at v4.12-rc2 42 kB view raw
1/* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25#ifndef _HYPERV_H 26#define _HYPERV_H 27 28#include <uapi/linux/hyperv.h> 29#include <uapi/asm/hyperv.h> 30 31#include <linux/types.h> 32#include <linux/scatterlist.h> 33#include <linux/list.h> 34#include <linux/timer.h> 35#include <linux/completion.h> 36#include <linux/device.h> 37#include <linux/mod_devicetable.h> 38#include <linux/interrupt.h> 39 40#define MAX_PAGE_BUFFER_COUNT 32 41#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 42 43#pragma pack(push, 1) 44 45/* Single-page buffer */ 46struct hv_page_buffer { 47 u32 len; 48 u32 offset; 49 u64 pfn; 50}; 51 52/* Multiple-page buffer */ 53struct hv_multipage_buffer { 54 /* Length and Offset determines the # of pfns in the array */ 55 u32 len; 56 u32 offset; 57 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 58}; 59 60/* 61 * Multiple-page buffer array; the pfn array is variable size: 62 * The number of entries in the PFN array is determined by 63 * "len" and "offset". 64 */ 65struct hv_mpb_array { 66 /* Length and Offset determines the # of pfns in the array */ 67 u32 len; 68 u32 offset; 69 u64 pfn_array[]; 70}; 71 72/* 0x18 includes the proprietary packet header */ 73#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 74 (sizeof(struct hv_page_buffer) * \ 75 MAX_PAGE_BUFFER_COUNT)) 76#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 77 sizeof(struct hv_multipage_buffer)) 78 79 80#pragma pack(pop) 81 82struct hv_ring_buffer { 83 /* Offset in bytes from the start of ring data below */ 84 u32 write_index; 85 86 /* Offset in bytes from the start of ring data below */ 87 u32 read_index; 88 89 u32 interrupt_mask; 90 91 /* 92 * Win8 uses some of the reserved bits to implement 93 * interrupt driven flow management. On the send side 94 * we can request that the receiver interrupt the sender 95 * when the ring transitions from being full to being able 96 * to handle a message of size "pending_send_sz". 97 * 98 * Add necessary state for this enhancement. 99 */ 100 u32 pending_send_sz; 101 102 u32 reserved1[12]; 103 104 union { 105 struct { 106 u32 feat_pending_send_sz:1; 107 }; 108 u32 value; 109 } feature_bits; 110 111 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 112 u8 reserved2[4028]; 113 114 /* 115 * Ring data starts here + RingDataStartOffset 116 * !!! DO NOT place any fields below this !!! 117 */ 118 u8 buffer[0]; 119} __packed; 120 121struct hv_ring_buffer_info { 122 struct hv_ring_buffer *ring_buffer; 123 u32 ring_size; /* Include the shared header */ 124 spinlock_t ring_lock; 125 126 u32 ring_datasize; /* < ring_size */ 127 u32 ring_data_startoffset; 128 u32 priv_write_index; 129 u32 priv_read_index; 130 u32 cached_read_index; 131}; 132 133/* 134 * 135 * hv_get_ringbuffer_availbytes() 136 * 137 * Get number of bytes available to read and to write to 138 * for the specified ring buffer 139 */ 140static inline void 141hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, 142 u32 *read, u32 *write) 143{ 144 u32 read_loc, write_loc, dsize; 145 146 /* Capture the read/write indices before they changed */ 147 read_loc = rbi->ring_buffer->read_index; 148 write_loc = rbi->ring_buffer->write_index; 149 dsize = rbi->ring_datasize; 150 151 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 152 read_loc - write_loc; 153 *read = dsize - *write; 154} 155 156static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 157{ 158 u32 read_loc, write_loc, dsize, read; 159 160 dsize = rbi->ring_datasize; 161 read_loc = rbi->ring_buffer->read_index; 162 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 163 164 read = write_loc >= read_loc ? (write_loc - read_loc) : 165 (dsize - read_loc) + write_loc; 166 167 return read; 168} 169 170static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 171{ 172 u32 read_loc, write_loc, dsize, write; 173 174 dsize = rbi->ring_datasize; 175 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 176 write_loc = rbi->ring_buffer->write_index; 177 178 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 179 read_loc - write_loc; 180 return write; 181} 182 183static inline u32 hv_get_cached_bytes_to_write( 184 const struct hv_ring_buffer_info *rbi) 185{ 186 u32 read_loc, write_loc, dsize, write; 187 188 dsize = rbi->ring_datasize; 189 read_loc = rbi->cached_read_index; 190 write_loc = rbi->ring_buffer->write_index; 191 192 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 193 read_loc - write_loc; 194 return write; 195} 196/* 197 * VMBUS version is 32 bit entity broken up into 198 * two 16 bit quantities: major_number. minor_number. 199 * 200 * 0 . 13 (Windows Server 2008) 201 * 1 . 1 (Windows 7) 202 * 2 . 4 (Windows 8) 203 * 3 . 0 (Windows 8 R2) 204 * 4 . 0 (Windows 10) 205 */ 206 207#define VERSION_WS2008 ((0 << 16) | (13)) 208#define VERSION_WIN7 ((1 << 16) | (1)) 209#define VERSION_WIN8 ((2 << 16) | (4)) 210#define VERSION_WIN8_1 ((3 << 16) | (0)) 211#define VERSION_WIN10 ((4 << 16) | (0)) 212 213#define VERSION_INVAL -1 214 215#define VERSION_CURRENT VERSION_WIN10 216 217/* Make maximum size of pipe payload of 16K */ 218#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 219 220/* Define PipeMode values. */ 221#define VMBUS_PIPE_TYPE_BYTE 0x00000000 222#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 223 224/* The size of the user defined data buffer for non-pipe offers. */ 225#define MAX_USER_DEFINED_BYTES 120 226 227/* The size of the user defined data buffer for pipe offers. */ 228#define MAX_PIPE_USER_DEFINED_BYTES 116 229 230/* 231 * At the center of the Channel Management library is the Channel Offer. This 232 * struct contains the fundamental information about an offer. 