once add_disk() handles errors */ 1202 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1203 goto out_unlock; 1204 1205 holder = bd_find_holder_disk(bdev, disk); 1206 if (holder) { 1207 holder->refcnt++; 1208 goto out_unlock; 1209 } 1210 1211 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1212 if (!holder) { 1213 ret = -ENOMEM; 1214 goto out_unlock; 1215 } 1216 1217 INIT_LIST_HEAD(&holder->list); 1218 holder->disk = disk; 1219 holder->refcnt = 1; 1220 1221 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1222 if (ret) 1223 goto out_free; 1224 1225 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1226 if (ret) 1227 goto out_del; 1228 /* 1229 * bdev could be deleted beneath us which would implicitly destroy 1230 * the holder directory. Hold on to it. 1231 */ 1232 kobject_get(bdev->bd_part->holder_dir); 1233 1234 list_add(&holder->list, &bdev->bd_holder_disks); 1235 goto out_unlock; 1236 1237out_del: 1238 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1239out_free: 1240 kfree(holder); 1241out_unlock: 1242 mutex_unlock(&bdev->bd_mutex); 1243 return ret; 1244} 1245EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1246 1247/** 1248 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1249 * @bdev: the calimed slave bdev 1250 * @disk: the holding disk 1251 * 1252 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1253 * 1254 * CONTEXT: 1255 * Might sleep. 1256 */ 1257void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1258{ 1259 struct bd_holder_disk *holder; 1260 1261 mutex_lock(&bdev->bd_mutex); 1262 1263 holder = bd_find_holder_disk(bdev, disk); 1264 1265 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1266 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1267 del_symlink(bdev->bd_part->holder_dir, 1268 &disk_to_dev(disk)->kobj); 1269 kobject_put(bdev->bd_part->holder_dir); 1270 list_del_init(&holder->list); 1271 kfree(holder); 1272 } 1273 1274 mutex_unlock(&bdev->bd_mutex); 1275} 1276EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1277#endif 1278 1279/** 1280 * flush_disk - invalidates all buffer-cache entries on a disk 1281 * 1282 * @bdev: struct block device to be flushed 1283 * @kill_dirty: flag to guide handling of dirty inodes 1284 * 1285 * Invalidates all buffer-cache entries on a disk. It should be called 1286 * when a disk has been changed -- either by a media change or online 1287 * resize. 1288 */ 1289static void flush_disk(struct block_device *bdev, bool kill_dirty) 1290{ 1291 if (__invalidate_device(bdev, kill_dirty)) { 1292 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1293 "resized disk %s\n", 1294 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1295 } 1296 1297 if (!bdev->bd_disk) 1298 return; 1299 if (disk_part_scan_enabled(bdev->bd_disk)) 1300 bdev->bd_invalidated = 1; 1301} 1302 1303/** 1304 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1305 * @disk: struct gendisk to check 1306 * @bdev: struct bdev to adjust. 1307 * 1308 * This routine checks to see if the bdev size does not match the disk size 1309 * and adjusts it if it differs. 1310 */ 1311void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1312{ 1313 loff_t disk_size, bdev_size; 1314 1315 disk_size = (loff_t)get_capacity(disk) << 9; 1316 bdev_size = i_size_read(bdev->bd_inode); 1317 if (disk_size != bdev_size) { 1318 printk(KERN_INFO 1319 "%s: detected capacity change from %lld to %lld\n", 1320 disk->disk_name, bdev_size, disk_size); 1321 i_size_write(bdev->bd_inode, disk_size); 1322 flush_disk(bdev, false); 1323 } 1324} 1325EXPORT_SYMBOL(check_disk_size_change); 1326 1327/** 1328 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1329 * @disk: struct gendisk to be revalidated 1330 * 1331 * This routine is a wrapper for lower-level driver's revalidate_disk 1332 * call-backs. It is used to do common pre and post operations needed 1333 * for all revalidate_disk operations. 