at v4.11 41 kB view raw
1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/cache.h> 38#include <linux/spinlock.h> 39#include <linux/threads.h> 40#include <linux/cpumask.h> 41#include <linux/seqlock.h> 42#include <linux/lockdep.h> 43#include <linux/debugobjects.h> 44#include <linux/bug.h> 45#include <linux/compiler.h> 46#include <linux/ktime.h> 47#include <linux/irqflags.h> 48 49#include <asm/barrier.h> 50 51#ifndef CONFIG_TINY_RCU 52extern int rcu_expedited; /* for sysctl */ 53extern int rcu_normal; /* also for sysctl */ 54#endif /* #ifndef CONFIG_TINY_RCU */ 55 56#ifdef CONFIG_TINY_RCU 57/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */ 58static inline bool rcu_gp_is_normal(void) /* Internal RCU use. */ 59{ 60 return true; 61} 62static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */ 63{ 64 return false; 65} 66 67static inline void rcu_expedite_gp(void) 68{ 69} 70 71static inline void rcu_unexpedite_gp(void) 72{ 73} 74#else /* #ifdef CONFIG_TINY_RCU */ 75bool rcu_gp_is_normal(void); /* Internal RCU use. */ 76bool rcu_gp_is_expedited(void); /* Internal RCU use. */ 77void rcu_expedite_gp(void); 78void rcu_unexpedite_gp(void); 79#endif /* #else #ifdef CONFIG_TINY_RCU */ 80 81enum rcutorture_type { 82 RCU_FLAVOR, 83 RCU_BH_FLAVOR, 84 RCU_SCHED_FLAVOR, 85 RCU_TASKS_FLAVOR, 86 SRCU_FLAVOR, 87 INVALID_RCU_FLAVOR 88}; 89 90#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 91void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 92 unsigned long *gpnum, unsigned long *completed); 93void rcutorture_record_test_transition(void); 94void rcutorture_record_progress(unsigned long vernum); 95void do_trace_rcu_torture_read(const char *rcutorturename, 96 struct rcu_head *rhp, 97 unsigned long secs, 98 unsigned long c_old, 99 unsigned long c); 100#else 101static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, 102 int *flags, 103 unsigned long *gpnum, 104 unsigned long *completed) 105{ 106 *flags = 0; 107 *gpnum = 0; 108 *completed = 0; 109} 110static inline void rcutorture_record_test_transition(void) 111{ 112} 113static inline void rcutorture_record_progress(unsigned long vernum) 114{ 115} 116#ifdef CONFIG_RCU_TRACE 117void do_trace_rcu_torture_read(const char *rcutorturename, 118 struct rcu_head *rhp, 119 unsigned long secs, 120 unsigned long c_old, 121 unsigned long c); 122#else 123#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 124 do { } while (0) 125#endif 126#endif 127 128#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 129#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 130#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 131#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 132#define ulong2long(a) (*(long *)(&(a))) 133 134/* Exported common interfaces */ 135 136#ifdef CONFIG_PREEMPT_RCU 137 138/** 139 * call_rcu() - Queue an RCU callback for invocation after a grace period. 140 * @head: structure to be used for queueing the RCU updates. 141 * @func: actual callback function to be invoked after the grace period 142 * 143 * The callback function will be invoked some time after a full grace 144 * period elapses, in other words after all pre-existing RCU read-side 145 * critical sections have completed. However, the callback function 146 * might well execute concurrently with RCU read-side critical sections 147 * that started after call_rcu() was invoked. RCU read-side critical 148 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 149 * and may be nested. 150 * 151 * Note that all CPUs must agree that the grace period extended beyond 152 * all pre-existing RCU read-side critical section. On systems with more 153 * than one CPU, this means that when "func()" is invoked, each CPU is 154 * guaranteed to have executed a full memory barrier since the end of its 155 * last RCU read-side critical section whose beginning preceded the call 156 * to call_rcu(). It also means that each CPU executing an RCU read-side 157 * critical section that continues beyond the start of "func()" must have 158 * executed a memory barrier after the call_rcu() but before the beginning 159 * of that RCU read-side critical section. Note that these guarantees 160 * include CPUs that are offline, idle, or executing in user mode, as 161 * well as CPUs that are executing in the kernel. 162 * 163 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 164 * resulting RCU callback function "func()", then both CPU A and CPU B are 165 * guaranteed to execute a full memory barrier during the time interval 166 * between the call to call_rcu() and the invocation of "func()" -- even 167 * if CPU A and CPU B are the same CPU (but again only if the system has 168 * more than one CPU). 169 */ 170void call_rcu(struct rcu_head *head, 171 rcu_callback_t func); 172 173#else /* #ifdef CONFIG_PREEMPT_RCU */ 174 175/* In classic RCU, call_rcu() is just call_rcu_sched(). */ 176#define call_rcu call_rcu_sched 177 178#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 179 180/** 181 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 182 * @head: structure to be used for queueing the RCU updates. 