233 */ 234struct vmbus_channel_offer { 235 uuid_le if_type; 236 uuid_le if_instance; 237 238 /* 239 * These two fields are not currently used. 240 */ 241 u64 reserved1; 242 u64 reserved2; 243 244 u16 chn_flags; 245 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 246 247 union { 248 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 249 struct { 250 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 251 } std; 252 253 /* 254 * Pipes: 255 * The following sructure is an integrated pipe protocol, which 256 * is implemented on top of standard user-defined data. Pipe 257 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 258 * use. 259 */ 260 struct { 261 u32 pipe_mode; 262 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 263 } pipe; 264 } u; 265 /* 266 * The sub_channel_index is defined in win8. 267 */ 268 u16 sub_channel_index; 269 u16 reserved3; 270} __packed; 271 272/* Server Flags */ 273#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 274#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 275#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 276#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 277#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 278#define VMBUS_CHANNEL_PARENT_OFFER 0x200 279#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 280#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 281 282struct vmpacket_descriptor { 283 u16 type; 284 u16 offset8; 285 u16 len8; 286 u16 flags; 287 u64 trans_id; 288} __packed; 289 290struct vmpacket_header { 291 u32 prev_pkt_start_offset; 292 struct vmpacket_descriptor descriptor; 293} __packed; 294 295struct vmtransfer_page_range { 296 u32 byte_count; 297 u32 byte_offset; 298} __packed; 299 300struct vmtransfer_page_packet_header { 301 struct vmpacket_descriptor d; 302 u16 xfer_pageset_id; 303 u8 sender_owns_set; 304 u8 reserved; 305 u32 range_cnt; 306 struct vmtransfer_page_range ranges[1]; 307} __packed; 308 309struct vmgpadl_packet_header { 310 struct vmpacket_descriptor d; 311 u32 gpadl; 312 u32 reserved; 313} __packed; 314 315struct vmadd_remove_transfer_page_set { 316 struct vmpacket_descriptor d; 317 u32 gpadl; 318 u16 xfer_pageset_id; 319 u16 reserved; 320} __packed; 321 322/* 323 * This structure defines a range in guest physical space that can be made to 324 * look virtually contiguous. 325 */ 326struct gpa_range { 327 u32 byte_count; 328 u32 byte_offset; 329 u64 pfn_array[0]; 330}; 331 332/* 333 * This is the format for an Establish Gpadl packet, which contains a handle by 334 * which this GPADL will be known and a set of GPA ranges associated with it. 335 * This can be converted to a MDL by the guest OS. If there are multiple GPA 336 * ranges, then the resulting MDL will be "chained," representing multiple VA 337 * ranges. 338 */ 339struct vmestablish_gpadl { 340 struct vmpacket_descriptor d; 341 u32 gpadl; 342 u32 range_cnt; 343 struct gpa_range range[1]; 344} __packed; 345 346/* 347 * This is the format for a Teardown Gpadl packet, which indicates that the 348 * GPADL handle in the Establish Gpadl packet will never be referenced again. 349 */ 350struct vmteardown_gpadl { 351 struct vmpacket_descriptor d; 352 u32 gpadl; 353 u32 reserved; /* for alignment to a 8-byte boundary */ 354} __packed; 355 356/* 357 * This is the format for a GPA-Direct packet, which contains a set of GPA 358 * ranges, in addition to commands and/or data. 359 */ 360struct vmdata_gpa_direct { 361 struct vmpacket_descriptor d; 362 u32 reserved; 363 u32 range_cnt; 364 struct gpa_range range[1]; 365} __packed; 366 367/* This is the format for a Additional Data Packet. */ 368struct vmadditional_data { 369 struct vmpacket_descriptor d; 370 u64 total_bytes; 371 u32 offset; 372 u32 byte_cnt; 373 unsigned char data[1]; 374} __packed; 375 376union vmpacket_largest_possible_header { 377 struct vmpacket_descriptor simple_hdr; 378 struct vmtransfer_page_packet_header xfer_page_hdr; 379 struct vmgpadl_packet_header gpadl_hdr; 380 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 381 struct vmestablish_gpadl establish_gpadl_hdr; 382 struct vmteardown_gpadl teardown_gpadl_hdr; 383 struct vmdata_gpa_direct data_gpa_direct_hdr; 384}; 385 386#define VMPACKET_DATA_START_ADDRESS(__packet) \ 387 (void *)(((unsigned char *)__packet) + \ 388 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 389 390#define VMPACKET_DATA_LENGTH(__packet) \ 391 ((((struct vmpacket_descriptor)__packet)->len8 - \ 392 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 393 394#define VMPACKET_TRANSFER_MODE(__packet) \ 395 (((struct IMPACT)__packet)->type) 396 397enum vmbus_packet_type { 398 VM_PKT_INVALID = 0x0, 399 VM_PKT_SYNCH = 0x1, 400 VM_PKT_ADD_XFER_PAGESET = 0x2, 401 VM_PKT_RM_XFER_PAGESET = 0x3, 402 VM_PKT_ESTABLISH_GPADL = 0x4, 403 VM_PKT_TEARDOWN_GPADL = 0x5, 404 VM_PKT_DATA_INBAND = 0x6, 405 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 406 VM_PKT_DATA_USING_GPADL = 0x8, 407 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 408 VM_PKT_CANCEL_REQUEST = 0xa, 409 VM_PKT_COMP = 0xb, 410 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 411 VM_PKT_ADDITIONAL_DATA = 0xd 412}; 413 414#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 415 416 417/* Version 1 messages */ 418enum vmbus_channel_message_type { 419 CHANNELMSG_INVALID = 0, 420 CHANNELMSG_OFFERCHANNEL = 1, 421 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 422 CHANNELMSG_REQUESTOFFERS = 3, 423 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 424 CHANNELMSG_OPENCHANNEL = 5, 425 CHANNELMSG_OPENCHANNEL_RESULT = 6, 426 CHANNELMSG_CLOSECHANNEL = 7, 427 CHANNELMSG_GPADL_HEADER = 8, 428 CHANNELMSG_GPADL_BODY = 9, 429 CHANNELMSG_GPADL_CREATED = 10, 430 CHANNELMSG_GPADL_TEARDOWN = 11, 431 CHANNELMSG_GPADL_TORNDOWN = 12, 432 CHANNELMSG_RELID_RELEASED = 13, 433 CHANNELMSG_INITIATE_CONTACT = 14, 434 CHANNELMSG_VERSION_RESPONSE = 15, 435 CHANNELMSG_UNLOAD = 16, 436 CHANNELMSG_UNLOAD_RESPONSE = 17, 437 CHANNELMSG_18 = 18, 438 CHANNELMSG_19 = 19, 439 CHANNELMSG_20 = 20, 440 CHANNELMSG_TL_CONNECT_REQUEST = 21, 441 CHANNELMSG_COUNT 442}; 443 444struct vmbus_channel_message_header { 445 enum vmbus_channel_message_type msgtype; 446 u32 padding; 447} __packed; 448 449/* Query VMBus Version parameters */ 450struct vmbus_channel_query_vmbus_version { 451 struct vmbus_channel_message_header header; 452 u32 version; 453} __packed; 454 455/* VMBus Version Supported parameters */ 456struct vmbus_channel_version_supported { 457 struct vmbus_channel_message_header header; 458 u8 version_supported; 459} __packed; 460 461/* Offer Channel parameters */ 462struct vmbus_channel_offer_channel { 463 struct vmbus_channel_message_header header; 464 struct vmbus_channel_offer offer; 465 u32 child_relid; 466 u8 monitorid; 467 /* 468 * win7 and beyond splits this field into a bit field. 469 */ 470 u8 monitor_allocated:1; 471 u8 reserved:7; 472 /* 473 * These are new fields added in win7 and later. 474 * Do not access these fields without checking the 475 * negotiated protocol. 476 * 477 * If "is_dedicated_interrupt" is set, we must not set the 478 * associated bit in the channel bitmap while sending the 479 * interrupt to the host. 480 * 481 * connection_id is to be used in signaling the host. 482 */ 483 u16 is_dedicated_interrupt:1; 484 u16 reserved1:15; 485 u32 connection_id; 486} __packed; 487 488/* Rescind Offer parameters */ 489struct vmbus_channel_rescind_offer { 490 struct vmbus_channel_message_header header; 491 u32 child_relid; 492} __packed; 493 494static inline u32 495hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi) 496{ 497 return rbi->ring_buffer->pending_send_sz; 498} 499 500/* 501 * Request Offer -- no parameters, SynIC message contains the partition ID 502 * Set Snoop -- no parameters, SynIC message contains the partition ID 503 * Clear Snoop -- no parameters, SynIC message contains the partition ID 504 * All Offers Delivered -- no parameters, SynIC message contains the partition 505 * ID 506 * Flush Client -- no parameters, SynIC message contains the partition ID 507 */ 508 509/* Open Channel parameters */ 510struct vmbus_channel_open_channel { 511 struct vmbus_channel_message_header header; 512 513 /* Identifies the specific VMBus channel that is being opened. */ 514 u32 child_relid; 515 516 /* ID making a particular open request at a channel offer unique. */ 517 u32 openid; 518 519 /* GPADL for the channel's ring buffer. */ 520 u32 ringbuffer_gpadlhandle; 521 522 /* 523 * Starting with win8, this field will be used to specify 524 * the target virtual processor on which to deliver the interrupt for 525 * the host to guest communication. 526 * Prior to win8, incoming channel interrupts would only 527 * be delivered on cpu 0. Setting this value to 0 would 528 * preserve the earlier behavior. 529 */ 530 u32 target_vp; 531 532 /* 533 * The upstream ring buffer begins at offset zero in the memory 534 * described by RingBufferGpadlHandle. The downstream ring buffer 535 * follows it at this offset (in pages). 536 */ 537 u32 downstream_ringbuffer_pageoffset; 538 539 /* User-specific data to be passed along to the server endpoint. */ 540 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 541} __packed; 542 543/* Open Channel Result parameters */ 544struct vmbus_channel_open_result { 545 struct vmbus_channel_message_header header; 546 u32 child_relid; 547 u32 openid; 548 u32 status; 549} __packed; 550 551/* Close channel parameters; */ 552struct vmbus_channel_close_channel { 553 struct vmbus_channel_message_header header; 554 u32 child_relid; 555} __packed; 556 557/* Channel Message GPADL */ 558#define GPADL_TYPE_RING_BUFFER 1 559#define GPADL_TYPE_SERVER_SAVE_AREA 2 560#define GPADL_TYPE_TRANSACTION 8 561 562/* 563 * The number of PFNs in a GPADL message is defined by the number of 564 * pages that would be spanned by ByteCount and ByteOffset. If the 565 * implied number of PFNs won't fit in this packet, there will be a 566 * follow-up packet that contains more. 567 */ 568struct vmbus_channel_gpadl_header { 569 struct vmbus_channel_message_header header; 570 u32 child_relid; 571 u32 gpadl; 572 u16 range_buflen; 573 u16 rangecount; 574 struct gpa_range range[0]; 575} __packed; 576 577/* This is the followup packet that contains more PFNs. */ 578struct vmbus_channel_gpadl_body { 579 struct vmbus_channel_message_header header; 580 u32 msgnumber; 581 u32 gpadl; 582 u64 pfn[0]; 583} __packed; 584 585struct vmbus_channel_gpadl_created { 586 struct vmbus_channel_message_header header; 587 u32 child_relid; 588 u32 gpadl; 589 u32 creation_status; 590} __packed; 591 592struct vmbus_channel_gpadl_teardown { 593 struct vmbus_channel_message_header header; 594 u32 child_relid; 595 u32 gpadl; 596} __packed; 597 598struct vmbus_channel_gpadl_torndown { 599 struct vmbus_channel_message_header header; 600 u32 gpadl; 601} __packed; 602 603struct vmbus_channel_relid_released { 604 struct vmbus_channel_message_header header; 605 u32 child_relid; 606} __packed; 607 608struct vmbus_channel_initiate_contact { 609 struct vmbus_channel_message_header header; 610 u32 vmbus_version_requested; 611 u32 target_vcpu; /* The VCPU the host should respond to */ 612 u64 interrupt_page; 613 u64 monitor_page1; 614 u64 monitor_page2; 615} __packed; 616 617/* Hyper-V socket: guest's connect()-ing to host */ 618struct vmbus_channel_tl_connect_request { 619 struct vmbus_channel_message_header header; 620 uuid_le guest_endpoint_id; 621 uuid_le host_service_id; 622} __packed; 623 624struct vmbus_channel_version_response { 625 struct vmbus_channel_message_header header; 626 u8 