1334 */ 1335int revalidate_disk(struct gendisk *disk) 1336{ 1337 struct block_device *bdev; 1338 int ret = 0; 1339 1340 if (disk->fops->revalidate_disk) 1341 ret = disk->fops->revalidate_disk(disk); 1342 bdev = bdget_disk(disk, 0); 1343 if (!bdev) 1344 return ret; 1345 1346 mutex_lock(&bdev->bd_mutex); 1347 check_disk_size_change(disk, bdev); 1348 bdev->bd_invalidated = 0; 1349 mutex_unlock(&bdev->bd_mutex); 1350 bdput(bdev); 1351 return ret; 1352} 1353EXPORT_SYMBOL(revalidate_disk); 1354 1355/* 1356 * This routine checks whether a removable media has been changed, 1357 * and invalidates all buffer-cache-entries in that case. This 1358 * is a relatively slow routine, so we have to try to minimize using 1359 * it. Thus it is called only upon a 'mount' or 'open'. This 1360 * is the best way of combining speed and utility, I think. 1361 * People changing diskettes in the middle of an operation deserve 1362 * to lose :-) 1363 */ 1364int check_disk_change(struct block_device *bdev) 1365{ 1366 struct gendisk *disk = bdev->bd_disk; 1367 const struct block_device_operations *bdops = disk->fops; 1368 unsigned int events; 1369 1370 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1371 DISK_EVENT_EJECT_REQUEST); 1372 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1373 return 0; 1374 1375 flush_disk(bdev, true); 1376 if (bdops->revalidate_disk) 1377 bdops->revalidate_disk(bdev->bd_disk); 1378 return 1; 1379} 1380 1381EXPORT_SYMBOL(check_disk_change); 1382 1383void bd_set_size(struct block_device *bdev, loff_t size) 1384{ 1385 unsigned bsize = bdev_logical_block_size(bdev); 1386 1387 inode_lock(bdev->bd_inode); 1388 i_size_write(bdev->bd_inode, size); 1389 inode_unlock(bdev->bd_inode); 1390 while (bsize < PAGE_SIZE) { 1391 if (size & bsize) 1392 break; 1393 bsize <<= 1; 1394 } 1395 bdev->bd_block_size = bsize; 1396 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1397} 1398EXPORT_SYMBOL(bd_set_size); 1399 1400static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1401 1402/* 1403 * bd_mutex locking: 1404 * 1405 * mutex_lock(part->bd_mutex) 1406 * mutex_lock_nested(whole->bd_mutex, 1) 1407 */ 1408 1409static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1410{ 1411 struct gendisk *disk; 1412 struct module *owner; 1413 int ret; 1414 int partno; 1415 int perm = 0; 1416 1417 if (mode & FMODE_READ) 1418 perm |= MAY_READ; 1419 if (mode & FMODE_WRITE) 1420 perm |= MAY_WRITE; 1421 /* 1422 * hooks: /n/, see "layering violations". 1423 */ 1424 if (!for_part) { 1425 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1426 if (ret != 0) { 1427 bdput(bdev); 1428 return ret; 1429 } 1430 } 1431 1432 restart: 1433 1434 ret = -ENXIO; 1435 disk = get_gendisk(bdev->bd_dev, &partno); 1436 if (!disk) 1437 goto out; 1438 owner = disk->fops->owner; 1439 1440 disk_block_events(disk); 1441 mutex_lock_nested(&bdev->bd_mutex, for_part); 1442 if (!bdev->bd_openers) { 1443 bdev->bd_disk = disk; 1444 bdev->bd_queue = disk->queue; 1445 bdev->bd_contains = bdev; 1446 1447 if (!partno) { 1448 ret = -ENXIO; 1449 bdev->bd_part = disk_get_part(disk, partno); 1450 if (!bdev->bd_part) 1451 goto out_clear; 1452 1453 ret = 0; 1454 if (disk->fops->open) { 1455 ret = disk->fops->open(bdev, mode); 1456 if (ret == -ERESTARTSYS) { 1457 /* Lost a race with 'disk' being 1458 * deleted, try again. 1459 * See md.c 1460 */ 1461 disk_put_part(bdev->bd_part); 1462 bdev->bd_part = NULL; 1463 bdev->bd_disk = NULL; 1464 bdev->bd_queue = NULL; 1465 mutex_unlock(&bdev->bd_mutex); 1466 disk_unblock_events(disk); 1467 put_disk(disk); 1468 module_put(owner); 1469 goto restart; 1470 } 1471 } 1472 1473 if (!ret) 1474 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1475 1476 /* 1477 * If the device is invalidated, rescan partition 1478 * if open succeeded or failed with -ENOMEDIUM. 