Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/mm/memory_hotplug.c
3 *
4 * Copyright (C)
5 */
6
7#include <linux/stddef.h>
8#include <linux/mm.h>
9#include <linux/sched/signal.h>
10#include <linux/swap.h>
11#include <linux/interrupt.h>
12#include <linux/pagemap.h>
13#include <linux/compiler.h>
14#include <linux/export.h>
15#include <linux/pagevec.h>
16#include <linux/writeback.h>
17#include <linux/slab.h>
18#include <linux/sysctl.h>
19#include <linux/cpu.h>
20#include <linux/memory.h>
21#include <linux/memremap.h>
22#include <linux/memory_hotplug.h>
23#include <linux/highmem.h>
24#include <linux/vmalloc.h>
25#include <linux/ioport.h>
26#include <linux/delay.h>
27#include <linux/migrate.h>
28#include <linux/page-isolation.h>
29#include <linux/pfn.h>
30#include <linux/suspend.h>
31#include <linux/mm_inline.h>
32#include <linux/firmware-map.h>
33#include <linux/stop_machine.h>
34#include <linux/hugetlb.h>
35#include <linux/memblock.h>
36#include <linux/bootmem.h>
37#include <linux/compaction.h>
38
39#include <asm/tlbflush.h>
40
41#include "internal.h"
42
43/*
44 * online_page_callback contains pointer to current page onlining function.
45 * Initially it is generic_online_page(). If it is required it could be
46 * changed by calling set_online_page_callback() for callback registration
47 * and restore_online_page_callback() for generic callback restore.
48 */
49
50static void generic_online_page(struct page *page);
51
52static online_page_callback_t online_page_callback = generic_online_page;
53static DEFINE_MUTEX(online_page_callback_lock);
54
55/* The same as the cpu_hotplug lock, but for memory hotplug. */
56static struct {
57 struct task_struct *active_writer;
58 struct mutex lock; /* Synchronizes accesses to refcount, */
59 /*
60 * Also blocks the new readers during
61 * an ongoing mem hotplug operation.
62 */
63 int refcount;
64
65#ifdef CONFIG_DEBUG_LOCK_ALLOC
66 struct lockdep_map dep_map;
67#endif
68} mem_hotplug = {
69 .active_writer = NULL,
70 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
71 .refcount = 0,
72#ifdef CONFIG_DEBUG_LOCK_ALLOC
73 .dep_map = {.name = "mem_hotplug.lock" },
74#endif
75};
76
77/* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
78#define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
79#define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map)
80#define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map)
81
82#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
83bool memhp_auto_online;
84#else
85bool memhp_auto_online = true;
86#endif
87EXPORT_SYMBOL_GPL(memhp_auto_online);
88
89static int __init setup_memhp_default_state(char *str)
90{
91 if (!strcmp(str, "online"))
92 memhp_auto_online = true;
93 else if (!strcmp(str, "offline"))
94 memhp_auto_online = false;
95
96 return 1;
97}
98__setup("memhp_default_state=", setup_memhp_default_state);
99
100void get_online_mems(void)
101{
102 might_sleep();
103 if (mem_hotplug.active_writer == current)
104 return;
105 memhp_lock_acquire_read();
106 mutex_lock(&mem_hotplug.lock);
107 mem_hotplug.refcount++;
108 mutex_unlock(&mem_hotplug.lock);
109
110}
111
112void put_online_mems(void)
113{
114 if (mem_hotplug.active_writer == current)
115 return;
116 mutex_lock(&mem_hotplug.lock);
117
118 if (WARN_ON(!mem_hotplug.refcount))
119 mem_hotplug.refcount++; /* try to fix things up */
120
121 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
122 wake_up_process(mem_hotplug.active_writer);
123 mutex_unlock(&mem_hotplug.lock);
124 memhp_lock_release();
125
126}
127
128/* Serializes write accesses to mem_hotplug.active_writer. */
129static DEFINE_MUTEX(memory_add_remove_lock);
130
131void mem_hotplug_begin(void)
132{
133 mutex_lock(&memory_add_remove_lock);
134
135 mem_hotplug.active_writer = current;
136
137 memhp_lock_acquire();
138 for (;;) {
139 mutex_lock(&mem_hotplug.lock);
140 if (likely(!mem_hotplug.refcount))
141 break;
142 __set_current_state(TASK_UNINTERRUPTIBLE);
143 mutex_unlock(&mem_hotplug.lock);
144 schedule();
145 }
146}
147
148void mem_hotplug_done(void)
149{
150 mem_hotplug.active_writer = NULL;
151 mutex_unlock(&mem_hotplug.lock);
152 memhp_lock_release();
153 mutex_unlock(&memory_add_remove_lock);
154}
155
156/* add this memory to iomem resource */
157static struct resource *register_memory_resource(u64 start, u64 size)
158{
159 struct resource *res;
160 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
161 if (!res)
162 return ERR_PTR(-ENOMEM);
163
164 res->name = "System RAM";
165 res->start = start;
166 res->end = start + size - 1;
167 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
168 if (request_resource(&iomem_resource, res) < 0) {
169 pr_debug("System RAM resource %pR cannot be added\n", res);
170 kfree(res);
171 return ERR_PTR(-EEXIST);
172 }
173 return res;
174}
175
176static void release_memory_resource(struct resource *res)
177{
178 if (!res)
179 return;
180 release_resource(res);
181 kfree(res);
182 return;
183}
184
185#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
186void get_page_bootmem(unsigned long info, struct page *page,
187 unsigned long type)
188{
189 page->freelist = (void *)type;
190 SetPagePrivate(page);
191 set_page_private(page, info);
192 page_ref_inc(page);
193}
194
195void put_page_bootmem(struct page *page)
196{
197 unsigned long type;
198
199 type = (unsigned long) page->freelist;
200 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
201 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
202
203 if (page_ref_dec_return(page) == 1) {
204 page->freelist = NULL;
205 ClearPagePrivate(page);
206 set_page_private(page, 0);
207 INIT_LIST_HEAD(&page->lru);
208 free_reserved_page(page);
209 }
210}
211
212#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
213#ifndef CONFIG_SPARSEMEM_VMEMMAP
214static void register_page_bootmem_info_section(unsigned long start_pfn)
215{
216 unsigned long *usemap, mapsize, section_nr, i;
217 struct mem_section *ms;
218 struct page *page, *memmap;
219
220 section_nr = pfn_to_section_nr(start_pfn);
221 ms = __nr_to_section(section_nr);
222
223 /* Get section's memmap address */
224 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
225
226 /*
227 * Get page for the memmap's phys address
228 * XXX: need more consideration for sparse_vmemmap...
229 */
230 page = virt_to_page(memmap);
231 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
232 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
233
234 /* remember memmap's page */
235 for (i = 0; i < mapsize; i++, page++)
236 get_page_bootmem(section_nr, page, SECTION_INFO);
237
238 usemap = __nr_to_section(section_nr)->pageblock_flags;
239 page = virt_to_page(usemap);
240
241 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
242
243 for (i = 0; i < mapsize; i++, page++)
244 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
245
246}
247#else /* CONFIG_SPARSEMEM_VMEMMAP */
248static void register_page_bootmem_info_section(unsigned long start_pfn)
249{
250 unsigned long *usemap, mapsize, section_nr, i;
251 struct mem_section *ms;
252 struct page *page, *memmap;
253
254 if (!pfn_valid(start_pfn))
255 return;
256
257 section_nr = pfn_to_section_nr(start_pfn);
258 ms = __nr_to_section(section_nr);
259
260 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
261
262 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
263
264 usemap = __nr_to_section(section_nr)->pageblock_flags;
265 page = virt_to_page(usemap);
266
267 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
268
269 for (i = 0; i < mapsize; i++, page++)
270 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
271}
272#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
273
274void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
275{
276 unsigned long i, pfn, end_pfn, nr_pages;
277 int node = pgdat->node_id;
278 struct page *page;
279
280 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
281 page = virt_to_page(pgdat);
282
283 for (i = 0; i < nr_pages; i++, page++)
284 get_page_bootmem(node, page, NODE_INFO);
285
286 pfn = pgdat->node_start_pfn;
287 end_pfn = pgdat_end_pfn(pgdat);
288
289 /* register section info */
290 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
291 /*
292 * Some platforms can assign the same pfn to multiple nodes - on
293 * node0 as well as nodeN. To avoid registering a pfn against
294 * multiple nodes we check that this pfn does not already
295 * reside in some other nodes.