version_supported; 627} __packed; 628 629enum vmbus_channel_state { 630 CHANNEL_OFFER_STATE, 631 CHANNEL_OPENING_STATE, 632 CHANNEL_OPEN_STATE, 633 CHANNEL_OPENED_STATE, 634}; 635 636/* 637 * Represents each channel msg on the vmbus connection This is a 638 * variable-size data structure depending on the msg type itself 639 */ 640struct vmbus_channel_msginfo { 641 /* Bookkeeping stuff */ 642 struct list_head msglistentry; 643 644 /* So far, this is only used to handle gpadl body message */ 645 struct list_head submsglist; 646 647 /* Synchronize the request/response if needed */ 648 struct completion waitevent; 649 struct vmbus_channel *waiting_channel; 650 union { 651 struct vmbus_channel_version_supported version_supported; 652 struct vmbus_channel_open_result open_result; 653 struct vmbus_channel_gpadl_torndown gpadl_torndown; 654 struct vmbus_channel_gpadl_created gpadl_created; 655 struct vmbus_channel_version_response version_response; 656 } response; 657 658 u32 msgsize; 659 /* 660 * The channel message that goes out on the "wire". 661 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 662 */ 663 unsigned char msg[0]; 664}; 665 666struct vmbus_close_msg { 667 struct vmbus_channel_msginfo info; 668 struct vmbus_channel_close_channel msg; 669}; 670 671/* Define connection identifier type. */ 672union hv_connection_id { 673 u32 asu32; 674 struct { 675 u32 id:24; 676 u32 reserved:8; 677 } u; 678}; 679 680/* Definition of the hv_signal_event hypercall input structure. */ 681struct hv_input_signal_event { 682 union hv_connection_id connectionid; 683 u16 flag_number; 684 u16 rsvdz; 685}; 686 687struct hv_input_signal_event_buffer { 688 u64 align8; 689 struct hv_input_signal_event event; 690}; 691 692enum hv_numa_policy { 693 HV_BALANCED = 0, 694 HV_LOCALIZED, 695}; 696 697enum vmbus_device_type { 698 HV_IDE = 0, 699 HV_SCSI, 700 HV_FC, 701 HV_NIC, 702 HV_ND, 703 HV_PCIE, 704 HV_FB, 705 HV_KBD, 706 HV_MOUSE, 707 HV_KVP, 708 HV_TS, 709 HV_HB, 710 HV_SHUTDOWN, 711 HV_FCOPY, 712 HV_BACKUP, 713 HV_DM, 714 HV_UNKNOWN, 715}; 716 717struct vmbus_device { 718 u16 dev_type; 719 uuid_le guid; 720 bool perf_device; 721}; 722 723struct vmbus_channel { 724 struct list_head listentry; 725 726 struct hv_device *device_obj; 727 728 enum vmbus_channel_state state; 729 730 struct vmbus_channel_offer_channel offermsg; 731 /* 732 * These are based on the OfferMsg.MonitorId. 733 * Save it here for easy access. 734 */ 735 u8 monitor_grp; 736 u8 monitor_bit; 737 738 bool rescind; /* got rescind msg */ 739 740 u32 ringbuffer_gpadlhandle; 741 742 /* Allocated memory for ring buffer */ 743 void *ringbuffer_pages; 744 u32 ringbuffer_pagecount; 745 struct hv_ring_buffer_info outbound; /* send to parent */ 746 struct hv_ring_buffer_info inbound; /* receive from parent */ 747 spinlock_t inbound_lock; 748 749 struct vmbus_close_msg close_msg; 750 751 /* Channel callback's invoked in softirq context */ 752 struct tasklet_struct callback_event; 753 void (*onchannel_callback)(void *context); 754 void *channel_callback_context; 755 756 /* 757 * A channel can be marked for one of three modes of reading: 758 * BATCHED - callback called from taslket and should read 759 * channel until empty. Interrupts from the host 760 * are masked while read is in process (default). 761 * DIRECT - callback called from tasklet (softirq). 762 * ISR - callback called in interrupt context and must 763 * invoke its own deferred processing. 764 * Host interrupts are disabled and must be re-enabled 765 * when ring is empty. 766 */ 767 enum hv_callback_mode { 768 HV_CALL_BATCHED, 769 HV_CALL_DIRECT, 770 HV_CALL_ISR 771 } callback_mode; 772 773 bool is_dedicated_interrupt; 774 struct hv_input_signal_event_buffer sig_buf; 775 struct hv_input_signal_event *sig_event; 776 777 /* 778 * Starting with win8, this field will be used to specify 779 * the target virtual processor on which to deliver the interrupt for 780 * the host to guest communication. 781 * Prior to win8, incoming channel interrupts would only 782 * be delivered on cpu 0. Setting this value to 0 would 783 * preserve the earlier behavior. 784 */ 785 u32 target_vp; 786 /* The corresponding CPUID in the guest */ 787 u32 target_cpu; 788 /* 789 * State to manage the CPU affiliation of channels. 790 */ 791 struct cpumask alloced_cpus_in_node; 792 int numa_node; 793 /* 794 * Support for sub-channels. For high performance devices, 795 * it will be useful to have multiple sub-channels to support 796 * a scalable communication infrastructure with the host. 797 * The support for sub-channels is implemented as an extention 798 * to the current infrastructure. 799 * The initial offer is considered the primary channel and this 800 * offer message will indicate if the host supports sub-channels. 801 * The guest is free to ask for sub-channels to be offerred and can 802 * open these sub-channels as a normal "primary" channel. However, 803 * all sub-channels will have the same type and instance guids as the 804 * primary channel. Requests sent on a given channel will result in a 805 * response on the same channel. 806 */ 807 808 /* 809 * Sub-channel creation callback. This callback will be called in 810 * process context when a sub-channel offer is received from the host. 811 * The guest can open the sub-channel in the context of this callback. 812 */ 813 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 814 815 /* 816 * Channel rescind callback. Some channels (the hvsock ones), need to 817 * register a callback which is invoked in vmbus_onoffer_rescind(). 818 */ 819 void (*chn_rescind_callback)(struct vmbus_channel *channel); 820 821 /* 822 * The spinlock to protect the structure. It is being used to protect 823 * test-and-set access to various attributes of the structure as well 824 * as all sc_list operations. 