Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/sched/mm.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <linux/bpf.h>
99#include <linux/bpf_trace.h>
100#include <net/net_namespace.h>
101#include <net/sock.h>
102#include <net/busy_poll.h>
103#include <linux/rtnetlink.h>
104#include <linux/stat.h>
105#include <net/dst.h>
106#include <net/dst_metadata.h>
107#include <net/pkt_sched.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <linux/pci.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_ingress.h>
144#include <linux/crash_dump.h>
145
146#include "net-sysfs.h"
147
148/* Instead of increasing this, you should create a hash table. */
149#define MAX_GRO_SKBS 8
150
151/* This should be increased if a protocol with a bigger head is added. */
152#define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154static DEFINE_SPINLOCK(ptype_lock);
155static DEFINE_SPINLOCK(offload_lock);
156struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157struct list_head ptype_all __read_mostly; /* Taps */
158static struct list_head offload_base __read_mostly;
159
160static int netif_rx_internal(struct sk_buff *skb);
161static int call_netdevice_notifiers_info(unsigned long val,
162 struct net_device *dev,
163 struct netdev_notifier_info *info);
164
165/*
166 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
167 * semaphore.
168 *
169 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
170 *
171 * Writers must hold the rtnl semaphore while they loop through the
172 * dev_base_head list, and hold dev_base_lock for writing when they do the
173 * actual updates. This allows pure readers to access the list even
174 * while a writer is preparing to update it.
175 *
176 * To put it another way, dev_base_lock is held for writing only to
177 * protect against pure readers; the rtnl semaphore provides the
178 * protection against other writers.
179 *
180 * See, for example usages, register_netdevice() and
181 * unregister_netdevice(), which must be called with the rtnl
182 * semaphore held.
183 */
184DEFINE_RWLOCK(dev_base_lock);
185EXPORT_SYMBOL(dev_base_lock);
186
187/* protects napi_hash addition/deletion and napi_gen_id */
188static DEFINE_SPINLOCK(napi_hash_lock);
189
190static unsigned int napi_gen_id = NR_CPUS;
191static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
192
193static seqcount_t devnet_rename_seq;
194
195static inline void dev_base_seq_inc(struct net *net)
196{
197 while (++net->dev_base_seq == 0)
198 ;
199}
200
201static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202{
203 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
204
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206}
207
208static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209{
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211}
212
213static inline void rps_lock(struct softnet_data *sd)
214{
215#ifdef CONFIG_RPS
216 spin_lock(&sd->input_pkt_queue.lock);
217#endif
218}
219
220static inline void rps_unlock(struct softnet_data *sd)
221{
222#ifdef CONFIG_RPS
223 spin_unlock(&sd->input_pkt_queue.lock);
224#endif
225}
226
227/* Device list insertion */
228static void list_netdevice(struct net_device *dev)
229{
230 struct net *net = dev_net(dev);
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
240
241 dev_base_seq_inc(net);
242}
243
244/* Device list removal
245 * caller must respect a RCU grace period before freeing/reusing dev
246 */
247static void unlist_netdevice(struct net_device *dev)
248{
249 ASSERT_RTNL();
250
251 /* Unlink dev from the device chain */
252 write_lock_bh(&dev_base_lock);
253 list_del_rcu(&dev->dev_list);
254 hlist_del_rcu(&dev->name_hlist);
255 hlist_del_rcu(&dev->index_hlist);
256 write_unlock_bh(&dev_base_lock);
257
258 dev_base_seq_inc(dev_net(dev));
259}
260
261/*
262 * Our notifier list
263 */
264
265static RAW_NOTIFIER_HEAD(netdev_chain);
266
267/*
268 * Device drivers call our routines to queue packets here. We empty the
269 * queue in the local softnet handler.
270 */
271
272DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
273EXPORT_PER_CPU_SYMBOL(softnet_data);
274
275#ifdef CONFIG_LOCKDEP
276/*
277 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
278 * according to dev->type
279 */
280static const unsigned short netdev_lock_type[] = {
281 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
282 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
283 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
284 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
285 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
286 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
287 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
288 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
289 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
290 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
291 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
292 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
293 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
294 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
295 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
296
297static const char *const netdev_lock_name[] = {
298 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
299 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
300 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
301 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
302 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
303 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
304 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
305 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
306 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
307 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
308 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
309 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
310 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
311 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
312 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
313
314static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
315static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
316
317static inline unsigned short netdev_lock_pos(unsigned short dev_type)
318{
319 int i;
320
321 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
322 if (netdev_lock_type[i] == dev_type)
323 return i;
324 /* the last key is used by default */
325 return ARRAY_SIZE(netdev_lock_type) - 1;
326}
327
328static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
329 unsigned short dev_type)
330{
331 int i;
332
333 i = netdev_lock_pos(dev_type);
334 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
335 netdev_lock_name[i]);
336}
337
338static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339{
340 int i;
341
342 i = netdev_lock_pos(dev->type);
343 lockdep_set_class_and_name(&dev->addr_list_lock,
344 &netdev_addr_lock_key[i],
345 netdev_lock_name[i]);
346}
347#else
348static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
349 unsigned short dev_type)
350{
351}
352static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353{
354}
355#endif
356
357/*******************************************************************************
358 *
359 * Protocol management and registration routines
360 *
361 *******************************************************************************/
362
363
364/*
365 * Add a protocol ID to the list. Now that the input handler is
366 * smarter we can dispense with all the messy stuff that used to be
367 * here.
368 *
369 * BEWARE!!! Protocol handlers, mangling input packets,
370 * MUST BE last in hash buckets and checking protocol handlers
371 * MUST start from promiscuous ptype_all chain in net_bh.
372 * It is true now, do not change it.
373 * Explanation follows: if protocol handler, mangling packet, will
374 * be the first on list, it is not able to sense, that packet
375 * is cloned and should be copied-on-write, so that it will
376 * change it and subsequent readers will get broken packet.
377 * --ANK (980803)
378 */
379
380static inline struct list_head *ptype_head(const struct packet_type *pt)
381{
382 if (pt->type == htons(ETH_P_ALL))
383 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
384 else
385 return pt->dev ? &pt->dev->ptype_specific :
386 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
387}
388
389/**
390 * dev_add_pack - add packet handler
391 * @pt: packet type declaration
392 *
393 * Add a protocol handler to the networking stack. The passed &packet_type
394 * is linked into kernel lists and may not be freed until it has been
395 * removed from the kernel lists.
396 *
397 * This call does not sleep therefore it can not
398 * guarantee all CPU's that are in middle of receiving packets
399 * will see the new packet type (until the next received packet).
400 */
401
402void dev_add_pack(struct packet_type *pt)
403{
404 struct list_head *head = ptype_head(pt);
405
406 spin_lock(&ptype_lock);
407 list_add_rcu(&pt->list, head);
408 spin_unlock(&ptype_lock);
409}
410EXPORT_SYMBOL(dev_add_pack);
411
412/**
413 * __dev_remove_pack - remove packet handler
414 * @pt: packet type declaration
415 *
416 * Remove a protocol handler that was previously added to the kernel
417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
418 * from the kernel lists and can be freed or reused once this function
419 * returns.
420 *
421 * The packet type might still be in use by receivers
422 * and must not be freed until after all the CPU's have gone
423 * through a quiescent state.
424 */
425void __dev_remove_pack(struct packet_type *pt)
426{
427 struct list_head *head = ptype_head(pt);
428 struct packet_type *pt1;
429
430 spin_lock(&ptype_lock);
431
432 list_for_each_entry(pt1, head, list) {
433 if (pt == pt1) {
434 list_del_rcu(&pt->list);
435 goto out;
436 }
437 }
438
439 pr_warn("dev_remove_pack: %p not found\n", pt);
440out:
441 spin_unlock(&ptype_lock);
442}
443EXPORT_SYMBOL(__dev_remove_pack);
444
445/**
446 * dev_remove_pack - remove packet handler
447 * @pt: packet type declaration
448 *
449 * Remove a protocol handler that was previously added to the kernel
450 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
451 * from the kernel lists and can be freed or reused once this function
452 * returns.
453 *
454 * This call sleeps to guarantee that no CPU is looking at the packet
455 * type after return.
456 */
457void dev_remove_pack(struct packet_type *pt)
458{
459 __dev_remove_pack(pt);
460
461 synchronize_net();
462}
463EXPORT_SYMBOL(dev_remove_pack);
464
465
466/**
467 * dev_add_offload - register offload handlers
468 * @po: protocol offload declaration
469 *
470 * Add protocol offload handlers to the networking stack. The passed
471 * &proto_offload is linked into kernel lists and may not be freed until
472 * it has been removed from the kernel lists.
473 *
474 * This call does not sleep therefore it can not
475 * guarantee all CPU's that are in middle of receiving packets
476 * will see the new offload handlers (until the next received packet).
477 */
478void dev_add_offload(struct packet_offload *po)
479{
480 struct packet_offload *elem;
481
482 spin_lock(&offload_lock);
483 list_for_each_entry(elem, &offload_base, list) {
484 if (po->priority < elem->priority)
485 break;
486 }
487 list_add_rcu(&po->list, elem->list.prev);
488 spin_unlock(&offload_lock);
489}
490EXPORT_SYMBOL(dev_add_offload);
491
492/**
493 * __dev_remove_offload - remove offload handler
494 * @po: packet offload declaration
495 *
496 * Remove a protocol offload handler that was previously added to the
497 * kernel offload handlers by dev_add_offload(). The passed &offload_type
498 * is removed from the kernel lists and can be freed or reused once this
499 * function returns.
500 *
501 * The packet type might still be in use by receivers
502 * and must not be freed until after all the CPU's have gone
503 * through a quiescent state.
504 */
505static void __dev_remove_offload(struct packet_offload *po)
506{
507 struct list_head *head = &offload_base;
508 struct packet_offload *po1;
509
510 spin_lock(&offload_lock);
511
512 list_for_each_entry(po1, head, list) {
513 if (po == po1) {
514 list_del_rcu(&po->list);
515 goto out;
516 }
517 }
518
519 pr_warn("dev_remove_offload: %p not found\n", po);
520out:
521 spin_unlock(&offload_lock);
522}
523
524/**
525 * dev_remove_offload - remove packet offload handler
526 * @po: packet offload declaration
527 *
528 * Remove a packet offload handler that was previously added to the kernel
529 * offload handlers by dev_add_offload(). The passed &offload_type is
530 * removed from the kernel lists and can be freed or reused once this
531 * function returns.
532 *
533 * This call sleeps to guarantee that no CPU is looking at the packet
534 * type after return.
535 */
536void dev_remove_offload(struct packet_offload *po)
537{
538 __dev_remove_offload(po);
539
540 synchronize_net();
541}
542EXPORT_SYMBOL(dev_remove_offload);
543
544/******************************************************************************
545 *
546 * Device Boot-time Settings Routines
547 *
548 ******************************************************************************/
549
550/* Boot time configuration table */
551static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
552
553/**
554 * netdev_boot_setup_add - add new setup entry
555 * @name: name of the device
556 * @map: configured settings for the device
557 *
558 * Adds new setup entry to the dev_boot_setup list. The function
559 * returns 0 on error and 1 on success. This is a generic routine to
560 * all netdevices.
561 */
562static int netdev_boot_setup_add(char *name, struct ifmap *map)
563{
564 struct netdev_boot_setup *s;
565 int i;
566
567 s = dev_boot_setup;
568 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
569 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
570 memset(s[i].name, 0, sizeof(s[i].name));
571 strlcpy(s[i].name, name, IFNAMSIZ);
572 memcpy(&s[i].map, map, sizeof(s[i].map));
573 break;
574 }
575 }
576
577 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
578}
579
580/**
581 * netdev_boot_setup_check - check boot time settings
582 * @dev: the netdevice
583 *
584 * Check boot time settings for the device.
585 * The found settings are set for the device to be used
586 * later in the device probing.
587 * Returns 0 if no settings found, 1 if they are.
588 */
589int netdev_boot_setup_check(struct net_device *dev)
590{
591 struct netdev_boot_setup *s = dev_boot_setup;
592 int i;
593
594 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
595 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
596 !strcmp(dev->name, s[i].name)) {
597 dev->irq = s[i].map.irq;
598 dev->base_addr = s[i].map.base_addr;
599 dev->mem_start = s[i].map.mem_start;
600 dev->mem_end = s[i].map.mem_end;
601 return 1;
602 }
603 }
604 return 0;
605}
606EXPORT_SYMBOL(netdev_boot_setup_check);
607
608
609/**
610 * netdev_boot_base - get address from boot time settings
611 * @prefix: prefix for network device
612 * @unit: id for network device
613 *
614 * Check boot time settings for the base address of device.
615 * The found settings are set for the device to be used
616 * later in the device probing.
617 * Returns 0 if no settings found.
618 */
619unsigned long netdev_boot_base(const char *prefix, int unit)
620{
621 const struct netdev_boot_setup *s = dev_boot_setup;
622 char name[IFNAMSIZ];
623 int i;
624
625 sprintf(name, "%s%d", prefix, unit);
626
627 /*
628 * If device already registered then return base of 1
629 * to indicate not to probe for this interface
630 */
631 if (__dev_get_by_name(&init_net, name))
632 return 1;
633
634 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
635 if (!strcmp(name, s[i].name))
636 return s[i].map.base_addr;
637 return 0;
638}
639
640/*
641 * Saves at boot time configured settings for any netdevice.
642 */
643int __init netdev_boot_setup(char *str)
644{
645 int ints[5];
646 struct ifmap map;
647
648 str = get_options(str, ARRAY_SIZE(ints), ints);
649 if (!str || !*str)
650 return 0;
651
652 /* Save settings */
653 memset(&map, 0, sizeof(map));
654 if (ints[0] > 0)
655 map.irq = ints[1];
656 if (ints[0] > 1)
657 map.base_addr = ints[2];
658 if (ints[0] > 2)
659 map.mem_start = ints[3];
660 if (ints[0] > 3)
661 map.mem_end = ints[4];
662
663 /* Add new entry to the list */
664 return netdev_boot_setup_add(str, &map);
665}
666
667__setup("netdev=", netdev_boot_setup);
668
669/*******************************************************************************
670 *
671 * Device Interface Subroutines
672 *
673 *******************************************************************************/
674
675/**
676 * dev_get_iflink - get 'iflink' value of a interface
677 * @dev: targeted interface
678 *
679 * Indicates the ifindex the interface is linked to.
680 * Physical interfaces have the same 'ifindex' and 'iflink' values.
681 */
682
683int dev_get_iflink(const struct net_device *dev)
684{
685 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
686 return dev->netdev_ops->ndo_get_iflink(dev);
687
688 return dev->ifindex;
689}
690EXPORT_SYMBOL(dev_get_iflink);
691
692/**
693 * dev_fill_metadata_dst - Retrieve tunnel egress information.
694 * @dev: targeted interface
695 * @skb: The packet.
696 *
697 * For better visibility of tunnel traffic OVS needs to retrieve
698 * egress tunnel information for a packet. Following API allows
699 * user to get this info.
700 */
701int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
702{
703 struct ip_tunnel_info *info;
704
705 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
706 return -EINVAL;
707
708 info = skb_tunnel_info_unclone(skb);
709 if (!info)
710 return -ENOMEM;
711 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
712 return -EINVAL;
713
714 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
715}
716EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
717
718/**
719 * __dev_get_by_name - find a device by its name
720 * @net: the applicable net namespace
721 * @name: name to find
722 *
723 * Find an interface by name. Must be called under RTNL semaphore
724 * or @dev_base_lock. If the name is found a pointer to the device
725 * is returned. If the name is not found then %NULL is returned. The
726 * reference counters are not incremented so the caller must be
727 * careful with locks.
728 */
729
730struct net_device *__dev_get_by_name(struct net *net, const char *name)
731{
732 struct net_device *dev;
733 struct hlist_head *head = dev_name_hash(net, name);
734
735 hlist_for_each_entry(dev, head, name_hlist)
736 if (!strncmp(dev->name, name, IFNAMSIZ))
737 return dev;
738
739 return NULL;
740}
741EXPORT_SYMBOL(__dev_get_by_name);
742
743/**
744 * dev_get_by_name_rcu - find a device by its name
745 * @net: the applicable net namespace
746 * @name: name to find
747 *
748 * Find an interface by name.
749 * If the name is found a pointer to the device is returned.
750 * If the name is not found then %NULL is returned.
751 * The reference counters are not incremented so the caller must be
752 * careful with locks. The caller must hold RCU lock.
753 */
754
755struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
756{
757 struct net_device *dev;
758 struct hlist_head *head = dev_name_hash(net, name);
759
760 hlist_for_each_entry_rcu(dev, head, name_hlist)
761 if (!strncmp(dev->name, name, IFNAMSIZ))
762 return dev;
763
764 return NULL;
765}
766EXPORT_SYMBOL(dev_get_by_name_rcu);
767
768/**
769 * dev_get_by_name - find a device by its name
770 * @net: the applicable net namespace
771 * @name: name to find
772 *
773 * Find an interface by name. This can be called from any
774 * context and does its own locking. The returned handle has
775 * the usage count incremented and the caller must use dev_put() to
776 * release it when it is no longer needed. %NULL is returned if no
777 * matching device is found.
778 */
779
780struct net_device *dev_get_by_name(struct net *net, const char *name)
781{
782 struct net_device *dev;
783
784 rcu_read_lock();
785 dev = dev_get_by_name_rcu(net, name);
786 if (dev)
787 dev_hold(dev);
788 rcu_read_unlock();
789 return dev;
790}
791EXPORT_SYMBOL(dev_get_by_name);
792
793/**
794 * __dev_get_by_index - find a device by its ifindex
795 * @net: the applicable net namespace
796 * @ifindex: index of device
797 *
798 * Search for an interface by index. Returns %NULL if the device
799 * is not found or a pointer to the device. The device has not
800 * had its reference counter increased so the caller must be careful
801 * about locking. The caller must hold either the RTNL semaphore
802 * or @dev_base_lock.
803 */
804
805struct net_device *__dev_get_by_index(struct net *net, int ifindex)
806{
807 struct net_device *dev;
808 struct hlist_head *head = dev_index_hash(net, ifindex);
809
810 hlist_for_each_entry(dev, head, index_hlist)
811 if (dev->ifindex == ifindex)
812 return dev;
813
814 return NULL;
815}
816EXPORT_SYMBOL(__dev_get_by_index);
817
818/**
819 * dev_get_by_index_rcu - find a device by its ifindex
820 * @net: the applicable net namespace
821 * @ifindex: index of device
822 *
823 * Search for an interface by index. Returns %NULL if the device
824 * is not found or a pointer to the device. The device has not
825 * had its reference counter increased so the caller must be careful
826 * about locking. The caller must hold RCU lock.
827 */
828
829struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
830{
831 struct net_device *dev;
832 struct hlist_head *head = dev_index_hash(net, ifindex);
833
834 hlist_for_each_entry_rcu(dev, head, index_hlist)
835 if (dev->ifindex == ifindex)
836 return dev;
837
838 return NULL;
839}
840EXPORT_SYMBOL(dev_get_by_index_rcu);
841
842
843/**
844 * dev_get_by_index - find a device by its ifindex
845 * @net: the applicable net namespace
846 * @ifindex: index of device
847 *
848 * Search for an interface by index. Returns NULL if the device
849 * is not found or a pointer to the device. The device returned has
850 * had a reference added and the pointer is safe until the user calls
851 * dev_put to indicate they have finished with it.
852 */
853
854struct net_device *dev_get_by_index(struct net *net, int ifindex)
855{
856 struct net_device *dev;
857
858 rcu_read_lock();
859 dev = dev_get_by_index_rcu(net, ifindex);
860 if (dev)
861 dev_hold(dev);
862 rcu_read_unlock();
863 return dev;
864}
865EXPORT_SYMBOL(dev_get_by_index);
866
867/**
868 * netdev_get_name - get a netdevice name, knowing its ifindex.
869 * @net: network namespace
870 * @name: a pointer to the buffer where the name will be stored.
871 * @ifindex: the ifindex of the interface to get the name from.
872 *
873 * The use of raw_seqcount_begin() and cond_resched() before
874 * retrying is required as we want to give the writers a chance
875 * to complete when CONFIG_PREEMPT is not set.
876 */
877int netdev_get_name(struct net *net, char *name, int ifindex)
878{
879 struct net_device *dev;
880 unsigned int seq;
881
882retry:
883 seq = raw_seqcount_begin(&devnet_rename_seq);
884 rcu_read_lock();
885 dev = dev_get_by_index_rcu(net, ifindex);
886 if (!dev) {
887 rcu_read_unlock();
888 return -ENODEV;
889 }
890
891 strcpy(name, dev->name);
892 rcu_read_unlock();
893 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
894 cond_resched();
895 goto retry;
896 }
897
898 return 0;
899}
900
901/**
902 * dev_getbyhwaddr_rcu - find a device by its hardware address
903 * @net: the applicable net namespace
904 * @type: media type of device
905 * @ha: hardware address
906 *
907 * Search for an interface by MAC address. Returns NULL if the device
908 * is not found or a pointer to the device.
909 * The caller must hold RCU or RTNL.
910 * The returned device has not had its ref count increased
911 * and the caller must therefore be careful about locking
912 *
913 */
914
915struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
916 const char *ha)
917{
918 struct net_device *dev;
919
920 for_each_netdev_rcu(net, dev)
921 if (dev->type == type &&
922 !memcmp(dev->dev_addr, ha, dev->addr_len))
923 return dev;
924
925 return NULL;
926}
927EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
928
929struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
930{
931 struct net_device *dev;
932
933 ASSERT_RTNL();
934 for_each_netdev(net, dev)
935 if (dev->type == type)
936 return dev;
937
938 return NULL;
939}
940EXPORT_SYMBOL(__dev_getfirstbyhwtype);
941
942struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943{
944 struct net_device *dev, *ret = NULL;
945
946 rcu_read_lock();
947 for_each_netdev_rcu(net, dev)
948 if (dev->type == type) {
949 dev_hold(dev);
950 ret = dev;
951 break;
952 }
953 rcu_read_unlock();
954 return ret;
955}
956EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958/**
959 * __dev_get_by_flags - find any device with given flags
960 * @net: the applicable net namespace
961 * @if_flags: IFF_* values
962 * @mask: bitmask of bits in if_flags to check
963 *
964 * Search for any interface with the given flags. Returns NULL if a device
965 * is not found or a pointer to the device. Must be called inside
966 * rtnl_lock(), and result refcount is unchanged.
967 */
968
969struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 unsigned short mask)
971{
972 struct net_device *dev, *ret;
973
974 ASSERT_RTNL();
975
976 ret = NULL;
977 for_each_netdev(net, dev) {
978 if (((dev->flags ^ if_flags) & mask) == 0) {
979 ret = dev;
980 break;
981 }
982 }
983 return ret;
984}
985EXPORT_SYMBOL(__dev_get_by_flags);
986
987/**
988 * dev_valid_name - check if name is okay for network device
989 * @name: name string
990 *
991 * Network device names need to be valid file names to
992 * to allow sysfs to work. We also disallow any kind of
993 * whitespace.
994 */
995bool dev_valid_name(const char *name)
996{
997 if (*name == '\0')
998 return false;
999 if (strlen(name) >= IFNAMSIZ)
1000 return false;
1001 if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 return false;
1003
1004 while (*name) {
1005 if (*name == '/' || *name == ':' || isspace(*name))
1006 return false;
1007 name++;
1008 }
1009 return true;
1010}
1011EXPORT_SYMBOL(dev_valid_name);
1012
1013/**
1014 * __dev_alloc_name - allocate a name for a device
1015 * @net: network namespace to allocate the device name in
1016 * @name: name format string
1017 * @buf: scratch buffer and result name string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029{
1030 int i = 0;
1031 const char *p;
1032 const int max_netdevices = 8*PAGE_SIZE;
1033 unsigned long *inuse;
1034 struct net_device *d;
1035
1036 p = strnchr(name, IFNAMSIZ-1, '%');
1037 if (p) {
1038 /*
1039 * Verify the string as this thing may have come from
1040 * the user. There must be either one "%d" and no other "%"
1041 * characters.
1042 */
1043 if (p[1] != 'd' || strchr(p + 2, '%'))
1044 return -EINVAL;
1045
1046 /* Use one page as a bit array of possible slots */
1047 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1048 if (!inuse)
1049 return -ENOMEM;
1050
1051 for_each_netdev(net, d) {
1052 if (!sscanf(d->name, name, &i))
1053 continue;
1054 if (i < 0 || i >= max_netdevices)
1055 continue;
1056
1057 /* avoid cases where sscanf is not exact inverse of printf */
1058 snprintf(buf, IFNAMSIZ, name, i);
1059 if (!strncmp(buf, d->name, IFNAMSIZ))
1060 set_bit(i, inuse);
1061 }
1062
1063 i = find_first_zero_bit(inuse, max_netdevices);
1064 free_page((unsigned long) inuse);
1065 }
1066
1067 if (buf != name)
1068 snprintf(buf, IFNAMSIZ, name, i);
1069 if (!__dev_get_by_name(net, buf))
1070 return i;
1071
1072 /* It is possible to run out of possible slots
1073 * when the name is long and there isn't enough space left
1074 * for the digits, or if all bits are used.
1075 */
1076 return -ENFILE;
1077}
1078
1079/**
1080 * dev_alloc_name - allocate a name for a device
1081 * @dev: device
1082 * @name: name format string
1083 *
1084 * Passed a format string - eg "lt%d" it will try and find a suitable
1085 * id. It scans list of devices to build up a free map, then chooses
1086 * the first empty slot. The caller must hold the dev_base or rtnl lock
1087 * while allocating the name and adding the device in order to avoid
1088 * duplicates.
1089 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1090 * Returns the number of the unit assigned or a negative errno code.
1091 */
1092
1093int dev_alloc_name(struct net_device *dev, const char *name)
1094{
1095 char buf[IFNAMSIZ];
1096 struct net *net;
1097 int ret;
1098
1099 BUG_ON(!dev_net(dev));
1100 net = dev_net(dev);
1101 ret = __dev_alloc_name(net, name, buf);
1102 if (ret >= 0)
1103 strlcpy(dev->name, buf, IFNAMSIZ);
1104 return ret;
1105}
1106EXPORT_SYMBOL(dev_alloc_name);
1107
1108static int dev_alloc_name_ns(struct net *net,
1109 struct net_device *dev,
1110 const char *name)
1111{
1112 char buf[IFNAMSIZ];
1113 int ret;
1114
1115 ret = __dev_alloc_name(net, name, buf);
1116 if (ret >= 0)
1117 strlcpy(dev->name, buf, IFNAMSIZ);
1118 return ret;
1119}
1120
1121static int dev_get_valid_name(struct net *net,
1122 struct net_device *dev,
1123 const char *name)
1124{
1125 BUG_ON(!net);
1126
1127 if (!dev_valid_name(name))
1128 return -EINVAL;
1129
1130 if (strchr(name, '%'))
1131 return dev_alloc_name_ns(net, dev, name);
1132 else if (__dev_get_by_name(net, name))
1133 return -EEXIST;
1134 else if (dev->name != name)
1135 strlcpy(dev->name, name, IFNAMSIZ);
1136
1137 return 0;
1138}
1139
1140/**
1141 * dev_change_name - change name of a device
1142 * @dev: device
1143 * @newname: name (or format string) must be at least IFNAMSIZ
1144 *
1145 * Change name of a device, can pass format strings "eth%d".
1146 * for wildcarding.
1147 */
1148int dev_change_name(struct net_device *dev, const char *newname)
1149{
1150 unsigned char old_assign_type;
1151 char oldname[IFNAMSIZ];
1152 int err = 0;
1153 int ret;
1154 struct net *net;
1155
1156 ASSERT_RTNL();
1157 BUG_ON(!dev_net(dev));
1158
1159 net = dev_net(dev);
1160 if (dev->flags & IFF_UP)
1161 return -EBUSY;
1162
1163 write_seqcount_begin(&devnet_rename_seq);
1164
1165 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1166 write_seqcount_end(&devnet_rename_seq);
1167 return 0;
1168 }
1169
1170 memcpy(oldname, dev->name, IFNAMSIZ);
1171
1172 err = dev_get_valid_name(net, dev, newname);
1173 if (err < 0) {
1174 write_seqcount_end(&devnet_rename_seq);
1175 return err;
1176 }
1177
1178 if (oldname[0] && !strchr(oldname, '%'))
1179 netdev_info(dev, "renamed from %s\n", oldname);
1180
1181 old_assign_type = dev->name_assign_type;
1182 dev->name_assign_type = NET_NAME_RENAMED;
1183
1184rollback:
1185 ret = device_rename(&dev->dev, dev->name);
1186 if (ret) {
1187 memcpy(dev->name, oldname, IFNAMSIZ);
1188 dev->name_assign_type = old_assign_type;
1189 write_seqcount_end(&devnet_rename_seq);
1190 return ret;
1191 }
1192
1193 write_seqcount_end(&devnet_rename_seq);
1194
1195 netdev_adjacent_rename_links(dev, oldname);
1196
1197 write_lock_bh(&dev_base_lock);
1198 hlist_del_rcu(&dev->name_hlist);
1199 write_unlock_bh(&dev_base_lock);
1200
1201 synchronize_rcu();
1202
1203 write_lock_bh(&dev_base_lock);
1204 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1205 write_unlock_bh(&dev_base_lock);
1206
1207 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1208 ret = notifier_to_errno(ret);
1209
1210 if (ret) {
1211 /* err >= 0 after dev_alloc_name() or stores the first errno */
1212 if (err >= 0) {
1213 err = ret;
1214 write_seqcount_begin(&devnet_rename_seq);
1215 memcpy(dev->name, oldname, IFNAMSIZ);
1216 memcpy(oldname, newname, IFNAMSIZ);
1217 dev->name_assign_type = old_assign_type;
1218 old_assign_type = NET_NAME_RENAMED;
1219 goto rollback;
1220 } else {
1221 pr_err("%s: name change rollback failed: %d\n",
1222 dev->name, ret);
1223 }
1224 }
1225
1226 return err;
1227}
1228
1229/**
1230 * dev_set_alias - change ifalias of a device
1231 * @dev: device
1232 * @alias: name up to IFALIASZ
1233 * @len: limit of bytes to copy from info
1234 *
1235 * Set ifalias for a device,
1236 */
1237int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1238{
1239 char *new_ifalias;
1240
1241 ASSERT_RTNL();
1242
1243 if (len >= IFALIASZ)
1244 return -EINVAL;
1245
1246 if (!len) {
1247 kfree(dev->ifalias);
1248 dev->ifalias = NULL;
1249 return 0;
1250 }
1251
1252 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1253 if (!new_ifalias)
1254 return -ENOMEM;
1255 dev->ifalias = new_ifalias;
1256
1257 strlcpy(dev->ifalias, alias, len+1);
1258 return len;
1259}
1260
1261
1262/**
1263 * netdev_features_change - device changes features
1264 * @dev: device to cause notification
1265 *
1266 * Called to indicate a device has changed features.