183 * @func: actual callback function to be invoked after the grace period 184 * 185 * The callback function will be invoked some time after a full grace 186 * period elapses, in other words after all currently executing RCU 187 * read-side critical sections have completed. call_rcu_bh() assumes 188 * that the read-side critical sections end on completion of a softirq 189 * handler. This means that read-side critical sections in process 190 * context must not be interrupted by softirqs. This interface is to be 191 * used when most of the read-side critical sections are in softirq context. 192 * RCU read-side critical sections are delimited by : 193 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 194 * OR 195 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 196 * These may be nested. 197 * 198 * See the description of call_rcu() for more detailed information on 199 * memory ordering guarantees. 200 */ 201void call_rcu_bh(struct rcu_head *head, 202 rcu_callback_t func); 203 204/** 205 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 206 * @head: structure to be used for queueing the RCU updates. 207 * @func: actual callback function to be invoked after the grace period 208 * 209 * The callback function will be invoked some time after a full grace 210 * period elapses, in other words after all currently executing RCU 211 * read-side critical sections have completed. call_rcu_sched() assumes 212 * that the read-side critical sections end on enabling of preemption 213 * or on voluntary preemption. 214 * RCU read-side critical sections are delimited by : 215 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 216 * OR 217 * anything that disables preemption. 218 * These may be nested. 219 * 220 * See the description of call_rcu() for more detailed information on 221 * memory ordering guarantees. 222 */ 223void call_rcu_sched(struct rcu_head *head, 224 rcu_callback_t func); 225 226void synchronize_sched(void); 227 228/** 229 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 230 * @head: structure to be used for queueing the RCU updates. 231 * @func: actual callback function to be invoked after the grace period 232 * 233 * The callback function will be invoked some time after a full grace 234 * period elapses, in other words after all currently executing RCU 235 * read-side critical sections have completed. call_rcu_tasks() assumes 236 * that the read-side critical sections end at a voluntary context 237 * switch (not a preemption!), entry into idle, or transition to usermode 238 * execution. As such, there are no read-side primitives analogous to 239 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended 240 * to determine that all tasks have passed through a safe state, not so 241 * much for data-strcuture synchronization. 242 * 243 * See the description of call_rcu() for more detailed information on 244 * memory ordering guarantees. 245 */ 246void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 247void synchronize_rcu_tasks(void); 248void rcu_barrier_tasks(void); 249 250#ifdef CONFIG_PREEMPT_RCU 251 252void __rcu_read_lock(void); 253void __rcu_read_unlock(void); 254void rcu_read_unlock_special(struct task_struct *t); 255void synchronize_rcu(void); 256 257/* 258 * Defined as a macro as it is a very low level header included from 259 * areas that don't even know about current. This gives the rcu_read_lock() 260 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 261 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 262 */ 263#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 264 265#else /* #ifdef CONFIG_PREEMPT_RCU */ 266 267static inline void __rcu_read_lock(void) 268{ 269 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 270 preempt_disable(); 271} 272 273static inline void __rcu_read_unlock(void) 274{ 275 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 276 preempt_enable(); 277} 278 279static inline void synchronize_rcu(void) 280{ 281 synchronize_sched(); 282} 283 284static inline int rcu_preempt_depth(void) 285{ 286 return 0; 287} 288 289#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 290 291/* Internal to kernel */ 292void rcu_init(void); 293void rcu_sched_qs(void); 294void rcu_bh_qs(void); 295void rcu_check_callbacks(int user); 296void rcu_report_dead(unsigned int cpu); 297void rcu_cpu_starting(unsigned int cpu); 298 299#ifndef CONFIG_TINY_RCU 300void rcu_end_inkernel_boot(void); 301#else /* #ifndef CONFIG_TINY_RCU */ 302static inline void rcu_end_inkernel_boot(void) { } 303#endif /* #ifndef CONFIG_TINY_RCU */ 304 305#ifdef CONFIG_RCU_STALL_COMMON 306void rcu_sysrq_start(void); 307void rcu_sysrq_end(void); 308#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 309static inline void rcu_sysrq_start(void) 310{ 311} 312static inline void rcu_sysrq_end(void) 313{ 314} 315#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 316 317#ifdef CONFIG_NO_HZ_FULL 318void rcu_user_enter(void); 319void rcu_user_exit(void); 320#else 321static inline void rcu_user_enter(void) { } 322static inline void rcu_user_exit(void) { } 323#endif /* CONFIG_NO_HZ_FULL */ 324 325#ifdef CONFIG_RCU_NOCB_CPU 326void rcu_init_nohz(void); 327#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 328static inline void rcu_init_nohz(void) 