825 */ 826 spinlock_t lock; 827 /* 828 * All Sub-channels of a primary channel are linked here. 829 */ 830 struct list_head sc_list; 831 /* 832 * Current number of sub-channels. 833 */ 834 int num_sc; 835 /* 836 * Number of a sub-channel (position within sc_list) which is supposed 837 * to be used as the next outgoing channel. 838 */ 839 int next_oc; 840 /* 841 * The primary channel this sub-channel belongs to. 842 * This will be NULL for the primary channel. 843 */ 844 struct vmbus_channel *primary_channel; 845 /* 846 * Support per-channel state for use by vmbus drivers. 847 */ 848 void *per_channel_state; 849 /* 850 * To support per-cpu lookup mapping of relid to channel, 851 * link up channels based on their CPU affinity. 852 */ 853 struct list_head percpu_list; 854 855 /* 856 * Defer freeing channel until after all cpu's have 857 * gone through grace period. 858 */ 859 struct rcu_head rcu; 860 861 /* 862 * For performance critical channels (storage, networking 863 * etc,), Hyper-V has a mechanism to enhance the throughput 864 * at the expense of latency: 865 * When the host is to be signaled, we just set a bit in a shared page 866 * and this bit will be inspected by the hypervisor within a certain 867 * window and if the bit is set, the host will be signaled. The window 868 * of time is the monitor latency - currently around 100 usecs. This 869 * mechanism improves throughput by: 870 * 871 * A) Making the host more efficient - each time it wakes up, 872 * potentially it will process morev number of packets. The 873 * monitor latency allows a batch to build up. 874 * B) By deferring the hypercall to signal, we will also minimize 875 * the interrupts. 876 * 877 * Clearly, these optimizations improve throughput at the expense of 878 * latency. Furthermore, since the channel is shared for both 879 * control and data messages, control messages currently suffer 880 * unnecessary latency adversley impacting performance and boot 881 * time. To fix this issue, permit tagging the channel as being 882 * in "low latency" mode. In this mode, we will bypass the monitor 883 * mechanism. 884 */ 885 bool low_latency; 886 887 /* 888 * NUMA distribution policy: 889 * We support teo policies: 890 * 1) Balanced: Here all performance critical channels are 891 * distributed evenly amongst all the NUMA nodes. 892 * This policy will be the default policy. 893 * 2) Localized: All channels of a given instance of a 894 * performance critical service will be assigned CPUs 895 * within a selected NUMA node. 896 */ 897 enum hv_numa_policy affinity_policy; 898 899}; 900 901static inline bool is_hvsock_channel(const struct vmbus_channel *c) 902{ 903 return !!(c->offermsg.offer.chn_flags & 904 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 905} 906 907static inline void set_channel_affinity_state(struct vmbus_channel *c, 908 enum hv_numa_policy policy) 909{ 910 c->affinity_policy = policy; 911} 912 913static inline void set_channel_read_mode(struct vmbus_channel *c, 914 enum hv_callback_mode mode) 915{ 916 c->callback_mode = mode; 917} 918 919static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 920{ 921 c->per_channel_state = s; 922} 923 924static inline void *get_per_channel_state(struct vmbus_channel *c) 925{ 926 return c->per_channel_state; 927} 928 929static inline void set_channel_pending_send_size(struct vmbus_channel *c, 930 u32 size) 931{ 932 c->outbound.ring_buffer->pending_send_sz = size; 933} 934 935static inline void set_low_latency_mode(struct vmbus_channel *c) 936{ 937 c->low_latency = true; 938} 939 940static inline void clear_low_latency_mode(struct vmbus_channel *c) 941{ 942 c->low_latency = false; 943} 944 945void vmbus_onmessage(void *context); 946 947int vmbus_request_offers(void); 948 949/* 950 * APIs for managing sub-channels. 951 */ 952 953void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 954 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 955 956void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 957 void (*chn_rescind_cb)(struct vmbus_channel *)); 958 959/* 960 * Retrieve the (sub) channel on which to send an outgoing request. 961 * When a primary channel has multiple sub-channels, we choose a 962 * channel whose VCPU binding is closest to the VCPU on which 963 * this call is being made. 964 */ 965struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary); 966 967/* 968 * Check if sub-channels have already been offerred. This API will be useful 969 * when the driver is unloaded after establishing sub-channels. In this case, 970 * when the driver is re-loaded, the driver would have to check if the 971 * subchannels have already been established before attempting to request 972 * the creation of sub-channels. 973 * This function returns TRUE to indicate that subchannels have already been 974 * created. 975 * This function should be invoked after setting the callback function for 976 * sub-channel creation. 