1267 */
1268void netdev_features_change(struct net_device *dev)
1269{
1270 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1271}
1272EXPORT_SYMBOL(netdev_features_change);
1273
1274/**
1275 * netdev_state_change - device changes state
1276 * @dev: device to cause notification
1277 *
1278 * Called to indicate a device has changed state. This function calls
1279 * the notifier chains for netdev_chain and sends a NEWLINK message
1280 * to the routing socket.
1281 */
1282void netdev_state_change(struct net_device *dev)
1283{
1284 if (dev->flags & IFF_UP) {
1285 struct netdev_notifier_change_info change_info;
1286
1287 change_info.flags_changed = 0;
1288 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1289 &change_info.info);
1290 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1291 }
1292}
1293EXPORT_SYMBOL(netdev_state_change);
1294
1295/**
1296 * netdev_notify_peers - notify network peers about existence of @dev
1297 * @dev: network device
1298 *
1299 * Generate traffic such that interested network peers are aware of
1300 * @dev, such as by generating a gratuitous ARP. This may be used when
1301 * a device wants to inform the rest of the network about some sort of
1302 * reconfiguration such as a failover event or virtual machine
1303 * migration.
1304 */
1305void netdev_notify_peers(struct net_device *dev)
1306{
1307 rtnl_lock();
1308 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1309 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1310 rtnl_unlock();
1311}
1312EXPORT_SYMBOL(netdev_notify_peers);
1313
1314static int __dev_open(struct net_device *dev)
1315{
1316 const struct net_device_ops *ops = dev->netdev_ops;
1317 int ret;
1318
1319 ASSERT_RTNL();
1320
1321 if (!netif_device_present(dev))
1322 return -ENODEV;
1323
1324 /* Block netpoll from trying to do any rx path servicing.
1325 * If we don't do this there is a chance ndo_poll_controller
1326 * or ndo_poll may be running while we open the device
1327 */
1328 netpoll_poll_disable(dev);
1329
1330 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1331 ret = notifier_to_errno(ret);
1332 if (ret)
1333 return ret;
1334
1335 set_bit(__LINK_STATE_START, &dev->state);
1336
1337 if (ops->ndo_validate_addr)
1338 ret = ops->ndo_validate_addr(dev);
1339
1340 if (!ret && ops->ndo_open)
1341 ret = ops->ndo_open(dev);
1342
1343 netpoll_poll_enable(dev);
1344
1345 if (ret)
1346 clear_bit(__LINK_STATE_START, &dev->state);
1347 else {
1348 dev->flags |= IFF_UP;
1349 dev_set_rx_mode(dev);
1350 dev_activate(dev);
1351 add_device_randomness(dev->dev_addr, dev->addr_len);
1352 }
1353
1354 return ret;
1355}
1356
1357/**
1358 * dev_open - prepare an interface for use.
1359 * @dev: device to open
1360 *
1361 * Takes a device from down to up state. The device's private open
1362 * function is invoked and then the multicast lists are loaded. Finally
1363 * the device is moved into the up state and a %NETDEV_UP message is
1364 * sent to the netdev notifier chain.
1365 *
1366 * Calling this function on an active interface is a nop. On a failure
1367 * a negative errno code is returned.
1368 */
1369int dev_open(struct net_device *dev)
1370{
1371 int ret;
1372
1373 if (dev->flags & IFF_UP)
1374 return 0;
1375
1376 ret = __dev_open(dev);
1377 if (ret < 0)
1378 return ret;
1379
1380 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1381 call_netdevice_notifiers(NETDEV_UP, dev);
1382
1383 return ret;
1384}
1385EXPORT_SYMBOL(dev_open);
1386
1387static int __dev_close_many(struct list_head *head)
1388{
1389 struct net_device *dev;
1390
1391 ASSERT_RTNL();
1392 might_sleep();
1393
1394 list_for_each_entry(dev, head, close_list) {
1395 /* Temporarily disable netpoll until the interface is down */
1396 netpoll_poll_disable(dev);
1397
1398 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1399
1400 clear_bit(__LINK_STATE_START, &dev->state);
1401
1402 /* Synchronize to scheduled poll. We cannot touch poll list, it
1403 * can be even on different cpu. So just clear netif_running().
1404 *
1405 * dev->stop() will invoke napi_disable() on all of it's
1406 * napi_struct instances on this device.
1407 */
1408 smp_mb__after_atomic(); /* Commit netif_running(). */
1409 }
1410
1411 dev_deactivate_many(head);
1412
1413 list_for_each_entry(dev, head, close_list) {
1414 const struct net_device_ops *ops = dev->netdev_ops;
1415
1416 /*
1417 * Call the device specific close. This cannot fail.
1418 * Only if device is UP
1419 *
1420 * We allow it to be called even after a DETACH hot-plug
1421 * event.
1422 */
1423 if (ops->ndo_stop)
1424 ops->ndo_stop(dev);
1425
1426 dev->flags &= ~IFF_UP;
1427 netpoll_poll_enable(dev);
1428 }
1429
1430 return 0;
1431}
1432
1433static int __dev_close(struct net_device *dev)
1434{
1435 int retval;
1436 LIST_HEAD(single);
1437
1438 list_add(&dev->close_list, &single);
1439 retval = __dev_close_many(&single);
1440 list_del(&single);
1441
1442 return retval;
1443}
1444
1445int dev_close_many(struct list_head *head, bool unlink)
1446{
1447 struct net_device *dev, *tmp;
1448
1449 /* Remove the devices that don't need to be closed */
1450 list_for_each_entry_safe(dev, tmp, head, close_list)
1451 if (!(dev->flags & IFF_UP))
1452 list_del_init(&dev->close_list);
1453
1454 __dev_close_many(head);
1455
1456 list_for_each_entry_safe(dev, tmp, head, close_list) {
1457 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1458 call_netdevice_notifiers(NETDEV_DOWN, dev);
1459 if (unlink)
1460 list_del_init(&dev->close_list);
1461 }
1462
1463 return 0;
1464}
1465EXPORT_SYMBOL(dev_close_many);
1466
1467/**
1468 * dev_close - shutdown an interface.
1469 * @dev: device to shutdown
1470 *
1471 * This function moves an active device into down state. A
1472 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1473 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1474 * chain.
1475 */
1476int dev_close(struct net_device *dev)
1477{
1478 if (dev->flags & IFF_UP) {
1479 LIST_HEAD(single);
1480
1481 list_add(&dev->close_list, &single);
1482 dev_close_many(&single, true);
1483 list_del(&single);
1484 }
1485 return 0;
1486}
1487EXPORT_SYMBOL(dev_close);
1488
1489
1490/**
1491 * dev_disable_lro - disable Large Receive Offload on a device
1492 * @dev: device
1493 *
1494 * Disable Large Receive Offload (LRO) on a net device. Must be
1495 * called under RTNL. This is needed if received packets may be
1496 * forwarded to another interface.
1497 */
1498void dev_disable_lro(struct net_device *dev)
1499{
1500 struct net_device *lower_dev;
1501 struct list_head *iter;
1502
1503 dev->wanted_features &= ~NETIF_F_LRO;
1504 netdev_update_features(dev);
1505
1506 if (unlikely(dev->features & NETIF_F_LRO))
1507 netdev_WARN(dev, "failed to disable LRO!\n");
1508
1509 netdev_for_each_lower_dev(dev, lower_dev, iter)
1510 dev_disable_lro(lower_dev);
1511}
1512EXPORT_SYMBOL(dev_disable_lro);
1513
1514static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1515 struct net_device *dev)
1516{
1517 struct netdev_notifier_info info;
1518
1519 netdev_notifier_info_init(&info, dev);
1520 return nb->notifier_call(nb, val, &info);
1521}
1522
1523static int dev_boot_phase = 1;
1524
1525/**
1526 * register_netdevice_notifier - register a network notifier block
1527 * @nb: notifier
1528 *
1529 * Register a notifier to be called when network device events occur.
1530 * The notifier passed is linked into the kernel structures and must
1531 * not be reused until it has been unregistered. A negative errno code
1532 * is returned on a failure.
1533 *
1534 * When registered all registration and up events are replayed
1535 * to the new notifier to allow device to have a race free
1536 * view of the network device list.
1537 */
1538
1539int register_netdevice_notifier(struct notifier_block *nb)
1540{
1541 struct net_device *dev;
1542 struct net_device *last;
1543 struct net *net;
1544 int err;
1545
1546 rtnl_lock();
1547 err = raw_notifier_chain_register(&netdev_chain, nb);
1548 if (err)
1549 goto unlock;
1550 if (dev_boot_phase)
1551 goto unlock;
1552 for_each_net(net) {
1553 for_each_netdev(net, dev) {
1554 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1555 err = notifier_to_errno(err);
1556 if (err)
1557 goto rollback;
1558
1559 if (!(dev->flags & IFF_UP))
1560 continue;
1561
1562 call_netdevice_notifier(nb, NETDEV_UP, dev);
1563 }
1564 }
1565
1566unlock:
1567 rtnl_unlock();
1568 return err;
1569
1570rollback:
1571 last = dev;
1572 for_each_net(net) {
1573 for_each_netdev(net, dev) {
1574 if (dev == last)
1575 goto outroll;
1576
1577 if (dev->flags & IFF_UP) {
1578 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1579 dev);
1580 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1581 }
1582 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1583 }
1584 }
1585
1586outroll:
1587 raw_notifier_chain_unregister(&netdev_chain, nb);
1588 goto unlock;
1589}
1590EXPORT_SYMBOL(register_netdevice_notifier);
1591
1592/**
1593 * unregister_netdevice_notifier - unregister a network notifier block
1594 * @nb: notifier
1595 *
1596 * Unregister a notifier previously registered by
1597 * register_netdevice_notifier(). The notifier is unlinked into the
1598 * kernel structures and may then be reused. A negative errno code
1599 * is returned on a failure.
1600 *
1601 * After unregistering unregister and down device events are synthesized
1602 * for all devices on the device list to the removed notifier to remove
1603 * the need for special case cleanup code.
1604 */
1605
1606int unregister_netdevice_notifier(struct notifier_block *nb)
1607{
1608 struct net_device *dev;
1609 struct net *net;
1610 int err;
1611
1612 rtnl_lock();
1613 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1614 if (err)
1615 goto unlock;
1616
1617 for_each_net(net) {
1618 for_each_netdev(net, dev) {
1619 if (dev->flags & IFF_UP) {
1620 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1621 dev);
1622 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1623 }
1624 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1625 }
1626 }
1627unlock:
1628 rtnl_unlock();
1629 return err;
1630}
1631EXPORT_SYMBOL(unregister_netdevice_notifier);
1632
1633/**
1634 * call_netdevice_notifiers_info - call all network notifier blocks
1635 * @val: value passed unmodified to notifier function
1636 * @dev: net_device pointer passed unmodified to notifier function
1637 * @info: notifier information data
1638 *
1639 * Call all network notifier blocks. Parameters and return value
1640 * are as for raw_notifier_call_chain().
1641 */
1642
1643static int call_netdevice_notifiers_info(unsigned long val,
1644 struct net_device *dev,
1645 struct netdev_notifier_info *info)
1646{
1647 ASSERT_RTNL();
1648 netdev_notifier_info_init(info, dev);
1649 return raw_notifier_call_chain(&netdev_chain, val, info);
1650}
1651
1652/**
1653 * call_netdevice_notifiers - call all network notifier blocks
1654 * @val: value passed unmodified to notifier function
1655 * @dev: net_device pointer passed unmodified to notifier function
1656 *
1657 * Call all network notifier blocks. Parameters and return value
1658 * are as for raw_notifier_call_chain().
1659 */
1660
1661int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1662{
1663 struct netdev_notifier_info info;
1664
1665 return call_netdevice_notifiers_info(val, dev, &info);
1666}
1667EXPORT_SYMBOL(call_netdevice_notifiers);
1668
1669#ifdef CONFIG_NET_INGRESS
1670static struct static_key ingress_needed __read_mostly;
1671
1672void net_inc_ingress_queue(void)
1673{
1674 static_key_slow_inc(&ingress_needed);
1675}
1676EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1677
1678void net_dec_ingress_queue(void)
1679{
1680 static_key_slow_dec(&ingress_needed);
1681}
1682EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1683#endif
1684
1685#ifdef CONFIG_NET_EGRESS
1686static struct static_key egress_needed __read_mostly;
1687
1688void net_inc_egress_queue(void)
1689{
1690 static_key_slow_inc(&egress_needed);
1691}
1692EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1693
1694void net_dec_egress_queue(void)
1695{
1696 static_key_slow_dec(&egress_needed);
1697}
1698EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1699#endif
1700
1701static struct static_key netstamp_needed __read_mostly;
1702#ifdef HAVE_JUMP_LABEL
1703static atomic_t netstamp_needed_deferred;
1704static atomic_t netstamp_wanted;
1705static void netstamp_clear(struct work_struct *work)
1706{
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708 int wanted;
1709
1710 wanted = atomic_add_return(deferred, &netstamp_wanted);
1711 if (wanted > 0)
1712 static_key_enable(&netstamp_needed);
1713 else
1714 static_key_disable(&netstamp_needed);
1715}
1716static DECLARE_WORK(netstamp_work, netstamp_clear);
1717#endif
1718
1719void net_enable_timestamp(void)
1720{
1721#ifdef HAVE_JUMP_LABEL
1722 int wanted;
1723
1724 while (1) {
1725 wanted = atomic_read(&netstamp_wanted);
1726 if (wanted <= 0)
1727 break;
1728 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1729 return;
1730 }
1731 atomic_inc(&netstamp_needed_deferred);
1732 schedule_work(&netstamp_work);
1733#else
1734 static_key_slow_inc(&netstamp_needed);
1735#endif
1736}
1737EXPORT_SYMBOL(net_enable_timestamp);
1738
1739void net_disable_timestamp(void)
1740{
1741#ifdef HAVE_JUMP_LABEL
1742 int wanted;
1743
1744 while (1) {
1745 wanted = atomic_read(&netstamp_wanted);
1746 if (wanted <= 1)
1747 break;
1748 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1749 return;
1750 }
1751 atomic_dec(&netstamp_needed_deferred);
1752 schedule_work(&netstamp_work);
1753#else
1754 static_key_slow_dec(&netstamp_needed);
1755#endif
1756}
1757EXPORT_SYMBOL(net_disable_timestamp);
1758
1759static inline void net_timestamp_set(struct sk_buff *skb)
1760{
1761 skb->tstamp = 0;
1762 if (static_key_false(&netstamp_needed))
1763 __net_timestamp(skb);
1764}
1765
1766#define net_timestamp_check(COND, SKB) \
1767 if (static_key_false(&netstamp_needed)) { \
1768 if ((COND) && !(SKB)->tstamp) \
1769 __net_timestamp(SKB); \
1770 } \
1771
1772bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1773{
1774 unsigned int len;
1775
1776 if (!(dev->flags & IFF_UP))
1777 return false;
1778
1779 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1780 if (skb->len <= len)
1781 return true;
1782
1783 /* if TSO is enabled, we don't care about the length as the packet
1784 * could be forwarded without being segmented before
1785 */
1786 if (skb_is_gso(skb))
1787 return true;
1788
1789 return false;
1790}
1791EXPORT_SYMBOL_GPL(is_skb_forwardable);
1792
1793int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1794{
1795 int ret = ____dev_forward_skb(dev, skb);
1796
1797 if (likely(!ret)) {
1798 skb->protocol = eth_type_trans(skb, dev);
1799 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1800 }
1801
1802 return ret;
1803}
1804EXPORT_SYMBOL_GPL(__dev_forward_skb);
1805
1806/**
1807 * dev_forward_skb - loopback an skb to another netif
1808 *
1809 * @dev: destination network device
1810 * @skb: buffer to forward
1811 *
1812 * return values:
1813 * NET_RX_SUCCESS (no congestion)
1814 * NET_RX_DROP (packet was dropped, but freed)
1815 *
1816 * dev_forward_skb can be used for injecting an skb from the
1817 * start_xmit function of one device into the receive queue
1818 * of another device.
1819 *
1820 * The receiving device may be in another namespace, so
1821 * we have to clear all information in the skb that could
1822 * impact namespace isolation.
1823 */
1824int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1825{
1826 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1827}
1828EXPORT_SYMBOL_GPL(dev_forward_skb);
1829
1830static inline int deliver_skb(struct sk_buff *skb,
1831 struct packet_type *pt_prev,
1832 struct net_device *orig_dev)
1833{
1834 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1835 return -ENOMEM;
1836 atomic_inc(&skb->users);
1837 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1838}
1839
1840static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1841 struct packet_type **pt,
1842 struct net_device *orig_dev,
1843 __be16 type,
1844 struct list_head *ptype_list)
1845{
1846 struct packet_type *ptype, *pt_prev = *pt;
1847
1848 list_for_each_entry_rcu(ptype, ptype_list, list) {
1849 if (ptype->type != type)
1850 continue;
1851 if (pt_prev)
1852 deliver_skb(skb, pt_prev, orig_dev);
1853 pt_prev = ptype;
1854 }
1855 *pt = pt_prev;
1856}
1857
1858static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1859{
1860 if (!ptype->af_packet_priv || !skb->sk)
1861 return false;
1862
1863 if (ptype->id_match)
1864 return ptype->id_match(ptype, skb->sk);
1865 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1866 return true;
1867
1868 return false;
1869}
1870
1871/*
1872 * Support routine. Sends outgoing frames to any network
1873 * taps currently in use.
1874 */
1875
1876void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1877{
1878 struct packet_type *ptype;
1879 struct sk_buff *skb2 = NULL;
1880 struct packet_type *pt_prev = NULL;
1881 struct list_head *ptype_list = &ptype_all;
1882
1883 rcu_read_lock();
1884again:
1885 list_for_each_entry_rcu(ptype, ptype_list, list) {
1886 /* Never send packets back to the socket
1887 * they originated from - MvS (miquels@drinkel.ow.org)
1888 */
1889 if (skb_loop_sk(ptype, skb))
1890 continue;
1891
1892 if (pt_prev) {
1893 deliver_skb(skb2, pt_prev, skb->dev);
1894 pt_prev = ptype;
1895 continue;
1896 }
1897
1898 /* need to clone skb, done only once */
1899 skb2 = skb_clone(skb, GFP_ATOMIC);
1900 if (!skb2)
1901 goto out_unlock;
1902
1903 net_timestamp_set(skb2);
1904
1905 /* skb->nh should be correctly
1906 * set by sender, so that the second statement is
1907 * just protection against buggy protocols.
1908 */
1909 skb_reset_mac_header(skb2);
1910
1911 if (skb_network_header(skb2) < skb2->data ||
1912 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1913 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1914 ntohs(skb2->protocol),
1915 dev->name);
1916 skb_reset_network_header(skb2);
1917 }
1918
1919 skb2->transport_header = skb2->network_header;
1920 skb2->pkt_type = PACKET_OUTGOING;
1921 pt_prev = ptype;
1922 }
1923
1924 if (ptype_list == &ptype_all) {
1925 ptype_list = &dev->ptype_all;
1926 goto again;
1927 }
1928out_unlock:
1929 if (pt_prev)
1930 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1931 rcu_read_unlock();
1932}
1933EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1934
1935/**
1936 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1937 * @dev: Network device
1938 * @txq: number of queues available
1939 *
1940 * If real_num_tx_queues is changed the tc mappings may no longer be
1941 * valid. To resolve this verify the tc mapping remains valid and if
1942 * not NULL the mapping. With no priorities mapping to this
1943 * offset/count pair it will no longer be used. In the worst case TC0
1944 * is invalid nothing can be done so disable priority mappings. If is
1945 * expected that drivers will fix this mapping if they can before
1946 * calling netif_set_real_num_tx_queues.
1947 */
1948static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1949{
1950 int i;
1951 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1952
1953 /* If TC0 is invalidated disable TC mapping */
1954 if (tc->offset + tc->count > txq) {
1955 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1956 dev->num_tc = 0;
1957 return;
1958 }
1959
1960 /* Invalidated prio to tc mappings set to TC0 */
1961 for (i = 1; i < TC_BITMASK + 1; i++) {
1962 int q = netdev_get_prio_tc_map(dev, i);
1963
1964 tc = &dev->tc_to_txq[q];
1965 if (tc->offset + tc->count > txq) {
1966 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1967 i, q);
1968 netdev_set_prio_tc_map(dev, i, 0);
1969 }
1970 }
1971}
1972
1973int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1974{
1975 if (dev->num_tc) {
1976 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1977 int i;
1978
1979 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1980 if ((txq - tc->offset) < tc->count)
1981 return i;
1982 }
1983
1984 return -1;
1985 }
1986
1987 return 0;
1988}
1989
1990#ifdef CONFIG_XPS
1991static DEFINE_MUTEX(xps_map_mutex);
1992#define xmap_dereference(P) \
1993 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1994
1995static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1996 int tci, u16 index)
1997{
1998 struct xps_map *map = NULL;
1999 int pos;
2000
2001 if (dev_maps)
2002 map = xmap_dereference(dev_maps->cpu_map[tci]);
2003 if (!map)
2004 return false;
2005
2006 for (pos = map->len; pos--;) {
2007 if (map->queues[pos] != index)
2008 continue;
2009
2010 if (map->len > 1) {
2011 map->queues[pos] = map->queues[--map->len];
2012 break;
2013 }
2014
2015 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2016 kfree_rcu(map, rcu);
2017 return false;
2018 }
2019
2020 return true;
2021}
2022
2023static bool remove_xps_queue_cpu(struct net_device *dev,
2024 struct xps_dev_maps *dev_maps,
2025 int cpu, u16 offset, u16 count)
2026{
2027 int num_tc = dev->num_tc ? : 1;
2028 bool active = false;
2029 int tci;
2030
2031 for (tci = cpu * num_tc; num_tc--; tci++) {
2032 int i, j;
2033
2034 for (i = count, j = offset; i--; j++) {
2035 if (!remove_xps_queue(dev_maps, cpu, j))
2036 break;
2037 }
2038
2039 active |= i < 0;
2040 }
2041
2042 return active;
2043}
2044
2045static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2046 u16 count)
2047{
2048 struct xps_dev_maps *dev_maps;
2049 int cpu, i;
2050 bool active = false;
2051
2052 mutex_lock(&xps_map_mutex);
2053 dev_maps = xmap_dereference(dev->xps_maps);
2054
2055 if (!dev_maps)
2056 goto out_no_maps;
2057
2058 for_each_possible_cpu(cpu)
2059 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2060 offset, count);
2061
2062 if (!active) {
2063 RCU_INIT_POINTER(dev->xps_maps, NULL);
2064 kfree_rcu(dev_maps, rcu);
2065 }
2066
2067 for (i = offset + (count - 1); count--; i--)
2068 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2069 NUMA_NO_NODE);
2070
2071out_no_maps:
2072 mutex_unlock(&xps_map_mutex);
2073}
2074
2075static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2076{
2077 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2078}
2079
2080static struct xps_map *expand_xps_map(struct xps_map *map,
2081 int cpu, u16 index)
2082{
2083 struct xps_map *new_map;
2084 int alloc_len = XPS_MIN_MAP_ALLOC;
2085 int i, pos;
2086
2087 for (pos = 0; map && pos < map->len; pos++) {
2088 if (map->queues[pos] != index)
2089 continue;
2090 return map;
2091 }
2092
2093 /* Need to add queue to this CPU's existing map */
2094 if (map) {
2095 if (pos < map->alloc_len)
2096 return map;
2097
2098 alloc_len = map->alloc_len * 2;
2099 }
2100
2101 /* Need to allocate new map to store queue on this CPU's map */
2102 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2103 cpu_to_node(cpu));
2104 if (!new_map)
2105 return NULL;
2106
2107 for (i = 0; i < pos; i++)
2108 new_map->queues[i] = map->queues[i];
2109 new_map->alloc_len = alloc_len;
2110 new_map->len = pos;
2111
2112 return new_map;
2113}
2114
2115int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2116 u16 index)
2117{
2118 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2119 int i, cpu, tci, numa_node_id = -2;
2120 int maps_sz, num_tc = 1, tc = 0;
2121 struct xps_map *map, *new_map;
2122 bool active = false;
2123
2124 if (dev->num_tc) {
2125 num_tc = dev->num_tc;
2126 tc = netdev_txq_to_tc(dev, index);
2127 if (tc < 0)
2128 return -EINVAL;
2129 }
2130
2131 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2132 if (maps_sz < L1_CACHE_BYTES)
2133 maps_sz = L1_CACHE_BYTES;
2134
2135 mutex_lock(&xps_map_mutex);
2136
2137 dev_maps = xmap_dereference(dev->xps_maps);
2138
2139 /* allocate memory for queue storage */
2140 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2141 if (!new_dev_maps)
2142 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2143 if (!new_dev_maps) {
2144 mutex_unlock(&xps_map_mutex);
2145 return -ENOMEM;
2146 }
2147
2148 tci = cpu * num_tc + tc;
2149 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2150 NULL;
2151
2152 map = expand_xps_map(map, cpu, index);
2153 if (!map)
2154 goto error;
2155
2156 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2157 }
2158
2159 if (!new_dev_maps)
2160 goto out_no_new_maps;
2161
2162 for_each_possible_cpu(cpu) {
2163 /* copy maps belonging to foreign traffic classes */
2164 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2165 /* fill in the new device map from the old device map */
2166 map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168 }
2169
2170 /* We need to explicitly update tci as prevous loop
2171 * could break out early if dev_maps is NULL.
2172 */
2173 tci = cpu * num_tc + tc;
2174
2175 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2176 /* add queue to CPU maps */
2177 int pos = 0;
2178
2179 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2180 while ((pos < map->len) && (map->queues[pos] != index))
2181 pos++;
2182
2183 if (pos == map->len)
2184 map->queues[map->len++] = index;
2185#ifdef CONFIG_NUMA
2186 if (numa_node_id == -2)
2187 numa_node_id = cpu_to_node(cpu);
2188 else if (numa_node_id != cpu_to_node(cpu))
2189 numa_node_id = -1;
2190#endif
2191 } else if (dev_maps) {
2192 /* fill in the new device map from the old device map */
2193 map = xmap_dereference(dev_maps->cpu_map[tci]);
2194 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2195 }
2196
2197 /* copy maps belonging to foreign traffic classes */
2198 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2199 /* fill in the new device map from the old device map */
2200 map = xmap_dereference(dev_maps->cpu_map[tci]);
2201 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2202 }
2203 }
2204
2205 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2206
2207 /* Cleanup old maps */
2208 if (!dev_maps)
2209 goto out_no_old_maps;
2210
2211 for_each_possible_cpu(cpu) {
2212 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2213 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2214 map = xmap_dereference(dev_maps->cpu_map[tci]);
2215 if (map && map != new_map)
2216 kfree_rcu(map, rcu);
2217 }
2218 }
2219
2220 kfree_rcu(dev_maps, rcu);
2221
2222out_no_old_maps:
2223 dev_maps = new_dev_maps;
2224 active = true;
2225
2226out_no_new_maps:
2227 /* update Tx queue numa node */
2228 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2229 (numa_node_id >= 0) ? numa_node_id :
2230 NUMA_NO_NODE);
2231
2232 if (!dev_maps)
2233 goto out_no_maps;
2234
2235 /* removes queue from unused CPUs */
2236 for_each_possible_cpu(cpu) {
2237 for (i = tc, tci = cpu * num_tc; i--; tci++)
2238 active |= remove_xps_queue(dev_maps, tci, index);
2239 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2240 active |= remove_xps_queue(dev_maps, tci, index);
2241 for (i = num_tc - tc, tci++; --i; tci++)
2242 active |= remove_xps_queue(dev_maps, tci, index);
2243 }
2244
2245 /* free map if not active */
2246 if (!active) {
2247 RCU_INIT_POINTER(dev->xps_maps, NULL);
2248 kfree_rcu(dev_maps, rcu);
2249 }
2250
2251out_no_maps:
2252 mutex_unlock(&xps_map_mutex);
2253
2254 return 0;
2255error:
2256 /* remove any maps that we added */
2257 for_each_possible_cpu(cpu) {
2258 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2259 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2260 map = dev_maps ?
2261 xmap_dereference(dev_maps->cpu_map[tci]) :
2262 NULL;
2263 if (new_map && new_map != map)
2264 kfree(new_map);
2265 }
2266 }
2267
2268 mutex_unlock(&xps_map_mutex);
2269
2270 kfree(new_dev_maps);
2271 return -ENOMEM;
2272}
2273EXPORT_SYMBOL(netif_set_xps_queue);
2274
2275#endif
2276void netdev_reset_tc(struct net_device *dev)
2277{
2278#ifdef CONFIG_XPS
2279 netif_reset_xps_queues_gt(dev, 0);
2280#endif
2281 dev->num_tc = 0;
2282 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2283 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2284}
2285EXPORT_SYMBOL(netdev_reset_tc);
2286
2287int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2288{
2289 if (tc >= dev->num_tc)
2290 return -EINVAL;
2291
2292#ifdef CONFIG_XPS
2293 netif_reset_xps_queues(dev, offset, count);
2294#endif
2295 dev->tc_to_txq[tc].count = count;
2296 dev->tc_to_txq[tc].offset = offset;
2297 return 0;
2298}
2299EXPORT_SYMBOL(netdev_set_tc_queue);
2300
2301int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2302{
2303 if (num_tc > TC_MAX_QUEUE)
2304 return -EINVAL;
2305
2306#ifdef CONFIG_XPS
2307 netif_reset_xps_queues_gt(dev, 0);
2308#endif
2309 dev->num_tc = num_tc;
2310 return 0;
2311}
2312EXPORT_SYMBOL(netdev_set_num_tc);
2313
2314/*
2315 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2316 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2317 */
2318int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2319{
2320 int rc;
2321
2322 if (txq < 1 || txq > dev->num_tx_queues)
2323 return -EINVAL;
2324
2325 if (dev->reg_state == NETREG_REGISTERED ||
2326 dev->reg_state == NETREG_UNREGISTERING) {
2327 ASSERT_RTNL();
2328
2329 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2330 txq);
2331 if (rc)
2332 return rc;
2333
2334 if (dev->num_tc)
2335 netif_setup_tc(dev, txq);
2336
2337 if (txq < dev->real_num_tx_queues) {
2338 qdisc_reset_all_tx_gt(dev, txq);
2339#ifdef CONFIG_XPS
2340 netif_reset_xps_queues_gt(dev, txq);
2341#endif
2342 }
2343 }
2344
2345 dev->real_num_tx_queues = txq;
2346 return 0;
2347}
2348EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2349
2350#ifdef CONFIG_SYSFS
2351/**
2352 * netif_set_real_num_rx_queues - set actual number of RX queues used
2353 * @dev: Network device
2354 * @rxq: Actual number of RX queues
2355 *
2356 * This must be called either with the rtnl_lock held or before
2357 * registration of the net device. Returns 0 on success, or a
2358 * negative error code. If called before registration, it always
2359 * succeeds.