296 */
297 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
298 register_page_bootmem_info_section(pfn);
299 }
300}
301#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
302
303static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
304 unsigned long end_pfn)
305{
306 unsigned long old_zone_end_pfn;
307
308 zone_span_writelock(zone);
309
310 old_zone_end_pfn = zone_end_pfn(zone);
311 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
312 zone->zone_start_pfn = start_pfn;
313
314 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
315 zone->zone_start_pfn;
316
317 zone_span_writeunlock(zone);
318}
319
320static void resize_zone(struct zone *zone, unsigned long start_pfn,
321 unsigned long end_pfn)
322{
323 zone_span_writelock(zone);
324
325 if (end_pfn - start_pfn) {
326 zone->zone_start_pfn = start_pfn;
327 zone->spanned_pages = end_pfn - start_pfn;
328 } else {
329 /*
330 * make it consist as free_area_init_core(),
331 * if spanned_pages = 0, then keep start_pfn = 0
332 */
333 zone->zone_start_pfn = 0;
334 zone->spanned_pages = 0;
335 }
336
337 zone_span_writeunlock(zone);
338}
339
340static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
341 unsigned long end_pfn)
342{
343 enum zone_type zid = zone_idx(zone);
344 int nid = zone->zone_pgdat->node_id;
345 unsigned long pfn;
346
347 for (pfn = start_pfn; pfn < end_pfn; pfn++)
348 set_page_links(pfn_to_page(pfn), zid, nid, pfn);
349}
350
351/* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
352 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
353static int __ref ensure_zone_is_initialized(struct zone *zone,
354 unsigned long start_pfn, unsigned long num_pages)
355{
356 if (!zone_is_initialized(zone))
357 return init_currently_empty_zone(zone, start_pfn, num_pages);
358
359 return 0;
360}
361
362static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
363 unsigned long start_pfn, unsigned long end_pfn)
364{
365 int ret;
366 unsigned long flags;
367 unsigned long z1_start_pfn;
368
369 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
370 if (ret)
371 return ret;
372
373 pgdat_resize_lock(z1->zone_pgdat, &flags);
374
375 /* can't move pfns which are higher than @z2 */
376 if (end_pfn > zone_end_pfn(z2))
377 goto out_fail;
378 /* the move out part must be at the left most of @z2 */
379 if (start_pfn > z2->zone_start_pfn)
380 goto out_fail;
381 /* must included/overlap */
382 if (end_pfn <= z2->zone_start_pfn)
383 goto out_fail;
384
385 /* use start_pfn for z1's start_pfn if z1 is empty */
386 if (!zone_is_empty(z1))
387 z1_start_pfn = z1->zone_start_pfn;
388 else
389 z1_start_pfn = start_pfn;
390
391 resize_zone(z1, z1_start_pfn, end_pfn);
392 resize_zone(z2, end_pfn, zone_end_pfn(z2));
393
394 pgdat_resize_unlock(z1->zone_pgdat, &flags);
395
396 fix_zone_id(z1, start_pfn, end_pfn);
397
398 return 0;
399out_fail:
400 pgdat_resize_unlock(z1->zone_pgdat, &flags);
401 return -1;
402}
403
404static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
405 unsigned long start_pfn, unsigned long end_pfn)
406{
407 int ret;
408 unsigned long flags;
409 unsigned long z2_end_pfn;
410
411 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
412 if (ret)
413 return ret;
414
415 pgdat_resize_lock(z1->zone_pgdat, &flags);
416
417 /* can't move pfns which are lower than @z1 */
418 if (z1->zone_start_pfn > start_pfn)
419 goto out_fail;
420 /* the move out part mast at the right most of @z1 */
421 if (zone_end_pfn(z1) > end_pfn)
422 goto out_fail;
423 /* must included/overlap */
424 if (start_pfn >= zone_end_pfn(z1))
425 goto out_fail;
426
427 /* use end_pfn for z2's end_pfn if z2 is empty */
428 if (!zone_is_empty(z2))
429 z2_end_pfn = zone_end_pfn(z2);
430 else
431 z2_end_pfn = end_pfn;
432
433 resize_zone(z1, z1->zone_start_pfn, start_pfn);
434 resize_zone(z2, start_pfn, z2_end_pfn);
435
436 pgdat_resize_unlock(z1->zone_pgdat, &flags);
437
438 fix_zone_id(z2, start_pfn, end_pfn);
439
440 return 0;
441out_fail:
442 pgdat_resize_unlock(z1->zone_pgdat, &flags);
443 return -1;
444}
445
446static struct zone * __meminit move_pfn_range(int zone_shift,
447 unsigned long start_pfn, unsigned long end_pfn)
448{
449 struct zone *zone = page_zone(pfn_to_page(start_pfn));
450 int ret = 0;
451
452 if (zone_shift < 0)
453 ret = move_pfn_range_left(zone + zone_shift, zone,
454 start_pfn, end_pfn);
455 else if (zone_shift)
456 ret = move_pfn_range_right(zone, zone + zone_shift,
457 start_pfn, end_pfn);
458
459 if (ret)
460 return NULL;
461
462 return zone + zone_shift;
463}
464
465static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
466 unsigned long end_pfn)
467{
468 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
469
470 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
471 pgdat->node_start_pfn = start_pfn;
472
473 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
474 pgdat->node_start_pfn;
475}
476
477static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
478{
479 struct pglist_data *pgdat = zone->zone_pgdat;
480 int nr_pages = PAGES_PER_SECTION;
481 int nid = pgdat->node_id;
482 int zone_type;
483 unsigned long flags, pfn;
484 int ret;
485
486 zone_type = zone - pgdat->node_zones;
487 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
488 if (ret)
489 return ret;
490
491 pgdat_resize_lock(zone->zone_pgdat, &flags);
492 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
493 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
494 phys_start_pfn + nr_pages);
495 pgdat_resize_unlock(zone->zone_pgdat, &flags);
496 memmap_init_zone(nr_pages, nid, zone_type,
497 phys_start_pfn, MEMMAP_HOTPLUG);
498
499 /* online_page_range is called later and expects pages reserved */
500 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
501 if (!pfn_valid(pfn))
502 continue;
503
504 SetPageReserved(pfn_to_page(pfn));
505 }
506 return 0;
507}
508
509static int __meminit __add_section(int nid, struct zone *zone,
510 unsigned long phys_start_pfn)
511{
512 int ret;
513
514 if (pfn_valid(phys_start_pfn))
515 return -EEXIST;
516
517 ret = sparse_add_one_section(zone, phys_start_pfn);
518
519 if (ret < 0)
520 return ret;
521
522 ret = __add_zone(zone, phys_start_pfn);
523
524 if (ret < 0)
525 return ret;
526
527 return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
528}
529
530/*
531 * Reasonably generic function for adding memory. It is
532 * expected that archs that support memory hotplug will
533 * call this function after deciding the zone to which to
534 * add the new pages.
535 */
536int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
537 unsigned long nr_pages)
538{
539 unsigned long i;
540 int err = 0;
541 int start_sec, end_sec;
542 struct vmem_altmap *altmap;
543
544 clear_zone_contiguous(zone);
545
546 /* during initialize mem_map, align hot-added range to section */
547 start_sec = pfn_to_section_nr(phys_start_pfn);
548 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
549
550 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
551 if (altmap) {
552 /*
553 * Validate altmap is within bounds of the total request
554 */
555 if (altmap->base_pfn != phys_start_pfn
556 || vmem_altmap_offset(altmap) > nr_pages) {
557 pr_warn_once("memory add fail, invalid altmap\n");
558 err = -EINVAL;
559 goto out;
560 }
561 altmap->alloc = 0;
562 }
563
564 for (i = start_sec; i <= end_sec; i++) {
565 err = __add_section(nid, zone, section_nr_to_pfn(i));
566
567 /*
568 * EEXIST is finally dealt with by ioresource collision
569 * check. see add_memory() => register_memory_resource()
570 * Warning will be printed if there is collision.