977 */ 978bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 979 980/* The format must be the same as struct vmdata_gpa_direct */ 981struct vmbus_channel_packet_page_buffer { 982 u16 type; 983 u16 dataoffset8; 984 u16 length8; 985 u16 flags; 986 u64 transactionid; 987 u32 reserved; 988 u32 rangecount; 989 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 990} __packed; 991 992/* The format must be the same as struct vmdata_gpa_direct */ 993struct vmbus_channel_packet_multipage_buffer { 994 u16 type; 995 u16 dataoffset8; 996 u16 length8; 997 u16 flags; 998 u64 transactionid; 999 u32 reserved; 1000 u32 rangecount; /* Always 1 in this case */ 1001 struct hv_multipage_buffer range; 1002} __packed; 1003 1004/* The format must be the same as struct vmdata_gpa_direct */ 1005struct vmbus_packet_mpb_array { 1006 u16 type; 1007 u16 dataoffset8; 1008 u16 length8; 1009 u16 flags; 1010 u64 transactionid; 1011 u32 reserved; 1012 u32 rangecount; /* Always 1 in this case */ 1013 struct hv_mpb_array range; 1014} __packed; 1015 1016 1017extern int vmbus_open(struct vmbus_channel *channel, 1018 u32 send_ringbuffersize, 1019 u32 recv_ringbuffersize, 1020 void *userdata, 1021 u32 userdatalen, 1022 void (*onchannel_callback)(void *context), 1023 void *context); 1024 1025extern void vmbus_close(struct vmbus_channel *channel); 1026 1027extern int vmbus_sendpacket(struct vmbus_channel *channel, 1028 void *buffer, 1029 u32 bufferLen, 1030 u64 requestid, 1031 enum vmbus_packet_type type, 1032 u32 flags); 1033 1034extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel, 1035 void *buffer, 1036 u32 bufferLen, 1037 u64 requestid, 1038 enum vmbus_packet_type type, 1039 u32 flags); 1040 1041extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1042 struct hv_page_buffer pagebuffers[], 1043 u32 pagecount, 1044 void *buffer, 1045 u32 bufferlen, 1046 u64 requestid); 1047 1048extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel, 1049 struct hv_page_buffer pagebuffers[], 1050 u32 pagecount, 1051 void *buffer, 1052 u32 bufferlen, 1053 u64 requestid, 1054 u32 flags); 1055 1056extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, 1057 struct hv_multipage_buffer *mpb, 1058 void *buffer, 1059 u32 bufferlen, 1060 u64 requestid); 1061 1062extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1063 struct vmbus_packet_mpb_array *mpb, 1064 u32 desc_size, 1065 void *buffer, 1066 u32 bufferlen, 1067 u64 requestid); 1068 1069extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1070 void *kbuffer, 1071 u32 size, 1072 u32 *gpadl_handle); 1073 1074extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1075 u32 gpadl_handle); 1076 1077extern int vmbus_recvpacket(struct vmbus_channel *channel, 1078 void *buffer, 1079 u32 bufferlen, 1080 u32 *buffer_actual_len, 1081 u64 *requestid); 1082 1083extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1084 void *buffer, 1085 u32 bufferlen, 1086 u32 *buffer_actual_len, 1087 u64 *requestid); 1088 1089 1090extern void vmbus_ontimer(unsigned long data); 1091 1092/* Base driver object */ 1093struct hv_driver { 1094 const char *name; 1095 1096 /* 1097 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1098 * channel flag, actually doesn't mean a synthetic device because the 1099 * offer's if_type/if_instance can change for every new hvsock 1100 * connection. 1101 * 1102 * However, to facilitate the notification of new-offer/rescind-offer 1103 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1104 * a special vmbus device, and hence we need the below flag to 1105 * indicate if the driver is the hvsock driver or not: we need to 1106 * specially treat the hvosck offer & driver in vmbus_match(). 1107 */ 1108 bool hvsock; 1109 1110 /* the device type supported by this driver */ 1111 uuid_le dev_type; 1112 const struct hv_vmbus_device_id *id_table; 1113 1114 struct device_driver driver; 1115 1116 /* dynamic device GUID's */ 1117 struct { 1118 spinlock_t lock; 1119 struct list_head list; 1120 } dynids; 1121 1122 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1123 int (*remove)(struct hv_device *); 1124 void (*shutdown)(struct hv_device *); 1125 1126}; 1127 1128/* Base device object */ 1129struct hv_device { 1130 /* the device type id of this device */ 1131 uuid_le dev_type; 1132 1133 /* the device instance id of this device */ 1134 uuid_le dev_instance; 1135 u16 vendor_id; 1136 u16 device_id; 1137 1138 struct device device; 1139 1140 struct vmbus_channel *channel; 1141}; 1142 1143 1144static inline struct hv_device *device_to_hv_device(struct device *d) 1145{ 1146 return container_of(d, struct hv_device, device); 1147} 1148 1149static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1150{ 1151 return container_of(d, struct hv_driver, driver); 1152} 1153 1154static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1155{ 1156 dev_set_drvdata(&dev->device, data); 1157} 1158 1159static inline void *hv_get_drvdata(struct hv_device *dev) 1160{ 1161 return dev_get_drvdata(&dev->device); 1162} 1163 1164struct hv_ring_buffer_debug_info { 1165 u32 current_interrupt_mask; 1166 u32 current_read_index; 1167 u32 current_write_index; 1168 u32 bytes_avail_toread; 1169 u32 bytes_avail_towrite; 1170}; 1171 1172void hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info, 1173 struct hv_ring_buffer_debug_info *debug_info); 1174 1175/* Vmbus interface */ 1176#define vmbus_driver_register(driver) \ 1177 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1178int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1179 struct module *owner, 1180 const char *mod_name); 1181void vmbus_driver_unregister(struct hv_driver *hv_driver); 1182 1183void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1184 1185int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1186 resource_size_t min, resource_size_t max, 1187 resource_size_t size, resource_size_t align, 1188 bool fb_overlap_ok); 1189void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1190int vmbus_cpu_number_to_vp_number(int cpu_number); 1191u64 hv_do_hypercall(u64 control, void *input, void *output); 1192 1193/* 1194 * GUID definitions of various offer types - services offered to the guest. 