2360 */
2361int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2362{
2363 int rc;
2364
2365 if (rxq < 1 || rxq > dev->num_rx_queues)
2366 return -EINVAL;
2367
2368 if (dev->reg_state == NETREG_REGISTERED) {
2369 ASSERT_RTNL();
2370
2371 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2372 rxq);
2373 if (rc)
2374 return rc;
2375 }
2376
2377 dev->real_num_rx_queues = rxq;
2378 return 0;
2379}
2380EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2381#endif
2382
2383/**
2384 * netif_get_num_default_rss_queues - default number of RSS queues
2385 *
2386 * This routine should set an upper limit on the number of RSS queues
2387 * used by default by multiqueue devices.
2388 */
2389int netif_get_num_default_rss_queues(void)
2390{
2391 return is_kdump_kernel() ?
2392 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2393}
2394EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2395
2396static void __netif_reschedule(struct Qdisc *q)
2397{
2398 struct softnet_data *sd;
2399 unsigned long flags;
2400
2401 local_irq_save(flags);
2402 sd = this_cpu_ptr(&softnet_data);
2403 q->next_sched = NULL;
2404 *sd->output_queue_tailp = q;
2405 sd->output_queue_tailp = &q->next_sched;
2406 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2407 local_irq_restore(flags);
2408}
2409
2410void __netif_schedule(struct Qdisc *q)
2411{
2412 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2413 __netif_reschedule(q);
2414}
2415EXPORT_SYMBOL(__netif_schedule);
2416
2417struct dev_kfree_skb_cb {
2418 enum skb_free_reason reason;
2419};
2420
2421static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2422{
2423 return (struct dev_kfree_skb_cb *)skb->cb;
2424}
2425
2426void netif_schedule_queue(struct netdev_queue *txq)
2427{
2428 rcu_read_lock();
2429 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2430 struct Qdisc *q = rcu_dereference(txq->qdisc);
2431
2432 __netif_schedule(q);
2433 }
2434 rcu_read_unlock();
2435}
2436EXPORT_SYMBOL(netif_schedule_queue);
2437
2438void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2439{
2440 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2441 struct Qdisc *q;
2442
2443 rcu_read_lock();
2444 q = rcu_dereference(dev_queue->qdisc);
2445 __netif_schedule(q);
2446 rcu_read_unlock();
2447 }
2448}
2449EXPORT_SYMBOL(netif_tx_wake_queue);
2450
2451void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2452{
2453 unsigned long flags;
2454
2455 if (unlikely(!skb))
2456 return;
2457
2458 if (likely(atomic_read(&skb->users) == 1)) {
2459 smp_rmb();
2460 atomic_set(&skb->users, 0);
2461 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2462 return;
2463 }
2464 get_kfree_skb_cb(skb)->reason = reason;
2465 local_irq_save(flags);
2466 skb->next = __this_cpu_read(softnet_data.completion_queue);
2467 __this_cpu_write(softnet_data.completion_queue, skb);
2468 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2469 local_irq_restore(flags);
2470}
2471EXPORT_SYMBOL(__dev_kfree_skb_irq);
2472
2473void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2474{
2475 if (in_irq() || irqs_disabled())
2476 __dev_kfree_skb_irq(skb, reason);
2477 else
2478 dev_kfree_skb(skb);
2479}
2480EXPORT_SYMBOL(__dev_kfree_skb_any);
2481
2482
2483/**
2484 * netif_device_detach - mark device as removed
2485 * @dev: network device
2486 *
2487 * Mark device as removed from system and therefore no longer available.
2488 */
2489void netif_device_detach(struct net_device *dev)
2490{
2491 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2492 netif_running(dev)) {
2493 netif_tx_stop_all_queues(dev);
2494 }
2495}
2496EXPORT_SYMBOL(netif_device_detach);
2497
2498/**
2499 * netif_device_attach - mark device as attached
2500 * @dev: network device
2501 *
2502 * Mark device as attached from system and restart if needed.
2503 */
2504void netif_device_attach(struct net_device *dev)
2505{
2506 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2507 netif_running(dev)) {
2508 netif_tx_wake_all_queues(dev);
2509 __netdev_watchdog_up(dev);
2510 }
2511}
2512EXPORT_SYMBOL(netif_device_attach);
2513
2514/*
2515 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2516 * to be used as a distribution range.
2517 */
2518u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2519 unsigned int num_tx_queues)
2520{
2521 u32 hash;
2522 u16 qoffset = 0;
2523 u16 qcount = num_tx_queues;
2524
2525 if (skb_rx_queue_recorded(skb)) {
2526 hash = skb_get_rx_queue(skb);
2527 while (unlikely(hash >= num_tx_queues))
2528 hash -= num_tx_queues;
2529 return hash;
2530 }
2531
2532 if (dev->num_tc) {
2533 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2534
2535 qoffset = dev->tc_to_txq[tc].offset;
2536 qcount = dev->tc_to_txq[tc].count;
2537 }
2538
2539 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2540}
2541EXPORT_SYMBOL(__skb_tx_hash);
2542
2543static void skb_warn_bad_offload(const struct sk_buff *skb)
2544{
2545 static const netdev_features_t null_features;
2546 struct net_device *dev = skb->dev;
2547 const char *name = "";
2548
2549 if (!net_ratelimit())
2550 return;
2551
2552 if (dev) {
2553 if (dev->dev.parent)
2554 name = dev_driver_string(dev->dev.parent);
2555 else
2556 name = netdev_name(dev);
2557 }
2558 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2559 "gso_type=%d ip_summed=%d\n",
2560 name, dev ? &dev->features : &null_features,
2561 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2562 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2563 skb_shinfo(skb)->gso_type, skb->ip_summed);
2564}
2565
2566/*
2567 * Invalidate hardware checksum when packet is to be mangled, and
2568 * complete checksum manually on outgoing path.
2569 */
2570int skb_checksum_help(struct sk_buff *skb)
2571{
2572 __wsum csum;
2573 int ret = 0, offset;
2574
2575 if (skb->ip_summed == CHECKSUM_COMPLETE)
2576 goto out_set_summed;
2577
2578 if (unlikely(skb_shinfo(skb)->gso_size)) {
2579 skb_warn_bad_offload(skb);
2580 return -EINVAL;
2581 }
2582
2583 /* Before computing a checksum, we should make sure no frag could
2584 * be modified by an external entity : checksum could be wrong.
2585 */
2586 if (skb_has_shared_frag(skb)) {
2587 ret = __skb_linearize(skb);
2588 if (ret)
2589 goto out;
2590 }
2591
2592 offset = skb_checksum_start_offset(skb);
2593 BUG_ON(offset >= skb_headlen(skb));
2594 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2595
2596 offset += skb->csum_offset;
2597 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2598
2599 if (skb_cloned(skb) &&
2600 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2601 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2602 if (ret)
2603 goto out;
2604 }
2605
2606 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2607out_set_summed:
2608 skb->ip_summed = CHECKSUM_NONE;
2609out:
2610 return ret;
2611}
2612EXPORT_SYMBOL(skb_checksum_help);
2613
2614__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2615{
2616 __be16 type = skb->protocol;
2617
2618 /* Tunnel gso handlers can set protocol to ethernet. */
2619 if (type == htons(ETH_P_TEB)) {
2620 struct ethhdr *eth;
2621
2622 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2623 return 0;
2624
2625 eth = (struct ethhdr *)skb_mac_header(skb);
2626 type = eth->h_proto;
2627 }
2628
2629 return __vlan_get_protocol(skb, type, depth);
2630}
2631
2632/**
2633 * skb_mac_gso_segment - mac layer segmentation handler.
2634 * @skb: buffer to segment
2635 * @features: features for the output path (see dev->features)
2636 */
2637struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2638 netdev_features_t features)
2639{
2640 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2641 struct packet_offload *ptype;
2642 int vlan_depth = skb->mac_len;
2643 __be16 type = skb_network_protocol(skb, &vlan_depth);
2644
2645 if (unlikely(!type))
2646 return ERR_PTR(-EINVAL);
2647
2648 __skb_pull(skb, vlan_depth);
2649
2650 rcu_read_lock();
2651 list_for_each_entry_rcu(ptype, &offload_base, list) {
2652 if (ptype->type == type && ptype->callbacks.gso_segment) {
2653 segs = ptype->callbacks.gso_segment(skb, features);
2654 break;
2655 }
2656 }
2657 rcu_read_unlock();
2658
2659 __skb_push(skb, skb->data - skb_mac_header(skb));
2660
2661 return segs;
2662}
2663EXPORT_SYMBOL(skb_mac_gso_segment);
2664
2665
2666/* openvswitch calls this on rx path, so we need a different check.
2667 */
2668static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2669{
2670 if (tx_path)
2671 return skb->ip_summed != CHECKSUM_PARTIAL &&
2672 skb->ip_summed != CHECKSUM_NONE;
2673
2674 return skb->ip_summed == CHECKSUM_NONE;
2675}
2676
2677/**
2678 * __skb_gso_segment - Perform segmentation on skb.
2679 * @skb: buffer to segment
2680 * @features: features for the output path (see dev->features)
2681 * @tx_path: whether it is called in TX path
2682 *
2683 * This function segments the given skb and returns a list of segments.
2684 *
2685 * It may return NULL if the skb requires no segmentation. This is
2686 * only possible when GSO is used for verifying header integrity.
2687 *
2688 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2689 */
2690struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2691 netdev_features_t features, bool tx_path)
2692{
2693 struct sk_buff *segs;
2694
2695 if (unlikely(skb_needs_check(skb, tx_path))) {
2696 int err;
2697
2698 /* We're going to init ->check field in TCP or UDP header */
2699 err = skb_cow_head(skb, 0);
2700 if (err < 0)
2701 return ERR_PTR(err);
2702 }
2703
2704 /* Only report GSO partial support if it will enable us to
2705 * support segmentation on this frame without needing additional
2706 * work.
2707 */
2708 if (features & NETIF_F_GSO_PARTIAL) {
2709 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2710 struct net_device *dev = skb->dev;
2711
2712 partial_features |= dev->features & dev->gso_partial_features;
2713 if (!skb_gso_ok(skb, features | partial_features))
2714 features &= ~NETIF_F_GSO_PARTIAL;
2715 }
2716
2717 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2718 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2719
2720 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2721 SKB_GSO_CB(skb)->encap_level = 0;
2722
2723 skb_reset_mac_header(skb);
2724 skb_reset_mac_len(skb);
2725
2726 segs = skb_mac_gso_segment(skb, features);
2727
2728 if (unlikely(skb_needs_check(skb, tx_path)))
2729 skb_warn_bad_offload(skb);
2730
2731 return segs;
2732}
2733EXPORT_SYMBOL(__skb_gso_segment);
2734
2735/* Take action when hardware reception checksum errors are detected. */
2736#ifdef CONFIG_BUG
2737void netdev_rx_csum_fault(struct net_device *dev)
2738{
2739 if (net_ratelimit()) {
2740 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2741 dump_stack();
2742 }
2743}
2744EXPORT_SYMBOL(netdev_rx_csum_fault);
2745#endif
2746
2747/* Actually, we should eliminate this check as soon as we know, that:
2748 * 1. IOMMU is present and allows to map all the memory.
2749 * 2. No high memory really exists on this machine.
2750 */
2751
2752static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2753{
2754#ifdef CONFIG_HIGHMEM
2755 int i;
2756
2757 if (!(dev->features & NETIF_F_HIGHDMA)) {
2758 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2759 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2760
2761 if (PageHighMem(skb_frag_page(frag)))
2762 return 1;
2763 }
2764 }
2765
2766 if (PCI_DMA_BUS_IS_PHYS) {
2767 struct device *pdev = dev->dev.parent;
2768
2769 if (!pdev)
2770 return 0;
2771 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2772 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2773 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2774
2775 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2776 return 1;
2777 }
2778 }
2779#endif
2780 return 0;
2781}
2782
2783/* If MPLS offload request, verify we are testing hardware MPLS features
2784 * instead of standard features for the netdev.
2785 */
2786#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2787static netdev_features_t net_mpls_features(struct sk_buff *skb,
2788 netdev_features_t features,
2789 __be16 type)
2790{
2791 if (eth_p_mpls(type))
2792 features &= skb->dev->mpls_features;
2793
2794 return features;
2795}
2796#else
2797static netdev_features_t net_mpls_features(struct sk_buff *skb,
2798 netdev_features_t features,
2799 __be16 type)
2800{
2801 return features;
2802}
2803#endif
2804
2805static netdev_features_t harmonize_features(struct sk_buff *skb,
2806 netdev_features_t features)
2807{
2808 int tmp;
2809 __be16 type;
2810
2811 type = skb_network_protocol(skb, &tmp);
2812 features = net_mpls_features(skb, features, type);
2813
2814 if (skb->ip_summed != CHECKSUM_NONE &&
2815 !can_checksum_protocol(features, type)) {
2816 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2817 }
2818 if (illegal_highdma(skb->dev, skb))
2819 features &= ~NETIF_F_SG;
2820
2821 return features;
2822}
2823
2824netdev_features_t passthru_features_check(struct sk_buff *skb,
2825 struct net_device *dev,
2826 netdev_features_t features)
2827{
2828 return features;
2829}
2830EXPORT_SYMBOL(passthru_features_check);
2831
2832static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2833 struct net_device *dev,
2834 netdev_features_t features)
2835{
2836 return vlan_features_check(skb, features);
2837}
2838
2839static netdev_features_t gso_features_check(const struct sk_buff *skb,
2840 struct net_device *dev,
2841 netdev_features_t features)
2842{
2843 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2844
2845 if (gso_segs > dev->gso_max_segs)
2846 return features & ~NETIF_F_GSO_MASK;
2847
2848 /* Support for GSO partial features requires software
2849 * intervention before we can actually process the packets
2850 * so we need to strip support for any partial features now
2851 * and we can pull them back in after we have partially
2852 * segmented the frame.
2853 */
2854 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2855 features &= ~dev->gso_partial_features;
2856
2857 /* Make sure to clear the IPv4 ID mangling feature if the
2858 * IPv4 header has the potential to be fragmented.
2859 */
2860 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2861 struct iphdr *iph = skb->encapsulation ?
2862 inner_ip_hdr(skb) : ip_hdr(skb);
2863
2864 if (!(iph->frag_off & htons(IP_DF)))
2865 features &= ~NETIF_F_TSO_MANGLEID;
2866 }
2867
2868 return features;
2869}
2870
2871netdev_features_t netif_skb_features(struct sk_buff *skb)
2872{
2873 struct net_device *dev = skb->dev;
2874 netdev_features_t features = dev->features;
2875
2876 if (skb_is_gso(skb))
2877 features = gso_features_check(skb, dev, features);
2878
2879 /* If encapsulation offload request, verify we are testing
2880 * hardware encapsulation features instead of standard
2881 * features for the netdev
2882 */
2883 if (skb->encapsulation)
2884 features &= dev->hw_enc_features;
2885
2886 if (skb_vlan_tagged(skb))
2887 features = netdev_intersect_features(features,
2888 dev->vlan_features |
2889 NETIF_F_HW_VLAN_CTAG_TX |
2890 NETIF_F_HW_VLAN_STAG_TX);
2891
2892 if (dev->netdev_ops->ndo_features_check)
2893 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2894 features);
2895 else
2896 features &= dflt_features_check(skb, dev, features);
2897
2898 return harmonize_features(skb, features);
2899}
2900EXPORT_SYMBOL(netif_skb_features);
2901
2902static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2903 struct netdev_queue *txq, bool more)
2904{
2905 unsigned int len;
2906 int rc;
2907
2908 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2909 dev_queue_xmit_nit(skb, dev);
2910
2911 len = skb->len;
2912 trace_net_dev_start_xmit(skb, dev);
2913 rc = netdev_start_xmit(skb, dev, txq, more);
2914 trace_net_dev_xmit(skb, rc, dev, len);
2915
2916 return rc;
2917}
2918
2919struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2920 struct netdev_queue *txq, int *ret)
2921{
2922 struct sk_buff *skb = first;
2923 int rc = NETDEV_TX_OK;
2924
2925 while (skb) {
2926 struct sk_buff *next = skb->next;
2927
2928 skb->next = NULL;
2929 rc = xmit_one(skb, dev, txq, next != NULL);
2930 if (unlikely(!dev_xmit_complete(rc))) {
2931 skb->next = next;
2932 goto out;
2933 }
2934
2935 skb = next;
2936 if (netif_xmit_stopped(txq) && skb) {
2937 rc = NETDEV_TX_BUSY;
2938 break;
2939 }
2940 }
2941
2942out:
2943 *ret = rc;
2944 return skb;
2945}
2946
2947static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2948 netdev_features_t features)
2949{
2950 if (skb_vlan_tag_present(skb) &&
2951 !vlan_hw_offload_capable(features, skb->vlan_proto))
2952 skb = __vlan_hwaccel_push_inside(skb);
2953 return skb;
2954}
2955
2956static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2957{
2958 netdev_features_t features;
2959
2960 features = netif_skb_features(skb);
2961 skb = validate_xmit_vlan(skb, features);
2962 if (unlikely(!skb))
2963 goto out_null;
2964
2965 if (netif_needs_gso(skb, features)) {
2966 struct sk_buff *segs;
2967
2968 segs = skb_gso_segment(skb, features);
2969 if (IS_ERR(segs)) {
2970 goto out_kfree_skb;
2971 } else if (segs) {
2972 consume_skb(skb);
2973 skb = segs;
2974 }
2975 } else {
2976 if (skb_needs_linearize(skb, features) &&
2977 __skb_linearize(skb))
2978 goto out_kfree_skb;
2979
2980 if (validate_xmit_xfrm(skb, features))
2981 goto out_kfree_skb;
2982
2983 /* If packet is not checksummed and device does not
2984 * support checksumming for this protocol, complete
2985 * checksumming here.
2986 */
2987 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2988 if (skb->encapsulation)
2989 skb_set_inner_transport_header(skb,
2990 skb_checksum_start_offset(skb));
2991 else
2992 skb_set_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 if (!(features & NETIF_F_CSUM_MASK) &&
2995 skb_checksum_help(skb))
2996 goto out_kfree_skb;
2997 }
2998 }
2999
3000 return skb;
3001
3002out_kfree_skb:
3003 kfree_skb(skb);
3004out_null:
3005 atomic_long_inc(&dev->tx_dropped);
3006 return NULL;
3007}
3008
3009struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3010{
3011 struct sk_buff *next, *head = NULL, *tail;
3012
3013 for (; skb != NULL; skb = next) {
3014 next = skb->next;
3015 skb->next = NULL;
3016
3017 /* in case skb wont be segmented, point to itself */
3018 skb->prev = skb;
3019
3020 skb = validate_xmit_skb(skb, dev);
3021 if (!skb)
3022 continue;
3023
3024 if (!head)
3025 head = skb;
3026 else
3027 tail->next = skb;
3028 /* If skb was segmented, skb->prev points to
3029 * the last segment. If not, it still contains skb.
3030 */
3031 tail = skb->prev;
3032 }
3033 return head;
3034}
3035EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3036
3037static void qdisc_pkt_len_init(struct sk_buff *skb)
3038{
3039 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3040
3041 qdisc_skb_cb(skb)->pkt_len = skb->len;
3042
3043 /* To get more precise estimation of bytes sent on wire,
3044 * we add to pkt_len the headers size of all segments
3045 */
3046 if (shinfo->gso_size) {
3047 unsigned int hdr_len;
3048 u16 gso_segs = shinfo->gso_segs;
3049
3050 /* mac layer + network layer */
3051 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3052
3053 /* + transport layer */
3054 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3055 hdr_len += tcp_hdrlen(skb);
3056 else
3057 hdr_len += sizeof(struct udphdr);
3058
3059 if (shinfo->gso_type & SKB_GSO_DODGY)
3060 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3061 shinfo->gso_size);
3062
3063 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3064 }
3065}
3066
3067static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3068 struct net_device *dev,
3069 struct netdev_queue *txq)
3070{
3071 spinlock_t *root_lock = qdisc_lock(q);
3072 struct sk_buff *to_free = NULL;
3073 bool contended;
3074 int rc;
3075
3076 qdisc_calculate_pkt_len(skb, q);
3077 /*
3078 * Heuristic to force contended enqueues to serialize on a
3079 * separate lock before trying to get qdisc main lock.
3080 * This permits qdisc->running owner to get the lock more
3081 * often and dequeue packets faster.
3082 */
3083 contended = qdisc_is_running(q);
3084 if (unlikely(contended))
3085 spin_lock(&q->busylock);
3086
3087 spin_lock(root_lock);
3088 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3089 __qdisc_drop(skb, &to_free);
3090 rc = NET_XMIT_DROP;
3091 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3092 qdisc_run_begin(q)) {
3093 /*
3094 * This is a work-conserving queue; there are no old skbs
3095 * waiting to be sent out; and the qdisc is not running -
3096 * xmit the skb directly.
3097 */
3098
3099 qdisc_bstats_update(q, skb);
3100
3101 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3102 if (unlikely(contended)) {
3103 spin_unlock(&q->busylock);
3104 contended = false;
3105 }
3106 __qdisc_run(q);
3107 } else
3108 qdisc_run_end(q);
3109
3110 rc = NET_XMIT_SUCCESS;
3111 } else {
3112 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3113 if (qdisc_run_begin(q)) {
3114 if (unlikely(contended)) {
3115 spin_unlock(&q->busylock);
3116 contended = false;
3117 }
3118 __qdisc_run(q);
3119 }
3120 }
3121 spin_unlock(root_lock);
3122 if (unlikely(to_free))
3123 kfree_skb_list(to_free);
3124 if (unlikely(contended))
3125 spin_unlock(&q->busylock);
3126 return rc;
3127}
3128
3129#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3130static void skb_update_prio(struct sk_buff *skb)
3131{
3132 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3133
3134 if (!skb->priority && skb->sk && map) {
3135 unsigned int prioidx =
3136 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3137
3138 if (prioidx < map->priomap_len)
3139 skb->priority = map->priomap[prioidx];
3140 }
3141}
3142#else
3143#define skb_update_prio(skb)
3144#endif
3145
3146DEFINE_PER_CPU(int, xmit_recursion);
3147EXPORT_SYMBOL(xmit_recursion);
3148
3149/**
3150 * dev_loopback_xmit - loop back @skb
3151 * @net: network namespace this loopback is happening in
3152 * @sk: sk needed to be a netfilter okfn
3153 * @skb: buffer to transmit
3154 */
3155int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3156{
3157 skb_reset_mac_header(skb);
3158 __skb_pull(skb, skb_network_offset(skb));
3159 skb->pkt_type = PACKET_LOOPBACK;
3160 skb->ip_summed = CHECKSUM_UNNECESSARY;
3161 WARN_ON(!skb_dst(skb));
3162 skb_dst_force(skb);
3163 netif_rx_ni(skb);
3164 return 0;
3165}
3166EXPORT_SYMBOL(dev_loopback_xmit);
3167
3168#ifdef CONFIG_NET_EGRESS
3169static struct sk_buff *
3170sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3171{
3172 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3173 struct tcf_result cl_res;
3174
3175 if (!cl)
3176 return skb;
3177
3178 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3179 qdisc_bstats_cpu_update(cl->q, skb);
3180
3181 switch (tc_classify(skb, cl, &cl_res, false)) {
3182 case TC_ACT_OK:
3183 case TC_ACT_RECLASSIFY:
3184 skb->tc_index = TC_H_MIN(cl_res.classid);
3185 break;
3186 case TC_ACT_SHOT:
3187 qdisc_qstats_cpu_drop(cl->q);
3188 *ret = NET_XMIT_DROP;
3189 kfree_skb(skb);
3190 return NULL;
3191 case TC_ACT_STOLEN:
3192 case TC_ACT_QUEUED:
3193 *ret = NET_XMIT_SUCCESS;
3194 consume_skb(skb);
3195 return NULL;
3196 case TC_ACT_REDIRECT:
3197 /* No need to push/pop skb's mac_header here on egress! */
3198 skb_do_redirect(skb);
3199 *ret = NET_XMIT_SUCCESS;
3200 return NULL;
3201 default:
3202 break;
3203 }
3204
3205 return skb;
3206}
3207#endif /* CONFIG_NET_EGRESS */
3208
3209static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3210{
3211#ifdef CONFIG_XPS
3212 struct xps_dev_maps *dev_maps;
3213 struct xps_map *map;
3214 int queue_index = -1;
3215
3216 rcu_read_lock();
3217 dev_maps = rcu_dereference(dev->xps_maps);
3218 if (dev_maps) {
3219 unsigned int tci = skb->sender_cpu - 1;
3220
3221 if (dev->num_tc) {
3222 tci *= dev->num_tc;
3223 tci += netdev_get_prio_tc_map(dev, skb->priority);
3224 }
3225
3226 map = rcu_dereference(dev_maps->cpu_map[tci]);
3227 if (map) {
3228 if (map->len == 1)
3229 queue_index = map->queues[0];
3230 else
3231 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3232 map->len)];
3233 if (unlikely(queue_index >= dev->real_num_tx_queues))
3234 queue_index = -1;
3235 }
3236 }
3237 rcu_read_unlock();
3238
3239 return queue_index;
3240#else
3241 return -1;
3242#endif
3243}
3244
3245static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3246{
3247 struct sock *sk = skb->sk;
3248 int queue_index = sk_tx_queue_get(sk);
3249
3250 if (queue_index < 0 || skb->ooo_okay ||
3251 queue_index >= dev->real_num_tx_queues) {
3252 int new_index = get_xps_queue(dev, skb);
3253
3254 if (new_index < 0)
3255 new_index = skb_tx_hash(dev, skb);
3256
3257 if (queue_index != new_index && sk &&
3258 sk_fullsock(sk) &&
3259 rcu_access_pointer(sk->sk_dst_cache))
3260 sk_tx_queue_set(sk, new_index);
3261
3262 queue_index = new_index;
3263 }
3264
3265 return queue_index;
3266}
3267
3268struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3269 struct sk_buff *skb,
3270 void *accel_priv)
3271{
3272 int queue_index = 0;
3273
3274#ifdef CONFIG_XPS
3275 u32 sender_cpu = skb->sender_cpu - 1;
3276
3277 if (sender_cpu >= (u32)NR_CPUS)
3278 skb->sender_cpu = raw_smp_processor_id() + 1;
3279#endif
3280
3281 if (dev->real_num_tx_queues != 1) {
3282 const struct net_device_ops *ops = dev->netdev_ops;
3283
3284 if (ops->ndo_select_queue)
3285 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3286 __netdev_pick_tx);
3287 else
3288 queue_index = __netdev_pick_tx(dev, skb);
3289
3290 if (!accel_priv)
3291 queue_index = netdev_cap_txqueue(dev, queue_index);
3292 }
3293
3294 skb_set_queue_mapping(skb, queue_index);
3295 return netdev_get_tx_queue(dev, queue_index);
3296}
3297
3298/**
3299 * __dev_queue_xmit - transmit a buffer
3300 * @skb: buffer to transmit
3301 * @accel_priv: private data used for L2 forwarding offload
3302 *
3303 * Queue a buffer for transmission to a network device. The caller must
3304 * have set the device and priority and built the buffer before calling
3305 * this function. The function can be called from an interrupt.
3306 *
3307 * A negative errno code is returned on a failure. A success does not
3308 * guarantee the frame will be transmitted as it may be dropped due
3309 * to congestion or traffic shaping.
3310 *
3311 * -----------------------------------------------------------------------------------
3312 * I notice this method can also return errors from the queue disciplines,
3313 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3314 * be positive.
3315 *
3316 * Regardless of the return value, the skb is consumed, so it is currently
3317 * difficult to retry a send to this method. (You can bump the ref count
3318 * before sending to hold a reference for retry if you are careful.)
3319 *
3320 * When calling this method, interrupts MUST be enabled. This is because
3321 * the BH enable code must have IRQs enabled so that it will not deadlock.
3322 * --BLG
3323 */
3324static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3325{
3326 struct net_device *dev = skb->dev;
3327 struct netdev_queue *txq;
3328 struct Qdisc *q;
3329 int rc = -ENOMEM;
3330
3331 skb_reset_mac_header(skb);
3332
3333 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3334 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3335
3336 /* Disable soft irqs for various locks below. Also
3337 * stops preemption for RCU.
3338 */
3339 rcu_read_lock_bh();
3340
3341 skb_update_prio(skb);
3342
3343 qdisc_pkt_len_init(skb);
3344#ifdef CONFIG_NET_CLS_ACT
3345 skb->tc_at_ingress = 0;
3346# ifdef CONFIG_NET_EGRESS
3347 if (static_key_false(&egress_needed)) {
3348 skb = sch_handle_egress(skb, &rc, dev);
3349 if (!skb)
3350 goto out;
3351 }
3352# endif
3353#endif
3354 /* If device/qdisc don't need skb->dst, release it right now while
3355 * its hot in this cpu cache.
3356 */
3357 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3358 skb_dst_drop(skb);
3359 else
3360 skb_dst_force(skb);
3361
3362 txq = netdev_pick_tx(dev, skb, accel_priv);
3363 q = rcu_dereference_bh(txq->qdisc);
3364
3365 trace_net_dev_queue(skb);
3366 if (q->enqueue) {
3367 rc = __dev_xmit_skb(skb, q, dev, txq);
3368 goto out;
3369 }
3370
3371 /* The device has no queue. Common case for software devices:
3372 * loopback, all the sorts of tunnels...