571 */
572 if (err && (err != -EEXIST))
573 break;
574 err = 0;
575 }
576 vmemmap_populate_print_last();
577out:
578 set_zone_contiguous(zone);
579 return err;
580}
581EXPORT_SYMBOL_GPL(__add_pages);
582
583#ifdef CONFIG_MEMORY_HOTREMOVE
584/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
585static int find_smallest_section_pfn(int nid, struct zone *zone,
586 unsigned long start_pfn,
587 unsigned long end_pfn)
588{
589 struct mem_section *ms;
590
591 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
592 ms = __pfn_to_section(start_pfn);
593
594 if (unlikely(!valid_section(ms)))
595 continue;
596
597 if (unlikely(pfn_to_nid(start_pfn) != nid))
598 continue;
599
600 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
601 continue;
602
603 return start_pfn;
604 }
605
606 return 0;
607}
608
609/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
610static int find_biggest_section_pfn(int nid, struct zone *zone,
611 unsigned long start_pfn,
612 unsigned long end_pfn)
613{
614 struct mem_section *ms;
615 unsigned long pfn;
616
617 /* pfn is the end pfn of a memory section. */
618 pfn = end_pfn - 1;
619 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
620 ms = __pfn_to_section(pfn);
621
622 if (unlikely(!valid_section(ms)))
623 continue;
624
625 if (unlikely(pfn_to_nid(pfn) != nid))
626 continue;
627
628 if (zone && zone != page_zone(pfn_to_page(pfn)))
629 continue;
630
631 return pfn;
632 }
633
634 return 0;
635}
636
637static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
638 unsigned long end_pfn)
639{
640 unsigned long zone_start_pfn = zone->zone_start_pfn;
641 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
642 unsigned long zone_end_pfn = z;
643 unsigned long pfn;
644 struct mem_section *ms;
645 int nid = zone_to_nid(zone);
646
647 zone_span_writelock(zone);
648 if (zone_start_pfn == start_pfn) {
649 /*
650 * If the section is smallest section in the zone, it need
651 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
652 * In this case, we find second smallest valid mem_section
653 * for shrinking zone.
654 */
655 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
656 zone_end_pfn);
657 if (pfn) {
658 zone->zone_start_pfn = pfn;
659 zone->spanned_pages = zone_end_pfn - pfn;
660 }
661 } else if (zone_end_pfn == end_pfn) {
662 /*
663 * If the section is biggest section in the zone, it need
664 * shrink zone->spanned_pages.
665 * In this case, we find second biggest valid mem_section for
666 * shrinking zone.
667 */
668 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
669 start_pfn);
670 if (pfn)
671 zone->spanned_pages = pfn - zone_start_pfn + 1;
672 }
673
674 /*
675 * The section is not biggest or smallest mem_section in the zone, it
676 * only creates a hole in the zone. So in this case, we need not
677 * change the zone. But perhaps, the zone has only hole data. Thus
678 * it check the zone has only hole or not.
679 */
680 pfn = zone_start_pfn;
681 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
682 ms = __pfn_to_section(pfn);
683
684 if (unlikely(!valid_section(ms)))
685 continue;
686
687 if (page_zone(pfn_to_page(pfn)) != zone)
688 continue;
689
690 /* If the section is current section, it continues the loop */
691 if (start_pfn == pfn)
692 continue;
693
694 /* If we find valid section, we have nothing to do */
695 zone_span_writeunlock(zone);
696 return;
697 }
698
699 /* The zone has no valid section */
700 zone->zone_start_pfn = 0;
701 zone->spanned_pages = 0;
702 zone_span_writeunlock(zone);
703}
704
705static void shrink_pgdat_span(struct pglist_data *pgdat,
706 unsigned long start_pfn, unsigned long end_pfn)
707{
708 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
709 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
710 unsigned long pgdat_end_pfn = p;
711 unsigned long pfn;
712 struct mem_section *ms;
713 int nid = pgdat->node_id;
714
715 if (pgdat_start_pfn == start_pfn) {
716 /*
717 * If the section is smallest section in the pgdat, it need
718 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
719 * In this case, we find second smallest valid mem_section
720 * for shrinking zone.
721 */
722 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
723 pgdat_end_pfn);
724 if (pfn) {
725 pgdat->node_start_pfn = pfn;
726 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
727 }
728 } else if (pgdat_end_pfn == end_pfn) {
729 /*
730 * If the section is biggest section in the pgdat, it need
731 * shrink pgdat->node_spanned_pages.
732 * In this case, we find second biggest valid mem_section for
733 * shrinking zone.
734 */
735 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
736 start_pfn);
737 if (pfn)
738 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
739 }
740
741 /*
742 * If the section is not biggest or smallest mem_section in the pgdat,
743 * it only creates a hole in the pgdat. So in this case, we need not
744 * change the pgdat.
745 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
746 * has only hole or not.
747 */
748 pfn = pgdat_start_pfn;
749 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
750 ms = __pfn_to_section(pfn);
751
752 if (unlikely(!valid_section(ms)))
753 continue;
754
755 if (pfn_to_nid(pfn) != nid)
756 continue;
757
758 /* If the section is current section, it continues the loop */
759 if (start_pfn == pfn)
760 continue;
761
762 /* If we find valid section, we have nothing to do */
763 return;
764 }
765
766 /* The pgdat has no valid section */
767 pgdat->node_start_pfn = 0;
768 pgdat->node_spanned_pages = 0;
769}
770
771static void __remove_zone(struct zone *zone, unsigned long start_pfn)
772{
773 struct pglist_data *pgdat = zone->zone_pgdat;
774 int nr_pages = PAGES_PER_SECTION;
775 int zone_type;
776 unsigned long flags;
777
778 zone_type = zone - pgdat->node_zones;
779
780 pgdat_resize_lock(zone->zone_pgdat, &flags);
781 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
782 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
783 pgdat_resize_unlock(zone->zone_pgdat, &flags);
784}
785
786static int __remove_section(struct zone *zone, struct mem_section *ms,
787 unsigned long map_offset)
788{
789 unsigned long start_pfn;
790 int scn_nr;
791 int ret = -EINVAL;
792
793 if (!valid_section(ms))
794 return ret;
795
796 ret = unregister_memory_section(ms);
797 if (ret)
798 return ret;
799
800 scn_nr = __section_nr(ms);
801 start_pfn = section_nr_to_pfn(scn_nr);
802 __remove_zone(zone, start_pfn);
803
804 sparse_remove_one_section(zone, ms, map_offset);
805 return 0;
806}
807
808/**
809 * __remove_pages() - remove sections of pages from a zone
810 * @zone: zone from which pages need to be removed
811 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
812 * @nr_pages: number of pages to remove (must be multiple of section size)
813 *
814 * Generic helper function to remove section mappings and sysfs entries
815 * for the section of the memory we are removing. Caller needs to make
816 * sure that pages are marked reserved and zones are adjust properly by
817 * calling offline_pages().