329{ 330} 331#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 332 333/** 334 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 335 * @a: Code that RCU needs to pay attention to. 336 * 337 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 338 * in the inner idle loop, that is, between the rcu_idle_enter() and 339 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 340 * critical sections. However, things like powertop need tracepoints 341 * in the inner idle loop. 342 * 343 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 344 * will tell RCU that it needs to pay attention, invoke its argument 345 * (in this example, calling the do_something_with_RCU() function), 346 * and then tell RCU to go back to ignoring this CPU. It is permissible 347 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 348 * on the order of a million or so, even on 32-bit systems). It is 349 * not legal to block within RCU_NONIDLE(), nor is it permissible to 350 * transfer control either into or out of RCU_NONIDLE()'s statement. 351 */ 352#define RCU_NONIDLE(a) \ 353 do { \ 354 rcu_irq_enter_irqson(); \ 355 do { a; } while (0); \ 356 rcu_irq_exit_irqson(); \ 357 } while (0) 358 359/* 360 * Note a voluntary context switch for RCU-tasks benefit. This is a 361 * macro rather than an inline function to avoid #include hell. 362 */ 363#ifdef CONFIG_TASKS_RCU 364#define TASKS_RCU(x) x 365extern struct srcu_struct tasks_rcu_exit_srcu; 366#define rcu_note_voluntary_context_switch(t) \ 367 do { \ 368 rcu_all_qs(); \ 369 if (READ_ONCE((t)->rcu_tasks_holdout)) \ 370 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 371 } while (0) 372#else /* #ifdef CONFIG_TASKS_RCU */ 373#define TASKS_RCU(x) do { } while (0) 374#define rcu_note_voluntary_context_switch(t) rcu_all_qs() 375#endif /* #else #ifdef CONFIG_TASKS_RCU */ 376 377/** 378 * cond_resched_rcu_qs - Report potential quiescent states to RCU 379 * 380 * This macro resembles cond_resched(), except that it is defined to 381 * report potential quiescent states to RCU-tasks even if the cond_resched() 382 * machinery were to be shut off, as some advocate for PREEMPT kernels. 383 */ 384#define cond_resched_rcu_qs() \ 385do { \ 386 if (!cond_resched()) \ 387 rcu_note_voluntary_context_switch(current); \ 388} while (0) 389 390#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) 391bool __rcu_is_watching(void); 392#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */ 393 394/* 395 * Infrastructure to implement the synchronize_() primitives in 396 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 397 */ 398 399#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 400#include <linux/rcutree.h> 401#elif defined(CONFIG_TINY_RCU) 402#include <linux/rcutiny.h> 403#else 404#error "Unknown RCU implementation specified to kernel configuration" 405#endif 406 407#define RCU_SCHEDULER_INACTIVE 0 408#define RCU_SCHEDULER_INIT 1 409#define RCU_SCHEDULER_RUNNING 2 410 411/* 412 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 413 * initialization and destruction of rcu_head on the stack. rcu_head structures 414 * allocated dynamically in the heap or defined statically don't need any 415 * initialization. 416 */ 417#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 418void init_rcu_head(struct rcu_head *head); 419void destroy_rcu_head(struct rcu_head *head); 420void init_rcu_head_on_stack(struct rcu_head *head); 421void destroy_rcu_head_on_stack(struct rcu_head *head); 422#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 423static inline void init_rcu_head(struct rcu_head *head) 424{ 425} 426 427static inline void destroy_rcu_head(struct rcu_head *head) 428{ 429} 430 431static inline void init_rcu_head_on_stack(struct rcu_head *head) 432{ 433} 434 435static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 436{ 437} 438#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 439 440#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 441bool rcu_lockdep_current_cpu_online(void); 442#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 443static inline bool rcu_lockdep_current_cpu_online(void) 444{ 445 return true; 446} 447#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 448 449#ifdef CONFIG_DEBUG_LOCK_ALLOC 450 451static inline void rcu_lock_acquire(struct lockdep_map *map) 452{ 453 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 454} 455 456static inline void rcu_lock_release(struct lockdep_map *map) 457{ 458 lock_release(map, 1, _THIS_IP_); 459} 460 461extern struct lockdep_map rcu_lock_map; 462extern struct lockdep_map rcu_bh_lock_map; 463extern struct lockdep_map rcu_sched_lock_map; 464extern struct lockdep_map rcu_callback_map; 465int debug_lockdep_rcu_enabled(void); 466 467int rcu_read_lock_held(void); 468int rcu_read_lock_bh_held(void); 469 470/** 471 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 472 * 473 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 474 * RCU-sched read-side critical section. In absence of 475 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 476 * critical section unless it can prove otherwise. 