3373
3374 * Really, it is unlikely that netif_tx_lock protection is necessary
3375 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3376 * counters.)
3377 * However, it is possible, that they rely on protection
3378 * made by us here.
3379
3380 * Check this and shot the lock. It is not prone from deadlocks.
3381 *Either shot noqueue qdisc, it is even simpler 8)
3382 */
3383 if (dev->flags & IFF_UP) {
3384 int cpu = smp_processor_id(); /* ok because BHs are off */
3385
3386 if (txq->xmit_lock_owner != cpu) {
3387 if (unlikely(__this_cpu_read(xmit_recursion) >
3388 XMIT_RECURSION_LIMIT))
3389 goto recursion_alert;
3390
3391 skb = validate_xmit_skb(skb, dev);
3392 if (!skb)
3393 goto out;
3394
3395 HARD_TX_LOCK(dev, txq, cpu);
3396
3397 if (!netif_xmit_stopped(txq)) {
3398 __this_cpu_inc(xmit_recursion);
3399 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3400 __this_cpu_dec(xmit_recursion);
3401 if (dev_xmit_complete(rc)) {
3402 HARD_TX_UNLOCK(dev, txq);
3403 goto out;
3404 }
3405 }
3406 HARD_TX_UNLOCK(dev, txq);
3407 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3408 dev->name);
3409 } else {
3410 /* Recursion is detected! It is possible,
3411 * unfortunately
3412 */
3413recursion_alert:
3414 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3415 dev->name);
3416 }
3417 }
3418
3419 rc = -ENETDOWN;
3420 rcu_read_unlock_bh();
3421
3422 atomic_long_inc(&dev->tx_dropped);
3423 kfree_skb_list(skb);
3424 return rc;
3425out:
3426 rcu_read_unlock_bh();
3427 return rc;
3428}
3429
3430int dev_queue_xmit(struct sk_buff *skb)
3431{
3432 return __dev_queue_xmit(skb, NULL);
3433}
3434EXPORT_SYMBOL(dev_queue_xmit);
3435
3436int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3437{
3438 return __dev_queue_xmit(skb, accel_priv);
3439}
3440EXPORT_SYMBOL(dev_queue_xmit_accel);
3441
3442
3443/*************************************************************************
3444 * Receiver routines
3445 *************************************************************************/
3446
3447int netdev_max_backlog __read_mostly = 1000;
3448EXPORT_SYMBOL(netdev_max_backlog);
3449
3450int netdev_tstamp_prequeue __read_mostly = 1;
3451int netdev_budget __read_mostly = 300;
3452unsigned int __read_mostly netdev_budget_usecs = 2000;
3453int weight_p __read_mostly = 64; /* old backlog weight */
3454int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3455int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3456int dev_rx_weight __read_mostly = 64;
3457int dev_tx_weight __read_mostly = 64;
3458
3459/* Called with irq disabled */
3460static inline void ____napi_schedule(struct softnet_data *sd,
3461 struct napi_struct *napi)
3462{
3463 list_add_tail(&napi->poll_list, &sd->poll_list);
3464 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3465}
3466
3467#ifdef CONFIG_RPS
3468
3469/* One global table that all flow-based protocols share. */
3470struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3471EXPORT_SYMBOL(rps_sock_flow_table);
3472u32 rps_cpu_mask __read_mostly;
3473EXPORT_SYMBOL(rps_cpu_mask);
3474
3475struct static_key rps_needed __read_mostly;
3476EXPORT_SYMBOL(rps_needed);
3477struct static_key rfs_needed __read_mostly;
3478EXPORT_SYMBOL(rfs_needed);
3479
3480static struct rps_dev_flow *
3481set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3482 struct rps_dev_flow *rflow, u16 next_cpu)
3483{
3484 if (next_cpu < nr_cpu_ids) {
3485#ifdef CONFIG_RFS_ACCEL
3486 struct netdev_rx_queue *rxqueue;
3487 struct rps_dev_flow_table *flow_table;
3488 struct rps_dev_flow *old_rflow;
3489 u32 flow_id;
3490 u16 rxq_index;
3491 int rc;
3492
3493 /* Should we steer this flow to a different hardware queue? */
3494 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3495 !(dev->features & NETIF_F_NTUPLE))
3496 goto out;
3497 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3498 if (rxq_index == skb_get_rx_queue(skb))
3499 goto out;
3500
3501 rxqueue = dev->_rx + rxq_index;
3502 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3503 if (!flow_table)
3504 goto out;
3505 flow_id = skb_get_hash(skb) & flow_table->mask;
3506 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3507 rxq_index, flow_id);
3508 if (rc < 0)
3509 goto out;
3510 old_rflow = rflow;
3511 rflow = &flow_table->flows[flow_id];
3512 rflow->filter = rc;
3513 if (old_rflow->filter == rflow->filter)
3514 old_rflow->filter = RPS_NO_FILTER;
3515 out:
3516#endif
3517 rflow->last_qtail =
3518 per_cpu(softnet_data, next_cpu).input_queue_head;
3519 }
3520
3521 rflow->cpu = next_cpu;
3522 return rflow;
3523}
3524
3525/*
3526 * get_rps_cpu is called from netif_receive_skb and returns the target
3527 * CPU from the RPS map of the receiving queue for a given skb.
3528 * rcu_read_lock must be held on entry.
3529 */
3530static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3531 struct rps_dev_flow **rflowp)
3532{
3533 const struct rps_sock_flow_table *sock_flow_table;
3534 struct netdev_rx_queue *rxqueue = dev->_rx;
3535 struct rps_dev_flow_table *flow_table;
3536 struct rps_map *map;
3537 int cpu = -1;
3538 u32 tcpu;
3539 u32 hash;
3540
3541 if (skb_rx_queue_recorded(skb)) {
3542 u16 index = skb_get_rx_queue(skb);
3543
3544 if (unlikely(index >= dev->real_num_rx_queues)) {
3545 WARN_ONCE(dev->real_num_rx_queues > 1,
3546 "%s received packet on queue %u, but number "
3547 "of RX queues is %u\n",
3548 dev->name, index, dev->real_num_rx_queues);
3549 goto done;
3550 }
3551 rxqueue += index;
3552 }
3553
3554 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3555
3556 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3557 map = rcu_dereference(rxqueue->rps_map);
3558 if (!flow_table && !map)
3559 goto done;
3560
3561 skb_reset_network_header(skb);
3562 hash = skb_get_hash(skb);
3563 if (!hash)
3564 goto done;
3565
3566 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3567 if (flow_table && sock_flow_table) {
3568 struct rps_dev_flow *rflow;
3569 u32 next_cpu;
3570 u32 ident;
3571
3572 /* First check into global flow table if there is a match */
3573 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3574 if ((ident ^ hash) & ~rps_cpu_mask)
3575 goto try_rps;
3576
3577 next_cpu = ident & rps_cpu_mask;
3578
3579 /* OK, now we know there is a match,
3580 * we can look at the local (per receive queue) flow table
3581 */
3582 rflow = &flow_table->flows[hash & flow_table->mask];
3583 tcpu = rflow->cpu;
3584
3585 /*
3586 * If the desired CPU (where last recvmsg was done) is
3587 * different from current CPU (one in the rx-queue flow
3588 * table entry), switch if one of the following holds:
3589 * - Current CPU is unset (>= nr_cpu_ids).
3590 * - Current CPU is offline.
3591 * - The current CPU's queue tail has advanced beyond the
3592 * last packet that was enqueued using this table entry.
3593 * This guarantees that all previous packets for the flow
3594 * have been dequeued, thus preserving in order delivery.
3595 */
3596 if (unlikely(tcpu != next_cpu) &&
3597 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3598 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3599 rflow->last_qtail)) >= 0)) {
3600 tcpu = next_cpu;
3601 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3602 }
3603
3604 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3605 *rflowp = rflow;
3606 cpu = tcpu;
3607 goto done;
3608 }
3609 }
3610
3611try_rps:
3612
3613 if (map) {
3614 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3615 if (cpu_online(tcpu)) {
3616 cpu = tcpu;
3617 goto done;
3618 }
3619 }
3620
3621done:
3622 return cpu;
3623}
3624
3625#ifdef CONFIG_RFS_ACCEL
3626
3627/**
3628 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3629 * @dev: Device on which the filter was set
3630 * @rxq_index: RX queue index
3631 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3632 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3633 *
3634 * Drivers that implement ndo_rx_flow_steer() should periodically call
3635 * this function for each installed filter and remove the filters for
3636 * which it returns %true.
3637 */
3638bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3639 u32 flow_id, u16 filter_id)
3640{
3641 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3642 struct rps_dev_flow_table *flow_table;
3643 struct rps_dev_flow *rflow;
3644 bool expire = true;
3645 unsigned int cpu;
3646
3647 rcu_read_lock();
3648 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3649 if (flow_table && flow_id <= flow_table->mask) {
3650 rflow = &flow_table->flows[flow_id];
3651 cpu = ACCESS_ONCE(rflow->cpu);
3652 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3653 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3654 rflow->last_qtail) <
3655 (int)(10 * flow_table->mask)))
3656 expire = false;
3657 }
3658 rcu_read_unlock();
3659 return expire;
3660}
3661EXPORT_SYMBOL(rps_may_expire_flow);
3662
3663#endif /* CONFIG_RFS_ACCEL */
3664
3665/* Called from hardirq (IPI) context */
3666static void rps_trigger_softirq(void *data)
3667{
3668 struct softnet_data *sd = data;
3669
3670 ____napi_schedule(sd, &sd->backlog);
3671 sd->received_rps++;
3672}
3673
3674#endif /* CONFIG_RPS */
3675
3676/*
3677 * Check if this softnet_data structure is another cpu one
3678 * If yes, queue it to our IPI list and return 1
3679 * If no, return 0
3680 */
3681static int rps_ipi_queued(struct softnet_data *sd)
3682{
3683#ifdef CONFIG_RPS
3684 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3685
3686 if (sd != mysd) {
3687 sd->rps_ipi_next = mysd->rps_ipi_list;
3688 mysd->rps_ipi_list = sd;
3689
3690 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3691 return 1;
3692 }
3693#endif /* CONFIG_RPS */
3694 return 0;
3695}
3696
3697#ifdef CONFIG_NET_FLOW_LIMIT
3698int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3699#endif
3700
3701static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3702{
3703#ifdef CONFIG_NET_FLOW_LIMIT
3704 struct sd_flow_limit *fl;
3705 struct softnet_data *sd;
3706 unsigned int old_flow, new_flow;
3707
3708 if (qlen < (netdev_max_backlog >> 1))
3709 return false;
3710
3711 sd = this_cpu_ptr(&softnet_data);
3712
3713 rcu_read_lock();
3714 fl = rcu_dereference(sd->flow_limit);
3715 if (fl) {
3716 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3717 old_flow = fl->history[fl->history_head];
3718 fl->history[fl->history_head] = new_flow;
3719
3720 fl->history_head++;
3721 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3722
3723 if (likely(fl->buckets[old_flow]))
3724 fl->buckets[old_flow]--;
3725
3726 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3727 fl->count++;
3728 rcu_read_unlock();
3729 return true;
3730 }
3731 }
3732 rcu_read_unlock();
3733#endif
3734 return false;
3735}
3736
3737/*
3738 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3739 * queue (may be a remote CPU queue).
3740 */
3741static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3742 unsigned int *qtail)
3743{
3744 struct softnet_data *sd;
3745 unsigned long flags;
3746 unsigned int qlen;
3747
3748 sd = &per_cpu(softnet_data, cpu);
3749
3750 local_irq_save(flags);
3751
3752 rps_lock(sd);
3753 if (!netif_running(skb->dev))
3754 goto drop;
3755 qlen = skb_queue_len(&sd->input_pkt_queue);
3756 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3757 if (qlen) {
3758enqueue:
3759 __skb_queue_tail(&sd->input_pkt_queue, skb);
3760 input_queue_tail_incr_save(sd, qtail);
3761 rps_unlock(sd);
3762 local_irq_restore(flags);
3763 return NET_RX_SUCCESS;
3764 }
3765
3766 /* Schedule NAPI for backlog device
3767 * We can use non atomic operation since we own the queue lock
3768 */
3769 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3770 if (!rps_ipi_queued(sd))
3771 ____napi_schedule(sd, &sd->backlog);
3772 }
3773 goto enqueue;
3774 }
3775
3776drop:
3777 sd->dropped++;
3778 rps_unlock(sd);
3779
3780 local_irq_restore(flags);
3781
3782 atomic_long_inc(&skb->dev->rx_dropped);
3783 kfree_skb(skb);
3784 return NET_RX_DROP;
3785}
3786
3787static int netif_rx_internal(struct sk_buff *skb)
3788{
3789 int ret;
3790
3791 net_timestamp_check(netdev_tstamp_prequeue, skb);
3792
3793 trace_netif_rx(skb);
3794#ifdef CONFIG_RPS
3795 if (static_key_false(&rps_needed)) {
3796 struct rps_dev_flow voidflow, *rflow = &voidflow;
3797 int cpu;
3798
3799 preempt_disable();
3800 rcu_read_lock();
3801
3802 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3803 if (cpu < 0)
3804 cpu = smp_processor_id();
3805
3806 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3807
3808 rcu_read_unlock();
3809 preempt_enable();
3810 } else
3811#endif
3812 {
3813 unsigned int qtail;
3814
3815 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3816 put_cpu();
3817 }
3818 return ret;
3819}
3820
3821/**
3822 * netif_rx - post buffer to the network code
3823 * @skb: buffer to post
3824 *
3825 * This function receives a packet from a device driver and queues it for
3826 * the upper (protocol) levels to process. It always succeeds. The buffer
3827 * may be dropped during processing for congestion control or by the
3828 * protocol layers.
3829 *
3830 * return values:
3831 * NET_RX_SUCCESS (no congestion)
3832 * NET_RX_DROP (packet was dropped)
3833 *
3834 */
3835
3836int netif_rx(struct sk_buff *skb)
3837{
3838 trace_netif_rx_entry(skb);
3839
3840 return netif_rx_internal(skb);
3841}
3842EXPORT_SYMBOL(netif_rx);
3843
3844int netif_rx_ni(struct sk_buff *skb)
3845{
3846 int err;
3847
3848 trace_netif_rx_ni_entry(skb);
3849
3850 preempt_disable();
3851 err = netif_rx_internal(skb);
3852 if (local_softirq_pending())
3853 do_softirq();
3854 preempt_enable();
3855
3856 return err;
3857}
3858EXPORT_SYMBOL(netif_rx_ni);
3859
3860static __latent_entropy void net_tx_action(struct softirq_action *h)
3861{
3862 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3863
3864 if (sd->completion_queue) {
3865 struct sk_buff *clist;
3866
3867 local_irq_disable();
3868 clist = sd->completion_queue;
3869 sd->completion_queue = NULL;
3870 local_irq_enable();
3871
3872 while (clist) {
3873 struct sk_buff *skb = clist;
3874
3875 clist = clist->next;
3876
3877 WARN_ON(atomic_read(&skb->users));
3878 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3879 trace_consume_skb(skb);
3880 else
3881 trace_kfree_skb(skb, net_tx_action);
3882
3883 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3884 __kfree_skb(skb);
3885 else
3886 __kfree_skb_defer(skb);
3887 }
3888
3889 __kfree_skb_flush();
3890 }
3891
3892 if (sd->output_queue) {
3893 struct Qdisc *head;
3894
3895 local_irq_disable();
3896 head = sd->output_queue;
3897 sd->output_queue = NULL;
3898 sd->output_queue_tailp = &sd->output_queue;
3899 local_irq_enable();
3900
3901 while (head) {
3902 struct Qdisc *q = head;
3903 spinlock_t *root_lock;
3904
3905 head = head->next_sched;
3906
3907 root_lock = qdisc_lock(q);
3908 spin_lock(root_lock);
3909 /* We need to make sure head->next_sched is read
3910 * before clearing __QDISC_STATE_SCHED
3911 */
3912 smp_mb__before_atomic();
3913 clear_bit(__QDISC_STATE_SCHED, &q->state);
3914 qdisc_run(q);
3915 spin_unlock(root_lock);
3916 }
3917 }
3918}
3919
3920#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3921/* This hook is defined here for ATM LANE */
3922int (*br_fdb_test_addr_hook)(struct net_device *dev,
3923 unsigned char *addr) __read_mostly;
3924EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3925#endif
3926
3927static inline struct sk_buff *
3928sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3929 struct net_device *orig_dev)
3930{
3931#ifdef CONFIG_NET_CLS_ACT
3932 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3933 struct tcf_result cl_res;
3934
3935 /* If there's at least one ingress present somewhere (so
3936 * we get here via enabled static key), remaining devices
3937 * that are not configured with an ingress qdisc will bail
3938 * out here.
3939 */
3940 if (!cl)
3941 return skb;
3942 if (*pt_prev) {
3943 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3944 *pt_prev = NULL;
3945 }
3946
3947 qdisc_skb_cb(skb)->pkt_len = skb->len;
3948 skb->tc_at_ingress = 1;
3949 qdisc_bstats_cpu_update(cl->q, skb);
3950
3951 switch (tc_classify(skb, cl, &cl_res, false)) {
3952 case TC_ACT_OK:
3953 case TC_ACT_RECLASSIFY:
3954 skb->tc_index = TC_H_MIN(cl_res.classid);
3955 break;
3956 case TC_ACT_SHOT:
3957 qdisc_qstats_cpu_drop(cl->q);
3958 kfree_skb(skb);
3959 return NULL;
3960 case TC_ACT_STOLEN:
3961 case TC_ACT_QUEUED:
3962 consume_skb(skb);
3963 return NULL;
3964 case TC_ACT_REDIRECT:
3965 /* skb_mac_header check was done by cls/act_bpf, so
3966 * we can safely push the L2 header back before
3967 * redirecting to another netdev
3968 */
3969 __skb_push(skb, skb->mac_len);
3970 skb_do_redirect(skb);
3971 return NULL;
3972 default:
3973 break;
3974 }
3975#endif /* CONFIG_NET_CLS_ACT */
3976 return skb;
3977}
3978
3979/**
3980 * netdev_is_rx_handler_busy - check if receive handler is registered
3981 * @dev: device to check
3982 *
3983 * Check if a receive handler is already registered for a given device.
3984 * Return true if there one.
3985 *
3986 * The caller must hold the rtnl_mutex.
3987 */
3988bool netdev_is_rx_handler_busy(struct net_device *dev)
3989{
3990 ASSERT_RTNL();
3991 return dev && rtnl_dereference(dev->rx_handler);
3992}
3993EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3994
3995/**
3996 * netdev_rx_handler_register - register receive handler
3997 * @dev: device to register a handler for
3998 * @rx_handler: receive handler to register
3999 * @rx_handler_data: data pointer that is used by rx handler
4000 *
4001 * Register a receive handler for a device. This handler will then be
4002 * called from __netif_receive_skb. A negative errno code is returned
4003 * on a failure.
4004 *
4005 * The caller must hold the rtnl_mutex.
4006 *
4007 * For a general description of rx_handler, see enum rx_handler_result.
4008 */
4009int netdev_rx_handler_register(struct net_device *dev,
4010 rx_handler_func_t *rx_handler,
4011 void *rx_handler_data)
4012{
4013 if (netdev_is_rx_handler_busy(dev))
4014 return -EBUSY;
4015
4016 /* Note: rx_handler_data must be set before rx_handler */
4017 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4018 rcu_assign_pointer(dev->rx_handler, rx_handler);
4019
4020 return 0;
4021}
4022EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4023
4024/**
4025 * netdev_rx_handler_unregister - unregister receive handler
4026 * @dev: device to unregister a handler from
4027 *
4028 * Unregister a receive handler from a device.
4029 *
4030 * The caller must hold the rtnl_mutex.
4031 */
4032void netdev_rx_handler_unregister(struct net_device *dev)
4033{
4034
4035 ASSERT_RTNL();
4036 RCU_INIT_POINTER(dev->rx_handler, NULL);
4037 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4038 * section has a guarantee to see a non NULL rx_handler_data
4039 * as well.
4040 */
4041 synchronize_net();
4042 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4043}
4044EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4045
4046/*
4047 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4048 * the special handling of PFMEMALLOC skbs.
4049 */
4050static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4051{
4052 switch (skb->protocol) {
4053 case htons(ETH_P_ARP):
4054 case htons(ETH_P_IP):
4055 case htons(ETH_P_IPV6):
4056 case htons(ETH_P_8021Q):
4057 case htons(ETH_P_8021AD):
4058 return true;
4059 default:
4060 return false;
4061 }
4062}
4063
4064static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4065 int *ret, struct net_device *orig_dev)
4066{
4067#ifdef CONFIG_NETFILTER_INGRESS
4068 if (nf_hook_ingress_active(skb)) {
4069 int ingress_retval;
4070
4071 if (*pt_prev) {
4072 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4073 *pt_prev = NULL;
4074 }
4075
4076 rcu_read_lock();
4077 ingress_retval = nf_hook_ingress(skb);
4078 rcu_read_unlock();
4079 return ingress_retval;
4080 }
4081#endif /* CONFIG_NETFILTER_INGRESS */
4082 return 0;
4083}
4084
4085static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4086{
4087 struct packet_type *ptype, *pt_prev;
4088 rx_handler_func_t *rx_handler;
4089 struct net_device *orig_dev;
4090 bool deliver_exact = false;
4091 int ret = NET_RX_DROP;
4092 __be16 type;
4093
4094 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4095
4096 trace_netif_receive_skb(skb);
4097
4098 orig_dev = skb->dev;
4099
4100 skb_reset_network_header(skb);
4101 if (!skb_transport_header_was_set(skb))
4102 skb_reset_transport_header(skb);
4103 skb_reset_mac_len(skb);
4104
4105 pt_prev = NULL;
4106
4107another_round:
4108 skb->skb_iif = skb->dev->ifindex;
4109
4110 __this_cpu_inc(softnet_data.processed);
4111
4112 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4113 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4114 skb = skb_vlan_untag(skb);
4115 if (unlikely(!skb))
4116 goto out;
4117 }
4118
4119 if (skb_skip_tc_classify(skb))
4120 goto skip_classify;
4121
4122 if (pfmemalloc)
4123 goto skip_taps;
4124
4125 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4126 if (pt_prev)
4127 ret = deliver_skb(skb, pt_prev, orig_dev);
4128 pt_prev = ptype;
4129 }
4130
4131 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4132 if (pt_prev)
4133 ret = deliver_skb(skb, pt_prev, orig_dev);
4134 pt_prev = ptype;
4135 }
4136
4137skip_taps:
4138#ifdef CONFIG_NET_INGRESS
4139 if (static_key_false(&ingress_needed)) {
4140 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4141 if (!skb)
4142 goto out;
4143
4144 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4145 goto out;
4146 }
4147#endif
4148 skb_reset_tc(skb);
4149skip_classify:
4150 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4151 goto drop;
4152
4153 if (skb_vlan_tag_present(skb)) {
4154 if (pt_prev) {
4155 ret = deliver_skb(skb, pt_prev, orig_dev);
4156 pt_prev = NULL;
4157 }
4158 if (vlan_do_receive(&skb))
4159 goto another_round;
4160 else if (unlikely(!skb))
4161 goto out;
4162 }
4163
4164 rx_handler = rcu_dereference(skb->dev->rx_handler);
4165 if (rx_handler) {
4166 if (pt_prev) {
4167 ret = deliver_skb(skb, pt_prev, orig_dev);
4168 pt_prev = NULL;
4169 }
4170 switch (rx_handler(&skb)) {
4171 case RX_HANDLER_CONSUMED:
4172 ret = NET_RX_SUCCESS;
4173 goto out;
4174 case RX_HANDLER_ANOTHER:
4175 goto another_round;
4176 case RX_HANDLER_EXACT:
4177 deliver_exact = true;
4178 case RX_HANDLER_PASS:
4179 break;
4180 default:
4181 BUG();
4182 }
4183 }
4184
4185 if (unlikely(skb_vlan_tag_present(skb))) {
4186 if (skb_vlan_tag_get_id(skb))
4187 skb->pkt_type = PACKET_OTHERHOST;
4188 /* Note: we might in the future use prio bits
4189 * and set skb->priority like in vlan_do_receive()
4190 * For the time being, just ignore Priority Code Point
4191 */
4192 skb->vlan_tci = 0;
4193 }
4194
4195 type = skb->protocol;
4196
4197 /* deliver only exact match when indicated */
4198 if (likely(!deliver_exact)) {
4199 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200 &ptype_base[ntohs(type) &
4201 PTYPE_HASH_MASK]);
4202 }
4203
4204 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4205 &orig_dev->ptype_specific);
4206
4207 if (unlikely(skb->dev != orig_dev)) {
4208 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4209 &skb->dev->ptype_specific);
4210 }
4211
4212 if (pt_prev) {
4213 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4214 goto drop;
4215 else
4216 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4217 } else {
4218drop:
4219 if (!deliver_exact)
4220 atomic_long_inc(&skb->dev->rx_dropped);
4221 else
4222 atomic_long_inc(&skb->dev->rx_nohandler);
4223 kfree_skb(skb);
4224 /* Jamal, now you will not able to escape explaining
4225 * me how you were going to use this. :-)
4226 */
4227 ret = NET_RX_DROP;
4228 }
4229
4230out:
4231 return ret;
4232}
4233
4234static int __netif_receive_skb(struct sk_buff *skb)
4235{
4236 int ret;
4237
4238 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4239 unsigned int noreclaim_flag;
4240
4241 /*
4242 * PFMEMALLOC skbs are special, they should
4243 * - be delivered to SOCK_MEMALLOC sockets only
4244 * - stay away from userspace
4245 * - have bounded memory usage
4246 *
4247 * Use PF_MEMALLOC as this saves us from propagating the allocation
4248 * context down to all allocation sites.
4249 */
4250 noreclaim_flag = memalloc_noreclaim_save();
4251 ret = __netif_receive_skb_core(skb, true);
4252 memalloc_noreclaim_restore(noreclaim_flag);
4253 } else
4254 ret = __netif_receive_skb_core(skb, false);
4255
4256 return ret;
4257}
4258
4259static struct static_key generic_xdp_needed __read_mostly;
4260
4261static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4262{
4263 struct bpf_prog *new = xdp->prog;
4264 int ret = 0;
4265
4266 switch (xdp->command) {
4267 case XDP_SETUP_PROG: {
4268 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4269
4270 rcu_assign_pointer(dev->xdp_prog, new);
4271 if (old)
4272 bpf_prog_put(old);
4273
4274 if (old && !new) {
4275 static_key_slow_dec(&generic_xdp_needed);
4276 } else if (new && !old) {
4277 static_key_slow_inc(&generic_xdp_needed);
4278 dev_disable_lro(dev);
4279 }
4280 break;
4281 }
4282
4283 case XDP_QUERY_PROG:
4284 xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog);
4285 break;
4286
4287 default:
4288 ret = -EINVAL;
4289 break;
4290 }
4291
4292 return ret;
4293}
4294
4295static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4296 struct bpf_prog *xdp_prog)
4297{
4298 struct xdp_buff xdp;
4299 u32 act = XDP_DROP;
4300 void *orig_data;
4301 int hlen, off;
4302 u32 mac_len;
4303
4304 /* Reinjected packets coming from act_mirred or similar should
4305 * not get XDP generic processing.
4306 */
4307 if (skb_cloned(skb))
4308 return XDP_PASS;
4309
4310 if (skb_linearize(skb))
4311 goto do_drop;
4312
4313 /* The XDP program wants to see the packet starting at the MAC
4314 * header.
4315 */
4316 mac_len = skb->data - skb_mac_header(skb);
4317 hlen = skb_headlen(skb) + mac_len;
4318 xdp.data = skb->data - mac_len;
4319 xdp.data_end = xdp.data + hlen;
4320 xdp.data_hard_start = skb->data - skb_headroom(skb);
4321 orig_data = xdp.data;
4322
4323 act = bpf_prog_run_xdp(xdp_prog, &xdp);
4324
4325 off = xdp.data - orig_data;
4326 if (off > 0)
4327 __skb_pull(skb, off);
4328 else if (off < 0)
4329 __skb_push(skb, -off);
4330
4331 switch (act) {
4332 case XDP_TX:
4333 __skb_push(skb, mac_len);
4334 /* fall through */
4335 case XDP_PASS:
4336 break;
4337
4338 default:
4339 bpf_warn_invalid_xdp_action(act);
4340 /* fall through */
4341 case XDP_ABORTED:
4342 trace_xdp_exception(skb->dev, xdp_prog, act);
4343 /* fall through */
4344 case XDP_DROP:
4345 do_drop:
4346 kfree_skb(skb);
4347 break;
4348 }
4349
4350 return act;
4351}
4352
4353/* When doing generic XDP we have to bypass the qdisc layer and the
4354 * network taps in order to match in-driver-XDP behavior.
4355 */
4356static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4357{
4358 struct net_device *dev = skb->dev;
4359 struct netdev_queue *txq;
4360 bool free_skb = true;
4361 int cpu, rc;
4362
4363 txq = netdev_pick_tx(dev, skb, NULL);
4364 cpu = smp_processor_id();
4365 HARD_TX_LOCK(dev, txq, cpu);
4366 if (!netif_xmit_stopped(txq)) {
4367 rc = netdev_start_xmit(skb, dev, txq, 0);
4368 if (dev_xmit_complete(rc))
4369 free_skb = false;
4370 }
4371 HARD_TX_UNLOCK(dev, txq);
4372 if (free_skb) {
4373 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4374 kfree_skb(skb);
4375 }
4376}
4377
4378static int netif_receive_skb_internal(struct sk_buff *skb)
4379{
4380 int ret;
4381
4382 net_timestamp_check(netdev_tstamp_prequeue, skb);
4383
4384 if (skb_defer_rx_timestamp(skb))
4385 return NET_RX_SUCCESS;
4386
4387 rcu_read_lock();
4388
4389 if (static_key_false(&generic_xdp_needed)) {
4390 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4391
4392 if (xdp_prog) {
4393 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4394
4395 if (act != XDP_PASS) {
4396 rcu_read_unlock();
4397 if (act == XDP_TX)
4398 generic_xdp_tx(skb, xdp_prog);
4399 return NET_RX_DROP;
4400 }
4401 }
4402 }
4403
4404#ifdef CONFIG_RPS
4405 if (static_key_false(&rps_needed)) {
4406 struct rps_dev_flow voidflow, *rflow = &voidflow;
4407 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4408
4409 if (cpu >= 0) {
4410 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4411 rcu_read_unlock();
4412 return ret;
4413 }
4414 }
4415#endif
4416 ret = __netif_receive_skb(skb);
4417 rcu_read_unlock();
4418 return ret;
4419}
4420
4421/**
4422 * netif_receive_skb - process receive buffer from network
4423 * @skb: buffer to process
4424 *
4425 * netif_receive_skb() is the main receive data processing function.