818 */
819int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
820 unsigned long nr_pages)
821{
822 unsigned long i;
823 unsigned long map_offset = 0;
824 int sections_to_remove, ret = 0;
825
826 /* In the ZONE_DEVICE case device driver owns the memory region */
827 if (is_dev_zone(zone)) {
828 struct page *page = pfn_to_page(phys_start_pfn);
829 struct vmem_altmap *altmap;
830
831 altmap = to_vmem_altmap((unsigned long) page);
832 if (altmap)
833 map_offset = vmem_altmap_offset(altmap);
834 } else {
835 resource_size_t start, size;
836
837 start = phys_start_pfn << PAGE_SHIFT;
838 size = nr_pages * PAGE_SIZE;
839
840 ret = release_mem_region_adjustable(&iomem_resource, start,
841 size);
842 if (ret) {
843 resource_size_t endres = start + size - 1;
844
845 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
846 &start, &endres, ret);
847 }
848 }
849
850 clear_zone_contiguous(zone);
851
852 /*
853 * We can only remove entire sections
854 */
855 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
856 BUG_ON(nr_pages % PAGES_PER_SECTION);
857
858 sections_to_remove = nr_pages / PAGES_PER_SECTION;
859 for (i = 0; i < sections_to_remove; i++) {
860 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
861
862 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
863 map_offset = 0;
864 if (ret)
865 break;
866 }
867
868 set_zone_contiguous(zone);
869
870 return ret;
871}
872#endif /* CONFIG_MEMORY_HOTREMOVE */
873
874int set_online_page_callback(online_page_callback_t callback)
875{
876 int rc = -EINVAL;
877
878 get_online_mems();
879 mutex_lock(&online_page_callback_lock);
880
881 if (online_page_callback == generic_online_page) {
882 online_page_callback = callback;
883 rc = 0;
884 }
885
886 mutex_unlock(&online_page_callback_lock);
887 put_online_mems();
888
889 return rc;
890}
891EXPORT_SYMBOL_GPL(set_online_page_callback);
892
893int restore_online_page_callback(online_page_callback_t callback)
894{
895 int rc = -EINVAL;
896
897 get_online_mems();
898 mutex_lock(&online_page_callback_lock);
899
900 if (online_page_callback == callback) {
901 online_page_callback = generic_online_page;
902 rc = 0;
903 }
904
905 mutex_unlock(&online_page_callback_lock);
906 put_online_mems();
907
908 return rc;
909}
910EXPORT_SYMBOL_GPL(restore_online_page_callback);
911
912void __online_page_set_limits(struct page *page)
913{
914}
915EXPORT_SYMBOL_GPL(__online_page_set_limits);
916
917void __online_page_increment_counters(struct page *page)
918{
919 adjust_managed_page_count(page, 1);
920}
921EXPORT_SYMBOL_GPL(__online_page_increment_counters);
922
923void __online_page_free(struct page *page)
924{
925 __free_reserved_page(page);
926}
927EXPORT_SYMBOL_GPL(__online_page_free);
928
929static void generic_online_page(struct page *page)
930{
931 __online_page_set_limits(page);
932 __online_page_increment_counters(page);
933 __online_page_free(page);
934}
935
936static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
937 void *arg)
938{
939 unsigned long i;
940 unsigned long onlined_pages = *(unsigned long *)arg;
941 struct page *page;
942 if (PageReserved(pfn_to_page(start_pfn)))
943 for (i = 0; i < nr_pages; i++) {
944 page = pfn_to_page(start_pfn + i);
945 (*online_page_callback)(page);
946 onlined_pages++;
947 }
948 *(unsigned long *)arg = onlined_pages;
949 return 0;
950}
951
952#ifdef CONFIG_MOVABLE_NODE
953/*
954 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
955 * normal memory.
956 */
957static bool can_online_high_movable(struct zone *zone)
958{
959 return true;
960}
961#else /* CONFIG_MOVABLE_NODE */
962/* ensure every online node has NORMAL memory */
963static bool can_online_high_movable(struct zone *zone)
964{
965 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
966}
967#endif /* CONFIG_MOVABLE_NODE */
968
969/* check which state of node_states will be changed when online memory */
970static void node_states_check_changes_online(unsigned long nr_pages,
971 struct zone *zone, struct memory_notify *arg)
972{
973 int nid = zone_to_nid(zone);
974 enum zone_type zone_last = ZONE_NORMAL;
975
976 /*
977 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
978 * contains nodes which have zones of 0...ZONE_NORMAL,
979 * set zone_last to ZONE_NORMAL.
980 *
981 * If we don't have HIGHMEM nor movable node,
982 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
983 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
984 */
985 if (N_MEMORY == N_NORMAL_MEMORY)
986 zone_last = ZONE_MOVABLE;
987
988 /*
989 * if the memory to be online is in a zone of 0...zone_last, and
990 * the zones of 0...zone_last don't have memory before online, we will
991 * need to set the node to node_states[N_NORMAL_MEMORY] after
992 * the memory is online.
993 */
994 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
995 arg->status_change_nid_normal = nid;
996 else
997 arg->status_change_nid_normal = -1;
998
999#ifdef CONFIG_HIGHMEM
1000 /*
1001 * If we have movable node, node_states[N_HIGH_MEMORY]
1002 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1003 * set zone_last to ZONE_HIGHMEM.
1004 *
1005 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1006 * contains nodes which have zones of 0...ZONE_MOVABLE,
1007 * set zone_last to ZONE_MOVABLE.
1008 */
1009 zone_last = ZONE_HIGHMEM;
1010 if (N_MEMORY == N_HIGH_MEMORY)
1011 zone_last = ZONE_MOVABLE;
1012
1013 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
1014 arg->status_change_nid_high = nid;
1015 else
1016 arg->status_change_nid_high = -1;
1017#else
1018 arg->status_change_nid_high = arg->status_change_nid_normal;
1019#endif
1020
1021 /*
1022 * if the node don't have memory befor online, we will need to
1023 * set the node to node_states[N_MEMORY] after the memory
1024 * is online.
1025 */
1026 if (!node_state(nid, N_MEMORY))
1027 arg->status_change_nid = nid;
1028 else
1029 arg->status_change_nid = -1;
1030}
1031
1032static void node_states_set_node(int node, struct memory_notify *arg)
1033{
1034 if (arg->status_change_nid_normal >= 0)
1035 node_set_state(node, N_NORMAL_MEMORY);
1036
1037 if (arg->status_change_nid_high >= 0)
1038 node_set_state(node, N_HIGH_MEMORY);
1039
1040 node_set_state(node, N_MEMORY);
1041}
1042
1043bool zone_can_shift(unsigned long pfn, unsigned long nr_pages,
1044 enum zone_type target, int *zone_shift)
1045{
1046 struct zone *zone = page_zone(pfn_to_page(pfn));
1047 enum zone_type idx = zone_idx(zone);
1048 int i;
1049
1050 *zone_shift = 0;
1051
1052 if (idx < target) {
1053 /* pages must be at end of current zone */
1054 if (pfn + nr_pages != zone_end_pfn(zone))
1055 return false;
1056
1057 /* no zones in use between current zone and target */
1058 for (i = idx + 1; i < target; i++)
1059 if (zone_is_initialized(zone - idx + i))
1060 return false;
1061 }
1062
1063 if (target < idx) {
1064 /* pages must be at beginning of current zone */
1065 if (pfn != zone->zone_start_pfn)
1066 return false;
1067
1068 /* no zones in use between current zone and target */
1069 for (i = target + 1; i < idx; i++)
1070 if (zone_is_initialized(zone - idx + i))
1071 return false;
1072 }
1073
1074 *zone_shift = target - idx;
1075 return true;
1076}
1077
1078/* Must be protected by mem_hotplug_begin() */
1079int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1080{
1081 unsigned long flags;
1082 unsigned long onlined_pages = 0;
1083 struct zone *zone;
1084 int need_zonelists_rebuild = 0;
1085 int nid;
1086 int ret;
1087 struct memory_notify arg;
1088 int zone_shift = 0;
1089
1090 /*
1091 * This doesn't need a lock to do pfn_to_page().
1092 * The section can't be removed here because of the
1093 * memory_block->state_mutex.
1094 */
1095 zone = page_zone(pfn_to_page(pfn));
1096
1097 if ((zone_idx(zone) > ZONE_NORMAL ||
1098 online_type == MMOP_ONLINE_MOVABLE) &&
1099 !can_online_high_movable(zone))
1100 return -EINVAL;
1101
1102 if (online_type == MMOP_ONLINE_KERNEL) {
1103 if (!zone_can_shift(pfn, nr_pages, ZONE_NORMAL, &zone_shift))
1104 return -EINVAL;
1105 } else if (online_type == MMOP_ONLINE_MOVABLE) {
1106 if (!zone_can_shift(pfn, nr_pages, ZONE_MOVABLE, &zone_shift))
1107 return -EINVAL;
1108 }
1109
1110 zone = move_pfn_range(zone_shift, pfn, pfn + nr_pages);
1111 if (!zone)
1112 return -EINVAL;
1113
1114 arg.start_pfn = pfn;
1115 arg.nr_pages = nr_pages;
1116 node_states_check_changes_online(nr_pages, zone, &arg);
1117
1118 nid = zone_to_nid(zone);
1119
1120 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1121 ret = notifier_to_errno(ret);
1122 if (ret)
1123 goto failed_addition;
1124
1125 /*
1126 * If this zone is not populated, then it is not in zonelist.