477 */ 478int rcu_read_lock_sched_held(void); 479 480#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 481 482# define rcu_lock_acquire(a) do { } while (0) 483# define rcu_lock_release(a) do { } while (0) 484 485static inline int rcu_read_lock_held(void) 486{ 487 return 1; 488} 489 490static inline int rcu_read_lock_bh_held(void) 491{ 492 return 1; 493} 494 495static inline int rcu_read_lock_sched_held(void) 496{ 497 return !preemptible(); 498} 499#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 500 501#ifdef CONFIG_PROVE_RCU 502 503/** 504 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 505 * @c: condition to check 506 * @s: informative message 507 */ 508#define RCU_LOCKDEP_WARN(c, s) \ 509 do { \ 510 static bool __section(.data.unlikely) __warned; \ 511 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ 512 __warned = true; \ 513 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 514 } \ 515 } while (0) 516 517#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 518static inline void rcu_preempt_sleep_check(void) 519{ 520 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 521 "Illegal context switch in RCU read-side critical section"); 522} 523#else /* #ifdef CONFIG_PROVE_RCU */ 524static inline void rcu_preempt_sleep_check(void) 525{ 526} 527#endif /* #else #ifdef CONFIG_PROVE_RCU */ 528 529#define rcu_sleep_check() \ 530 do { \ 531 rcu_preempt_sleep_check(); \ 532 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 533 "Illegal context switch in RCU-bh read-side critical section"); \ 534 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 535 "Illegal context switch in RCU-sched read-side critical section"); \ 536 } while (0) 537 538#else /* #ifdef CONFIG_PROVE_RCU */ 539 540#define RCU_LOCKDEP_WARN(c, s) do { } while (0) 541#define rcu_sleep_check() do { } while (0) 542 543#endif /* #else #ifdef CONFIG_PROVE_RCU */ 544 545/* 546 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 547 * and rcu_assign_pointer(). Some of these could be folded into their 548 * callers, but they are left separate in order to ease introduction of 549 * multiple flavors of pointers to match the multiple flavors of RCU 550 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 551 * the future. 552 */ 553 554#ifdef __CHECKER__ 555#define rcu_dereference_sparse(p, space) \ 556 ((void)(((typeof(*p) space *)p) == p)) 557#else /* #ifdef __CHECKER__ */ 558#define rcu_dereference_sparse(p, space) 559#endif /* #else #ifdef __CHECKER__ */ 560 561#define __rcu_access_pointer(p, space) \ 562({ \ 563 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 564 rcu_dereference_sparse(p, space); \ 565 ((typeof(*p) __force __kernel *)(_________p1)); \ 566}) 567#define __rcu_dereference_check(p, c, space) \ 568({ \ 569 /* Dependency order vs. p above. */ \ 570 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \ 571 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 572 rcu_dereference_sparse(p, space); \ 573 ((typeof(*p) __force __kernel *)(________p1)); \ 574}) 575#define __rcu_dereference_protected(p, c, space) \ 576({ \ 577 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 578 rcu_dereference_sparse(p, space); \ 579 ((typeof(*p) __force __kernel *)(p)); \ 580}) 581#define rcu_dereference_raw(p) \ 582({ \ 583 /* Dependency order vs. p above. */ \ 584 typeof(p) ________p1 = lockless_dereference(p); \ 585 ((typeof(*p) __force __kernel *)(________p1)); \ 586}) 587 588/** 589 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 590 * @v: The value to statically initialize with. 591 */ 592#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 593 594/** 595 * rcu_assign_pointer() - assign to RCU-protected pointer 596 * @p: pointer to assign to 597 * @v: value to assign (publish) 598 * 599 * Assigns the specified value to the specified RCU-protected 600 * pointer, ensuring that any concurrent RCU readers will see 601 * any prior initialization. 602 * 603 * Inserts memory barriers on architectures that require them 604 * (which is most of them), and also prevents the compiler from 605 * reordering the code that initializes the structure after the pointer 606 * assignment. More importantly, this call documents which pointers 607 * will be dereferenced by RCU read-side code. 608 * 609 * In some special cases, you may use RCU_INIT_POINTER() instead 610 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 611 * to the fact that it does not constrain either the CPU or the compiler. 612 * That said, using RCU_INIT_POINTER() when you should have used 613 * rcu_assign_pointer() is a very bad thing that results in 614 * impossible-to-diagnose memory corruption. So please be careful. 615 * See the RCU_INIT_POINTER() comment header for details. 616 * 617 * Note that rcu_assign_pointer() evaluates each of its arguments only 618 * once, appearances notwithstanding. One of the "extra" evaluations 619 * is in typeof() and the other visible only to sparse (__CHECKER__), 620 * neither of which actually execute the argument. As with most cpp 621 * macros, this execute-arguments-only-once property is important, so 622 * please be careful when making changes to rcu_assign_pointer() and the 623 * other macros that it invokes. 