4426 * It always succeeds. The buffer may be dropped during processing
4427 * for congestion control or by the protocol layers.
4428 *
4429 * This function may only be called from softirq context and interrupts
4430 * should be enabled.
4431 *
4432 * Return values (usually ignored):
4433 * NET_RX_SUCCESS: no congestion
4434 * NET_RX_DROP: packet was dropped
4435 */
4436int netif_receive_skb(struct sk_buff *skb)
4437{
4438 trace_netif_receive_skb_entry(skb);
4439
4440 return netif_receive_skb_internal(skb);
4441}
4442EXPORT_SYMBOL(netif_receive_skb);
4443
4444DEFINE_PER_CPU(struct work_struct, flush_works);
4445
4446/* Network device is going away, flush any packets still pending */
4447static void flush_backlog(struct work_struct *work)
4448{
4449 struct sk_buff *skb, *tmp;
4450 struct softnet_data *sd;
4451
4452 local_bh_disable();
4453 sd = this_cpu_ptr(&softnet_data);
4454
4455 local_irq_disable();
4456 rps_lock(sd);
4457 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4458 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4459 __skb_unlink(skb, &sd->input_pkt_queue);
4460 kfree_skb(skb);
4461 input_queue_head_incr(sd);
4462 }
4463 }
4464 rps_unlock(sd);
4465 local_irq_enable();
4466
4467 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4468 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4469 __skb_unlink(skb, &sd->process_queue);
4470 kfree_skb(skb);
4471 input_queue_head_incr(sd);
4472 }
4473 }
4474 local_bh_enable();
4475}
4476
4477static void flush_all_backlogs(void)
4478{
4479 unsigned int cpu;
4480
4481 get_online_cpus();
4482
4483 for_each_online_cpu(cpu)
4484 queue_work_on(cpu, system_highpri_wq,
4485 per_cpu_ptr(&flush_works, cpu));
4486
4487 for_each_online_cpu(cpu)
4488 flush_work(per_cpu_ptr(&flush_works, cpu));
4489
4490 put_online_cpus();
4491}
4492
4493static int napi_gro_complete(struct sk_buff *skb)
4494{
4495 struct packet_offload *ptype;
4496 __be16 type = skb->protocol;
4497 struct list_head *head = &offload_base;
4498 int err = -ENOENT;
4499
4500 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4501
4502 if (NAPI_GRO_CB(skb)->count == 1) {
4503 skb_shinfo(skb)->gso_size = 0;
4504 goto out;
4505 }
4506
4507 rcu_read_lock();
4508 list_for_each_entry_rcu(ptype, head, list) {
4509 if (ptype->type != type || !ptype->callbacks.gro_complete)
4510 continue;
4511
4512 err = ptype->callbacks.gro_complete(skb, 0);
4513 break;
4514 }
4515 rcu_read_unlock();
4516
4517 if (err) {
4518 WARN_ON(&ptype->list == head);
4519 kfree_skb(skb);
4520 return NET_RX_SUCCESS;
4521 }
4522
4523out:
4524 return netif_receive_skb_internal(skb);
4525}
4526
4527/* napi->gro_list contains packets ordered by age.
4528 * youngest packets at the head of it.
4529 * Complete skbs in reverse order to reduce latencies.
4530 */
4531void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4532{
4533 struct sk_buff *skb, *prev = NULL;
4534
4535 /* scan list and build reverse chain */
4536 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4537 skb->prev = prev;
4538 prev = skb;
4539 }
4540
4541 for (skb = prev; skb; skb = prev) {
4542 skb->next = NULL;
4543
4544 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4545 return;
4546
4547 prev = skb->prev;
4548 napi_gro_complete(skb);
4549 napi->gro_count--;
4550 }
4551
4552 napi->gro_list = NULL;
4553}
4554EXPORT_SYMBOL(napi_gro_flush);
4555
4556static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4557{
4558 struct sk_buff *p;
4559 unsigned int maclen = skb->dev->hard_header_len;
4560 u32 hash = skb_get_hash_raw(skb);
4561
4562 for (p = napi->gro_list; p; p = p->next) {
4563 unsigned long diffs;
4564
4565 NAPI_GRO_CB(p)->flush = 0;
4566
4567 if (hash != skb_get_hash_raw(p)) {
4568 NAPI_GRO_CB(p)->same_flow = 0;
4569 continue;
4570 }
4571
4572 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4573 diffs |= p->vlan_tci ^ skb->vlan_tci;
4574 diffs |= skb_metadata_dst_cmp(p, skb);
4575 if (maclen == ETH_HLEN)
4576 diffs |= compare_ether_header(skb_mac_header(p),
4577 skb_mac_header(skb));
4578 else if (!diffs)
4579 diffs = memcmp(skb_mac_header(p),
4580 skb_mac_header(skb),
4581 maclen);
4582 NAPI_GRO_CB(p)->same_flow = !diffs;
4583 }
4584}
4585
4586static void skb_gro_reset_offset(struct sk_buff *skb)
4587{
4588 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4589 const skb_frag_t *frag0 = &pinfo->frags[0];
4590
4591 NAPI_GRO_CB(skb)->data_offset = 0;
4592 NAPI_GRO_CB(skb)->frag0 = NULL;
4593 NAPI_GRO_CB(skb)->frag0_len = 0;
4594
4595 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4596 pinfo->nr_frags &&
4597 !PageHighMem(skb_frag_page(frag0))) {
4598 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4599 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4600 skb_frag_size(frag0),
4601 skb->end - skb->tail);
4602 }
4603}
4604
4605static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4606{
4607 struct skb_shared_info *pinfo = skb_shinfo(skb);
4608
4609 BUG_ON(skb->end - skb->tail < grow);
4610
4611 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4612
4613 skb->data_len -= grow;
4614 skb->tail += grow;
4615
4616 pinfo->frags[0].page_offset += grow;
4617 skb_frag_size_sub(&pinfo->frags[0], grow);
4618
4619 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4620 skb_frag_unref(skb, 0);
4621 memmove(pinfo->frags, pinfo->frags + 1,
4622 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4623 }
4624}
4625
4626static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4627{
4628 struct sk_buff **pp = NULL;
4629 struct packet_offload *ptype;
4630 __be16 type = skb->protocol;
4631 struct list_head *head = &offload_base;
4632 int same_flow;
4633 enum gro_result ret;
4634 int grow;
4635
4636 if (netif_elide_gro(skb->dev))
4637 goto normal;
4638
4639 if (skb->csum_bad)
4640 goto normal;
4641
4642 gro_list_prepare(napi, skb);
4643
4644 rcu_read_lock();
4645 list_for_each_entry_rcu(ptype, head, list) {
4646 if (ptype->type != type || !ptype->callbacks.gro_receive)
4647 continue;
4648
4649 skb_set_network_header(skb, skb_gro_offset(skb));
4650 skb_reset_mac_len(skb);
4651 NAPI_GRO_CB(skb)->same_flow = 0;
4652 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4653 NAPI_GRO_CB(skb)->free = 0;
4654 NAPI_GRO_CB(skb)->encap_mark = 0;
4655 NAPI_GRO_CB(skb)->recursion_counter = 0;
4656 NAPI_GRO_CB(skb)->is_fou = 0;
4657 NAPI_GRO_CB(skb)->is_atomic = 1;
4658 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4659
4660 /* Setup for GRO checksum validation */
4661 switch (skb->ip_summed) {
4662 case CHECKSUM_COMPLETE:
4663 NAPI_GRO_CB(skb)->csum = skb->csum;
4664 NAPI_GRO_CB(skb)->csum_valid = 1;
4665 NAPI_GRO_CB(skb)->csum_cnt = 0;
4666 break;
4667 case CHECKSUM_UNNECESSARY:
4668 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4669 NAPI_GRO_CB(skb)->csum_valid = 0;
4670 break;
4671 default:
4672 NAPI_GRO_CB(skb)->csum_cnt = 0;
4673 NAPI_GRO_CB(skb)->csum_valid = 0;
4674 }
4675
4676 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4677 break;
4678 }
4679 rcu_read_unlock();
4680
4681 if (&ptype->list == head)
4682 goto normal;
4683
4684 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4685 ret = GRO_CONSUMED;
4686 goto ok;
4687 }
4688
4689 same_flow = NAPI_GRO_CB(skb)->same_flow;
4690 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4691
4692 if (pp) {
4693 struct sk_buff *nskb = *pp;
4694
4695 *pp = nskb->next;
4696 nskb->next = NULL;
4697 napi_gro_complete(nskb);
4698 napi->gro_count--;
4699 }
4700
4701 if (same_flow)
4702 goto ok;
4703
4704 if (NAPI_GRO_CB(skb)->flush)
4705 goto normal;
4706
4707 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4708 struct sk_buff *nskb = napi->gro_list;
4709
4710 /* locate the end of the list to select the 'oldest' flow */
4711 while (nskb->next) {
4712 pp = &nskb->next;
4713 nskb = *pp;
4714 }
4715 *pp = NULL;
4716 nskb->next = NULL;
4717 napi_gro_complete(nskb);
4718 } else {
4719 napi->gro_count++;
4720 }
4721 NAPI_GRO_CB(skb)->count = 1;
4722 NAPI_GRO_CB(skb)->age = jiffies;
4723 NAPI_GRO_CB(skb)->last = skb;
4724 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4725 skb->next = napi->gro_list;
4726 napi->gro_list = skb;
4727 ret = GRO_HELD;
4728
4729pull:
4730 grow = skb_gro_offset(skb) - skb_headlen(skb);
4731 if (grow > 0)
4732 gro_pull_from_frag0(skb, grow);
4733ok:
4734 return ret;
4735
4736normal:
4737 ret = GRO_NORMAL;
4738 goto pull;
4739}
4740
4741struct packet_offload *gro_find_receive_by_type(__be16 type)
4742{
4743 struct list_head *offload_head = &offload_base;
4744 struct packet_offload *ptype;
4745
4746 list_for_each_entry_rcu(ptype, offload_head, list) {
4747 if (ptype->type != type || !ptype->callbacks.gro_receive)
4748 continue;
4749 return ptype;
4750 }
4751 return NULL;
4752}
4753EXPORT_SYMBOL(gro_find_receive_by_type);
4754
4755struct packet_offload *gro_find_complete_by_type(__be16 type)
4756{
4757 struct list_head *offload_head = &offload_base;
4758 struct packet_offload *ptype;
4759
4760 list_for_each_entry_rcu(ptype, offload_head, list) {
4761 if (ptype->type != type || !ptype->callbacks.gro_complete)
4762 continue;
4763 return ptype;
4764 }
4765 return NULL;
4766}
4767EXPORT_SYMBOL(gro_find_complete_by_type);
4768
4769static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4770{
4771 switch (ret) {
4772 case GRO_NORMAL:
4773 if (netif_receive_skb_internal(skb))
4774 ret = GRO_DROP;
4775 break;
4776
4777 case GRO_DROP:
4778 kfree_skb(skb);
4779 break;
4780
4781 case GRO_MERGED_FREE:
4782 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4783 skb_dst_drop(skb);
4784 secpath_reset(skb);
4785 kmem_cache_free(skbuff_head_cache, skb);
4786 } else {
4787 __kfree_skb(skb);
4788 }
4789 break;
4790
4791 case GRO_HELD:
4792 case GRO_MERGED:
4793 case GRO_CONSUMED:
4794 break;
4795 }
4796
4797 return ret;
4798}
4799
4800gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4801{
4802 skb_mark_napi_id(skb, napi);
4803 trace_napi_gro_receive_entry(skb);
4804
4805 skb_gro_reset_offset(skb);
4806
4807 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4808}
4809EXPORT_SYMBOL(napi_gro_receive);
4810
4811static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4812{
4813 if (unlikely(skb->pfmemalloc)) {
4814 consume_skb(skb);
4815 return;
4816 }
4817 __skb_pull(skb, skb_headlen(skb));
4818 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4819 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4820 skb->vlan_tci = 0;
4821 skb->dev = napi->dev;
4822 skb->skb_iif = 0;
4823 skb->encapsulation = 0;
4824 skb_shinfo(skb)->gso_type = 0;
4825 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4826 secpath_reset(skb);
4827
4828 napi->skb = skb;
4829}
4830
4831struct sk_buff *napi_get_frags(struct napi_struct *napi)
4832{
4833 struct sk_buff *skb = napi->skb;
4834
4835 if (!skb) {
4836 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4837 if (skb) {
4838 napi->skb = skb;
4839 skb_mark_napi_id(skb, napi);
4840 }
4841 }
4842 return skb;
4843}
4844EXPORT_SYMBOL(napi_get_frags);
4845
4846static gro_result_t napi_frags_finish(struct napi_struct *napi,
4847 struct sk_buff *skb,
4848 gro_result_t ret)
4849{
4850 switch (ret) {
4851 case GRO_NORMAL:
4852 case GRO_HELD:
4853 __skb_push(skb, ETH_HLEN);
4854 skb->protocol = eth_type_trans(skb, skb->dev);
4855 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4856 ret = GRO_DROP;
4857 break;
4858
4859 case GRO_DROP:
4860 case GRO_MERGED_FREE:
4861 napi_reuse_skb(napi, skb);
4862 break;
4863
4864 case GRO_MERGED:
4865 case GRO_CONSUMED:
4866 break;
4867 }
4868
4869 return ret;
4870}
4871
4872/* Upper GRO stack assumes network header starts at gro_offset=0
4873 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4874 * We copy ethernet header into skb->data to have a common layout.
4875 */
4876static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4877{
4878 struct sk_buff *skb = napi->skb;
4879 const struct ethhdr *eth;
4880 unsigned int hlen = sizeof(*eth);
4881
4882 napi->skb = NULL;
4883
4884 skb_reset_mac_header(skb);
4885 skb_gro_reset_offset(skb);
4886
4887 eth = skb_gro_header_fast(skb, 0);
4888 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4889 eth = skb_gro_header_slow(skb, hlen, 0);
4890 if (unlikely(!eth)) {
4891 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4892 __func__, napi->dev->name);
4893 napi_reuse_skb(napi, skb);
4894 return NULL;
4895 }
4896 } else {
4897 gro_pull_from_frag0(skb, hlen);
4898 NAPI_GRO_CB(skb)->frag0 += hlen;
4899 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4900 }
4901 __skb_pull(skb, hlen);
4902
4903 /*
4904 * This works because the only protocols we care about don't require
4905 * special handling.
4906 * We'll fix it up properly in napi_frags_finish()
4907 */
4908 skb->protocol = eth->h_proto;
4909
4910 return skb;
4911}
4912
4913gro_result_t napi_gro_frags(struct napi_struct *napi)
4914{
4915 struct sk_buff *skb = napi_frags_skb(napi);
4916
4917 if (!skb)
4918 return GRO_DROP;
4919
4920 trace_napi_gro_frags_entry(skb);
4921
4922 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4923}
4924EXPORT_SYMBOL(napi_gro_frags);
4925
4926/* Compute the checksum from gro_offset and return the folded value
4927 * after adding in any pseudo checksum.
4928 */
4929__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4930{
4931 __wsum wsum;
4932 __sum16 sum;
4933
4934 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4935
4936 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4937 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4938 if (likely(!sum)) {
4939 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4940 !skb->csum_complete_sw)
4941 netdev_rx_csum_fault(skb->dev);
4942 }
4943
4944 NAPI_GRO_CB(skb)->csum = wsum;
4945 NAPI_GRO_CB(skb)->csum_valid = 1;
4946
4947 return sum;
4948}
4949EXPORT_SYMBOL(__skb_gro_checksum_complete);
4950
4951/*
4952 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4953 * Note: called with local irq disabled, but exits with local irq enabled.
4954 */
4955static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4956{
4957#ifdef CONFIG_RPS
4958 struct softnet_data *remsd = sd->rps_ipi_list;
4959
4960 if (remsd) {
4961 sd->rps_ipi_list = NULL;
4962
4963 local_irq_enable();
4964
4965 /* Send pending IPI's to kick RPS processing on remote cpus. */
4966 while (remsd) {
4967 struct softnet_data *next = remsd->rps_ipi_next;
4968
4969 if (cpu_online(remsd->cpu))
4970 smp_call_function_single_async(remsd->cpu,
4971 &remsd->csd);
4972 remsd = next;
4973 }
4974 } else
4975#endif
4976 local_irq_enable();
4977}
4978
4979static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4980{
4981#ifdef CONFIG_RPS
4982 return sd->rps_ipi_list != NULL;
4983#else
4984 return false;
4985#endif
4986}
4987
4988static int process_backlog(struct napi_struct *napi, int quota)
4989{
4990 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4991 bool again = true;
4992 int work = 0;
4993
4994 /* Check if we have pending ipi, its better to send them now,
4995 * not waiting net_rx_action() end.
4996 */
4997 if (sd_has_rps_ipi_waiting(sd)) {
4998 local_irq_disable();
4999 net_rps_action_and_irq_enable(sd);
5000 }
5001
5002 napi->weight = dev_rx_weight;
5003 while (again) {
5004 struct sk_buff *skb;
5005
5006 while ((skb = __skb_dequeue(&sd->process_queue))) {
5007 rcu_read_lock();
5008 __netif_receive_skb(skb);
5009 rcu_read_unlock();
5010 input_queue_head_incr(sd);
5011 if (++work >= quota)
5012 return work;
5013
5014 }
5015
5016 local_irq_disable();
5017 rps_lock(sd);
5018 if (skb_queue_empty(&sd->input_pkt_queue)) {
5019 /*
5020 * Inline a custom version of __napi_complete().
5021 * only current cpu owns and manipulates this napi,
5022 * and NAPI_STATE_SCHED is the only possible flag set
5023 * on backlog.
5024 * We can use a plain write instead of clear_bit(),
5025 * and we dont need an smp_mb() memory barrier.
5026 */
5027 napi->state = 0;
5028 again = false;
5029 } else {
5030 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5031 &sd->process_queue);
5032 }
5033 rps_unlock(sd);
5034 local_irq_enable();
5035 }
5036
5037 return work;
5038}
5039
5040/**
5041 * __napi_schedule - schedule for receive
5042 * @n: entry to schedule
5043 *
5044 * The entry's receive function will be scheduled to run.
5045 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5046 */
5047void __napi_schedule(struct napi_struct *n)
5048{
5049 unsigned long flags;
5050
5051 local_irq_save(flags);
5052 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5053 local_irq_restore(flags);
5054}
5055EXPORT_SYMBOL(__napi_schedule);
5056
5057/**
5058 * napi_schedule_prep - check if napi can be scheduled
5059 * @n: napi context
5060 *
5061 * Test if NAPI routine is already running, and if not mark
5062 * it as running. This is used as a condition variable
5063 * insure only one NAPI poll instance runs. We also make
5064 * sure there is no pending NAPI disable.
5065 */
5066bool napi_schedule_prep(struct napi_struct *n)
5067{
5068 unsigned long val, new;
5069
5070 do {
5071 val = READ_ONCE(n->state);
5072 if (unlikely(val & NAPIF_STATE_DISABLE))
5073 return false;
5074 new = val | NAPIF_STATE_SCHED;
5075
5076 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5077 * This was suggested by Alexander Duyck, as compiler
5078 * emits better code than :
5079 * if (val & NAPIF_STATE_SCHED)
5080 * new |= NAPIF_STATE_MISSED;
5081 */
5082 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5083 NAPIF_STATE_MISSED;
5084 } while (cmpxchg(&n->state, val, new) != val);
5085
5086 return !(val & NAPIF_STATE_SCHED);
5087}
5088EXPORT_SYMBOL(napi_schedule_prep);
5089
5090/**
5091 * __napi_schedule_irqoff - schedule for receive
5092 * @n: entry to schedule
5093 *
5094 * Variant of __napi_schedule() assuming hard irqs are masked
5095 */
5096void __napi_schedule_irqoff(struct napi_struct *n)
5097{
5098 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5099}
5100EXPORT_SYMBOL(__napi_schedule_irqoff);
5101
5102bool napi_complete_done(struct napi_struct *n, int work_done)
5103{
5104 unsigned long flags, val, new;
5105
5106 /*
5107 * 1) Don't let napi dequeue from the cpu poll list
5108 * just in case its running on a different cpu.
5109 * 2) If we are busy polling, do nothing here, we have
5110 * the guarantee we will be called later.
5111 */
5112 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5113 NAPIF_STATE_IN_BUSY_POLL)))
5114 return false;
5115
5116 if (n->gro_list) {
5117 unsigned long timeout = 0;
5118
5119 if (work_done)
5120 timeout = n->dev->gro_flush_timeout;
5121
5122 if (timeout)
5123 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5124 HRTIMER_MODE_REL_PINNED);
5125 else
5126 napi_gro_flush(n, false);
5127 }
5128 if (unlikely(!list_empty(&n->poll_list))) {
5129 /* If n->poll_list is not empty, we need to mask irqs */
5130 local_irq_save(flags);
5131 list_del_init(&n->poll_list);
5132 local_irq_restore(flags);
5133 }
5134
5135 do {
5136 val = READ_ONCE(n->state);
5137
5138 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5139
5140 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5141
5142 /* If STATE_MISSED was set, leave STATE_SCHED set,
5143 * because we will call napi->poll() one more time.
5144 * This C code was suggested by Alexander Duyck to help gcc.
5145 */
5146 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5147 NAPIF_STATE_SCHED;
5148 } while (cmpxchg(&n->state, val, new) != val);
5149
5150 if (unlikely(val & NAPIF_STATE_MISSED)) {
5151 __napi_schedule(n);
5152 return false;
5153 }
5154
5155 return true;
5156}
5157EXPORT_SYMBOL(napi_complete_done);
5158
5159/* must be called under rcu_read_lock(), as we dont take a reference */
5160static struct napi_struct *napi_by_id(unsigned int napi_id)
5161{
5162 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5163 struct napi_struct *napi;
5164
5165 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5166 if (napi->napi_id == napi_id)
5167 return napi;
5168
5169 return NULL;
5170}
5171
5172#if defined(CONFIG_NET_RX_BUSY_POLL)
5173
5174#define BUSY_POLL_BUDGET 8
5175
5176static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5177{
5178 int rc;
5179
5180 /* Busy polling means there is a high chance device driver hard irq
5181 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5182 * set in napi_schedule_prep().
5183 * Since we are about to call napi->poll() once more, we can safely
5184 * clear NAPI_STATE_MISSED.
5185 *
5186 * Note: x86 could use a single "lock and ..." instruction
5187 * to perform these two clear_bit()
5188 */
5189 clear_bit(NAPI_STATE_MISSED, &napi->state);
5190 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5191
5192 local_bh_disable();
5193
5194 /* All we really want here is to re-enable device interrupts.
5195 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5196 */
5197 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5198 netpoll_poll_unlock(have_poll_lock);
5199 if (rc == BUSY_POLL_BUDGET)
5200 __napi_schedule(napi);
5201 local_bh_enable();
5202 if (local_softirq_pending())
5203 do_softirq();
5204}
5205
5206void napi_busy_loop(unsigned int napi_id,
5207 bool (*loop_end)(void *, unsigned long),
5208 void *loop_end_arg)
5209{
5210 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5211 int (*napi_poll)(struct napi_struct *napi, int budget);
5212 void *have_poll_lock = NULL;
5213 struct napi_struct *napi;
5214
5215restart:
5216 napi_poll = NULL;
5217
5218 rcu_read_lock();
5219
5220 napi = napi_by_id(napi_id);
5221 if (!napi)
5222 goto out;
5223
5224 preempt_disable();
5225 for (;;) {
5226 int work = 0;
5227
5228 local_bh_disable();
5229 if (!napi_poll) {
5230 unsigned long val = READ_ONCE(napi->state);
5231
5232 /* If multiple threads are competing for this napi,
5233 * we avoid dirtying napi->state as much as we can.
5234 */
5235 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5236 NAPIF_STATE_IN_BUSY_POLL))
5237 goto count;
5238 if (cmpxchg(&napi->state, val,
5239 val | NAPIF_STATE_IN_BUSY_POLL |
5240 NAPIF_STATE_SCHED) != val)
5241 goto count;
5242 have_poll_lock = netpoll_poll_lock(napi);
5243 napi_poll = napi->poll;
5244 }
5245 work = napi_poll(napi, BUSY_POLL_BUDGET);
5246 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5247count:
5248 if (work > 0)
5249 __NET_ADD_STATS(dev_net(napi->dev),
5250 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5251 local_bh_enable();
5252
5253 if (!loop_end || loop_end(loop_end_arg, start_time))
5254 break;
5255
5256 if (unlikely(need_resched())) {
5257 if (napi_poll)
5258 busy_poll_stop(napi, have_poll_lock);
5259 preempt_enable();
5260 rcu_read_unlock();
5261 cond_resched();
5262 if (loop_end(loop_end_arg, start_time))
5263 return;
5264 goto restart;
5265 }
5266 cpu_relax();
5267 }
5268 if (napi_poll)
5269 busy_poll_stop(napi, have_poll_lock);
5270 preempt_enable();
5271out:
5272 rcu_read_unlock();
5273}
5274EXPORT_SYMBOL(napi_busy_loop);
5275
5276#endif /* CONFIG_NET_RX_BUSY_POLL */
5277
5278static void napi_hash_add(struct napi_struct *napi)
5279{
5280 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5281 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5282 return;
5283
5284 spin_lock(&napi_hash_lock);
5285
5286 /* 0..NR_CPUS range is reserved for sender_cpu use */
5287 do {
5288 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5289 napi_gen_id = MIN_NAPI_ID;
5290 } while (napi_by_id(napi_gen_id));
5291 napi->napi_id = napi_gen_id;
5292
5293 hlist_add_head_rcu(&napi->napi_hash_node,
5294 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5295
5296 spin_unlock(&napi_hash_lock);
5297}
5298
5299/* Warning : caller is responsible to make sure rcu grace period
5300 * is respected before freeing memory containing @napi
5301 */
5302bool napi_hash_del(struct napi_struct *napi)
5303{
5304 bool rcu_sync_needed = false;
5305
5306 spin_lock(&napi_hash_lock);
5307
5308 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5309 rcu_sync_needed = true;
5310 hlist_del_rcu(&napi->napi_hash_node);
5311 }
5312 spin_unlock(&napi_hash_lock);
5313 return rcu_sync_needed;
5314}
5315EXPORT_SYMBOL_GPL(napi_hash_del);
5316
5317static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5318{
5319 struct napi_struct *napi;
5320
5321 napi = container_of(timer, struct napi_struct, timer);
5322
5323 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5324 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5325 */
5326 if (napi->gro_list && !napi_disable_pending(napi) &&
5327 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5328 __napi_schedule_irqoff(napi);
5329
5330 return HRTIMER_NORESTART;
5331}
5332
5333void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5334 int (*poll)(struct napi_struct *, int), int weight)
5335{
5336 INIT_LIST_HEAD(&napi->poll_list);
5337 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5338 napi->timer.function = napi_watchdog;
5339 napi->gro_count = 0;
5340 napi->gro_list = NULL;
5341 napi->skb = NULL;
5342 napi->poll = poll;
5343 if (weight > NAPI_POLL_WEIGHT)
5344 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5345 weight, dev->name);
5346 napi->weight = weight;
5347 list_add(&napi->dev_list, &dev->napi_list);
5348 napi->dev = dev;
5349#ifdef CONFIG_NETPOLL
5350 napi->poll_owner = -1;
5351#endif
5352 set_bit(NAPI_STATE_SCHED, &napi->state);
5353 napi_hash_add(napi);
5354}
5355EXPORT_SYMBOL(netif_napi_add);
5356
5357void napi_disable(struct napi_struct *n)
5358{
5359 might_sleep();
5360 set_bit(NAPI_STATE_DISABLE, &n->state);
5361
5362 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5363 msleep(1);
5364 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5365 msleep(1);
5366
5367 hrtimer_cancel(&n->timer);
5368
5369 clear_bit(NAPI_STATE_DISABLE, &n->state);
5370}
5371EXPORT_SYMBOL(napi_disable);
5372
5373/* Must be called in process context */
5374void netif_napi_del(struct napi_struct *napi)
5375{
5376 might_sleep();
5377 if (napi_hash_del(napi))
5378 synchronize_net();
5379 list_del_init(&napi->dev_list);
5380 napi_free_frags(napi);
5381
5382 kfree_skb_list(napi->gro_list);
5383 napi->gro_list = NULL;
5384 napi->gro_count = 0;
5385}
5386EXPORT_SYMBOL(netif_napi_del);
5387
5388static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5389{
5390 void *have;
5391 int work, weight;
5392
5393 list_del_init(&n->poll_list);
5394
5395 have = netpoll_poll_lock(n);
5396
5397 weight = n->weight;
5398
5399 /* This NAPI_STATE_SCHED test is for avoiding a race
5400 * with netpoll's poll_napi(). Only the entity which
5401 * obtains the lock and sees NAPI_STATE_SCHED set will
5402 * actually make the ->poll() call. Therefore we avoid
5403 * accidentally calling ->poll() when NAPI is not scheduled.
5404 */
5405 work = 0;
5406 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5407 work = n->poll(n, weight);
5408 trace_napi_poll(n, work, weight);
5409 }
5410
5411 WARN_ON_ONCE(work > weight);
5412
5413 if (likely(work < weight))
5414 goto out_unlock;
5415
5416 /* Drivers must not modify the NAPI state if they
5417 * consume the entire weight. In such cases this code
5418 * still "owns" the NAPI instance and therefore can
5419 * move the instance around on the list at-will.
5420 */
5421 if (unlikely(napi_disable_pending(n))) {
5422 napi_complete(n);
5423 goto out_unlock;
5424 }
5425
5426 if (n->gro_list) {
5427 /* flush too old packets
5428 * If HZ < 1000, flush all packets.
5429 */
5430 napi_gro_flush(n, HZ >= 1000);
5431 }
5432
5433 /* Some drivers may have called napi_schedule
5434 * prior to exhausting their budget.