1127 * This means the page allocator ignores this zone.
1128 * So, zonelist must be updated after online.
1129 */
1130 mutex_lock(&zonelists_mutex);
1131 if (!populated_zone(zone)) {
1132 need_zonelists_rebuild = 1;
1133 build_all_zonelists(NULL, zone);
1134 }
1135
1136 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1137 online_pages_range);
1138 if (ret) {
1139 if (need_zonelists_rebuild)
1140 zone_pcp_reset(zone);
1141 mutex_unlock(&zonelists_mutex);
1142 goto failed_addition;
1143 }
1144
1145 zone->present_pages += onlined_pages;
1146
1147 pgdat_resize_lock(zone->zone_pgdat, &flags);
1148 zone->zone_pgdat->node_present_pages += onlined_pages;
1149 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1150
1151 if (onlined_pages) {
1152 node_states_set_node(nid, &arg);
1153 if (need_zonelists_rebuild)
1154 build_all_zonelists(NULL, NULL);
1155 else
1156 zone_pcp_update(zone);
1157 }
1158
1159 mutex_unlock(&zonelists_mutex);
1160
1161 init_per_zone_wmark_min();
1162
1163 if (onlined_pages) {
1164 kswapd_run(nid);
1165 kcompactd_run(nid);
1166 }
1167
1168 vm_total_pages = nr_free_pagecache_pages();
1169
1170 writeback_set_ratelimit();
1171
1172 if (onlined_pages)
1173 memory_notify(MEM_ONLINE, &arg);
1174 return 0;
1175
1176failed_addition:
1177 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1178 (unsigned long long) pfn << PAGE_SHIFT,
1179 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1180 memory_notify(MEM_CANCEL_ONLINE, &arg);
1181 return ret;
1182}
1183#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1184
1185static void reset_node_present_pages(pg_data_t *pgdat)
1186{
1187 struct zone *z;
1188
1189 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1190 z->present_pages = 0;
1191
1192 pgdat->node_present_pages = 0;
1193}
1194
1195/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1196static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1197{
1198 struct pglist_data *pgdat;
1199 unsigned long zones_size[MAX_NR_ZONES] = {0};
1200 unsigned long zholes_size[MAX_NR_ZONES] = {0};
1201 unsigned long start_pfn = PFN_DOWN(start);
1202
1203 pgdat = NODE_DATA(nid);
1204 if (!pgdat) {
1205 pgdat = arch_alloc_nodedata(nid);
1206 if (!pgdat)
1207 return NULL;
1208
1209 arch_refresh_nodedata(nid, pgdat);
1210 } else {
1211 /* Reset the nr_zones, order and classzone_idx before reuse */
1212 pgdat->nr_zones = 0;
1213 pgdat->kswapd_order = 0;
1214 pgdat->kswapd_classzone_idx = 0;
1215 }
1216
1217 /* we can use NODE_DATA(nid) from here */
1218
1219 /* init node's zones as empty zones, we don't have any present pages.*/
1220 free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1221 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1222
1223 /*
1224 * The node we allocated has no zone fallback lists. For avoiding
1225 * to access not-initialized zonelist, build here.
1226 */
1227 mutex_lock(&zonelists_mutex);
1228 build_all_zonelists(pgdat, NULL);
1229 mutex_unlock(&zonelists_mutex);
1230
1231 /*
1232 * zone->managed_pages is set to an approximate value in
1233 * free_area_init_core(), which will cause
1234 * /sys/device/system/node/nodeX/meminfo has wrong data.
1235 * So reset it to 0 before any memory is onlined.
1236 */
1237 reset_node_managed_pages(pgdat);
1238
1239 /*
1240 * When memory is hot-added, all the memory is in offline state. So
1241 * clear all zones' present_pages because they will be updated in
1242 * online_pages() and offline_pages().
1243 */
1244 reset_node_present_pages(pgdat);
1245
1246 return pgdat;
1247}
1248
1249static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1250{
1251 arch_refresh_nodedata(nid, NULL);
1252 free_percpu(pgdat->per_cpu_nodestats);
1253 arch_free_nodedata(pgdat);
1254 return;
1255}
1256
1257
1258/**
1259 * try_online_node - online a node if offlined
1260 *
1261 * called by cpu_up() to online a node without onlined memory.
1262 */
1263int try_online_node(int nid)
1264{
1265 pg_data_t *pgdat;
1266 int ret;
1267
1268 if (node_online(nid))
1269 return 0;
1270
1271 mem_hotplug_begin();
1272 pgdat = hotadd_new_pgdat(nid, 0);
1273 if (!pgdat) {
1274 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1275 ret = -ENOMEM;
1276 goto out;
1277 }
1278 node_set_online(nid);
1279 ret = register_one_node(nid);
1280 BUG_ON(ret);
1281
1282 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1283 mutex_lock(&zonelists_mutex);
1284 build_all_zonelists(NULL, NULL);
1285 mutex_unlock(&zonelists_mutex);
1286 }
1287
1288out:
1289 mem_hotplug_done();
1290 return ret;
1291}
1292
1293static int check_hotplug_memory_range(u64 start, u64 size)
1294{
1295 u64 start_pfn = PFN_DOWN(start);
1296 u64 nr_pages = size >> PAGE_SHIFT;
1297
1298 /* Memory range must be aligned with section */
1299 if ((start_pfn & ~PAGE_SECTION_MASK) ||
1300 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1301 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1302 (unsigned long long)start,
1303 (unsigned long long)size);
1304 return -EINVAL;
1305 }
1306
1307 return 0;
1308}
1309
1310/*
1311 * If movable zone has already been setup, newly added memory should be check.
1312 * If its address is higher than movable zone, it should be added as movable.
1313 * Without this check, movable zone may overlap with other zone.
1314 */
1315static int should_add_memory_movable(int nid, u64 start, u64 size)
1316{
1317 unsigned long start_pfn = start >> PAGE_SHIFT;
1318 pg_data_t *pgdat = NODE_DATA(nid);
1319 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1320
1321 if (zone_is_empty(movable_zone))
1322 return 0;
1323
1324 if (movable_zone->zone_start_pfn <= start_pfn)
1325 return 1;
1326
1327 return 0;
1328}
1329
1330int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1331 bool for_device)
1332{
1333#ifdef CONFIG_ZONE_DEVICE
1334 if (for_device)
1335 return ZONE_DEVICE;
1336#endif
1337 if (should_add_memory_movable(nid, start, size))
1338 return ZONE_MOVABLE;
1339
1340 return zone_default;
1341}
1342
1343static int online_memory_block(struct memory_block *mem, void *arg)
1344{
1345 return device_online(&mem->dev);
1346}
1347
1348/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1349int __ref add_memory_resource(int nid, struct resource *res, bool online)
1350{
1351 u64 start, size;
1352 pg_data_t *pgdat = NULL;
1353 bool new_pgdat;
1354 bool new_node;
1355 int ret;
1356
1357 start = res->start;
1358 size = resource_size(res);
1359
1360 ret = check_hotplug_memory_range(start, size);
1361 if (ret)
1362 return ret;
1363
1364 { /* Stupid hack to suppress address-never-null warning */
1365 void *p = NODE_DATA(nid);
1366 new_pgdat = !p;
1367 }
1368
1369 mem_hotplug_begin();
1370
1371 /*
1372 * Add new range to memblock so that when hotadd_new_pgdat() is called
1373 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1374 * this new range and calculate total pages correctly. The range will
1375 * be removed at hot-remove time.
1376 */
1377 memblock_add_node(start, size, nid);
1378
1379 new_node = !node_online(nid);
1380 if (new_node) {
1381 pgdat = hotadd_new_pgdat(nid, start);
1382 ret = -ENOMEM;
1383 if (!pgdat)
1384 goto error;
1385 }
1386
1387 /* call arch's memory hotadd */
1388 ret = arch_add_memory(nid, start, size, false);
1389
1390 if (ret < 0)
1391 goto error;
1392
1393 /* we online node here. we can't roll back from here. */
1394 node_set_online(nid);
1395
1396 if (new_node) {
1397 ret = register_one_node(nid);
1398 /*
1399 * If sysfs file of new node can't create, cpu on the node
1400 * can't be hot-added. There is no rollback way now.