624 */ 625#define rcu_assign_pointer(p, v) \ 626({ \ 627 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 628 \ 629 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 630 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 631 else \ 632 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 633 _r_a_p__v; \ 634}) 635 636/** 637 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 638 * @p: The pointer to read 639 * 640 * Return the value of the specified RCU-protected pointer, but omit the 641 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful 642 * when the value of this pointer is accessed, but the pointer is not 643 * dereferenced, for example, when testing an RCU-protected pointer against 644 * NULL. Although rcu_access_pointer() may also be used in cases where 645 * update-side locks prevent the value of the pointer from changing, you 646 * should instead use rcu_dereference_protected() for this use case. 647 * 648 * It is also permissible to use rcu_access_pointer() when read-side 649 * access to the pointer was removed at least one grace period ago, as 650 * is the case in the context of the RCU callback that is freeing up 651 * the data, or after a synchronize_rcu() returns. This can be useful 652 * when tearing down multi-linked structures after a grace period 653 * has elapsed. 654 */ 655#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 656 657/** 658 * rcu_dereference_check() - rcu_dereference with debug checking 659 * @p: The pointer to read, prior to dereferencing 660 * @c: The conditions under which the dereference will take place 661 * 662 * Do an rcu_dereference(), but check that the conditions under which the 663 * dereference will take place are correct. Typically the conditions 664 * indicate the various locking conditions that should be held at that 665 * point. The check should return true if the conditions are satisfied. 666 * An implicit check for being in an RCU read-side critical section 667 * (rcu_read_lock()) is included. 668 * 669 * For example: 670 * 671 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 672 * 673 * could be used to indicate to lockdep that foo->bar may only be dereferenced 674 * if either rcu_read_lock() is held, or that the lock required to replace 675 * the bar struct at foo->bar is held. 676 * 677 * Note that the list of conditions may also include indications of when a lock 678 * need not be held, for example during initialisation or destruction of the 679 * target struct: 680 * 681 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 682 * atomic_read(&foo->usage) == 0); 683 * 684 * Inserts memory barriers on architectures that require them 685 * (currently only the Alpha), prevents the compiler from refetching 686 * (and from merging fetches), and, more importantly, documents exactly 687 * which pointers are protected by RCU and checks that the pointer is 688 * annotated as __rcu. 689 */ 690#define rcu_dereference_check(p, c) \ 691 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 692 693/** 694 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 695 * @p: The pointer to read, prior to dereferencing 696 * @c: The conditions under which the dereference will take place 697 * 698 * This is the RCU-bh counterpart to rcu_dereference_check(). 699 */ 700#define rcu_dereference_bh_check(p, c) \ 701 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 702 703/** 704 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 705 * @p: The pointer to read, prior to dereferencing 706 * @c: The conditions under which the dereference will take place 707 * 708 * This is the RCU-sched counterpart to rcu_dereference_check(). 709 */ 710#define rcu_dereference_sched_check(p, c) \ 711 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 712 __rcu) 713 714/* 715 * The tracing infrastructure traces RCU (we want that), but unfortunately 716 * some of the RCU checks causes tracing to lock up the system. 717 * 718 * The no-tracing version of rcu_dereference_raw() must not call 719 * rcu_read_lock_held(). 720 */ 721#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 722 723/** 724 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 725 * @p: The pointer to read, prior to dereferencing 726 * @c: The conditions under which the dereference will take place 727 * 728 * Return the value of the specified RCU-protected pointer, but omit 729 * both the smp_read_barrier_depends() and the READ_ONCE(). This 730 * is useful in cases where update-side locks prevent the value of the 731 * pointer from changing. Please note that this primitive does -not- 732 * prevent the compiler from repeating this reference or combining it 733 * with other references, so it should not be used without protection 734 * of appropriate locks. 735 * 736 * This function is only for update-side use. Using this function 737 * when protected only by rcu_read_lock() will result in infrequent 738 * but very ugly failures. 739 */ 740#define rcu_dereference_protected(p, c) \ 741 __rcu_dereference_protected((p), (c), __rcu) 742 743 744/** 745 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 746 * @p: The pointer to read, prior to dereferencing 747 * 748 * This is a simple wrapper around rcu_dereference_check(). 