1479 * The latter is necessary to prevent ghost 1480 * partitions on a removed medium. 1481 */ 1482 if (bdev->bd_invalidated) { 1483 if (!ret) 1484 rescan_partitions(disk, bdev); 1485 else if (ret == -ENOMEDIUM) 1486 invalidate_partitions(disk, bdev); 1487 } 1488 1489 if (ret) 1490 goto out_clear; 1491 } else { 1492 struct block_device *whole; 1493 whole = bdget_disk(disk, 0); 1494 ret = -ENOMEM; 1495 if (!whole) 1496 goto out_clear; 1497 BUG_ON(for_part); 1498 ret = __blkdev_get(whole, mode, 1); 1499 if (ret) 1500 goto out_clear; 1501 bdev->bd_contains = whole; 1502 bdev->bd_part = disk_get_part(disk, partno); 1503 if (!(disk->flags & GENHD_FL_UP) || 1504 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1505 ret = -ENXIO; 1506 goto out_clear; 1507 } 1508 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1509 } 1510 1511 if (bdev->bd_bdi == &noop_backing_dev_info) 1512 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1513 } else { 1514 if (bdev->bd_contains == bdev) { 1515 ret = 0; 1516 if (bdev->bd_disk->fops->open) 1517 ret = bdev->bd_disk->fops->open(bdev, mode); 1518 /* the same as first opener case, read comment there */ 1519 if (bdev->bd_invalidated) { 1520 if (!ret) 1521 rescan_partitions(bdev->bd_disk, bdev); 1522 else if (ret == -ENOMEDIUM) 1523 invalidate_partitions(bdev->bd_disk, bdev); 1524 } 1525 if (ret) 1526 goto out_unlock_bdev; 1527 } 1528 /* only one opener holds refs to the module and disk */ 1529 put_disk(disk); 1530 module_put(owner); 1531 } 1532 bdev->bd_openers++; 1533 if (for_part) 1534 bdev->bd_part_count++; 1535 mutex_unlock(&bdev->bd_mutex); 1536 disk_unblock_events(disk); 1537 return 0; 1538 1539 out_clear: 1540 disk_put_part(bdev->bd_part); 1541 bdev->bd_disk = NULL; 1542 bdev->bd_part = NULL; 1543 bdev->bd_queue = NULL; 1544 if (bdev != bdev->bd_contains) 1545 __blkdev_put(bdev->bd_contains, mode, 1); 1546 bdev->bd_contains = NULL; 1547 out_unlock_bdev: 1548 mutex_unlock(&bdev->bd_mutex); 1549 disk_unblock_events(disk); 1550 put_disk(disk); 1551 module_put(owner); 1552 out: 1553 bdput(bdev); 1554 1555 return ret; 1556} 1557 1558/** 1559 * blkdev_get - open a block device 1560 * @bdev: block_device to open 1561 * @mode: FMODE_* mask 1562 * @holder: exclusive holder identifier 1563 * 1564 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1565 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1566 * @holder is invalid. Exclusive opens may nest for the same @holder. 1567 * 1568 * On success, the reference count of @bdev is unchanged. On failure, 1569 * @bdev is put. 1570 * 1571 * CONTEXT: 1572 * Might sleep. 1573 * 1574 * RETURNS: 1575 * 0 on success, -errno on failure. 1576 */ 1577int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1578{ 1579 struct block_device *whole = NULL; 1580 int res; 1581 1582 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1583 1584 if ((mode & FMODE_EXCL) && holder) { 1585 whole = bd_start_claiming(bdev, holder); 1586 if (IS_ERR(whole)) { 1587 bdput(bdev); 1588 return PTR_ERR(whole); 1589 } 1590 } 1591 1592 res = __blkdev_get(bdev, mode, 0); 1593 1594 if (whole) { 1595 struct gendisk *disk = whole->bd_disk; 1596 1597 /* finish claiming */ 1598 mutex_lock(&bdev->bd_mutex); 1599 spin_lock(&bdev_lock); 1600 1601 if (!res) { 1602 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1603 /* 1604 * Note that for a whole device bd_holders 1605 * will be incremented twice, and bd_holder 1606 * will be set to bd_may_claim before being 1607 * set to holder 1608 */ 1609 whole->bd_holders++; 1610 whole->bd_holder = bd_may_claim; 1611 bdev->bd_holders++; 1612 bdev->bd_holder = holder; 1613 } 1614 1615 /* tell others that we're done */ 1616 BUG_ON(whole->bd_claiming != holder); 1617 whole->bd_claiming = NULL; 1618 wake_up_bit(&whole->bd_claiming, 0); 1619 1620 spin_unlock(&bdev_lock); 1621 1622 /* 1623 * Block event polling for write claims if requested. Any 1624 * write holder makes the write_holder state stick until 1625 * all are released. This is good enough and tracking 1626 * individual writeable reference is too fragile given the 1627 * way @mode is used in blkdev_get/put(). 