1401 * So, check by BUG_ON() to catch it reluctantly..
1402 */
1403 BUG_ON(ret);
1404 }
1405
1406 /* create new memmap entry */
1407 firmware_map_add_hotplug(start, start + size, "System RAM");
1408
1409 /* online pages if requested */
1410 if (online)
1411 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1412 NULL, online_memory_block);
1413
1414 goto out;
1415
1416error:
1417 /* rollback pgdat allocation and others */
1418 if (new_pgdat)
1419 rollback_node_hotadd(nid, pgdat);
1420 memblock_remove(start, size);
1421
1422out:
1423 mem_hotplug_done();
1424 return ret;
1425}
1426EXPORT_SYMBOL_GPL(add_memory_resource);
1427
1428int __ref add_memory(int nid, u64 start, u64 size)
1429{
1430 struct resource *res;
1431 int ret;
1432
1433 res = register_memory_resource(start, size);
1434 if (IS_ERR(res))
1435 return PTR_ERR(res);
1436
1437 ret = add_memory_resource(nid, res, memhp_auto_online);
1438 if (ret < 0)
1439 release_memory_resource(res);
1440 return ret;
1441}
1442EXPORT_SYMBOL_GPL(add_memory);
1443
1444#ifdef CONFIG_MEMORY_HOTREMOVE
1445/*
1446 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1447 * set and the size of the free page is given by page_order(). Using this,
1448 * the function determines if the pageblock contains only free pages.
1449 * Due to buddy contraints, a free page at least the size of a pageblock will
1450 * be located at the start of the pageblock
1451 */
1452static inline int pageblock_free(struct page *page)
1453{
1454 return PageBuddy(page) && page_order(page) >= pageblock_order;
1455}
1456
1457/* Return the start of the next active pageblock after a given page */
1458static struct page *next_active_pageblock(struct page *page)
1459{
1460 /* Ensure the starting page is pageblock-aligned */
1461 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1462
1463 /* If the entire pageblock is free, move to the end of free page */
1464 if (pageblock_free(page)) {
1465 int order;
1466 /* be careful. we don't have locks, page_order can be changed.*/
1467 order = page_order(page);
1468 if ((order < MAX_ORDER) && (order >= pageblock_order))
1469 return page + (1 << order);
1470 }
1471
1472 return page + pageblock_nr_pages;
1473}
1474
1475/* Checks if this range of memory is likely to be hot-removable. */
1476bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1477{
1478 struct page *page = pfn_to_page(start_pfn);
1479 struct page *end_page = page + nr_pages;
1480
1481 /* Check the starting page of each pageblock within the range */
1482 for (; page < end_page; page = next_active_pageblock(page)) {
1483 if (!is_pageblock_removable_nolock(page))
1484 return false;
1485 cond_resched();
1486 }
1487
1488 /* All pageblocks in the memory block are likely to be hot-removable */
1489 return true;
1490}
1491
1492/*
1493 * Confirm all pages in a range [start, end) belong to the same zone.
1494 * When true, return its valid [start, end).
1495 */
1496int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1497 unsigned long *valid_start, unsigned long *valid_end)
1498{
1499 unsigned long pfn, sec_end_pfn;
1500 unsigned long start, end;
1501 struct zone *zone = NULL;
1502 struct page *page;
1503 int i;
1504 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1505 pfn < end_pfn;
1506 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1507 /* Make sure the memory section is present first */
1508 if (!present_section_nr(pfn_to_section_nr(pfn)))
1509 continue;
1510 for (; pfn < sec_end_pfn && pfn < end_pfn;
1511 pfn += MAX_ORDER_NR_PAGES) {
1512 i = 0;
1513 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1514 while ((i < MAX_ORDER_NR_PAGES) &&
1515 !pfn_valid_within(pfn + i))
1516 i++;
1517 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1518 continue;
1519 page = pfn_to_page(pfn + i);
1520 if (zone && page_zone(page) != zone)
1521 return 0;
1522 if (!zone)
1523 start = pfn + i;
1524 zone = page_zone(page);
1525 end = pfn + MAX_ORDER_NR_PAGES;
1526 }
1527 }
1528
1529 if (zone) {
1530 *valid_start = start;
1531 *valid_end = min(end, end_pfn);
1532 return 1;
1533 } else {
1534 return 0;
1535 }
1536}
1537
1538/*
1539 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1540 * non-lru movable pages and hugepages). We scan pfn because it's much
1541 * easier than scanning over linked list. This function returns the pfn
1542 * of the first found movable page if it's found, otherwise 0.
1543 */
1544static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1545{
1546 unsigned long pfn;
1547 struct page *page;
1548 for (pfn = start; pfn < end; pfn++) {
1549 if (pfn_valid(pfn)) {
1550 page = pfn_to_page(pfn);
1551 if (PageLRU(page))
1552 return pfn;
1553 if (__PageMovable(page))
1554 return pfn;
1555 if (PageHuge(page)) {
1556 if (page_huge_active(page))
1557 return pfn;
1558 else
1559 pfn = round_up(pfn + 1,
1560 1 << compound_order(page)) - 1;
1561 }
1562 }
1563 }
1564 return 0;
1565}
1566
1567static struct page *new_node_page(struct page *page, unsigned long private,
1568 int **result)
1569{
1570 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
1571 int nid = page_to_nid(page);
1572 nodemask_t nmask = node_states[N_MEMORY];
1573 struct page *new_page = NULL;
1574
1575 /*
1576 * TODO: allocate a destination hugepage from a nearest neighbor node,
1577 * accordance with memory policy of the user process if possible. For
1578 * now as a simple work-around, we use the next node for destination.
1579 */
1580 if (PageHuge(page))
1581 return alloc_huge_page_node(page_hstate(compound_head(page)),
1582 next_node_in(nid, nmask));
1583
1584 node_clear(nid, nmask);
1585
1586 if (PageHighMem(page)
1587 || (zone_idx(page_zone(page)) == ZONE_MOVABLE))
1588 gfp_mask |= __GFP_HIGHMEM;
1589
1590 if (!nodes_empty(nmask))
1591 new_page = __alloc_pages_nodemask(gfp_mask, 0,
1592 node_zonelist(nid, gfp_mask), &nmask);
1593 if (!new_page)
1594 new_page = __alloc_pages(gfp_mask, 0,
1595 node_zonelist(nid, gfp_mask));
1596
1597 return new_page;
1598}
1599
1600#define NR_OFFLINE_AT_ONCE_PAGES (256)
1601static int
1602do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1603{
1604 unsigned long pfn;
1605 struct page *page;
1606 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1607 int not_managed = 0;
1608 int ret = 0;
1609 LIST_HEAD(source);
1610
1611 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1612 if (!pfn_valid(pfn))
1613 continue;
1614 page = pfn_to_page(pfn);
1615
1616 if (PageHuge(page)) {
1617 struct page *head = compound_head(page);
1618 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1619 if (compound_order(head) > PFN_SECTION_SHIFT) {
1620 ret = -EBUSY;
1621 break;
1622 }
1623 if (isolate_huge_page(page, &source))
1624 move_pages -= 1 << compound_order(head);
1625 continue;
1626 }
1627
1628 if (!get_page_unless_zero(page))
1629 continue;
1630 /*
1631 * We can skip free pages. And we can deal with pages on
1632 * LRU and non-lru movable pages.