5435 */
5436 if (unlikely(!list_empty(&n->poll_list))) {
5437 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5438 n->dev ? n->dev->name : "backlog");
5439 goto out_unlock;
5440 }
5441
5442 list_add_tail(&n->poll_list, repoll);
5443
5444out_unlock:
5445 netpoll_poll_unlock(have);
5446
5447 return work;
5448}
5449
5450static __latent_entropy void net_rx_action(struct softirq_action *h)
5451{
5452 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5453 unsigned long time_limit = jiffies +
5454 usecs_to_jiffies(netdev_budget_usecs);
5455 int budget = netdev_budget;
5456 LIST_HEAD(list);
5457 LIST_HEAD(repoll);
5458
5459 local_irq_disable();
5460 list_splice_init(&sd->poll_list, &list);
5461 local_irq_enable();
5462
5463 for (;;) {
5464 struct napi_struct *n;
5465
5466 if (list_empty(&list)) {
5467 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5468 goto out;
5469 break;
5470 }
5471
5472 n = list_first_entry(&list, struct napi_struct, poll_list);
5473 budget -= napi_poll(n, &repoll);
5474
5475 /* If softirq window is exhausted then punt.
5476 * Allow this to run for 2 jiffies since which will allow
5477 * an average latency of 1.5/HZ.
5478 */
5479 if (unlikely(budget <= 0 ||
5480 time_after_eq(jiffies, time_limit))) {
5481 sd->time_squeeze++;
5482 break;
5483 }
5484 }
5485
5486 local_irq_disable();
5487
5488 list_splice_tail_init(&sd->poll_list, &list);
5489 list_splice_tail(&repoll, &list);
5490 list_splice(&list, &sd->poll_list);
5491 if (!list_empty(&sd->poll_list))
5492 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5493
5494 net_rps_action_and_irq_enable(sd);
5495out:
5496 __kfree_skb_flush();
5497}
5498
5499struct netdev_adjacent {
5500 struct net_device *dev;
5501
5502 /* upper master flag, there can only be one master device per list */
5503 bool master;
5504
5505 /* counter for the number of times this device was added to us */
5506 u16 ref_nr;
5507
5508 /* private field for the users */
5509 void *private;
5510
5511 struct list_head list;
5512 struct rcu_head rcu;
5513};
5514
5515static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5516 struct list_head *adj_list)
5517{
5518 struct netdev_adjacent *adj;
5519
5520 list_for_each_entry(adj, adj_list, list) {
5521 if (adj->dev == adj_dev)
5522 return adj;
5523 }
5524 return NULL;
5525}
5526
5527static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5528{
5529 struct net_device *dev = data;
5530
5531 return upper_dev == dev;
5532}
5533
5534/**
5535 * netdev_has_upper_dev - Check if device is linked to an upper device
5536 * @dev: device
5537 * @upper_dev: upper device to check
5538 *
5539 * Find out if a device is linked to specified upper device and return true
5540 * in case it is. Note that this checks only immediate upper device,
5541 * not through a complete stack of devices. The caller must hold the RTNL lock.
5542 */
5543bool netdev_has_upper_dev(struct net_device *dev,
5544 struct net_device *upper_dev)
5545{
5546 ASSERT_RTNL();
5547
5548 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5549 upper_dev);
5550}
5551EXPORT_SYMBOL(netdev_has_upper_dev);
5552
5553/**
5554 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5555 * @dev: device
5556 * @upper_dev: upper device to check
5557 *
5558 * Find out if a device is linked to specified upper device and return true
5559 * in case it is. Note that this checks the entire upper device chain.
5560 * The caller must hold rcu lock.
5561 */
5562
5563bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5564 struct net_device *upper_dev)
5565{
5566 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5567 upper_dev);
5568}
5569EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5570
5571/**
5572 * netdev_has_any_upper_dev - Check if device is linked to some device
5573 * @dev: device
5574 *
5575 * Find out if a device is linked to an upper device and return true in case
5576 * it is. The caller must hold the RTNL lock.
5577 */
5578static bool netdev_has_any_upper_dev(struct net_device *dev)
5579{
5580 ASSERT_RTNL();
5581
5582 return !list_empty(&dev->adj_list.upper);
5583}
5584
5585/**
5586 * netdev_master_upper_dev_get - Get master upper device
5587 * @dev: device
5588 *
5589 * Find a master upper device and return pointer to it or NULL in case
5590 * it's not there. The caller must hold the RTNL lock.
5591 */
5592struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5593{
5594 struct netdev_adjacent *upper;
5595
5596 ASSERT_RTNL();
5597
5598 if (list_empty(&dev->adj_list.upper))
5599 return NULL;
5600
5601 upper = list_first_entry(&dev->adj_list.upper,
5602 struct netdev_adjacent, list);
5603 if (likely(upper->master))
5604 return upper->dev;
5605 return NULL;
5606}
5607EXPORT_SYMBOL(netdev_master_upper_dev_get);
5608
5609/**
5610 * netdev_has_any_lower_dev - Check if device is linked to some device
5611 * @dev: device
5612 *
5613 * Find out if a device is linked to a lower device and return true in case
5614 * it is. The caller must hold the RTNL lock.
5615 */
5616static bool netdev_has_any_lower_dev(struct net_device *dev)
5617{
5618 ASSERT_RTNL();
5619
5620 return !list_empty(&dev->adj_list.lower);
5621}
5622
5623void *netdev_adjacent_get_private(struct list_head *adj_list)
5624{
5625 struct netdev_adjacent *adj;
5626
5627 adj = list_entry(adj_list, struct netdev_adjacent, list);
5628
5629 return adj->private;
5630}
5631EXPORT_SYMBOL(netdev_adjacent_get_private);
5632
5633/**
5634 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5635 * @dev: device
5636 * @iter: list_head ** of the current position
5637 *
5638 * Gets the next device from the dev's upper list, starting from iter
5639 * position. The caller must hold RCU read lock.
5640 */
5641struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5642 struct list_head **iter)
5643{
5644 struct netdev_adjacent *upper;
5645
5646 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5647
5648 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5649
5650 if (&upper->list == &dev->adj_list.upper)
5651 return NULL;
5652
5653 *iter = &upper->list;
5654
5655 return upper->dev;
5656}
5657EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5658
5659static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5660 struct list_head **iter)
5661{
5662 struct netdev_adjacent *upper;
5663
5664 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5665
5666 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5667
5668 if (&upper->list == &dev->adj_list.upper)
5669 return NULL;
5670
5671 *iter = &upper->list;
5672
5673 return upper->dev;
5674}
5675
5676int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5677 int (*fn)(struct net_device *dev,
5678 void *data),
5679 void *data)
5680{
5681 struct net_device *udev;
5682 struct list_head *iter;
5683 int ret;
5684
5685 for (iter = &dev->adj_list.upper,
5686 udev = netdev_next_upper_dev_rcu(dev, &iter);
5687 udev;
5688 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5689 /* first is the upper device itself */
5690 ret = fn(udev, data);
5691 if (ret)
5692 return ret;
5693
5694 /* then look at all of its upper devices */
5695 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5696 if (ret)
5697 return ret;
5698 }
5699
5700 return 0;
5701}
5702EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5703
5704/**
5705 * netdev_lower_get_next_private - Get the next ->private from the
5706 * lower neighbour list
5707 * @dev: device
5708 * @iter: list_head ** of the current position
5709 *
5710 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5711 * list, starting from iter position. The caller must hold either hold the
5712 * RTNL lock or its own locking that guarantees that the neighbour lower
5713 * list will remain unchanged.
5714 */
5715void *netdev_lower_get_next_private(struct net_device *dev,
5716 struct list_head **iter)
5717{
5718 struct netdev_adjacent *lower;
5719
5720 lower = list_entry(*iter, struct netdev_adjacent, list);
5721
5722 if (&lower->list == &dev->adj_list.lower)
5723 return NULL;
5724
5725 *iter = lower->list.next;
5726
5727 return lower->private;
5728}
5729EXPORT_SYMBOL(netdev_lower_get_next_private);
5730
5731/**
5732 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5733 * lower neighbour list, RCU
5734 * variant
5735 * @dev: device
5736 * @iter: list_head ** of the current position
5737 *
5738 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5739 * list, starting from iter position. The caller must hold RCU read lock.
5740 */
5741void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5742 struct list_head **iter)
5743{
5744 struct netdev_adjacent *lower;
5745
5746 WARN_ON_ONCE(!rcu_read_lock_held());
5747
5748 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5749
5750 if (&lower->list == &dev->adj_list.lower)
5751 return NULL;
5752
5753 *iter = &lower->list;
5754
5755 return lower->private;
5756}
5757EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5758
5759/**
5760 * netdev_lower_get_next - Get the next device from the lower neighbour
5761 * list
5762 * @dev: device
5763 * @iter: list_head ** of the current position
5764 *
5765 * Gets the next netdev_adjacent from the dev's lower neighbour
5766 * list, starting from iter position. The caller must hold RTNL lock or
5767 * its own locking that guarantees that the neighbour lower
5768 * list will remain unchanged.
5769 */
5770void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5771{
5772 struct netdev_adjacent *lower;
5773
5774 lower = list_entry(*iter, struct netdev_adjacent, list);
5775
5776 if (&lower->list == &dev->adj_list.lower)
5777 return NULL;
5778
5779 *iter = lower->list.next;
5780
5781 return lower->dev;
5782}
5783EXPORT_SYMBOL(netdev_lower_get_next);
5784
5785static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5786 struct list_head **iter)
5787{
5788 struct netdev_adjacent *lower;
5789
5790 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5791
5792 if (&lower->list == &dev->adj_list.lower)
5793 return NULL;
5794
5795 *iter = &lower->list;
5796
5797 return lower->dev;
5798}
5799
5800int netdev_walk_all_lower_dev(struct net_device *dev,
5801 int (*fn)(struct net_device *dev,
5802 void *data),
5803 void *data)
5804{
5805 struct net_device *ldev;
5806 struct list_head *iter;
5807 int ret;
5808
5809 for (iter = &dev->adj_list.lower,
5810 ldev = netdev_next_lower_dev(dev, &iter);
5811 ldev;
5812 ldev = netdev_next_lower_dev(dev, &iter)) {
5813 /* first is the lower device itself */
5814 ret = fn(ldev, data);
5815 if (ret)
5816 return ret;
5817
5818 /* then look at all of its lower devices */
5819 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5820 if (ret)
5821 return ret;
5822 }
5823
5824 return 0;
5825}
5826EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5827
5828static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5829 struct list_head **iter)
5830{
5831 struct netdev_adjacent *lower;
5832
5833 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5834 if (&lower->list == &dev->adj_list.lower)
5835 return NULL;
5836
5837 *iter = &lower->list;
5838
5839 return lower->dev;
5840}
5841
5842int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5843 int (*fn)(struct net_device *dev,
5844 void *data),
5845 void *data)
5846{
5847 struct net_device *ldev;
5848 struct list_head *iter;
5849 int ret;
5850
5851 for (iter = &dev->adj_list.lower,
5852 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5853 ldev;
5854 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5855 /* first is the lower device itself */
5856 ret = fn(ldev, data);
5857 if (ret)
5858 return ret;
5859
5860 /* then look at all of its lower devices */
5861 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5862 if (ret)
5863 return ret;
5864 }
5865
5866 return 0;
5867}
5868EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5869
5870/**
5871 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5872 * lower neighbour list, RCU
5873 * variant
5874 * @dev: device
5875 *
5876 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5877 * list. The caller must hold RCU read lock.
5878 */
5879void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5880{
5881 struct netdev_adjacent *lower;
5882
5883 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5884 struct netdev_adjacent, list);
5885 if (lower)
5886 return lower->private;
5887 return NULL;
5888}
5889EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5890
5891/**
5892 * netdev_master_upper_dev_get_rcu - Get master upper device
5893 * @dev: device
5894 *
5895 * Find a master upper device and return pointer to it or NULL in case
5896 * it's not there. The caller must hold the RCU read lock.
5897 */
5898struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5899{
5900 struct netdev_adjacent *upper;
5901
5902 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5903 struct netdev_adjacent, list);
5904 if (upper && likely(upper->master))
5905 return upper->dev;
5906 return NULL;
5907}
5908EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5909
5910static int netdev_adjacent_sysfs_add(struct net_device *dev,
5911 struct net_device *adj_dev,
5912 struct list_head *dev_list)
5913{
5914 char linkname[IFNAMSIZ+7];
5915
5916 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5917 "upper_%s" : "lower_%s", adj_dev->name);
5918 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5919 linkname);
5920}
5921static void netdev_adjacent_sysfs_del(struct net_device *dev,
5922 char *name,
5923 struct list_head *dev_list)
5924{
5925 char linkname[IFNAMSIZ+7];
5926
5927 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5928 "upper_%s" : "lower_%s", name);
5929 sysfs_remove_link(&(dev->dev.kobj), linkname);
5930}
5931
5932static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5933 struct net_device *adj_dev,
5934 struct list_head *dev_list)
5935{
5936 return (dev_list == &dev->adj_list.upper ||
5937 dev_list == &dev->adj_list.lower) &&
5938 net_eq(dev_net(dev), dev_net(adj_dev));
5939}
5940
5941static int __netdev_adjacent_dev_insert(struct net_device *dev,
5942 struct net_device *adj_dev,
5943 struct list_head *dev_list,
5944 void *private, bool master)
5945{
5946 struct netdev_adjacent *adj;
5947 int ret;
5948
5949 adj = __netdev_find_adj(adj_dev, dev_list);
5950
5951 if (adj) {
5952 adj->ref_nr += 1;
5953 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5954 dev->name, adj_dev->name, adj->ref_nr);
5955
5956 return 0;
5957 }
5958
5959 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5960 if (!adj)
5961 return -ENOMEM;
5962
5963 adj->dev = adj_dev;
5964 adj->master = master;
5965 adj->ref_nr = 1;
5966 adj->private = private;
5967 dev_hold(adj_dev);
5968
5969 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5970 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5971
5972 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5973 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5974 if (ret)
5975 goto free_adj;
5976 }
5977
5978 /* Ensure that master link is always the first item in list. */
5979 if (master) {
5980 ret = sysfs_create_link(&(dev->dev.kobj),
5981 &(adj_dev->dev.kobj), "master");
5982 if (ret)
5983 goto remove_symlinks;
5984
5985 list_add_rcu(&adj->list, dev_list);
5986 } else {
5987 list_add_tail_rcu(&adj->list, dev_list);
5988 }
5989
5990 return 0;
5991
5992remove_symlinks:
5993 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5994 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5995free_adj:
5996 kfree(adj);
5997 dev_put(adj_dev);
5998
5999 return ret;
6000}
6001
6002static void __netdev_adjacent_dev_remove(struct net_device *dev,
6003 struct net_device *adj_dev,
6004 u16 ref_nr,
6005 struct list_head *dev_list)
6006{
6007 struct netdev_adjacent *adj;
6008
6009 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6010 dev->name, adj_dev->name, ref_nr);
6011
6012 adj = __netdev_find_adj(adj_dev, dev_list);
6013
6014 if (!adj) {
6015 pr_err("Adjacency does not exist for device %s from %s\n",
6016 dev->name, adj_dev->name);
6017 WARN_ON(1);
6018 return;
6019 }
6020
6021 if (adj->ref_nr > ref_nr) {
6022 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6023 dev->name, adj_dev->name, ref_nr,
6024 adj->ref_nr - ref_nr);
6025 adj->ref_nr -= ref_nr;
6026 return;
6027 }
6028
6029 if (adj->master)
6030 sysfs_remove_link(&(dev->dev.kobj), "master");
6031
6032 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6033 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6034
6035 list_del_rcu(&adj->list);
6036 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6037 adj_dev->name, dev->name, adj_dev->name);
6038 dev_put(adj_dev);
6039 kfree_rcu(adj, rcu);
6040}
6041
6042static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6043 struct net_device *upper_dev,
6044 struct list_head *up_list,
6045 struct list_head *down_list,
6046 void *private, bool master)
6047{
6048 int ret;
6049
6050 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6051 private, master);
6052 if (ret)
6053 return ret;
6054
6055 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6056 private, false);
6057 if (ret) {
6058 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6059 return ret;
6060 }
6061
6062 return 0;
6063}
6064
6065static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6066 struct net_device *upper_dev,
6067 u16 ref_nr,
6068 struct list_head *up_list,
6069 struct list_head *down_list)
6070{
6071 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6072 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6073}
6074
6075static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6076 struct net_device *upper_dev,
6077 void *private, bool master)
6078{
6079 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6080 &dev->adj_list.upper,
6081 &upper_dev->adj_list.lower,
6082 private, master);
6083}
6084
6085static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6086 struct net_device *upper_dev)
6087{
6088 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6089 &dev->adj_list.upper,
6090 &upper_dev->adj_list.lower);
6091}
6092
6093static int __netdev_upper_dev_link(struct net_device *dev,
6094 struct net_device *upper_dev, bool master,
6095 void *upper_priv, void *upper_info)
6096{
6097 struct netdev_notifier_changeupper_info changeupper_info;
6098 int ret = 0;
6099
6100 ASSERT_RTNL();
6101
6102 if (dev == upper_dev)
6103 return -EBUSY;
6104
6105 /* To prevent loops, check if dev is not upper device to upper_dev. */
6106 if (netdev_has_upper_dev(upper_dev, dev))
6107 return -EBUSY;
6108
6109 if (netdev_has_upper_dev(dev, upper_dev))
6110 return -EEXIST;
6111
6112 if (master && netdev_master_upper_dev_get(dev))
6113 return -EBUSY;
6114
6115 changeupper_info.upper_dev = upper_dev;
6116 changeupper_info.master = master;
6117 changeupper_info.linking = true;
6118 changeupper_info.upper_info = upper_info;
6119
6120 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6121 &changeupper_info.info);
6122 ret = notifier_to_errno(ret);
6123 if (ret)
6124 return ret;
6125
6126 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6127 master);
6128 if (ret)
6129 return ret;
6130
6131 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6132 &changeupper_info.info);
6133 ret = notifier_to_errno(ret);
6134 if (ret)
6135 goto rollback;
6136
6137 return 0;
6138
6139rollback:
6140 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6141
6142 return ret;
6143}
6144
6145/**
6146 * netdev_upper_dev_link - Add a link to the upper device
6147 * @dev: device
6148 * @upper_dev: new upper device
6149 *
6150 * Adds a link to device which is upper to this one. The caller must hold
6151 * the RTNL lock. On a failure a negative errno code is returned.
6152 * On success the reference counts are adjusted and the function
6153 * returns zero.
6154 */
6155int netdev_upper_dev_link(struct net_device *dev,
6156 struct net_device *upper_dev)
6157{
6158 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6159}
6160EXPORT_SYMBOL(netdev_upper_dev_link);
6161
6162/**
6163 * netdev_master_upper_dev_link - Add a master link to the upper device
6164 * @dev: device
6165 * @upper_dev: new upper device
6166 * @upper_priv: upper device private
6167 * @upper_info: upper info to be passed down via notifier
6168 *
6169 * Adds a link to device which is upper to this one. In this case, only
6170 * one master upper device can be linked, although other non-master devices
6171 * might be linked as well. The caller must hold the RTNL lock.
6172 * On a failure a negative errno code is returned. On success the reference
6173 * counts are adjusted and the function returns zero.
6174 */
6175int netdev_master_upper_dev_link(struct net_device *dev,
6176 struct net_device *upper_dev,
6177 void *upper_priv, void *upper_info)
6178{
6179 return __netdev_upper_dev_link(dev, upper_dev, true,
6180 upper_priv, upper_info);
6181}
6182EXPORT_SYMBOL(netdev_master_upper_dev_link);
6183
6184/**
6185 * netdev_upper_dev_unlink - Removes a link to upper device
6186 * @dev: device
6187 * @upper_dev: new upper device
6188 *
6189 * Removes a link to device which is upper to this one. The caller must hold
6190 * the RTNL lock.
6191 */
6192void netdev_upper_dev_unlink(struct net_device *dev,
6193 struct net_device *upper_dev)
6194{
6195 struct netdev_notifier_changeupper_info changeupper_info;
6196
6197 ASSERT_RTNL();
6198
6199 changeupper_info.upper_dev = upper_dev;
6200 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6201 changeupper_info.linking = false;
6202
6203 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6204 &changeupper_info.info);
6205
6206 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6207
6208 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6209 &changeupper_info.info);
6210}
6211EXPORT_SYMBOL(netdev_upper_dev_unlink);
6212
6213/**
6214 * netdev_bonding_info_change - Dispatch event about slave change
6215 * @dev: device
6216 * @bonding_info: info to dispatch
6217 *
6218 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6219 * The caller must hold the RTNL lock.
6220 */
6221void netdev_bonding_info_change(struct net_device *dev,
6222 struct netdev_bonding_info *bonding_info)
6223{
6224 struct netdev_notifier_bonding_info info;
6225
6226 memcpy(&info.bonding_info, bonding_info,
6227 sizeof(struct netdev_bonding_info));
6228 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6229 &info.info);
6230}
6231EXPORT_SYMBOL(netdev_bonding_info_change);
6232
6233static void netdev_adjacent_add_links(struct net_device *dev)
6234{
6235 struct netdev_adjacent *iter;
6236
6237 struct net *net = dev_net(dev);
6238
6239 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6240 if (!net_eq(net, dev_net(iter->dev)))
6241 continue;
6242 netdev_adjacent_sysfs_add(iter->dev, dev,
6243 &iter->dev->adj_list.lower);
6244 netdev_adjacent_sysfs_add(dev, iter->dev,
6245 &dev->adj_list.upper);
6246 }
6247
6248 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6249 if (!net_eq(net, dev_net(iter->dev)))
6250 continue;
6251 netdev_adjacent_sysfs_add(iter->dev, dev,
6252 &iter->dev->adj_list.upper);
6253 netdev_adjacent_sysfs_add(dev, iter->dev,
6254 &dev->adj_list.lower);
6255 }
6256}
6257
6258static void netdev_adjacent_del_links(struct net_device *dev)
6259{
6260 struct netdev_adjacent *iter;
6261
6262 struct net *net = dev_net(dev);
6263
6264 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6265 if (!net_eq(net, dev_net(iter->dev)))
6266 continue;
6267 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6268 &iter->dev->adj_list.lower);
6269 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6270 &dev->adj_list.upper);
6271 }
6272
6273 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6274 if (!net_eq(net, dev_net(iter->dev)))
6275 continue;
6276 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6277 &iter->dev->adj_list.upper);
6278 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6279 &dev->adj_list.lower);
6280 }
6281}
6282
6283void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6284{
6285 struct netdev_adjacent *iter;
6286
6287 struct net *net = dev_net(dev);
6288
6289 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6290 if (!net_eq(net, dev_net(iter->dev)))
6291 continue;
6292 netdev_adjacent_sysfs_del(iter->dev, oldname,
6293 &iter->dev->adj_list.lower);
6294 netdev_adjacent_sysfs_add(iter->dev, dev,
6295 &iter->dev->adj_list.lower);
6296 }
6297
6298 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6299 if (!net_eq(net, dev_net(iter->dev)))
6300 continue;
6301 netdev_adjacent_sysfs_del(iter->dev, oldname,
6302 &iter->dev->adj_list.upper);
6303 netdev_adjacent_sysfs_add(iter->dev, dev,
6304 &iter->dev->adj_list.upper);
6305 }
6306}
6307
6308void *netdev_lower_dev_get_private(struct net_device *dev,
6309 struct net_device *lower_dev)
6310{
6311 struct netdev_adjacent *lower;
6312
6313 if (!lower_dev)
6314 return NULL;
6315 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6316 if (!lower)
6317 return NULL;
6318
6319 return lower->private;
6320}
6321EXPORT_SYMBOL(netdev_lower_dev_get_private);
6322
6323
6324int dev_get_nest_level(struct net_device *dev)
6325{
6326 struct net_device *lower = NULL;
6327 struct list_head *iter;
6328 int max_nest = -1;
6329 int nest;
6330
6331 ASSERT_RTNL();
6332
6333 netdev_for_each_lower_dev(dev, lower, iter) {
6334 nest = dev_get_nest_level(lower);
6335 if (max_nest < nest)
6336 max_nest = nest;
6337 }
6338
6339 return max_nest + 1;
6340}
6341EXPORT_SYMBOL(dev_get_nest_level);
6342
6343/**
6344 * netdev_lower_change - Dispatch event about lower device state change
6345 * @lower_dev: device
6346 * @lower_state_info: state to dispatch
6347 *
6348 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6349 * The caller must hold the RTNL lock.
6350 */
6351void netdev_lower_state_changed(struct net_device *lower_dev,
6352 void *lower_state_info)
6353{
6354 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6355
6356 ASSERT_RTNL();
6357 changelowerstate_info.lower_state_info = lower_state_info;
6358 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6359 &changelowerstate_info.info);
6360}
6361EXPORT_SYMBOL(netdev_lower_state_changed);
6362
6363static void dev_change_rx_flags(struct net_device *dev, int flags)
6364{
6365 const struct net_device_ops *ops = dev->netdev_ops;
6366
6367 if (ops->ndo_change_rx_flags)
6368 ops->ndo_change_rx_flags(dev, flags);
6369}
6370
6371static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6372{
6373 unsigned int old_flags = dev->flags;
6374 kuid_t uid;
6375 kgid_t gid;
6376
6377 ASSERT_RTNL();
6378
6379 dev->flags |= IFF_PROMISC;
6380 dev->promiscuity += inc;
6381 if (dev->promiscuity == 0) {
6382 /*
6383 * Avoid overflow.
6384 * If inc causes overflow, untouch promisc and return error.
6385 */
6386 if (inc < 0)
6387 dev->flags &= ~IFF_PROMISC;
6388 else {
6389 dev->promiscuity -= inc;
6390 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6391 dev->name);
6392 return -EOVERFLOW;
6393 }
6394 }
6395 if (dev->flags != old_flags) {
6396 pr_info("device %s %s promiscuous mode\n",
6397 dev->name,
6398 dev->flags & IFF_PROMISC ? "entered" : "left");
6399 if (audit_enabled) {
6400 current_uid_gid(&uid, &gid);
6401 audit_log(current->audit_context, GFP_ATOMIC,
6402 AUDIT_ANOM_PROMISCUOUS,
6403 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6404 dev->name, (dev->flags & IFF_PROMISC),
6405 (old_flags & IFF_PROMISC),
6406 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6407 from_kuid(&init_user_ns, uid),
6408 from_kgid(&init_user_ns, gid),
6409 audit_get_sessionid(current));
6410 }
6411
6412 dev_change_rx_flags(dev, IFF_PROMISC);
6413 }
6414 if (notify)
6415 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6416 return 0;
6417}
6418
6419/**
6420 * dev_set_promiscuity - update promiscuity count on a device
6421 * @dev: device
6422 * @inc: modifier
6423 *
6424 * Add or remove promiscuity from a device. While the count in the device
6425 * remains above zero the interface remains promiscuous. Once it hits zero
6426 * the device reverts back to normal filtering operation. A negative inc
6427 * value is used to drop promiscuity on the device.
6428 * Return 0 if successful or a negative errno code on error.
6429 */
6430int dev_set_promiscuity(struct net_device *dev, int inc)
6431{
6432 unsigned int old_flags = dev->flags;
6433 int err;
6434
6435 err = __dev_set_promiscuity(dev, inc, true);
6436 if (err < 0)
6437 return err;
6438 if (dev->flags != old_flags)
6439 dev_set_rx_mode(dev);
6440 return err;
6441}
6442EXPORT_SYMBOL(dev_set_promiscuity);
6443
6444static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6445{
6446 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6447
6448 ASSERT_RTNL();
6449
6450 dev->flags |= IFF_ALLMULTI;
6451 dev->allmulti += inc;
6452 if (dev->allmulti == 0) {
6453 /*
6454 * Avoid overflow.
6455 * If inc causes overflow, untouch allmulti and return error.
6456 */
6457 if (inc < 0)
6458 dev->flags &= ~IFF_ALLMULTI;
6459 else {
6460 dev->allmulti -= inc;
6461 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6462 dev->name);
6463 return -EOVERFLOW;
6464 }
6465 }
6466 if (dev->flags ^ old_flags) {
6467 dev_change_rx_flags(dev, IFF_ALLMULTI);
6468 dev_set_rx_mode(dev);
6469 if (notify)
6470 __dev_notify_flags(dev, old_flags,
6471 dev->gflags ^ old_gflags);
6472 }
6473 return 0;
6474}
6475
6476/**
6477 * dev_set_allmulti - update allmulti count on a device
6478 * @dev: device
6479 * @inc: modifier
6480 *
6481 * Add or remove reception of all multicast frames to a device. While the
6482 * count in the device remains above zero the interface remains listening
6483 * to all interfaces. Once it hits zero the device reverts back to normal
6484 * filtering operation. A negative @inc value is used to drop the counter
6485 * when releasing a resource needing all multicasts.
6486 * Return 0 if successful or a negative errno code on error.
6487 */
6488
6489int dev_set_allmulti(struct net_device *dev, int inc)
6490{
6491 return __dev_set_allmulti(dev, inc, true);
6492}
6493EXPORT_SYMBOL(dev_set_allmulti);
6494
6495/*
6496 * Upload unicast and multicast address lists to device and
6497 * configure RX filtering. When the device doesn't support unicast
6498 * filtering it is put in promiscuous mode while unicast addresses
6499 * are present.
6500 */
6501void __dev_set_rx_mode(struct net_device *dev)
6502{
6503 const struct net_device_ops *ops = dev->netdev_ops;
6504
6505 /* dev_open will call this function so the list will stay sane. */
6506 if (!(dev->flags&IFF_UP))
6507 return;
6508
6509 if (!netif_device_present(dev))
6510 return;
6511
6512 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6513 /* Unicast addresses changes may only happen under the rtnl,
6514 * therefore calling __dev_set_promiscuity here is safe.
6515 */
6516 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6517 __dev_set_promiscuity(dev, 1, false);
6518 dev->uc_promisc = true;
6519 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6520 __dev_set_promiscuity(dev, -1, false);
6521 dev->uc_promisc = false;
6522 }
6523 }
6524
6525 if (ops->ndo_set_rx_mode)
6526 ops->ndo_set_rx_mode(dev);
6527}
6528
6529void dev_set_rx_mode(struct net_device *dev)
6530{
6531 netif_addr_lock_bh(dev);
6532 __dev_set_rx_mode(dev);
6533 netif_addr_unlock_bh(dev);
6534}
6535
6536/**
6537 * dev_get_flags - get flags reported to userspace
6538 * @dev: device
6539 *
6540 * Get the combination of flag bits exported through APIs to userspace.