749 */ 750#define rcu_dereference(p) rcu_dereference_check(p, 0) 751 752/** 753 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 754 * @p: The pointer to read, prior to dereferencing 755 * 756 * Makes rcu_dereference_check() do the dirty work. 757 */ 758#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 759 760/** 761 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 762 * @p: The pointer to read, prior to dereferencing 763 * 764 * Makes rcu_dereference_check() do the dirty work. 765 */ 766#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 767 768/** 769 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 770 * @p: The pointer to hand off 771 * 772 * This is simply an identity function, but it documents where a pointer 773 * is handed off from RCU to some other synchronization mechanism, for 774 * example, reference counting or locking. In C11, it would map to 775 * kill_dependency(). It could be used as follows: 776 * 777 * rcu_read_lock(); 778 * p = rcu_dereference(gp); 779 * long_lived = is_long_lived(p); 780 * if (long_lived) { 781 * if (!atomic_inc_not_zero(p->refcnt)) 782 * long_lived = false; 783 * else 784 * p = rcu_pointer_handoff(p); 785 * } 786 * rcu_read_unlock(); 787 */ 788#define rcu_pointer_handoff(p) (p) 789 790/** 791 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 792 * 793 * When synchronize_rcu() is invoked on one CPU while other CPUs 794 * are within RCU read-side critical sections, then the 795 * synchronize_rcu() is guaranteed to block until after all the other 796 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 797 * on one CPU while other CPUs are within RCU read-side critical 798 * sections, invocation of the corresponding RCU callback is deferred 799 * until after the all the other CPUs exit their critical sections. 800 * 801 * Note, however, that RCU callbacks are permitted to run concurrently 802 * with new RCU read-side critical sections. One way that this can happen 803 * is via the following sequence of events: (1) CPU 0 enters an RCU 804 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 805 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 806 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 807 * callback is invoked. This is legal, because the RCU read-side critical 808 * section that was running concurrently with the call_rcu() (and which 809 * therefore might be referencing something that the corresponding RCU 810 * callback would free up) has completed before the corresponding 811 * RCU callback is invoked. 812 * 813 * RCU read-side critical sections may be nested. Any deferred actions 814 * will be deferred until the outermost RCU read-side critical section 815 * completes. 816 * 817 * You can avoid reading and understanding the next paragraph by 818 * following this rule: don't put anything in an rcu_read_lock() RCU 819 * read-side critical section that would block in a !PREEMPT kernel. 820 * But if you want the full story, read on! 821 * 822 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), 823 * it is illegal to block while in an RCU read-side critical section. 824 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT 825 * kernel builds, RCU read-side critical sections may be preempted, 826 * but explicit blocking is illegal. Finally, in preemptible RCU 827 * implementations in real-time (with -rt patchset) kernel builds, RCU 828 * read-side critical sections may be preempted and they may also block, but 829 * only when acquiring spinlocks that are subject to priority inheritance. 830 */ 831static inline void rcu_read_lock(void) 832{ 833 __rcu_read_lock(); 834 __acquire(RCU); 835 rcu_lock_acquire(&rcu_lock_map); 836 RCU_LOCKDEP_WARN(!rcu_is_watching(), 837 "rcu_read_lock() used illegally while idle"); 838} 839 840/* 841 * So where is rcu_write_lock()? It does not exist, as there is no 842 * way for writers to lock out RCU readers. This is a feature, not 843 * a bug -- this property is what provides RCU's performance benefits. 844 * Of course, writers must coordinate with each other. The normal 845 * spinlock primitives work well for this, but any other technique may be 846 * used as well. RCU does not care how the writers keep out of each 847 * others' way, as long as they do so. 848 */ 849 850/** 851 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 852 * 853 * In most situations, rcu_read_unlock() is immune from deadlock. 854 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 855 * is responsible for deboosting, which it does via rt_mutex_unlock(). 856 * Unfortunately, this function acquires the scheduler's runqueue and 857 * priority-inheritance spinlocks. This means that deadlock could result 858 * if the caller of rcu_read_unlock() already holds one of these locks or 859 * any lock that is ever acquired while holding them; or any lock which 860 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock() 861 * does not disable irqs while taking ->wait_lock. 862 * 863 * That said, RCU readers are never priority boosted unless they were 864 * preempted. Therefore, one way to avoid deadlock is to make sure 865 * that preemption never happens within any RCU read-side critical 866 * section whose outermost rcu_read_unlock() is called with one of 867 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 868 * a number of ways, for example, by invoking preempt_disable() before 869 * critical section's outermost rcu_read_lock(). 