1633 */
1634 if (PageLRU(page))
1635 ret = isolate_lru_page(page);
1636 else
1637 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1638 if (!ret) { /* Success */
1639 put_page(page);
1640 list_add_tail(&page->lru, &source);
1641 move_pages--;
1642 if (!__PageMovable(page))
1643 inc_node_page_state(page, NR_ISOLATED_ANON +
1644 page_is_file_cache(page));
1645
1646 } else {
1647#ifdef CONFIG_DEBUG_VM
1648 pr_alert("failed to isolate pfn %lx\n", pfn);
1649 dump_page(page, "isolation failed");
1650#endif
1651 put_page(page);
1652 /* Because we don't have big zone->lock. we should
1653 check this again here. */
1654 if (page_count(page)) {
1655 not_managed++;
1656 ret = -EBUSY;
1657 break;
1658 }
1659 }
1660 }
1661 if (!list_empty(&source)) {
1662 if (not_managed) {
1663 putback_movable_pages(&source);
1664 goto out;
1665 }
1666
1667 /* Allocate a new page from the nearest neighbor node */
1668 ret = migrate_pages(&source, new_node_page, NULL, 0,
1669 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1670 if (ret)
1671 putback_movable_pages(&source);
1672 }
1673out:
1674 return ret;
1675}
1676
1677/*
1678 * remove from free_area[] and mark all as Reserved.
1679 */
1680static int
1681offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1682 void *data)
1683{
1684 __offline_isolated_pages(start, start + nr_pages);
1685 return 0;
1686}
1687
1688static void
1689offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1690{
1691 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1692 offline_isolated_pages_cb);
1693}
1694
1695/*
1696 * Check all pages in range, recoreded as memory resource, are isolated.
1697 */
1698static int
1699check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1700 void *data)
1701{
1702 int ret;
1703 long offlined = *(long *)data;
1704 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1705 offlined = nr_pages;
1706 if (!ret)
1707 *(long *)data += offlined;
1708 return ret;
1709}
1710
1711static long
1712check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1713{
1714 long offlined = 0;
1715 int ret;
1716
1717 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1718 check_pages_isolated_cb);
1719 if (ret < 0)
1720 offlined = (long)ret;
1721 return offlined;
1722}
1723
1724#ifdef CONFIG_MOVABLE_NODE
1725/*
1726 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1727 * normal memory.
1728 */
1729static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1730{
1731 return true;
1732}
1733#else /* CONFIG_MOVABLE_NODE */
1734/* ensure the node has NORMAL memory if it is still online */
1735static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1736{
1737 struct pglist_data *pgdat = zone->zone_pgdat;
1738 unsigned long present_pages = 0;
1739 enum zone_type zt;
1740
1741 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1742 present_pages += pgdat->node_zones[zt].present_pages;
1743
1744 if (present_pages > nr_pages)
1745 return true;
1746
1747 present_pages = 0;
1748 for (; zt <= ZONE_MOVABLE; zt++)
1749 present_pages += pgdat->node_zones[zt].present_pages;
1750
1751 /*
1752 * we can't offline the last normal memory until all
1753 * higher memory is offlined.
1754 */
1755 return present_pages == 0;
1756}
1757#endif /* CONFIG_MOVABLE_NODE */
1758
1759static int __init cmdline_parse_movable_node(char *p)
1760{
1761#ifdef CONFIG_MOVABLE_NODE
1762 movable_node_enabled = true;
1763#else
1764 pr_warn("movable_node option not supported\n");
1765#endif
1766 return 0;
1767}
1768early_param("movable_node", cmdline_parse_movable_node);
1769
1770/* check which state of node_states will be changed when offline memory */
1771static void node_states_check_changes_offline(unsigned long nr_pages,
1772 struct zone *zone, struct memory_notify *arg)
1773{
1774 struct pglist_data *pgdat = zone->zone_pgdat;
1775 unsigned long present_pages = 0;
1776 enum zone_type zt, zone_last = ZONE_NORMAL;
1777
1778 /*
1779 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1780 * contains nodes which have zones of 0...ZONE_NORMAL,
1781 * set zone_last to ZONE_NORMAL.
1782 *
1783 * If we don't have HIGHMEM nor movable node,
1784 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1785 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1786 */
1787 if (N_MEMORY == N_NORMAL_MEMORY)
1788 zone_last = ZONE_MOVABLE;
1789
1790 /*
1791 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1792 * If the memory to be offline is in a zone of 0...zone_last,
1793 * and it is the last present memory, 0...zone_last will
1794 * become empty after offline , thus we can determind we will
1795 * need to clear the node from node_states[N_NORMAL_MEMORY].
1796 */
1797 for (zt = 0; zt <= zone_last; zt++)
1798 present_pages += pgdat->node_zones[zt].present_pages;
1799 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1800 arg->status_change_nid_normal = zone_to_nid(zone);
1801 else
1802 arg->status_change_nid_normal = -1;
1803
1804#ifdef CONFIG_HIGHMEM
1805 /*
1806 * If we have movable node, node_states[N_HIGH_MEMORY]
1807 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1808 * set zone_last to ZONE_HIGHMEM.
1809 *
1810 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1811 * contains nodes which have zones of 0...ZONE_MOVABLE,
1812 * set zone_last to ZONE_MOVABLE.
1813 */
1814 zone_last = ZONE_HIGHMEM;
1815 if (N_MEMORY == N_HIGH_MEMORY)
1816 zone_last = ZONE_MOVABLE;
1817
1818 for (; zt <= zone_last; zt++)
1819 present_pages += pgdat->node_zones[zt].present_pages;
1820 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1821 arg->status_change_nid_high = zone_to_nid(zone);
1822 else
1823 arg->status_change_nid_high = -1;
1824#else
1825 arg->status_change_nid_high = arg->status_change_nid_normal;
1826#endif
1827
1828 /*
1829 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1830 */
1831 zone_last = ZONE_MOVABLE;
1832
1833 /*
1834 * check whether node_states[N_HIGH_MEMORY] will be changed
1835 * If we try to offline the last present @nr_pages from the node,
1836 * we can determind we will need to clear the node from
1837 * node_states[N_HIGH_MEMORY].
1838 */
1839 for (; zt <= zone_last; zt++)
1840 present_pages += pgdat->node_zones[zt].present_pages;
1841 if (nr_pages >= present_pages)
1842 arg->status_change_nid = zone_to_nid(zone);
1843 else
1844 arg->status_change_nid = -1;
1845}
1846
1847static void node_states_clear_node(int node, struct memory_notify *arg)
1848{
1849 if (arg->status_change_nid_normal >= 0)
1850 node_clear_state(node, N_NORMAL_MEMORY);
1851
1852 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1853 (arg->status_change_nid_high >= 0))
1854 node_clear_state(node, N_HIGH_MEMORY);
1855
1856 if ((N_MEMORY != N_HIGH_MEMORY) &&
1857 (arg->status_change_nid >= 0))
1858 node_clear_state(node, N_MEMORY);
1859}
1860
1861static int __ref __offline_pages(unsigned long start_pfn,
1862 unsigned long end_pfn, unsigned long timeout)
1863{
1864 unsigned long pfn, nr_pages, expire;
1865 long offlined_pages;
1866 int ret, drain, retry_max, node;
1867 unsigned long flags;
1868 unsigned long valid_start, valid_end;
1869 struct zone *zone;
1870 struct memory_notify arg;
1871
1872 /* at least, alignment against pageblock is necessary */
1873 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1874 return -EINVAL;
1875 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1876 return -EINVAL;
1877 /* This makes hotplug much easier...and readable.
1878 we assume this for now. .*/
1879 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1880 return -EINVAL;
1881
1882 zone = page_zone(pfn_to_page(valid_start));
1883 node = zone_to_nid(zone);
1884 nr_pages = end_pfn - start_pfn;
1885
1886 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1887 return -EINVAL;
1888
1889 /* set above range as isolated */
1890 ret = start_isolate_page_range(start_pfn, end_pfn,
1891 MIGRATE_MOVABLE, true);
1892 if (ret)
1893 return ret;
1894
1895 arg.start_pfn = start_pfn;
1896 arg.nr_pages = nr_pages;
1897 node_states_check_changes_offline(nr_pages, zone, &arg);
1898
1899 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1900 ret = notifier_to_errno(ret);
1901 if (ret)
1902 goto failed_removal;
1903
1904 pfn = start_pfn;
1905 expire = jiffies + timeout;
1906 drain = 0;
1907 retry_max = 5;
1908repeat:
1909 /* start memory hot removal */
1910 ret = -EAGAIN;
1911 if (time_after(jiffies, expire))
1912 goto failed_removal;
1913 ret = -EINTR;
1914 if (signal_pending(current))
1915 goto failed_removal;
1916 ret = 0;
1917 if (drain) {
1918 lru_add_drain_all();
1919 cond_resched();
1920 drain_all_pages(zone);
1921 }
1922
1923 pfn = scan_movable_pages(start_pfn, end_pfn);
1924 if (pfn) { /* We have movable pages */
1925 ret = do_migrate_range(pfn, end_pfn);
1926 if (!ret) {
1927 drain = 1;
1928 goto repeat;
1929 } else {
1930 if (ret < 0)
1931 if (--retry_max == 0)
1932 goto failed_removal;
1933 yield();
1934 drain = 1;
1935 goto repeat;
1936 }
1937 }
1938 /* drain all zone's lru pagevec, this is asynchronous... */
1939 lru_add_drain_all();
1940 yield();
1941 /* drain pcp pages, this is synchronous. */
1942 drain_all_pages(zone);
1943 /*
1944 * dissolve free hugepages in the memory block before doing offlining
1945 * actually in order to make hugetlbfs's object counting consistent.