6541 */
6542unsigned int dev_get_flags(const struct net_device *dev)
6543{
6544 unsigned int flags;
6545
6546 flags = (dev->flags & ~(IFF_PROMISC |
6547 IFF_ALLMULTI |
6548 IFF_RUNNING |
6549 IFF_LOWER_UP |
6550 IFF_DORMANT)) |
6551 (dev->gflags & (IFF_PROMISC |
6552 IFF_ALLMULTI));
6553
6554 if (netif_running(dev)) {
6555 if (netif_oper_up(dev))
6556 flags |= IFF_RUNNING;
6557 if (netif_carrier_ok(dev))
6558 flags |= IFF_LOWER_UP;
6559 if (netif_dormant(dev))
6560 flags |= IFF_DORMANT;
6561 }
6562
6563 return flags;
6564}
6565EXPORT_SYMBOL(dev_get_flags);
6566
6567int __dev_change_flags(struct net_device *dev, unsigned int flags)
6568{
6569 unsigned int old_flags = dev->flags;
6570 int ret;
6571
6572 ASSERT_RTNL();
6573
6574 /*
6575 * Set the flags on our device.
6576 */
6577
6578 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6579 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6580 IFF_AUTOMEDIA)) |
6581 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6582 IFF_ALLMULTI));
6583
6584 /*
6585 * Load in the correct multicast list now the flags have changed.
6586 */
6587
6588 if ((old_flags ^ flags) & IFF_MULTICAST)
6589 dev_change_rx_flags(dev, IFF_MULTICAST);
6590
6591 dev_set_rx_mode(dev);
6592
6593 /*
6594 * Have we downed the interface. We handle IFF_UP ourselves
6595 * according to user attempts to set it, rather than blindly
6596 * setting it.
6597 */
6598
6599 ret = 0;
6600 if ((old_flags ^ flags) & IFF_UP)
6601 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6602
6603 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6604 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6605 unsigned int old_flags = dev->flags;
6606
6607 dev->gflags ^= IFF_PROMISC;
6608
6609 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6610 if (dev->flags != old_flags)
6611 dev_set_rx_mode(dev);
6612 }
6613
6614 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6615 * is important. Some (broken) drivers set IFF_PROMISC, when
6616 * IFF_ALLMULTI is requested not asking us and not reporting.
6617 */
6618 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6619 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6620
6621 dev->gflags ^= IFF_ALLMULTI;
6622 __dev_set_allmulti(dev, inc, false);
6623 }
6624
6625 return ret;
6626}
6627
6628void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6629 unsigned int gchanges)
6630{
6631 unsigned int changes = dev->flags ^ old_flags;
6632
6633 if (gchanges)
6634 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6635
6636 if (changes & IFF_UP) {
6637 if (dev->flags & IFF_UP)
6638 call_netdevice_notifiers(NETDEV_UP, dev);
6639 else
6640 call_netdevice_notifiers(NETDEV_DOWN, dev);
6641 }
6642
6643 if (dev->flags & IFF_UP &&
6644 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6645 struct netdev_notifier_change_info change_info;
6646
6647 change_info.flags_changed = changes;
6648 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6649 &change_info.info);
6650 }
6651}
6652
6653/**
6654 * dev_change_flags - change device settings
6655 * @dev: device
6656 * @flags: device state flags
6657 *
6658 * Change settings on device based state flags. The flags are
6659 * in the userspace exported format.
6660 */
6661int dev_change_flags(struct net_device *dev, unsigned int flags)
6662{
6663 int ret;
6664 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6665
6666 ret = __dev_change_flags(dev, flags);
6667 if (ret < 0)
6668 return ret;
6669
6670 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6671 __dev_notify_flags(dev, old_flags, changes);
6672 return ret;
6673}
6674EXPORT_SYMBOL(dev_change_flags);
6675
6676static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6677{
6678 const struct net_device_ops *ops = dev->netdev_ops;
6679
6680 if (ops->ndo_change_mtu)
6681 return ops->ndo_change_mtu(dev, new_mtu);
6682
6683 dev->mtu = new_mtu;
6684 return 0;
6685}
6686
6687/**
6688 * dev_set_mtu - Change maximum transfer unit
6689 * @dev: device
6690 * @new_mtu: new transfer unit
6691 *
6692 * Change the maximum transfer size of the network device.
6693 */
6694int dev_set_mtu(struct net_device *dev, int new_mtu)
6695{
6696 int err, orig_mtu;
6697
6698 if (new_mtu == dev->mtu)
6699 return 0;
6700
6701 /* MTU must be positive, and in range */
6702 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6703 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6704 dev->name, new_mtu, dev->min_mtu);
6705 return -EINVAL;
6706 }
6707
6708 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6709 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6710 dev->name, new_mtu, dev->max_mtu);
6711 return -EINVAL;
6712 }
6713
6714 if (!netif_device_present(dev))
6715 return -ENODEV;
6716
6717 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6718 err = notifier_to_errno(err);
6719 if (err)
6720 return err;
6721
6722 orig_mtu = dev->mtu;
6723 err = __dev_set_mtu(dev, new_mtu);
6724
6725 if (!err) {
6726 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6727 err = notifier_to_errno(err);
6728 if (err) {
6729 /* setting mtu back and notifying everyone again,
6730 * so that they have a chance to revert changes.
6731 */
6732 __dev_set_mtu(dev, orig_mtu);
6733 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6734 }
6735 }
6736 return err;
6737}
6738EXPORT_SYMBOL(dev_set_mtu);
6739
6740/**
6741 * dev_set_group - Change group this device belongs to
6742 * @dev: device
6743 * @new_group: group this device should belong to
6744 */
6745void dev_set_group(struct net_device *dev, int new_group)
6746{
6747 dev->group = new_group;
6748}
6749EXPORT_SYMBOL(dev_set_group);
6750
6751/**
6752 * dev_set_mac_address - Change Media Access Control Address
6753 * @dev: device
6754 * @sa: new address
6755 *
6756 * Change the hardware (MAC) address of the device
6757 */
6758int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6759{
6760 const struct net_device_ops *ops = dev->netdev_ops;
6761 int err;
6762
6763 if (!ops->ndo_set_mac_address)
6764 return -EOPNOTSUPP;
6765 if (sa->sa_family != dev->type)
6766 return -EINVAL;
6767 if (!netif_device_present(dev))
6768 return -ENODEV;
6769 err = ops->ndo_set_mac_address(dev, sa);
6770 if (err)
6771 return err;
6772 dev->addr_assign_type = NET_ADDR_SET;
6773 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6774 add_device_randomness(dev->dev_addr, dev->addr_len);
6775 return 0;
6776}
6777EXPORT_SYMBOL(dev_set_mac_address);
6778
6779/**
6780 * dev_change_carrier - Change device carrier
6781 * @dev: device
6782 * @new_carrier: new value
6783 *
6784 * Change device carrier
6785 */
6786int dev_change_carrier(struct net_device *dev, bool new_carrier)
6787{
6788 const struct net_device_ops *ops = dev->netdev_ops;
6789
6790 if (!ops->ndo_change_carrier)
6791 return -EOPNOTSUPP;
6792 if (!netif_device_present(dev))
6793 return -ENODEV;
6794 return ops->ndo_change_carrier(dev, new_carrier);
6795}
6796EXPORT_SYMBOL(dev_change_carrier);
6797
6798/**
6799 * dev_get_phys_port_id - Get device physical port ID
6800 * @dev: device
6801 * @ppid: port ID
6802 *
6803 * Get device physical port ID
6804 */
6805int dev_get_phys_port_id(struct net_device *dev,
6806 struct netdev_phys_item_id *ppid)
6807{
6808 const struct net_device_ops *ops = dev->netdev_ops;
6809
6810 if (!ops->ndo_get_phys_port_id)
6811 return -EOPNOTSUPP;
6812 return ops->ndo_get_phys_port_id(dev, ppid);
6813}
6814EXPORT_SYMBOL(dev_get_phys_port_id);
6815
6816/**
6817 * dev_get_phys_port_name - Get device physical port name
6818 * @dev: device
6819 * @name: port name
6820 * @len: limit of bytes to copy to name
6821 *
6822 * Get device physical port name
6823 */
6824int dev_get_phys_port_name(struct net_device *dev,
6825 char *name, size_t len)
6826{
6827 const struct net_device_ops *ops = dev->netdev_ops;
6828
6829 if (!ops->ndo_get_phys_port_name)
6830 return -EOPNOTSUPP;
6831 return ops->ndo_get_phys_port_name(dev, name, len);
6832}
6833EXPORT_SYMBOL(dev_get_phys_port_name);
6834
6835/**
6836 * dev_change_proto_down - update protocol port state information
6837 * @dev: device
6838 * @proto_down: new value
6839 *
6840 * This info can be used by switch drivers to set the phys state of the
6841 * port.
6842 */
6843int dev_change_proto_down(struct net_device *dev, bool proto_down)
6844{
6845 const struct net_device_ops *ops = dev->netdev_ops;
6846
6847 if (!ops->ndo_change_proto_down)
6848 return -EOPNOTSUPP;
6849 if (!netif_device_present(dev))
6850 return -ENODEV;
6851 return ops->ndo_change_proto_down(dev, proto_down);
6852}
6853EXPORT_SYMBOL(dev_change_proto_down);
6854
6855/**
6856 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6857 * @dev: device
6858 * @extack: netlink extended ack
6859 * @fd: new program fd or negative value to clear
6860 * @flags: xdp-related flags
6861 *
6862 * Set or clear a bpf program for a device
6863 */
6864int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6865 int fd, u32 flags)
6866{
6867 int (*xdp_op)(struct net_device *dev, struct netdev_xdp *xdp);
6868 const struct net_device_ops *ops = dev->netdev_ops;
6869 struct bpf_prog *prog = NULL;
6870 struct netdev_xdp xdp;
6871 int err;
6872
6873 ASSERT_RTNL();
6874
6875 xdp_op = ops->ndo_xdp;
6876 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
6877 xdp_op = generic_xdp_install;
6878
6879 if (fd >= 0) {
6880 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6881 memset(&xdp, 0, sizeof(xdp));
6882 xdp.command = XDP_QUERY_PROG;
6883
6884 err = xdp_op(dev, &xdp);
6885 if (err < 0)
6886 return err;
6887 if (xdp.prog_attached)
6888 return -EBUSY;
6889 }
6890
6891 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6892 if (IS_ERR(prog))
6893 return PTR_ERR(prog);
6894 }
6895
6896 memset(&xdp, 0, sizeof(xdp));
6897 xdp.command = XDP_SETUP_PROG;
6898 xdp.extack = extack;
6899 xdp.prog = prog;
6900
6901 err = xdp_op(dev, &xdp);
6902 if (err < 0 && prog)
6903 bpf_prog_put(prog);
6904
6905 return err;
6906}
6907
6908/**
6909 * dev_new_index - allocate an ifindex
6910 * @net: the applicable net namespace
6911 *
6912 * Returns a suitable unique value for a new device interface
6913 * number. The caller must hold the rtnl semaphore or the
6914 * dev_base_lock to be sure it remains unique.
6915 */
6916static int dev_new_index(struct net *net)
6917{
6918 int ifindex = net->ifindex;
6919
6920 for (;;) {
6921 if (++ifindex <= 0)
6922 ifindex = 1;
6923 if (!__dev_get_by_index(net, ifindex))
6924 return net->ifindex = ifindex;
6925 }
6926}
6927
6928/* Delayed registration/unregisteration */
6929static LIST_HEAD(net_todo_list);
6930DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6931
6932static void net_set_todo(struct net_device *dev)
6933{
6934 list_add_tail(&dev->todo_list, &net_todo_list);
6935 dev_net(dev)->dev_unreg_count++;
6936}
6937
6938static void rollback_registered_many(struct list_head *head)
6939{
6940 struct net_device *dev, *tmp;
6941 LIST_HEAD(close_head);
6942
6943 BUG_ON(dev_boot_phase);
6944 ASSERT_RTNL();
6945
6946 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6947 /* Some devices call without registering
6948 * for initialization unwind. Remove those
6949 * devices and proceed with the remaining.
6950 */
6951 if (dev->reg_state == NETREG_UNINITIALIZED) {
6952 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6953 dev->name, dev);
6954
6955 WARN_ON(1);
6956 list_del(&dev->unreg_list);
6957 continue;
6958 }
6959 dev->dismantle = true;
6960 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6961 }
6962
6963 /* If device is running, close it first. */
6964 list_for_each_entry(dev, head, unreg_list)
6965 list_add_tail(&dev->close_list, &close_head);
6966 dev_close_many(&close_head, true);
6967
6968 list_for_each_entry(dev, head, unreg_list) {
6969 /* And unlink it from device chain. */
6970 unlist_netdevice(dev);
6971
6972 dev->reg_state = NETREG_UNREGISTERING;
6973 }
6974 flush_all_backlogs();
6975
6976 synchronize_net();
6977
6978 list_for_each_entry(dev, head, unreg_list) {
6979 struct sk_buff *skb = NULL;
6980
6981 /* Shutdown queueing discipline. */
6982 dev_shutdown(dev);
6983
6984
6985 /* Notify protocols, that we are about to destroy
6986 * this device. They should clean all the things.
6987 */
6988 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6989
6990 if (!dev->rtnl_link_ops ||
6991 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6992 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6993 GFP_KERNEL);
6994
6995 /*
6996 * Flush the unicast and multicast chains
6997 */
6998 dev_uc_flush(dev);
6999 dev_mc_flush(dev);
7000
7001 if (dev->netdev_ops->ndo_uninit)
7002 dev->netdev_ops->ndo_uninit(dev);
7003
7004 if (skb)
7005 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7006
7007 /* Notifier chain MUST detach us all upper devices. */
7008 WARN_ON(netdev_has_any_upper_dev(dev));
7009 WARN_ON(netdev_has_any_lower_dev(dev));
7010
7011 /* Remove entries from kobject tree */
7012 netdev_unregister_kobject(dev);
7013#ifdef CONFIG_XPS
7014 /* Remove XPS queueing entries */
7015 netif_reset_xps_queues_gt(dev, 0);
7016#endif
7017 }
7018
7019 synchronize_net();
7020
7021 list_for_each_entry(dev, head, unreg_list)
7022 dev_put(dev);
7023}
7024
7025static void rollback_registered(struct net_device *dev)
7026{
7027 LIST_HEAD(single);
7028
7029 list_add(&dev->unreg_list, &single);
7030 rollback_registered_many(&single);
7031 list_del(&single);
7032}
7033
7034static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7035 struct net_device *upper, netdev_features_t features)
7036{
7037 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7038 netdev_features_t feature;
7039 int feature_bit;
7040
7041 for_each_netdev_feature(&upper_disables, feature_bit) {
7042 feature = __NETIF_F_BIT(feature_bit);
7043 if (!(upper->wanted_features & feature)
7044 && (features & feature)) {
7045 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7046 &feature, upper->name);
7047 features &= ~feature;
7048 }
7049 }
7050
7051 return features;
7052}
7053
7054static void netdev_sync_lower_features(struct net_device *upper,
7055 struct net_device *lower, netdev_features_t features)
7056{
7057 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7058 netdev_features_t feature;
7059 int feature_bit;
7060
7061 for_each_netdev_feature(&upper_disables, feature_bit) {
7062 feature = __NETIF_F_BIT(feature_bit);
7063 if (!(features & feature) && (lower->features & feature)) {
7064 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7065 &feature, lower->name);
7066 lower->wanted_features &= ~feature;
7067 netdev_update_features(lower);
7068
7069 if (unlikely(lower->features & feature))
7070 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7071 &feature, lower->name);
7072 }
7073 }
7074}
7075
7076static netdev_features_t netdev_fix_features(struct net_device *dev,
7077 netdev_features_t features)
7078{
7079 /* Fix illegal checksum combinations */
7080 if ((features & NETIF_F_HW_CSUM) &&
7081 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7082 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7083 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7084 }
7085
7086 /* TSO requires that SG is present as well. */
7087 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7088 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7089 features &= ~NETIF_F_ALL_TSO;
7090 }
7091
7092 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7093 !(features & NETIF_F_IP_CSUM)) {
7094 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7095 features &= ~NETIF_F_TSO;
7096 features &= ~NETIF_F_TSO_ECN;
7097 }
7098
7099 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7100 !(features & NETIF_F_IPV6_CSUM)) {
7101 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7102 features &= ~NETIF_F_TSO6;
7103 }
7104
7105 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7106 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7107 features &= ~NETIF_F_TSO_MANGLEID;
7108
7109 /* TSO ECN requires that TSO is present as well. */
7110 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7111 features &= ~NETIF_F_TSO_ECN;
7112
7113 /* Software GSO depends on SG. */
7114 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7115 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7116 features &= ~NETIF_F_GSO;
7117 }
7118
7119 /* UFO needs SG and checksumming */
7120 if (features & NETIF_F_UFO) {
7121 /* maybe split UFO into V4 and V6? */
7122 if (!(features & NETIF_F_HW_CSUM) &&
7123 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7124 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7125 netdev_dbg(dev,
7126 "Dropping NETIF_F_UFO since no checksum offload features.\n");
7127 features &= ~NETIF_F_UFO;
7128 }
7129
7130 if (!(features & NETIF_F_SG)) {
7131 netdev_dbg(dev,
7132 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7133 features &= ~NETIF_F_UFO;
7134 }
7135 }
7136
7137 /* GSO partial features require GSO partial be set */
7138 if ((features & dev->gso_partial_features) &&
7139 !(features & NETIF_F_GSO_PARTIAL)) {
7140 netdev_dbg(dev,
7141 "Dropping partially supported GSO features since no GSO partial.\n");
7142 features &= ~dev->gso_partial_features;
7143 }
7144
7145 return features;
7146}
7147
7148int __netdev_update_features(struct net_device *dev)
7149{
7150 struct net_device *upper, *lower;
7151 netdev_features_t features;
7152 struct list_head *iter;
7153 int err = -1;
7154
7155 ASSERT_RTNL();
7156
7157 features = netdev_get_wanted_features(dev);
7158
7159 if (dev->netdev_ops->ndo_fix_features)
7160 features = dev->netdev_ops->ndo_fix_features(dev, features);
7161
7162 /* driver might be less strict about feature dependencies */
7163 features = netdev_fix_features(dev, features);
7164
7165 /* some features can't be enabled if they're off an an upper device */
7166 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7167 features = netdev_sync_upper_features(dev, upper, features);
7168
7169 if (dev->features == features)
7170 goto sync_lower;
7171
7172 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7173 &dev->features, &features);
7174
7175 if (dev->netdev_ops->ndo_set_features)
7176 err = dev->netdev_ops->ndo_set_features(dev, features);
7177 else
7178 err = 0;
7179
7180 if (unlikely(err < 0)) {
7181 netdev_err(dev,
7182 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7183 err, &features, &dev->features);
7184 /* return non-0 since some features might have changed and
7185 * it's better to fire a spurious notification than miss it
7186 */
7187 return -1;
7188 }
7189
7190sync_lower:
7191 /* some features must be disabled on lower devices when disabled
7192 * on an upper device (think: bonding master or bridge)
7193 */
7194 netdev_for_each_lower_dev(dev, lower, iter)
7195 netdev_sync_lower_features(dev, lower, features);
7196
7197 if (!err)
7198 dev->features = features;
7199
7200 return err < 0 ? 0 : 1;
7201}
7202
7203/**
7204 * netdev_update_features - recalculate device features
7205 * @dev: the device to check
7206 *
7207 * Recalculate dev->features set and send notifications if it
7208 * has changed. Should be called after driver or hardware dependent
7209 * conditions might have changed that influence the features.
7210 */
7211void netdev_update_features(struct net_device *dev)
7212{
7213 if (__netdev_update_features(dev))
7214 netdev_features_change(dev);
7215}
7216EXPORT_SYMBOL(netdev_update_features);
7217
7218/**
7219 * netdev_change_features - recalculate device features
7220 * @dev: the device to check
7221 *
7222 * Recalculate dev->features set and send notifications even
7223 * if they have not changed. Should be called instead of
7224 * netdev_update_features() if also dev->vlan_features might
7225 * have changed to allow the changes to be propagated to stacked
7226 * VLAN devices.
7227 */
7228void netdev_change_features(struct net_device *dev)
7229{
7230 __netdev_update_features(dev);
7231 netdev_features_change(dev);
7232}
7233EXPORT_SYMBOL(netdev_change_features);
7234
7235/**
7236 * netif_stacked_transfer_operstate - transfer operstate
7237 * @rootdev: the root or lower level device to transfer state from
7238 * @dev: the device to transfer operstate to
7239 *
7240 * Transfer operational state from root to device. This is normally
7241 * called when a stacking relationship exists between the root
7242 * device and the device(a leaf device).
7243 */
7244void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7245 struct net_device *dev)
7246{
7247 if (rootdev->operstate == IF_OPER_DORMANT)
7248 netif_dormant_on(dev);
7249 else
7250 netif_dormant_off(dev);
7251
7252 if (netif_carrier_ok(rootdev))
7253 netif_carrier_on(dev);
7254 else
7255 netif_carrier_off(dev);
7256}
7257EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7258
7259#ifdef CONFIG_SYSFS
7260static int netif_alloc_rx_queues(struct net_device *dev)
7261{
7262 unsigned int i, count = dev->num_rx_queues;
7263 struct netdev_rx_queue *rx;
7264 size_t sz = count * sizeof(*rx);
7265
7266 BUG_ON(count < 1);
7267
7268 rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7269 if (!rx)
7270 return -ENOMEM;
7271
7272 dev->_rx = rx;
7273
7274 for (i = 0; i < count; i++)
7275 rx[i].dev = dev;
7276 return 0;
7277}
7278#endif
7279
7280static void netdev_init_one_queue(struct net_device *dev,
7281 struct netdev_queue *queue, void *_unused)
7282{
7283 /* Initialize queue lock */
7284 spin_lock_init(&queue->_xmit_lock);
7285 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7286 queue->xmit_lock_owner = -1;
7287 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7288 queue->dev = dev;
7289#ifdef CONFIG_BQL
7290 dql_init(&queue->dql, HZ);
7291#endif
7292}
7293
7294static void netif_free_tx_queues(struct net_device *dev)
7295{
7296 kvfree(dev->_tx);
7297}
7298
7299static int netif_alloc_netdev_queues(struct net_device *dev)
7300{
7301 unsigned int count = dev->num_tx_queues;
7302 struct netdev_queue *tx;
7303 size_t sz = count * sizeof(*tx);
7304
7305 if (count < 1 || count > 0xffff)
7306 return -EINVAL;
7307
7308 tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7309 if (!tx)
7310 return -ENOMEM;
7311
7312 dev->_tx = tx;
7313
7314 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7315 spin_lock_init(&dev->tx_global_lock);
7316
7317 return 0;
7318}
7319
7320void netif_tx_stop_all_queues(struct net_device *dev)
7321{
7322 unsigned int i;
7323
7324 for (i = 0; i < dev->num_tx_queues; i++) {
7325 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7326
7327 netif_tx_stop_queue(txq);
7328 }
7329}
7330EXPORT_SYMBOL(netif_tx_stop_all_queues);
7331
7332/**
7333 * register_netdevice - register a network device
7334 * @dev: device to register
7335 *
7336 * Take a completed network device structure and add it to the kernel
7337 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7338 * chain. 0 is returned on success. A negative errno code is returned
7339 * on a failure to set up the device, or if the name is a duplicate.
7340 *
7341 * Callers must hold the rtnl semaphore. You may want
7342 * register_netdev() instead of this.
7343 *
7344 * BUGS:
7345 * The locking appears insufficient to guarantee two parallel registers
7346 * will not get the same name.
7347 */
7348
7349int register_netdevice(struct net_device *dev)
7350{
7351 int ret;
7352 struct net *net = dev_net(dev);
7353
7354 BUG_ON(dev_boot_phase);
7355 ASSERT_RTNL();
7356
7357 might_sleep();
7358
7359 /* When net_device's are persistent, this will be fatal. */
7360 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7361 BUG_ON(!net);
7362
7363 spin_lock_init(&dev->addr_list_lock);
7364 netdev_set_addr_lockdep_class(dev);
7365
7366 ret = dev_get_valid_name(net, dev, dev->name);
7367 if (ret < 0)
7368 goto out;
7369
7370 /* Init, if this function is available */
7371 if (dev->netdev_ops->ndo_init) {
7372 ret = dev->netdev_ops->ndo_init(dev);
7373 if (ret) {
7374 if (ret > 0)
7375 ret = -EIO;
7376 goto out;
7377 }
7378 }
7379
7380 if (((dev->hw_features | dev->features) &
7381 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7382 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7383 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7384 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7385 ret = -EINVAL;
7386 goto err_uninit;
7387 }
7388
7389 ret = -EBUSY;
7390 if (!dev->ifindex)
7391 dev->ifindex = dev_new_index(net);
7392 else if (__dev_get_by_index(net, dev->ifindex))
7393 goto err_uninit;
7394
7395 /* Transfer changeable features to wanted_features and enable
7396 * software offloads (GSO and GRO).
7397 */
7398 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7399 dev->features |= NETIF_F_SOFT_FEATURES;
7400 dev->wanted_features = dev->features & dev->hw_features;
7401
7402 if (!(dev->flags & IFF_LOOPBACK))
7403 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7404
7405 /* If IPv4 TCP segmentation offload is supported we should also
7406 * allow the device to enable segmenting the frame with the option
7407 * of ignoring a static IP ID value. This doesn't enable the
7408 * feature itself but allows the user to enable it later.
7409 */
7410 if (dev->hw_features & NETIF_F_TSO)
7411 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7412 if (dev->vlan_features & NETIF_F_TSO)
7413 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7414 if (dev->mpls_features & NETIF_F_TSO)
7415 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7416 if (dev->hw_enc_features & NETIF_F_TSO)
7417 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7418
7419 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7420 */
7421 dev->vlan_features |= NETIF_F_HIGHDMA;
7422
7423 /* Make NETIF_F_SG inheritable to tunnel devices.
7424 */
7425 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7426
7427 /* Make NETIF_F_SG inheritable to MPLS.
7428 */
7429 dev->mpls_features |= NETIF_F_SG;
7430
7431 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7432 ret = notifier_to_errno(ret);
7433 if (ret)
7434 goto err_uninit;
7435
7436 ret = netdev_register_kobject(dev);
7437 if (ret)
7438 goto err_uninit;
7439 dev->reg_state = NETREG_REGISTERED;
7440
7441 __netdev_update_features(dev);
7442
7443 /*
7444 * Default initial state at registry is that the
7445 * device is present.
7446 */
7447
7448 set_bit(__LINK_STATE_PRESENT, &dev->state);
7449
7450 linkwatch_init_dev(dev);
7451
7452 dev_init_scheduler(dev);
7453 dev_hold(dev);
7454 list_netdevice(dev);
7455 add_device_randomness(dev->dev_addr, dev->addr_len);
7456
7457 /* If the device has permanent device address, driver should
7458 * set dev_addr and also addr_assign_type should be set to
7459 * NET_ADDR_PERM (default value).
7460 */
7461 if (dev->addr_assign_type == NET_ADDR_PERM)
7462 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7463
7464 /* Notify protocols, that a new device appeared. */
7465 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7466 ret = notifier_to_errno(ret);
7467 if (ret) {
7468 rollback_registered(dev);
7469 dev->reg_state = NETREG_UNREGISTERED;
7470 }
7471 /*
7472 * Prevent userspace races by waiting until the network
7473 * device is fully setup before sending notifications.
7474 */
7475 if (!dev->rtnl_link_ops ||
7476 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7477 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7478
7479out:
7480 return ret;
7481
7482err_uninit:
7483 if (dev->netdev_ops->ndo_uninit)
7484 dev->netdev_ops->ndo_uninit(dev);
7485 goto out;
7486}
7487EXPORT_SYMBOL(register_netdevice);
7488
7489/**
7490 * init_dummy_netdev - init a dummy network device for NAPI
7491 * @dev: device to init
7492 *
7493 * This takes a network device structure and initialize the minimum
7494 * amount of fields so it can be used to schedule NAPI polls without
7495 * registering a full blown interface. This is to be used by drivers
7496 * that need to tie several hardware interfaces to a single NAPI
7497 * poll scheduler due to HW limitations.
7498 */
7499int init_dummy_netdev(struct net_device *dev)
7500{
7501 /* Clear everything. Note we don't initialize spinlocks
7502 * are they aren't supposed to be taken by any of the
7503 * NAPI code and this dummy netdev is supposed to be
7504 * only ever used for NAPI polls
7505 */
7506 memset(dev, 0, sizeof(struct net_device));
7507
7508 /* make sure we BUG if trying to hit standard
7509 * register/unregister code path
7510 */
7511 dev->reg_state = NETREG_DUMMY;
7512
7513 /* NAPI wants this */
7514 INIT_LIST_HEAD(&dev->napi_list);
7515
7516 /* a dummy interface is started by default */
7517 set_bit(__LINK_STATE_PRESENT, &dev->state);
7518 set_bit(__LINK_STATE_START, &dev->state);
7519
7520 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7521 * because users of this 'device' dont need to change
7522 * its refcount.
7523 */
7524
7525 return 0;
7526}
7527EXPORT_SYMBOL_GPL(init_dummy_netdev);
7528
7529
7530/**
7531 * register_netdev - register a network device
7532 * @dev: device to register
7533 *
7534 * Take a completed network device structure and add it to the kernel
7535 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7536 * chain. 0 is returned on success. A negative errno code is returned
7537 * on a failure to set up the device, or if the name is a duplicate.
7538 *
7539 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7540 * and expands the device name if you passed a format string to
7541 * alloc_netdev.
7542 */
7543int register_netdev(struct net_device *dev)
7544{
7545 int err;
7546
7547 rtnl_lock();
7548 err = register_netdevice(dev);
7549 rtnl_unlock();
7550 return err;
7551}
7552EXPORT_SYMBOL(register_netdev);
7553
7554int netdev_refcnt_read(const struct net_device *dev)
7555{
7556 int i, refcnt = 0;
7557
7558 for_each_possible_cpu(i)
7559 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7560 return refcnt;
7561}
7562EXPORT_SYMBOL(netdev_refcnt_read);
7563
7564/**
7565 * netdev_wait_allrefs - wait until all references are gone.
7566 * @dev: target net_device
7567 *
7568 * This is called when unregistering network devices.
7569 *
7570 * Any protocol or device that holds a reference should register
7571 * for netdevice notification, and cleanup and put back the
7572 * reference if they receive an UNREGISTER event.