870 * 871 * Given that the set of locks acquired by rt_mutex_unlock() might change 872 * at any time, a somewhat more future-proofed approach is to make sure 873 * that that preemption never happens within any RCU read-side critical 874 * section whose outermost rcu_read_unlock() is called with irqs disabled. 875 * This approach relies on the fact that rt_mutex_unlock() currently only 876 * acquires irq-disabled locks. 877 * 878 * The second of these two approaches is best in most situations, 879 * however, the first approach can also be useful, at least to those 880 * developers willing to keep abreast of the set of locks acquired by 881 * rt_mutex_unlock(). 882 * 883 * See rcu_read_lock() for more information. 884 */ 885static inline void rcu_read_unlock(void) 886{ 887 RCU_LOCKDEP_WARN(!rcu_is_watching(), 888 "rcu_read_unlock() used illegally while idle"); 889 __release(RCU); 890 __rcu_read_unlock(); 891 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 892} 893 894/** 895 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 896 * 897 * This is equivalent of rcu_read_lock(), but to be used when updates 898 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 899 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 900 * softirq handler to be a quiescent state, a process in RCU read-side 901 * critical section must be protected by disabling softirqs. Read-side 902 * critical sections in interrupt context can use just rcu_read_lock(), 903 * though this should at least be commented to avoid confusing people 904 * reading the code. 905 * 906 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 907 * must occur in the same context, for example, it is illegal to invoke 908 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 909 * was invoked from some other task. 910 */ 911static inline void rcu_read_lock_bh(void) 912{ 913 local_bh_disable(); 914 __acquire(RCU_BH); 915 rcu_lock_acquire(&rcu_bh_lock_map); 916 RCU_LOCKDEP_WARN(!rcu_is_watching(), 917 "rcu_read_lock_bh() used illegally while idle"); 918} 919 920/* 921 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 922 * 923 * See rcu_read_lock_bh() for more information. 924 */ 925static inline void rcu_read_unlock_bh(void) 926{ 927 RCU_LOCKDEP_WARN(!rcu_is_watching(), 928 "rcu_read_unlock_bh() used illegally while idle"); 929 rcu_lock_release(&rcu_bh_lock_map); 930 __release(RCU_BH); 931 local_bh_enable(); 932} 933 934/** 935 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 936 * 937 * This is equivalent of rcu_read_lock(), but to be used when updates 938 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 939 * Read-side critical sections can also be introduced by anything that 940 * disables preemption, including local_irq_disable() and friends. 941 * 942 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 943 * must occur in the same context, for example, it is illegal to invoke 944 * rcu_read_unlock_sched() from process context if the matching 945 * rcu_read_lock_sched() was invoked from an NMI handler. 946 */ 947static inline void rcu_read_lock_sched(void) 948{ 949 preempt_disable(); 950 __acquire(RCU_SCHED); 951 rcu_lock_acquire(&rcu_sched_lock_map); 952 RCU_LOCKDEP_WARN(!rcu_is_watching(), 953 "rcu_read_lock_sched() used illegally while idle"); 954} 955 956/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 957static inline notrace void rcu_read_lock_sched_notrace(void) 958{ 959 preempt_disable_notrace(); 960 __acquire(RCU_SCHED); 961} 962 963/* 964 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 965 * 966 * See rcu_read_lock_sched for more information. 967 */ 968static inline void rcu_read_unlock_sched(void) 969{ 970 RCU_LOCKDEP_WARN(!rcu_is_watching(), 971 "rcu_read_unlock_sched() used illegally while idle"); 972 rcu_lock_release(&rcu_sched_lock_map); 973 __release(RCU_SCHED); 974 preempt_enable(); 975} 976 977/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 978static inline notrace void rcu_read_unlock_sched_notrace(void) 979{ 980 __release(RCU_SCHED); 981 preempt_enable_notrace(); 982} 983 984/** 985 * RCU_INIT_POINTER() - initialize an RCU protected pointer 986 * 987 * Initialize an RCU-protected pointer in special cases where readers 988 * do not need ordering constraints on the CPU or the compiler. These 989 * special cases are: 990 * 991 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 992 * 2. The caller has taken whatever steps are required to prevent 993 * RCU readers from concurrently accessing this pointer -or- 994 * 3. The referenced data structure has already been exposed to 995 * readers either at compile time or via rcu_assign_pointer() -and- 996 * a. You have not made -any- reader-visible changes to 997 * this structure since then -or- 998 * b. It is OK for readers accessing this structure from its 999 * new location to see the old state of the structure. (For 1000 * example, the changes were to statistical counters or to 1001 * other state where exact synchronization is not required.) 