1946 */
1947 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1948 if (ret)
1949 goto failed_removal;
1950 /* check again */
1951 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1952 if (offlined_pages < 0) {
1953 ret = -EBUSY;
1954 goto failed_removal;
1955 }
1956 pr_info("Offlined Pages %ld\n", offlined_pages);
1957 /* Ok, all of our target is isolated.
1958 We cannot do rollback at this point. */
1959 offline_isolated_pages(start_pfn, end_pfn);
1960 /* reset pagetype flags and makes migrate type to be MOVABLE */
1961 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1962 /* removal success */
1963 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1964 zone->present_pages -= offlined_pages;
1965
1966 pgdat_resize_lock(zone->zone_pgdat, &flags);
1967 zone->zone_pgdat->node_present_pages -= offlined_pages;
1968 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1969
1970 init_per_zone_wmark_min();
1971
1972 if (!populated_zone(zone)) {
1973 zone_pcp_reset(zone);
1974 mutex_lock(&zonelists_mutex);
1975 build_all_zonelists(NULL, NULL);
1976 mutex_unlock(&zonelists_mutex);
1977 } else
1978 zone_pcp_update(zone);
1979
1980 node_states_clear_node(node, &arg);
1981 if (arg.status_change_nid >= 0) {
1982 kswapd_stop(node);
1983 kcompactd_stop(node);
1984 }
1985
1986 vm_total_pages = nr_free_pagecache_pages();
1987 writeback_set_ratelimit();
1988
1989 memory_notify(MEM_OFFLINE, &arg);
1990 return 0;
1991
1992failed_removal:
1993 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1994 (unsigned long long) start_pfn << PAGE_SHIFT,
1995 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1996 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1997 /* pushback to free area */
1998 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1999 return ret;
2000}
2001
2002/* Must be protected by mem_hotplug_begin() */
2003int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
2004{
2005 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
2006}
2007#endif /* CONFIG_MEMORY_HOTREMOVE */
2008
2009/**
2010 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
2011 * @start_pfn: start pfn of the memory range
2012 * @end_pfn: end pfn of the memory range
2013 * @arg: argument passed to func
2014 * @func: callback for each memory section walked
2015 *
2016 * This function walks through all present mem sections in range
2017 * [start_pfn, end_pfn) and call func on each mem section.
2018 *
2019 * Returns the return value of func.
2020 */
2021int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
2022 void *arg, int (*func)(struct memory_block *, void *))
2023{
2024 struct memory_block *mem = NULL;
2025 struct mem_section *section;
2026 unsigned long pfn, section_nr;
2027 int ret;
2028
2029 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2030 section_nr = pfn_to_section_nr(pfn);
2031 if (!present_section_nr(section_nr))
2032 continue;
2033
2034 section = __nr_to_section(section_nr);
2035 /* same memblock? */
2036 if (mem)
2037 if ((section_nr >= mem->start_section_nr) &&
2038 (section_nr <= mem->end_section_nr))
2039 continue;
2040
2041 mem = find_memory_block_hinted(section, mem);
2042 if (!mem)
2043 continue;
2044
2045 ret = func(mem, arg);
2046 if (ret) {
2047 kobject_put(&mem->dev.kobj);
2048 return ret;
2049 }
2050 }
2051
2052 if (mem)
2053 kobject_put(&mem->dev.kobj);
2054
2055 return 0;
2056}
2057
2058#ifdef CONFIG_MEMORY_HOTREMOVE
2059static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2060{
2061 int ret = !is_memblock_offlined(mem);
2062
2063 if (unlikely(ret)) {
2064 phys_addr_t beginpa, endpa;
2065
2066 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2067 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
2068 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2069 &beginpa, &endpa);
2070 }
2071
2072 return ret;
2073}
2074
2075static int check_cpu_on_node(pg_data_t *pgdat)
2076{
2077 int cpu;
2078
2079 for_each_present_cpu(cpu) {
2080 if (cpu_to_node(cpu) == pgdat->node_id)
2081 /*
2082 * the cpu on this node isn't removed, and we can't
2083 * offline this node.
2084 */
2085 return -EBUSY;
2086 }
2087
2088 return 0;
2089}
2090
2091static void unmap_cpu_on_node(pg_data_t *pgdat)
2092{
2093#ifdef CONFIG_ACPI_NUMA
2094 int cpu;
2095
2096 for_each_possible_cpu(cpu)
2097 if (cpu_to_node(cpu) == pgdat->node_id)
2098 numa_clear_node(cpu);
2099#endif
2100}
2101
2102static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2103{
2104 int ret;
2105
2106 ret = check_cpu_on_node(pgdat);
2107 if (ret)
2108 return ret;
2109
2110 /*
2111 * the node will be offlined when we come here, so we can clear
2112 * the cpu_to_node() now.
2113 */
2114
2115 unmap_cpu_on_node(pgdat);
2116 return 0;
2117}
2118
2119/**
2120 * try_offline_node
2121 *
2122 * Offline a node if all memory sections and cpus of the node are removed.
2123 *
2124 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2125 * and online/offline operations before this call.
2126 */
2127void try_offline_node(int nid)
2128{
2129 pg_data_t *pgdat = NODE_DATA(nid);
2130 unsigned long start_pfn = pgdat->node_start_pfn;
2131 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2132 unsigned long pfn;
2133
2134 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2135 unsigned long section_nr = pfn_to_section_nr(pfn);
2136
2137 if (!present_section_nr(section_nr))
2138 continue;
2139
2140 if (pfn_to_nid(pfn) != nid)
2141 continue;
2142
2143 /*
2144 * some memory sections of this node are not removed, and we
2145 * can't offline node now.
2146 */
2147 return;
2148 }
2149
2150 if (check_and_unmap_cpu_on_node(pgdat))
2151 return;
2152
2153 /*
2154 * all memory/cpu of this node are removed, we can offline this
2155 * node now.
2156 */
2157 node_set_offline(nid);
2158 unregister_one_node(nid);
2159}
2160EXPORT_SYMBOL(try_offline_node);
2161
2162/**
2163 * remove_memory
2164 *
2165 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2166 * and online/offline operations before this call, as required by
2167 * try_offline_node().
2168 */
2169void __ref remove_memory(int nid, u64 start, u64 size)
2170{
2171 int ret;
2172
2173 BUG_ON(check_hotplug_memory_range(start, size));
2174
2175 mem_hotplug_begin();
2176
2177 /*
2178 * All memory blocks must be offlined before removing memory. Check
2179 * whether all memory blocks in question are offline and trigger a BUG()
2180 * if this is not the case.
2181 */
2182 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2183 check_memblock_offlined_cb);
2184 if (ret)
2185 BUG();
2186
2187 /* remove memmap entry */
2188 firmware_map_remove(start, start + size, "System RAM");
2189 memblock_free(start, size);
2190 memblock_remove(start, size);
2191
2192 arch_remove_memory(start, size);
2193
2194 try_offline_node(nid);
2195
2196 mem_hotplug_done();
2197}
2198EXPORT_SYMBOL_GPL(remove_memory);
2199#endif /* CONFIG_MEMORY_HOTREMOVE */