1628 */ 1629 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1630 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1631 bdev->bd_write_holder = true; 1632 disk_block_events(disk); 1633 } 1634 1635 mutex_unlock(&bdev->bd_mutex); 1636 bdput(whole); 1637 } 1638 1639 return res; 1640} 1641EXPORT_SYMBOL(blkdev_get); 1642 1643/** 1644 * blkdev_get_by_path - open a block device by name 1645 * @path: path to the block device to open 1646 * @mode: FMODE_* mask 1647 * @holder: exclusive holder identifier 1648 * 1649 * Open the blockdevice described by the device file at @path. @mode 1650 * and @holder are identical to blkdev_get(). 1651 * 1652 * On success, the returned block_device has reference count of one. 1653 * 1654 * CONTEXT: 1655 * Might sleep. 1656 * 1657 * RETURNS: 1658 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1659 */ 1660struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1661 void *holder) 1662{ 1663 struct block_device *bdev; 1664 int err; 1665 1666 bdev = lookup_bdev(path); 1667 if (IS_ERR(bdev)) 1668 return bdev; 1669 1670 err = blkdev_get(bdev, mode, holder); 1671 if (err) 1672 return ERR_PTR(err); 1673 1674 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1675 blkdev_put(bdev, mode); 1676 return ERR_PTR(-EACCES); 1677 } 1678 1679 return bdev; 1680} 1681EXPORT_SYMBOL(blkdev_get_by_path); 1682 1683/** 1684 * blkdev_get_by_dev - open a block device by device number 1685 * @dev: device number of block device to open 1686 * @mode: FMODE_* mask 1687 * @holder: exclusive holder identifier 1688 * 1689 * Open the blockdevice described by device number @dev. @mode and 1690 * @holder are identical to blkdev_get(). 1691 * 1692 * Use it ONLY if you really do not have anything better - i.e. when 1693 * you are behind a truly sucky interface and all you are given is a 1694 * device number. _Never_ to be used for internal purposes. If you 1695 * ever need it - reconsider your API. 1696 * 1697 * On success, the returned block_device has reference count of one. 1698 * 1699 * CONTEXT: 1700 * Might sleep. 1701 * 1702 * RETURNS: 1703 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1704 */ 1705struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1706{ 1707 struct block_device *bdev; 1708 int err; 1709 1710 bdev = bdget(dev); 1711 if (!bdev) 1712 return ERR_PTR(-ENOMEM); 1713 1714 err = blkdev_get(bdev, mode, holder); 1715 if (err) 1716 return ERR_PTR(err); 1717 1718 return bdev; 1719} 1720EXPORT_SYMBOL(blkdev_get_by_dev); 1721 1722static int blkdev_open(struct inode * inode, struct file * filp) 1723{ 1724 struct block_device *bdev; 1725 1726 /* 1727 * Preserve backwards compatibility and allow large file access 1728 * even if userspace doesn't ask for it explicitly. Some mkfs 1729 * binary needs it. We might want to drop this workaround 1730 * during an unstable branch. 1731 */ 1732 filp->f_flags |= O_LARGEFILE; 1733 1734 if (filp->f_flags & O_NDELAY) 1735 filp->f_mode |= FMODE_NDELAY; 1736 if (filp->f_flags & O_EXCL) 1737 filp->f_mode |= FMODE_EXCL; 1738 if ((filp->f_flags & O_ACCMODE) == 3) 1739 filp->f_mode |= FMODE_WRITE_IOCTL; 1740 1741 bdev = bd_acquire(inode); 1742 if (bdev == NULL) 1743 return -ENOMEM; 1744 1745 filp->f_mapping = bdev->bd_inode->i_mapping; 1746 1747 return blkdev_get(bdev, filp->f_mode, filp); 1748} 1749 1750static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1751{ 1752 struct gendisk *disk = bdev->bd_disk; 1753 struct block_device *victim = NULL; 1754 1755 mutex_lock_nested(&bdev->bd_mutex, for_part); 1756 if (for_part) 1757 bdev->bd_part_count--; 1758 1759 if (!