1002 * 1003 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 1004 * result in impossible-to-diagnose memory corruption. As in the structures 1005 * will look OK in crash dumps, but any concurrent RCU readers might 1006 * see pre-initialized values of the referenced data structure. So 1007 * please be very careful how you use RCU_INIT_POINTER()!!! 1008 * 1009 * If you are creating an RCU-protected linked structure that is accessed 1010 * by a single external-to-structure RCU-protected pointer, then you may 1011 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 1012 * pointers, but you must use rcu_assign_pointer() to initialize the 1013 * external-to-structure pointer -after- you have completely initialized 1014 * the reader-accessible portions of the linked structure. 1015 * 1016 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 1017 * ordering guarantees for either the CPU or the compiler. 1018 */ 1019#define RCU_INIT_POINTER(p, v) \ 1020 do { \ 1021 rcu_dereference_sparse(p, __rcu); \ 1022 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 1023 } while (0) 1024 1025/** 1026 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 1027 * 1028 * GCC-style initialization for an RCU-protected pointer in a structure field. 1029 */ 1030#define RCU_POINTER_INITIALIZER(p, v) \ 1031 .p = RCU_INITIALIZER(v) 1032 1033/* 1034 * Does the specified offset indicate that the corresponding rcu_head 1035 * structure can be handled by kfree_rcu()? 1036 */ 1037#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 1038 1039/* 1040 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 1041 */ 1042#define __kfree_rcu(head, offset) \ 1043 do { \ 1044 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 1045 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ 1046 } while (0) 1047 1048/** 1049 * kfree_rcu() - kfree an object after a grace period. 1050 * @ptr: pointer to kfree 1051 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 1052 * 1053 * Many rcu callbacks functions just call kfree() on the base structure. 1054 * These functions are trivial, but their size adds up, and furthermore 1055 * when they are used in a kernel module, that module must invoke the 1056 * high-latency rcu_barrier() function at module-unload time. 1057 * 1058 * The kfree_rcu() function handles this issue. Rather than encoding a 1059 * function address in the embedded rcu_head structure, kfree_rcu() instead 1060 * encodes the offset of the rcu_head structure within the base structure. 1061 * Because the functions are not allowed in the low-order 4096 bytes of 1062 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 1063 * If the offset is larger than 4095 bytes, a compile-time error will 1064 * be generated in __kfree_rcu(). If this error is triggered, you can 1065 * either fall back to use of call_rcu() or rearrange the structure to 1066 * position the rcu_head structure into the first 4096 bytes. 1067 * 1068 * Note that the allowable offset might decrease in the future, for example, 1069 * to allow something like kmem_cache_free_rcu(). 1070 * 1071 * The BUILD_BUG_ON check must not involve any function calls, hence the 1072 * checks are done in macros here. 1073 */ 1074#define kfree_rcu(ptr, rcu_head) \ 1075 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 1076 1077#ifdef CONFIG_TINY_RCU 1078static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1079{ 1080 *nextevt = KTIME_MAX; 1081 return 0; 1082} 1083#endif /* #ifdef CONFIG_TINY_RCU */ 1084 1085#if defined(CONFIG_RCU_NOCB_CPU_ALL) 1086static inline bool rcu_is_nocb_cpu(int cpu) { return true; } 1087#elif defined(CONFIG_RCU_NOCB_CPU) 1088bool rcu_is_nocb_cpu(int cpu); 1089#else 1090static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 1091#endif 1092 1093 1094/* Only for use by adaptive-ticks code. */ 1095#ifdef CONFIG_NO_HZ_FULL_SYSIDLE 1096bool rcu_sys_is_idle(void); 1097void rcu_sysidle_force_exit(void); 1098#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1099 1100static inline bool rcu_sys_is_idle(void) 1101{ 1102 return false; 1103} 1104 1105static inline void rcu_sysidle_force_exit(void) 1106{ 1107} 1108 1109#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1110 1111 1112/* 1113 * Dump the ftrace buffer, but only one time per callsite per boot. 1114 */ 1115#define rcu_ftrace_dump(oops_dump_mode) \ 1116do { \ 1117 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \ 1118 \ 1119 if (!atomic_read(&___rfd_beenhere) && \ 1120 !atomic_xchg(&___rfd_beenhere, 1)) \ 1121 ftrace_dump(oops_dump_mode); \ 1122} while (0) 1123 1124/* 1125 * Place this after a lock-acquisition primitive to guarantee that 1126 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 1127 * if the UNLOCK and LOCK are executed by the same CPU or if the 1128 * UNLOCK and LOCK operate on the same lock variable. 1129 */ 1130#ifdef CONFIG_PPC 1131#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 1132#else /* #ifdef CONFIG_PPC */ 1133#define smp_mb__after_unlock_lock() do { } while (0) 1134#endif /* #else #ifdef CONFIG_PPC */ 1135 1136 1137#endif /* __LINUX_RCUPDATE_H */