1195 */ 1196 1197/* 1198 * Network GUID 1199 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1200 */ 1201#define HV_NIC_GUID \ 1202 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1203 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1204 1205/* 1206 * IDE GUID 1207 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1208 */ 1209#define HV_IDE_GUID \ 1210 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1211 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1212 1213/* 1214 * SCSI GUID 1215 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1216 */ 1217#define HV_SCSI_GUID \ 1218 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1219 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1220 1221/* 1222 * Shutdown GUID 1223 * {0e0b6031-5213-4934-818b-38d90ced39db} 1224 */ 1225#define HV_SHUTDOWN_GUID \ 1226 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1227 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1228 1229/* 1230 * Time Synch GUID 1231 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1232 */ 1233#define HV_TS_GUID \ 1234 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1235 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1236 1237/* 1238 * Heartbeat GUID 1239 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1240 */ 1241#define HV_HEART_BEAT_GUID \ 1242 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1243 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1244 1245/* 1246 * KVP GUID 1247 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1248 */ 1249#define HV_KVP_GUID \ 1250 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1251 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1252 1253/* 1254 * Dynamic memory GUID 1255 * {525074dc-8985-46e2-8057-a307dc18a502} 1256 */ 1257#define HV_DM_GUID \ 1258 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1259 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1260 1261/* 1262 * Mouse GUID 1263 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1264 */ 1265#define HV_MOUSE_GUID \ 1266 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1267 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1268 1269/* 1270 * Keyboard GUID 1271 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1272 */ 1273#define HV_KBD_GUID \ 1274 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1275 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1276 1277/* 1278 * VSS (Backup/Restore) GUID 1279 */ 1280#define HV_VSS_GUID \ 1281 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1282 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1283/* 1284 * Synthetic Video GUID 1285 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1286 */ 1287#define HV_SYNTHVID_GUID \ 1288 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1289 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1290 1291/* 1292 * Synthetic FC GUID 1293 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1294 */ 1295#define HV_SYNTHFC_GUID \ 1296 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1297 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1298 1299/* 1300 * Guest File Copy Service 1301 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1302 */ 1303 1304#define HV_FCOPY_GUID \ 1305 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1306 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1307 1308/* 1309 * NetworkDirect. This is the guest RDMA service. 1310 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1311 */ 1312#define HV_ND_GUID \ 1313 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1314 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1315 1316/* 1317 * PCI Express Pass Through 1318 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1319 */ 1320 1321#define HV_PCIE_GUID \ 1322 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1323 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1324 1325/* 1326 * Linux doesn't support the 3 devices: the first two are for 1327 * Automatic Virtual Machine Activation, and the third is for 1328 * Remote Desktop Virtualization. 1329 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1330 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1331 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1332 */ 1333 1334#define HV_AVMA1_GUID \ 1335 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1336 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1337 1338#define HV_AVMA2_GUID \ 1339 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1340 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1341 1342#define HV_RDV_GUID \ 1343 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1344 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1345 1346/* 1347 * Common header for Hyper-V ICs 1348 */ 1349 1350#define ICMSGTYPE_NEGOTIATE 0 1351#define ICMSGTYPE_HEARTBEAT 1 1352#define ICMSGTYPE_KVPEXCHANGE 2 1353#define ICMSGTYPE_SHUTDOWN 3 1354#define ICMSGTYPE_TIMESYNC 4 1355#define ICMSGTYPE_VSS 5 1356 1357#define ICMSGHDRFLAG_TRANSACTION 1 1358#define ICMSGHDRFLAG_REQUEST 2 1359#define ICMSGHDRFLAG_RESPONSE 4 1360 1361 1362/* 1363 * While we want to handle util services as regular devices, 1364 * there is only one instance of each of these services; so 1365 * we statically allocate the service specific state. 