--bdev->bd_openers) { 1760 WARN_ON_ONCE(bdev->bd_holders); 1761 sync_blockdev(bdev); 1762 kill_bdev(bdev); 1763 1764 bdev_write_inode(bdev); 1765 } 1766 if (bdev->bd_contains == bdev) { 1767 if (disk->fops->release) 1768 disk->fops->release(disk, mode); 1769 } 1770 if (!bdev->bd_openers) { 1771 struct module *owner = disk->fops->owner; 1772 1773 disk_put_part(bdev->bd_part); 1774 bdev->bd_part = NULL; 1775 bdev->bd_disk = NULL; 1776 if (bdev != bdev->bd_contains) 1777 victim = bdev->bd_contains; 1778 bdev->bd_contains = NULL; 1779 1780 put_disk(disk); 1781 module_put(owner); 1782 } 1783 mutex_unlock(&bdev->bd_mutex); 1784 bdput(bdev); 1785 if (victim) 1786 __blkdev_put(victim, mode, 1); 1787} 1788 1789void blkdev_put(struct block_device *bdev, fmode_t mode) 1790{ 1791 mutex_lock(&bdev->bd_mutex); 1792 1793 if (mode & FMODE_EXCL) { 1794 bool bdev_free; 1795 1796 /* 1797 * Release a claim on the device. The holder fields 1798 * are protected with bdev_lock. bd_mutex is to 1799 * synchronize disk_holder unlinking. 1800 */ 1801 spin_lock(&bdev_lock); 1802 1803 WARN_ON_ONCE(--bdev->bd_holders < 0); 1804 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1805 1806 /* bd_contains might point to self, check in a separate step */ 1807 if ((bdev_free = !bdev->bd_holders)) 1808 bdev->bd_holder = NULL; 1809 if (!bdev->bd_contains->bd_holders) 1810 bdev->bd_contains->bd_holder = NULL; 1811 1812 spin_unlock(&bdev_lock); 1813 1814 /* 1815 * If this was the last claim, remove holder link and 1816 * unblock evpoll if it was a write holder. 1817 */ 1818 if (bdev_free && bdev->bd_write_holder) { 1819 disk_unblock_events(bdev->bd_disk); 1820 bdev->bd_write_holder = false; 1821 } 1822 } 1823 1824 /* 1825 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1826 * event. This is to ensure detection of media removal commanded 1827 * from userland - e.g. eject(1). 1828 */ 1829 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1830 1831 mutex_unlock(&bdev->bd_mutex); 1832 1833 __blkdev_put(bdev, mode, 0); 1834} 1835EXPORT_SYMBOL(blkdev_put); 1836 1837static int blkdev_close(struct inode * inode, struct file * filp) 1838{ 1839 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1840 blkdev_put(bdev, filp->f_mode); 1841 return 0; 1842} 1843 1844static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1845{ 1846 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1847 fmode_t mode = file->f_mode; 1848 1849 /* 1850 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1851 * to updated it before every ioctl. 1852 */ 1853 if (file->f_flags & O_NDELAY) 1854 mode |= FMODE_NDELAY; 1855 else 1856 mode &= ~FMODE_NDELAY; 1857 1858 return blkdev_ioctl(bdev, mode, cmd, arg); 1859} 1860 1861/* 1862 * Write data to the block device. Only intended for the block device itself 1863 * and the raw driver which basically is a fake block device. 1864 * 1865 * Does not take i_mutex for the write and thus is not for general purpose 1866 * use. 1867 */ 1868ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1869{ 1870 struct file *file = iocb->ki_filp; 1871 struct inode *bd_inode = bdev_file_inode(file); 1872 loff_t size = i_size_read(bd_inode); 1873 struct blk_plug plug; 1874 ssize_t ret; 1875 1876 if (bdev_read_only(I_BDEV(bd_inode))) 1877 return -EPERM; 1878 1879 if (!iov_iter_count(from)) 1880 return 0; 1881 1882 if (iocb->ki_pos >= size) 1883 return -ENOSPC; 1884 1885 iov_iter_truncate(from, size - iocb->ki_pos); 1886 1887 blk_start_plug(&plug); 1888 ret = __generic_file_write_iter(iocb, from); 1889 if (ret > 0) 1890 ret = generic_write_sync(iocb, ret); 