7573 * We can get stuck here if buggy protocols don't correctly
7574 * call dev_put.
7575 */
7576static void netdev_wait_allrefs(struct net_device *dev)
7577{
7578 unsigned long rebroadcast_time, warning_time;
7579 int refcnt;
7580
7581 linkwatch_forget_dev(dev);
7582
7583 rebroadcast_time = warning_time = jiffies;
7584 refcnt = netdev_refcnt_read(dev);
7585
7586 while (refcnt != 0) {
7587 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7588 rtnl_lock();
7589
7590 /* Rebroadcast unregister notification */
7591 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7592
7593 __rtnl_unlock();
7594 rcu_barrier();
7595 rtnl_lock();
7596
7597 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7598 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7599 &dev->state)) {
7600 /* We must not have linkwatch events
7601 * pending on unregister. If this
7602 * happens, we simply run the queue
7603 * unscheduled, resulting in a noop
7604 * for this device.
7605 */
7606 linkwatch_run_queue();
7607 }
7608
7609 __rtnl_unlock();
7610
7611 rebroadcast_time = jiffies;
7612 }
7613
7614 msleep(250);
7615
7616 refcnt = netdev_refcnt_read(dev);
7617
7618 if (time_after(jiffies, warning_time + 10 * HZ)) {
7619 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7620 dev->name, refcnt);
7621 warning_time = jiffies;
7622 }
7623 }
7624}
7625
7626/* The sequence is:
7627 *
7628 * rtnl_lock();
7629 * ...
7630 * register_netdevice(x1);
7631 * register_netdevice(x2);
7632 * ...
7633 * unregister_netdevice(y1);
7634 * unregister_netdevice(y2);
7635 * ...
7636 * rtnl_unlock();
7637 * free_netdev(y1);
7638 * free_netdev(y2);
7639 *
7640 * We are invoked by rtnl_unlock().
7641 * This allows us to deal with problems:
7642 * 1) We can delete sysfs objects which invoke hotplug
7643 * without deadlocking with linkwatch via keventd.
7644 * 2) Since we run with the RTNL semaphore not held, we can sleep
7645 * safely in order to wait for the netdev refcnt to drop to zero.
7646 *
7647 * We must not return until all unregister events added during
7648 * the interval the lock was held have been completed.
7649 */
7650void netdev_run_todo(void)
7651{
7652 struct list_head list;
7653
7654 /* Snapshot list, allow later requests */
7655 list_replace_init(&net_todo_list, &list);
7656
7657 __rtnl_unlock();
7658
7659
7660 /* Wait for rcu callbacks to finish before next phase */
7661 if (!list_empty(&list))
7662 rcu_barrier();
7663
7664 while (!list_empty(&list)) {
7665 struct net_device *dev
7666 = list_first_entry(&list, struct net_device, todo_list);
7667 list_del(&dev->todo_list);
7668
7669 rtnl_lock();
7670 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7671 __rtnl_unlock();
7672
7673 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7674 pr_err("network todo '%s' but state %d\n",
7675 dev->name, dev->reg_state);
7676 dump_stack();
7677 continue;
7678 }
7679
7680 dev->reg_state = NETREG_UNREGISTERED;
7681
7682 netdev_wait_allrefs(dev);
7683
7684 /* paranoia */
7685 BUG_ON(netdev_refcnt_read(dev));
7686 BUG_ON(!list_empty(&dev->ptype_all));
7687 BUG_ON(!list_empty(&dev->ptype_specific));
7688 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7689 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7690 WARN_ON(dev->dn_ptr);
7691
7692 if (dev->destructor)
7693 dev->destructor(dev);
7694
7695 /* Report a network device has been unregistered */
7696 rtnl_lock();
7697 dev_net(dev)->dev_unreg_count--;
7698 __rtnl_unlock();
7699 wake_up(&netdev_unregistering_wq);
7700
7701 /* Free network device */
7702 kobject_put(&dev->dev.kobj);
7703 }
7704}
7705
7706/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7707 * all the same fields in the same order as net_device_stats, with only
7708 * the type differing, but rtnl_link_stats64 may have additional fields
7709 * at the end for newer counters.
7710 */
7711void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7712 const struct net_device_stats *netdev_stats)
7713{
7714#if BITS_PER_LONG == 64
7715 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7716 memcpy(stats64, netdev_stats, sizeof(*stats64));
7717 /* zero out counters that only exist in rtnl_link_stats64 */
7718 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7719 sizeof(*stats64) - sizeof(*netdev_stats));
7720#else
7721 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7722 const unsigned long *src = (const unsigned long *)netdev_stats;
7723 u64 *dst = (u64 *)stats64;
7724
7725 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7726 for (i = 0; i < n; i++)
7727 dst[i] = src[i];
7728 /* zero out counters that only exist in rtnl_link_stats64 */
7729 memset((char *)stats64 + n * sizeof(u64), 0,
7730 sizeof(*stats64) - n * sizeof(u64));
7731#endif
7732}
7733EXPORT_SYMBOL(netdev_stats_to_stats64);
7734
7735/**
7736 * dev_get_stats - get network device statistics
7737 * @dev: device to get statistics from
7738 * @storage: place to store stats
7739 *
7740 * Get network statistics from device. Return @storage.
7741 * The device driver may provide its own method by setting
7742 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7743 * otherwise the internal statistics structure is used.
7744 */
7745struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7746 struct rtnl_link_stats64 *storage)
7747{
7748 const struct net_device_ops *ops = dev->netdev_ops;
7749
7750 if (ops->ndo_get_stats64) {
7751 memset(storage, 0, sizeof(*storage));
7752 ops->ndo_get_stats64(dev, storage);
7753 } else if (ops->ndo_get_stats) {
7754 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7755 } else {
7756 netdev_stats_to_stats64(storage, &dev->stats);
7757 }
7758 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7759 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7760 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7761 return storage;
7762}
7763EXPORT_SYMBOL(dev_get_stats);
7764
7765struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7766{
7767 struct netdev_queue *queue = dev_ingress_queue(dev);
7768
7769#ifdef CONFIG_NET_CLS_ACT
7770 if (queue)
7771 return queue;
7772 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7773 if (!queue)
7774 return NULL;
7775 netdev_init_one_queue(dev, queue, NULL);
7776 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7777 queue->qdisc_sleeping = &noop_qdisc;
7778 rcu_assign_pointer(dev->ingress_queue, queue);
7779#endif
7780 return queue;
7781}
7782
7783static const struct ethtool_ops default_ethtool_ops;
7784
7785void netdev_set_default_ethtool_ops(struct net_device *dev,
7786 const struct ethtool_ops *ops)
7787{
7788 if (dev->ethtool_ops == &default_ethtool_ops)
7789 dev->ethtool_ops = ops;
7790}
7791EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7792
7793void netdev_freemem(struct net_device *dev)
7794{
7795 char *addr = (char *)dev - dev->padded;
7796
7797 kvfree(addr);
7798}
7799
7800/**
7801 * alloc_netdev_mqs - allocate network device
7802 * @sizeof_priv: size of private data to allocate space for
7803 * @name: device name format string
7804 * @name_assign_type: origin of device name
7805 * @setup: callback to initialize device
7806 * @txqs: the number of TX subqueues to allocate
7807 * @rxqs: the number of RX subqueues to allocate
7808 *
7809 * Allocates a struct net_device with private data area for driver use
7810 * and performs basic initialization. Also allocates subqueue structs
7811 * for each queue on the device.
7812 */
7813struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7814 unsigned char name_assign_type,
7815 void (*setup)(struct net_device *),
7816 unsigned int txqs, unsigned int rxqs)
7817{
7818 struct net_device *dev;
7819 size_t alloc_size;
7820 struct net_device *p;
7821
7822 BUG_ON(strlen(name) >= sizeof(dev->name));
7823
7824 if (txqs < 1) {
7825 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7826 return NULL;
7827 }
7828
7829#ifdef CONFIG_SYSFS
7830 if (rxqs < 1) {
7831 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7832 return NULL;
7833 }
7834#endif
7835
7836 alloc_size = sizeof(struct net_device);
7837 if (sizeof_priv) {
7838 /* ensure 32-byte alignment of private area */
7839 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7840 alloc_size += sizeof_priv;
7841 }
7842 /* ensure 32-byte alignment of whole construct */
7843 alloc_size += NETDEV_ALIGN - 1;
7844
7845 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
7846 if (!p)
7847 return NULL;
7848
7849 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7850 dev->padded = (char *)dev - (char *)p;
7851
7852 dev->pcpu_refcnt = alloc_percpu(int);
7853 if (!dev->pcpu_refcnt)
7854 goto free_dev;
7855
7856 if (dev_addr_init(dev))
7857 goto free_pcpu;
7858
7859 dev_mc_init(dev);
7860 dev_uc_init(dev);
7861
7862 dev_net_set(dev, &init_net);
7863
7864 dev->gso_max_size = GSO_MAX_SIZE;
7865 dev->gso_max_segs = GSO_MAX_SEGS;
7866
7867 INIT_LIST_HEAD(&dev->napi_list);
7868 INIT_LIST_HEAD(&dev->unreg_list);
7869 INIT_LIST_HEAD(&dev->close_list);
7870 INIT_LIST_HEAD(&dev->link_watch_list);
7871 INIT_LIST_HEAD(&dev->adj_list.upper);
7872 INIT_LIST_HEAD(&dev->adj_list.lower);
7873 INIT_LIST_HEAD(&dev->ptype_all);
7874 INIT_LIST_HEAD(&dev->ptype_specific);
7875#ifdef CONFIG_NET_SCHED
7876 hash_init(dev->qdisc_hash);
7877#endif
7878 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7879 setup(dev);
7880
7881 if (!dev->tx_queue_len) {
7882 dev->priv_flags |= IFF_NO_QUEUE;
7883 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7884 }
7885
7886 dev->num_tx_queues = txqs;
7887 dev->real_num_tx_queues = txqs;
7888 if (netif_alloc_netdev_queues(dev))
7889 goto free_all;
7890
7891#ifdef CONFIG_SYSFS
7892 dev->num_rx_queues = rxqs;
7893 dev->real_num_rx_queues = rxqs;
7894 if (netif_alloc_rx_queues(dev))
7895 goto free_all;
7896#endif
7897
7898 strcpy(dev->name, name);
7899 dev->name_assign_type = name_assign_type;
7900 dev->group = INIT_NETDEV_GROUP;
7901 if (!dev->ethtool_ops)
7902 dev->ethtool_ops = &default_ethtool_ops;
7903
7904 nf_hook_ingress_init(dev);
7905
7906 return dev;
7907
7908free_all:
7909 free_netdev(dev);
7910 return NULL;
7911
7912free_pcpu:
7913 free_percpu(dev->pcpu_refcnt);
7914free_dev:
7915 netdev_freemem(dev);
7916 return NULL;
7917}
7918EXPORT_SYMBOL(alloc_netdev_mqs);
7919
7920/**
7921 * free_netdev - free network device
7922 * @dev: device
7923 *
7924 * This function does the last stage of destroying an allocated device
7925 * interface. The reference to the device object is released. If this
7926 * is the last reference then it will be freed.Must be called in process
7927 * context.
7928 */
7929void free_netdev(struct net_device *dev)
7930{
7931 struct napi_struct *p, *n;
7932 struct bpf_prog *prog;
7933
7934 might_sleep();
7935 netif_free_tx_queues(dev);
7936#ifdef CONFIG_SYSFS
7937 kvfree(dev->_rx);
7938#endif
7939
7940 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7941
7942 /* Flush device addresses */
7943 dev_addr_flush(dev);
7944
7945 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7946 netif_napi_del(p);
7947
7948 free_percpu(dev->pcpu_refcnt);
7949 dev->pcpu_refcnt = NULL;
7950
7951 prog = rcu_dereference_protected(dev->xdp_prog, 1);
7952 if (prog) {
7953 bpf_prog_put(prog);
7954 static_key_slow_dec(&generic_xdp_needed);
7955 }
7956
7957 /* Compatibility with error handling in drivers */
7958 if (dev->reg_state == NETREG_UNINITIALIZED) {
7959 netdev_freemem(dev);
7960 return;
7961 }
7962
7963 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7964 dev->reg_state = NETREG_RELEASED;
7965
7966 /* will free via device release */
7967 put_device(&dev->dev);
7968}
7969EXPORT_SYMBOL(free_netdev);
7970
7971/**
7972 * synchronize_net - Synchronize with packet receive processing
7973 *
7974 * Wait for packets currently being received to be done.
7975 * Does not block later packets from starting.
7976 */
7977void synchronize_net(void)
7978{
7979 might_sleep();
7980 if (rtnl_is_locked())
7981 synchronize_rcu_expedited();
7982 else
7983 synchronize_rcu();
7984}
7985EXPORT_SYMBOL(synchronize_net);
7986
7987/**
7988 * unregister_netdevice_queue - remove device from the kernel
7989 * @dev: device
7990 * @head: list
7991 *
7992 * This function shuts down a device interface and removes it
7993 * from the kernel tables.
7994 * If head not NULL, device is queued to be unregistered later.
7995 *
7996 * Callers must hold the rtnl semaphore. You may want
7997 * unregister_netdev() instead of this.
7998 */
7999
8000void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8001{
8002 ASSERT_RTNL();
8003
8004 if (head) {
8005 list_move_tail(&dev->unreg_list, head);
8006 } else {
8007 rollback_registered(dev);
8008 /* Finish processing unregister after unlock */
8009 net_set_todo(dev);
8010 }
8011}
8012EXPORT_SYMBOL(unregister_netdevice_queue);
8013
8014/**
8015 * unregister_netdevice_many - unregister many devices
8016 * @head: list of devices
8017 *
8018 * Note: As most callers use a stack allocated list_head,
8019 * we force a list_del() to make sure stack wont be corrupted later.
8020 */
8021void unregister_netdevice_many(struct list_head *head)
8022{
8023 struct net_device *dev;
8024
8025 if (!list_empty(head)) {
8026 rollback_registered_many(head);
8027 list_for_each_entry(dev, head, unreg_list)
8028 net_set_todo(dev);
8029 list_del(head);
8030 }
8031}
8032EXPORT_SYMBOL(unregister_netdevice_many);
8033
8034/**
8035 * unregister_netdev - remove device from the kernel
8036 * @dev: device
8037 *
8038 * This function shuts down a device interface and removes it
8039 * from the kernel tables.
8040 *
8041 * This is just a wrapper for unregister_netdevice that takes
8042 * the rtnl semaphore. In general you want to use this and not
8043 * unregister_netdevice.
8044 */
8045void unregister_netdev(struct net_device *dev)
8046{
8047 rtnl_lock();
8048 unregister_netdevice(dev);
8049 rtnl_unlock();
8050}
8051EXPORT_SYMBOL(unregister_netdev);
8052
8053/**
8054 * dev_change_net_namespace - move device to different nethost namespace
8055 * @dev: device
8056 * @net: network namespace
8057 * @pat: If not NULL name pattern to try if the current device name
8058 * is already taken in the destination network namespace.
8059 *
8060 * This function shuts down a device interface and moves it
8061 * to a new network namespace. On success 0 is returned, on
8062 * a failure a netagive errno code is returned.
8063 *
8064 * Callers must hold the rtnl semaphore.
8065 */
8066
8067int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8068{
8069 int err;
8070
8071 ASSERT_RTNL();
8072
8073 /* Don't allow namespace local devices to be moved. */
8074 err = -EINVAL;
8075 if (dev->features & NETIF_F_NETNS_LOCAL)
8076 goto out;
8077
8078 /* Ensure the device has been registrered */
8079 if (dev->reg_state != NETREG_REGISTERED)
8080 goto out;
8081
8082 /* Get out if there is nothing todo */
8083 err = 0;
8084 if (net_eq(dev_net(dev), net))
8085 goto out;
8086
8087 /* Pick the destination device name, and ensure
8088 * we can use it in the destination network namespace.
8089 */
8090 err = -EEXIST;
8091 if (__dev_get_by_name(net, dev->name)) {
8092 /* We get here if we can't use the current device name */
8093 if (!pat)
8094 goto out;
8095 if (dev_get_valid_name(net, dev, pat) < 0)
8096 goto out;
8097 }
8098
8099 /*
8100 * And now a mini version of register_netdevice unregister_netdevice.
8101 */
8102
8103 /* If device is running close it first. */
8104 dev_close(dev);
8105
8106 /* And unlink it from device chain */
8107 err = -ENODEV;
8108 unlist_netdevice(dev);
8109
8110 synchronize_net();
8111
8112 /* Shutdown queueing discipline. */
8113 dev_shutdown(dev);
8114
8115 /* Notify protocols, that we are about to destroy
8116 * this device. They should clean all the things.
8117 *
8118 * Note that dev->reg_state stays at NETREG_REGISTERED.
8119 * This is wanted because this way 8021q and macvlan know
8120 * the device is just moving and can keep their slaves up.
8121 */
8122 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8123 rcu_barrier();
8124 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8125 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8126
8127 /*
8128 * Flush the unicast and multicast chains
8129 */
8130 dev_uc_flush(dev);
8131 dev_mc_flush(dev);
8132
8133 /* Send a netdev-removed uevent to the old namespace */
8134 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8135 netdev_adjacent_del_links(dev);
8136
8137 /* Actually switch the network namespace */
8138 dev_net_set(dev, net);
8139
8140 /* If there is an ifindex conflict assign a new one */
8141 if (__dev_get_by_index(net, dev->ifindex))
8142 dev->ifindex = dev_new_index(net);
8143
8144 /* Send a netdev-add uevent to the new namespace */
8145 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8146 netdev_adjacent_add_links(dev);
8147
8148 /* Fixup kobjects */
8149 err = device_rename(&dev->dev, dev->name);
8150 WARN_ON(err);
8151
8152 /* Add the device back in the hashes */
8153 list_netdevice(dev);
8154
8155 /* Notify protocols, that a new device appeared. */
8156 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8157
8158 /*
8159 * Prevent userspace races by waiting until the network
8160 * device is fully setup before sending notifications.
8161 */
8162 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8163
8164 synchronize_net();
8165 err = 0;
8166out:
8167 return err;
8168}
8169EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8170
8171static int dev_cpu_dead(unsigned int oldcpu)
8172{
8173 struct sk_buff **list_skb;
8174 struct sk_buff *skb;
8175 unsigned int cpu;
8176 struct softnet_data *sd, *oldsd;
8177
8178 local_irq_disable();
8179 cpu = smp_processor_id();
8180 sd = &per_cpu(softnet_data, cpu);
8181 oldsd = &per_cpu(softnet_data, oldcpu);
8182
8183 /* Find end of our completion_queue. */
8184 list_skb = &sd->completion_queue;
8185 while (*list_skb)
8186 list_skb = &(*list_skb)->next;
8187 /* Append completion queue from offline CPU. */
8188 *list_skb = oldsd->completion_queue;
8189 oldsd->completion_queue = NULL;
8190
8191 /* Append output queue from offline CPU. */
8192 if (oldsd->output_queue) {
8193 *sd->output_queue_tailp = oldsd->output_queue;
8194 sd->output_queue_tailp = oldsd->output_queue_tailp;
8195 oldsd->output_queue = NULL;
8196 oldsd->output_queue_tailp = &oldsd->output_queue;
8197 }
8198 /* Append NAPI poll list from offline CPU, with one exception :
8199 * process_backlog() must be called by cpu owning percpu backlog.
8200 * We properly handle process_queue & input_pkt_queue later.
8201 */
8202 while (!list_empty(&oldsd->poll_list)) {
8203 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8204 struct napi_struct,
8205 poll_list);
8206
8207 list_del_init(&napi->poll_list);
8208 if (napi->poll == process_backlog)
8209 napi->state = 0;
8210 else
8211 ____napi_schedule(sd, napi);
8212 }
8213
8214 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8215 local_irq_enable();
8216
8217 /* Process offline CPU's input_pkt_queue */
8218 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8219 netif_rx_ni(skb);
8220 input_queue_head_incr(oldsd);
8221 }
8222 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8223 netif_rx_ni(skb);
8224 input_queue_head_incr(oldsd);
8225 }
8226
8227 return 0;
8228}
8229
8230/**
8231 * netdev_increment_features - increment feature set by one
8232 * @all: current feature set
8233 * @one: new feature set
8234 * @mask: mask feature set
8235 *
8236 * Computes a new feature set after adding a device with feature set
8237 * @one to the master device with current feature set @all. Will not
8238 * enable anything that is off in @mask. Returns the new feature set.
8239 */
8240netdev_features_t netdev_increment_features(netdev_features_t all,
8241 netdev_features_t one, netdev_features_t mask)
8242{
8243 if (mask & NETIF_F_HW_CSUM)
8244 mask |= NETIF_F_CSUM_MASK;
8245 mask |= NETIF_F_VLAN_CHALLENGED;
8246
8247 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8248 all &= one | ~NETIF_F_ALL_FOR_ALL;
8249
8250 /* If one device supports hw checksumming, set for all. */
8251 if (all & NETIF_F_HW_CSUM)
8252 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8253
8254 return all;
8255}
8256EXPORT_SYMBOL(netdev_increment_features);
8257
8258static struct hlist_head * __net_init netdev_create_hash(void)
8259{
8260 int i;
8261 struct hlist_head *hash;
8262
8263 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8264 if (hash != NULL)
8265 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8266 INIT_HLIST_HEAD(&hash[i]);
8267
8268 return hash;
8269}
8270
8271/* Initialize per network namespace state */
8272static int __net_init netdev_init(struct net *net)
8273{
8274 if (net != &init_net)
8275 INIT_LIST_HEAD(&net->dev_base_head);
8276
8277 net->dev_name_head = netdev_create_hash();
8278 if (net->dev_name_head == NULL)
8279 goto err_name;
8280
8281 net->dev_index_head = netdev_create_hash();
8282 if (net->dev_index_head == NULL)
8283 goto err_idx;
8284
8285 return 0;
8286
8287err_idx:
8288 kfree(net->dev_name_head);
8289err_name:
8290 return -ENOMEM;
8291}
8292
8293/**
8294 * netdev_drivername - network driver for the device
8295 * @dev: network device
8296 *
8297 * Determine network driver for device.
8298 */
8299const char *netdev_drivername(const struct net_device *dev)
8300{
8301 const struct device_driver *driver;
8302 const struct device *parent;
8303 const char *empty = "";
8304
8305 parent = dev->dev.parent;
8306 if (!parent)
8307 return empty;
8308
8309 driver = parent->driver;
8310 if (driver && driver->name)
8311 return driver->name;
8312 return empty;
8313}
8314
8315static void __netdev_printk(const char *level, const struct net_device *dev,
8316 struct va_format *vaf)
8317{
8318 if (dev && dev->dev.parent) {
8319 dev_printk_emit(level[1] - '0',
8320 dev->dev.parent,
8321 "%s %s %s%s: %pV",
8322 dev_driver_string(dev->dev.parent),
8323 dev_name(dev->dev.parent),
8324 netdev_name(dev), netdev_reg_state(dev),
8325 vaf);
8326 } else if (dev) {
8327 printk("%s%s%s: %pV",
8328 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8329 } else {
8330 printk("%s(NULL net_device): %pV", level, vaf);
8331 }
8332}
8333
8334void netdev_printk(const char *level, const struct net_device *dev,
8335 const char *format, ...)
8336{
8337 struct va_format vaf;
8338 va_list args;
8339
8340 va_start(args, format);
8341
8342 vaf.fmt = format;
8343 vaf.va = &args;
8344
8345 __netdev_printk(level, dev, &vaf);
8346
8347 va_end(args);
8348}
8349EXPORT_SYMBOL(netdev_printk);
8350
8351#define define_netdev_printk_level(func, level) \
8352void func(const struct net_device *dev, const char *fmt, ...) \
8353{ \
8354 struct va_format vaf; \
8355 va_list args; \
8356 \
8357 va_start(args, fmt); \
8358 \
8359 vaf.fmt = fmt; \
8360 vaf.va = &args; \
8361 \
8362 __netdev_printk(level, dev, &vaf); \
8363 \
8364 va_end(args); \
8365} \
8366EXPORT_SYMBOL(func);
8367
8368define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8369define_netdev_printk_level(netdev_alert, KERN_ALERT);
8370define_netdev_printk_level(netdev_crit, KERN_CRIT);
8371define_netdev_printk_level(netdev_err, KERN_ERR);
8372define_netdev_printk_level(netdev_warn, KERN_WARNING);
8373define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8374define_netdev_printk_level(netdev_info, KERN_INFO);
8375
8376static void __net_exit netdev_exit(struct net *net)
8377{
8378 kfree(net->dev_name_head);
8379 kfree(net->dev_index_head);
8380}
8381
8382static struct pernet_operations __net_initdata netdev_net_ops = {
8383 .init = netdev_init,
8384 .exit = netdev_exit,
8385};
8386
8387static void __net_exit default_device_exit(struct net *net)
8388{
8389 struct net_device *dev, *aux;
8390 /*
8391 * Push all migratable network devices back to the
8392 * initial network namespace
8393 */
8394 rtnl_lock();
8395 for_each_netdev_safe(net, dev, aux) {
8396 int err;
8397 char fb_name[IFNAMSIZ];
8398
8399 /* Ignore unmoveable devices (i.e. loopback) */
8400 if (dev->features & NETIF_F_NETNS_LOCAL)
8401 continue;
8402
8403 /* Leave virtual devices for the generic cleanup */
8404 if (dev->rtnl_link_ops)
8405 continue;
8406
8407 /* Push remaining network devices to init_net */
8408 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8409 err = dev_change_net_namespace(dev, &init_net, fb_name);
8410 if (err) {
8411 pr_emerg("%s: failed to move %s to init_net: %d\n",
8412 __func__, dev->name, err);
8413 BUG();
8414 }
8415 }
8416 rtnl_unlock();
8417}
8418
8419static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8420{
8421 /* Return with the rtnl_lock held when there are no network
8422 * devices unregistering in any network namespace in net_list.
8423 */
8424 struct net *net;
8425 bool unregistering;
8426 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8427
8428 add_wait_queue(&netdev_unregistering_wq, &wait);
8429 for (;;) {
8430 unregistering = false;
8431 rtnl_lock();
8432 list_for_each_entry(net, net_list, exit_list) {
8433 if (net->dev_unreg_count > 0) {
8434 unregistering = true;
8435 break;
8436 }
8437 }
8438 if (!unregistering)
8439 break;
8440 __rtnl_unlock();
8441
8442 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8443 }
8444 remove_wait_queue(&netdev_unregistering_wq, &wait);
8445}
8446
8447static void __net_exit default_device_exit_batch(struct list_head *net_list)
8448{
8449 /* At exit all network devices most be removed from a network
8450 * namespace. Do this in the reverse order of registration.
8451 * Do this across as many network namespaces as possible to
8452 * improve batching efficiency.
8453 */
8454 struct net_device *dev;
8455 struct net *net;
8456 LIST_HEAD(dev_kill_list);
8457
8458 /* To prevent network device cleanup code from dereferencing
8459 * loopback devices or network devices that have been freed
8460 * wait here for all pending unregistrations to complete,
8461 * before unregistring the loopback device and allowing the
8462 * network namespace be freed.
8463 *
8464 * The netdev todo list containing all network devices
8465 * unregistrations that happen in default_device_exit_batch
8466 * will run in the rtnl_unlock() at the end of
8467 * default_device_exit_batch.
8468 */
8469 rtnl_lock_unregistering(net_list);
8470 list_for_each_entry(net, net_list, exit_list) {
8471 for_each_netdev_reverse(net, dev) {
8472 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8473 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8474 else
8475 unregister_netdevice_queue(dev, &dev_kill_list);
8476 }
8477 }
8478 unregister_netdevice_many(&dev_kill_list);
8479 rtnl_unlock();
8480}
8481
8482static struct pernet_operations __net_initdata default_device_ops = {
8483 .exit = default_device_exit,
8484 .exit_batch = default_device_exit_batch,
8485};
8486
8487/*
8488 * Initialize the DEV module. At boot time this walks the device list and
8489 * unhooks any devices that fail to initialise (normally hardware not
8490 * present) and leaves us with a valid list of present and active devices.
8491 *
8492 */
8493
8494/*
8495 * This is called single threaded during boot, so no need
8496 * to take the rtnl semaphore.
8497 */
8498static int __init net_dev_init(void)
8499{
8500 int i, rc = -ENOMEM;
8501
8502 BUG_ON(!dev_boot_phase);
8503
8504 if (dev_proc_init())
8505 goto out;
8506
8507 if (netdev_kobject_init())
8508 goto out;
8509
8510 INIT_LIST_HEAD(&ptype_all);
8511 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8512 INIT_LIST_HEAD(&ptype_base[i]);
8513
8514 INIT_LIST_HEAD(&offload_base);
8515
8516 if (register_pernet_subsys(&netdev_net_ops))
8517 goto out;
8518
8519 /*
8520 * Initialise the packet receive queues.
8521 */
8522
8523 for_each_possible_cpu(i) {
8524 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8525 struct softnet_data *sd = &per_cpu(softnet_data, i);
8526
8527 INIT_WORK(flush, flush_backlog);
8528
8529 skb_queue_head_init(&sd->input_pkt_queue);
8530 skb_queue_head_init(&sd->process_queue);
8531 INIT_LIST_HEAD(&sd->poll_list);
8532 sd->output_queue_tailp = &sd->output_queue;
8533#ifdef CONFIG_RPS
8534 sd->csd.func = rps_trigger_softirq;
8535 sd->csd.info = sd;
8536 sd->cpu = i;
8537#endif
8538
8539 sd->backlog.poll = process_backlog;
8540 sd->backlog.weight = weight_p;
8541 }
8542
8543 dev_boot_phase = 0;
8544
8545 /* The loopback device is special if any other network devices
8546 * is present in a network namespace the loopback device must
8547 * be present. Since we now dynamically allocate and free the
8548 * loopback device ensure this invariant is maintained by
8549 * keeping the loopback device as the first device on the
8550 * list of network devices. Ensuring the loopback devices
8551 * is the first device that appears and the last network device
8552 * that disappears.
8553 */
8554 if (register_pernet_device(&loopback_net_ops))
8555 goto out;
8556
8557 if (register_pernet_device(&default_device_ops))
8558 goto out;
8559
8560 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8561 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8562
8563 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8564 NULL, dev_cpu_dead);
8565 WARN_ON(rc < 0);
8566 dst_subsys_init();
8567 rc = 0;
8568out:
8569 return rc;
8570}
8571
8572subsys_initcall(net_dev_init);