1366 */ 1367 1368struct hv_util_service { 1369 u8 *recv_buffer; 1370 void *channel; 1371 void (*util_cb)(void *); 1372 int (*util_init)(struct hv_util_service *); 1373 void (*util_deinit)(void); 1374}; 1375 1376struct vmbuspipe_hdr { 1377 u32 flags; 1378 u32 msgsize; 1379} __packed; 1380 1381struct ic_version { 1382 u16 major; 1383 u16 minor; 1384} __packed; 1385 1386struct icmsg_hdr { 1387 struct ic_version icverframe; 1388 u16 icmsgtype; 1389 struct ic_version icvermsg; 1390 u16 icmsgsize; 1391 u32 status; 1392 u8 ictransaction_id; 1393 u8 icflags; 1394 u8 reserved[2]; 1395} __packed; 1396 1397struct icmsg_negotiate { 1398 u16 icframe_vercnt; 1399 u16 icmsg_vercnt; 1400 u32 reserved; 1401 struct ic_version icversion_data[1]; /* any size array */ 1402} __packed; 1403 1404struct shutdown_msg_data { 1405 u32 reason_code; 1406 u32 timeout_seconds; 1407 u32 flags; 1408 u8 display_message[2048]; 1409} __packed; 1410 1411struct heartbeat_msg_data { 1412 u64 seq_num; 1413 u32 reserved[8]; 1414} __packed; 1415 1416/* Time Sync IC defs */ 1417#define ICTIMESYNCFLAG_PROBE 0 1418#define ICTIMESYNCFLAG_SYNC 1 1419#define ICTIMESYNCFLAG_SAMPLE 2 1420 1421#ifdef __x86_64__ 1422#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1423#else 1424#define WLTIMEDELTA 116444736000000000LL 1425#endif 1426 1427struct ictimesync_data { 1428 u64 parenttime; 1429 u64 childtime; 1430 u64 roundtriptime; 1431 u8 flags; 1432} __packed; 1433 1434struct ictimesync_ref_data { 1435 u64 parenttime; 1436 u64 vmreferencetime; 1437 u8 flags; 1438 char leapflags; 1439 char stratum; 1440 u8 reserved[3]; 1441} __packed; 1442 1443struct hyperv_service_callback { 1444 u8 msg_type; 1445 char *log_msg; 1446 uuid_le data; 1447 struct vmbus_channel *channel; 1448 void (*callback)(void *context); 1449}; 1450 1451#define MAX_SRV_VER 0x7ffffff 1452extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, 1453 const int *fw_version, int fw_vercnt, 1454 const int *srv_version, int srv_vercnt, 1455 int *nego_fw_version, int *nego_srv_version); 1456 1457void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid); 1458 1459void vmbus_setevent(struct vmbus_channel *channel); 1460/* 1461 * Negotiated version with the Host. 1462 */ 1463 1464extern __u32 vmbus_proto_version; 1465 1466int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id, 1467 const uuid_le *shv_host_servie_id); 1468void vmbus_set_event(struct vmbus_channel *channel); 1469 1470/* Get the start of the ring buffer. */ 1471static inline void * 1472hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1473{ 1474 return ring_info->ring_buffer->buffer; 1475} 1476 1477/* 1478 * To optimize the flow management on the send-side, 1479 * when the sender is blocked because of lack of 1480 * sufficient space in the ring buffer, potential the 1481 * consumer of the ring buffer can signal the producer. 1482 * This is controlled by the following parameters: 1483 * 1484 * 1. pending_send_sz: This is the size in bytes that the 1485 * producer is trying to send. 1486 * 2. The feature bit feat_pending_send_sz set to indicate if 1487 * the consumer of the ring will signal when the ring 1488 * state transitions from being full to a state where 1489 * there is room for the producer to send the pending packet. 1490 */ 1491 1492static inline void hv_signal_on_read(struct vmbus_channel *channel) 1493{ 1494 u32 cur_write_sz, cached_write_sz; 1495 u32 pending_sz; 1496 struct hv_ring_buffer_info *rbi = &channel->inbound; 1497 1498 /* 1499 * Issue a full memory barrier before making the signaling decision. 1500 * Here is the reason for having this barrier: 1501 * If the reading of the pend_sz (in this function) 1502 * were to be reordered and read before we commit the new read 1503 * index (in the calling function) we could 1504 * have a problem. If the host were to set the pending_sz after we 1505 * have sampled pending_sz and go to sleep before we commit the 1506 * read index, we could miss sending the interrupt. Issue a full 1507 * memory barrier to address this. 1508 */ 1509 virt_mb(); 1510 1511 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 1512 /* If the other end is not blocked on write don't bother. */ 1513 if (pending_sz == 0) 1514 return; 1515 1516 cur_write_sz = hv_get_bytes_to_write(rbi); 1517 1518 if (cur_write_sz < pending_sz) 1519 return; 1520 1521 cached_write_sz = hv_get_cached_bytes_to_write(rbi); 1522 if (cached_write_sz < pending_sz) 1523 vmbus_setevent(channel); 1524} 1525 1526/* 1527 * Mask off host interrupt callback notifications 1528 */ 1529static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1530{ 1531 rbi->ring_buffer->interrupt_mask = 1; 1532 1533 /* make sure mask update is not reordered */ 1534 virt_mb(); 1535} 1536 1537/* 1538 * Re-enable host callback and return number of outstanding bytes 1539 */ 1540static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1541{ 1542 1543 rbi->ring_buffer->interrupt_mask = 0; 1544 1545 /* make sure mask update is not reordered */ 1546 virt_mb(); 1547 1548 /* 1549 * Now check to see if the ring buffer is still empty. 1550 * If it is not, we raced and we need to process new 1551 * incoming messages. 1552 */ 1553 return hv_get_bytes_to_read(rbi); 1554} 1555 1556/* 1557 * An API to support in-place processing of incoming VMBUS packets. 1558 */ 1559 1560/* Get data payload associated with descriptor */ 1561static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1562{ 1563 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1564} 1565 1566/* Get data size associated with descriptor */ 1567static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1568{ 1569 return (desc->len8 << 3) - (desc->offset8 << 3); 1570} 1571 1572 1573struct vmpacket_descriptor * 1574hv_pkt_iter_first(struct vmbus_channel *channel); 1575 1576struct vmpacket_descriptor * 1577__hv_pkt_iter_next(struct vmbus_channel *channel, 1578 const struct vmpacket_descriptor *pkt); 1579 1580void hv_pkt_iter_close(struct vmbus_channel *channel); 1581 1582/* 1583 * Get next packet descriptor from iterator 1584 * If at end of list, return NULL and update host. 1585 */ 1586static inline struct vmpacket_descriptor * 1587hv_pkt_iter_next(struct vmbus_channel *channel, 1588 const struct vmpacket_descriptor *pkt) 1589{ 1590 struct vmpacket_descriptor *nxt; 1591 1592 nxt = __hv_pkt_iter_next(channel, pkt); 1593 if (!nxt) 1594 hv_pkt_iter_close(channel); 1595 1596 return nxt; 1597} 1598 1599#define foreach_vmbus_pkt(pkt, channel) \ 1600 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1601 pkt = hv_pkt_iter_next(channel, pkt)) 1602 1603#endif /* _HYPERV_H */