1891 blk_finish_plug(&plug); 1892 return ret; 1893} 1894EXPORT_SYMBOL_GPL(blkdev_write_iter); 1895 1896ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1897{ 1898 struct file *file = iocb->ki_filp; 1899 struct inode *bd_inode = bdev_file_inode(file); 1900 loff_t size = i_size_read(bd_inode); 1901 loff_t pos = iocb->ki_pos; 1902 1903 if (pos >= size) 1904 return 0; 1905 1906 size -= pos; 1907 iov_iter_truncate(to, size); 1908 return generic_file_read_iter(iocb, to); 1909} 1910EXPORT_SYMBOL_GPL(blkdev_read_iter); 1911 1912/* 1913 * Try to release a page associated with block device when the system 1914 * is under memory pressure. 1915 */ 1916static int blkdev_releasepage(struct page *page, gfp_t wait) 1917{ 1918 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1919 1920 if (super && super->s_op->bdev_try_to_free_page) 1921 return super->s_op->bdev_try_to_free_page(super, page, wait); 1922 1923 return try_to_free_buffers(page); 1924} 1925 1926static int blkdev_writepages(struct address_space *mapping, 1927 struct writeback_control *wbc) 1928{ 1929 if (dax_mapping(mapping)) { 1930 struct block_device *bdev = I_BDEV(mapping->host); 1931 1932 return dax_writeback_mapping_range(mapping, bdev, wbc); 1933 } 1934 return generic_writepages(mapping, wbc); 1935} 1936 1937static const struct address_space_operations def_blk_aops = { 1938 .readpage = blkdev_readpage, 1939 .readpages = blkdev_readpages, 1940 .writepage = blkdev_writepage, 1941 .write_begin = blkdev_write_begin, 1942 .write_end = blkdev_write_end, 1943 .writepages = blkdev_writepages, 1944 .releasepage = blkdev_releasepage, 1945 .direct_IO = blkdev_direct_IO, 1946 .is_dirty_writeback = buffer_check_dirty_writeback, 1947}; 1948 1949#define BLKDEV_FALLOC_FL_SUPPORTED \ 1950 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 1951 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 1952 1953static long blkdev_fallocate(struct file *file, int mode, loff_t start, 1954 loff_t len) 1955{ 1956 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1957 struct address_space *mapping; 1958 loff_t end = start + len - 1; 1959 loff_t isize; 1960 int error; 1961 1962 /* Fail if we don't recognize the flags. */ 1963 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 1964 return -EOPNOTSUPP; 1965 1966 /* Don't go off the end of the device. */ 1967 isize = i_size_read(bdev->bd_inode); 1968 if (start >= isize) 1969 return -EINVAL; 1970 if (end >= isize) { 1971 if (mode & FALLOC_FL_KEEP_SIZE) { 1972 len = isize - start; 1973 end = start + len - 1; 1974 } else 1975 return -EINVAL; 1976 } 1977 1978 /* 1979 * Don't allow IO that isn't aligned to logical block size. 1980 */ 1981 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 1982 return -EINVAL; 1983 1984 /* Invalidate the page cache, including dirty pages. */ 1985 mapping = bdev->bd_inode->i_mapping; 1986 truncate_inode_pages_range(mapping, start, end); 1987 1988 switch (mode) { 1989 case FALLOC_FL_ZERO_RANGE: 1990 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 1991 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 1992 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 1993 break; 1994 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 1995 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 1996 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 1997 break; 1998 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 1999 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2000 GFP_KERNEL, 0); 2001 break; 2002 default: 2003 return -EOPNOTSUPP; 2004 } 2005 if (error) 2006 return error; 2007 2008 /* 2009 * Invalidate again; if someone wandered in and dirtied a page, 2010 * the caller will be given -EBUSY. The third argument is 2011 * inclusive, so the rounding here is safe. 2012 */ 2013 return invalidate_inode_pages2_range(mapping, 2014 start >> PAGE_SHIFT, 2015 end >> PAGE_SHIFT); 2016} 2017 2018const struct file_operations def_blk_fops = { 2019 .open = blkdev_open, 2020 .release = blkdev_close, 2021 .llseek = block_llseek, 2022 .read_iter = blkdev_read_iter, 2023 .write_iter = blkdev_write_iter, 2024 .mmap = generic_file_mmap, 2025 .fsync = blkdev_fsync, 2026 .unlocked_ioctl = block_ioctl, 2027#ifdef CONFIG_COMPAT 2028 .compat_ioctl = compat_blkdev_ioctl, 2029#endif 2030 .splice_read = generic_file_splice_read, 2031 .splice_write = iter_file_splice_write, 2032 .fallocate = blkdev_fallocate, 2033}; 2034 2035int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2036{ 2037 int res; 2038 mm_segment_t old_fs = get_fs(); 2039 set_fs(KERNEL_DS); 2040 res = blkdev_ioctl(bdev, 0, cmd, arg); 2041 set_fs(old_fs); 2042 return res; 2043} 2044 2045EXPORT_SYMBOL(ioctl_by_bdev); 2046 2047/** 2048 * lookup_bdev - lookup a struct block_device by name 2049 * @pathname: special file representing the block device 2050 * 2051 * Get a reference to the blockdevice at @pathname in the current 2052 * namespace if possible and return it. Return ERR_PTR(error) 2053 * otherwise. 2054 */ 2055struct block_device *lookup_bdev(const char *pathname) 2056{ 2057 struct block_device *bdev; 2058 struct inode *inode; 2059 struct path path; 2060 int error; 2061 2062 if (!pathname || !*pathname) 2063 return ERR_PTR(-EINVAL); 2064 2065 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2066 if (error) 2067 return ERR_PTR(error); 2068 2069 inode = d_backing_inode(path.dentry); 2070 error = -ENOTBLK; 2071 if (!S_ISBLK(inode->i_mode)) 2072 goto fail; 2073 error = -EACCES; 2074 if (!may_open_dev(&path)) 2075 goto fail; 2076 error = -ENOMEM; 2077 bdev = bd_acquire(inode); 2078 if (!bdev) 2079 goto fail; 2080out: 2081 path_put(&path); 2082 return bdev; 2083fail: 2084 bdev = ERR_PTR(error); 2085 goto out; 2086} 2087EXPORT_SYMBOL(lookup_bdev); 2088 2089int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2090{ 2091 struct super_block *sb = get_super(bdev); 2092 int res = 0; 2093 2094 if (sb) { 2095 /* 2096 * no need to lock the super, get_super holds the 2097 * read mutex so the filesystem cannot go away 2098 * under us (->put_super runs with the write lock 2099 * hold). 2100 */ 2101 shrink_dcache_sb(sb); 2102 res = invalidate_inodes(sb, kill_dirty); 2103 drop_super(sb); 2104 } 2105 invalidate_bdev(bdev); 2106 return res; 2107} 2108EXPORT_SYMBOL(__invalidate_device); 2109 2110void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2111{ 2112 struct inode *inode, *old_inode = NULL; 2113 2114 spin_lock(&blockdev_superblock->s_inode_list_lock); 2115 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2116 struct address_space *mapping = inode->i_mapping; 2117 struct block_device *bdev; 2118 2119 spin_lock(&inode->i_lock); 2120 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2121 mapping->nrpages == 0) { 2122 spin_unlock(&inode->i_lock); 2123 continue; 2124 } 2125 __iget(inode); 2126 spin_unlock(&inode->i_lock); 2127 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2128 /* 2129 * We hold a reference to 'inode' so it couldn't have been 2130 * removed from s_inodes list while we dropped the 2131 * s_inode_list_lock We cannot iput the inode now as we can 2132 * be holding the last reference and we cannot iput it under 2133 * s_inode_list_lock. So we keep the reference and iput it 2134 * later. 2135 */ 2136 iput(old_inode); 2137 old_inode = inode; 2138 bdev = I_BDEV(inode); 2139 2140 mutex_lock(&bdev->bd_mutex); 2141 if (bdev->bd_openers) 2142 func(bdev, arg); 2143 mutex_unlock(&bdev->bd_mutex); 2144 2145 spin_lock(&blockdev_superblock->s_inode_list_lock); 2146 } 2147 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2148 iput(old_inode); 2149}