at v4.11 412 lines 15 kB view raw
1#ifndef _LINUX_PTRACE_H 2#define _LINUX_PTRACE_H 3 4#include <linux/compiler.h> /* For unlikely. */ 5#include <linux/sched.h> /* For struct task_struct. */ 6#include <linux/sched/signal.h> /* For send_sig(), same_thread_group(), etc. */ 7#include <linux/err.h> /* for IS_ERR_VALUE */ 8#include <linux/bug.h> /* For BUG_ON. */ 9#include <linux/pid_namespace.h> /* For task_active_pid_ns. */ 10#include <uapi/linux/ptrace.h> 11 12extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr, 13 void *buf, int len, unsigned int gup_flags); 14 15/* 16 * Ptrace flags 17 * 18 * The owner ship rules for task->ptrace which holds the ptrace 19 * flags is simple. When a task is running it owns it's task->ptrace 20 * flags. When the a task is stopped the ptracer owns task->ptrace. 21 */ 22 23#define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */ 24#define PT_PTRACED 0x00000001 25#define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ 26 27#define PT_OPT_FLAG_SHIFT 3 28/* PT_TRACE_* event enable flags */ 29#define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event))) 30#define PT_TRACESYSGOOD PT_EVENT_FLAG(0) 31#define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK) 32#define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK) 33#define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE) 34#define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC) 35#define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE) 36#define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT) 37#define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP) 38 39#define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT) 40#define PT_SUSPEND_SECCOMP (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT) 41 42/* single stepping state bits (used on ARM and PA-RISC) */ 43#define PT_SINGLESTEP_BIT 31 44#define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT) 45#define PT_BLOCKSTEP_BIT 30 46#define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT) 47 48extern long arch_ptrace(struct task_struct *child, long request, 49 unsigned long addr, unsigned long data); 50extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); 51extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); 52extern void ptrace_disable(struct task_struct *); 53extern int ptrace_request(struct task_struct *child, long request, 54 unsigned long addr, unsigned long data); 55extern void ptrace_notify(int exit_code); 56extern void __ptrace_link(struct task_struct *child, 57 struct task_struct *new_parent); 58extern void __ptrace_unlink(struct task_struct *child); 59extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead); 60#define PTRACE_MODE_READ 0x01 61#define PTRACE_MODE_ATTACH 0x02 62#define PTRACE_MODE_NOAUDIT 0x04 63#define PTRACE_MODE_FSCREDS 0x08 64#define PTRACE_MODE_REALCREDS 0x10 65 66/* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */ 67#define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS) 68#define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS) 69#define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS) 70#define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS) 71 72/** 73 * ptrace_may_access - check whether the caller is permitted to access 74 * a target task. 75 * @task: target task 76 * @mode: selects type of access and caller credentials 77 * 78 * Returns true on success, false on denial. 79 * 80 * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must 81 * be set in @mode to specify whether the access was requested through 82 * a filesystem syscall (should use effective capabilities and fsuid 83 * of the caller) or through an explicit syscall such as 84 * process_vm_writev or ptrace (and should use the real credentials). 85 */ 86extern bool ptrace_may_access(struct task_struct *task, unsigned int mode); 87 88static inline int ptrace_reparented(struct task_struct *child) 89{ 90 return !same_thread_group(child->real_parent, child->parent); 91} 92 93static inline void ptrace_unlink(struct task_struct *child) 94{ 95 if (unlikely(child->ptrace)) 96 __ptrace_unlink(child); 97} 98 99int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, 100 unsigned long data); 101int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, 102 unsigned long data); 103 104/** 105 * ptrace_parent - return the task that is tracing the given task 106 * @task: task to consider 107 * 108 * Returns %NULL if no one is tracing @task, or the &struct task_struct 109 * pointer to its tracer. 110 * 111 * Must called under rcu_read_lock(). The pointer returned might be kept 112 * live only by RCU. During exec, this may be called with task_lock() held 113 * on @task, still held from when check_unsafe_exec() was called. 114 */ 115static inline struct task_struct *ptrace_parent(struct task_struct *task) 116{ 117 if (unlikely(task->ptrace)) 118 return rcu_dereference(task->parent); 119 return NULL; 120} 121 122/** 123 * ptrace_event_enabled - test whether a ptrace event is enabled 124 * @task: ptracee of interest 125 * @event: %PTRACE_EVENT_* to test 126 * 127 * Test whether @event is enabled for ptracee @task. 128 * 129 * Returns %true if @event is enabled, %false otherwise. 130 */ 131static inline bool ptrace_event_enabled(struct task_struct *task, int event) 132{ 133 return task->ptrace & PT_EVENT_FLAG(event); 134} 135 136/** 137 * ptrace_event - possibly stop for a ptrace event notification 138 * @event: %PTRACE_EVENT_* value to report 139 * @message: value for %PTRACE_GETEVENTMSG to return 140 * 141 * Check whether @event is enabled and, if so, report @event and @message 142 * to the ptrace parent. 143 * 144 * Called without locks. 145 */ 146static inline void ptrace_event(int event, unsigned long message) 147{ 148 if (unlikely(ptrace_event_enabled(current, event))) { 149 current->ptrace_message = message; 150 ptrace_notify((event << 8) | SIGTRAP); 151 } else if (event == PTRACE_EVENT_EXEC) { 152 /* legacy EXEC report via SIGTRAP */ 153 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED) 154 send_sig(SIGTRAP, current, 0); 155 } 156} 157 158/** 159 * ptrace_event_pid - possibly stop for a ptrace event notification 160 * @event: %PTRACE_EVENT_* value to report 161 * @pid: process identifier for %PTRACE_GETEVENTMSG to return 162 * 163 * Check whether @event is enabled and, if so, report @event and @pid 164 * to the ptrace parent. @pid is reported as the pid_t seen from the 165 * the ptrace parent's pid namespace. 166 * 167 * Called without locks. 168 */ 169static inline void ptrace_event_pid(int event, struct pid *pid) 170{ 171 /* 172 * FIXME: There's a potential race if a ptracer in a different pid 173 * namespace than parent attaches between computing message below and 174 * when we acquire tasklist_lock in ptrace_stop(). If this happens, 175 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG. 176 */ 177 unsigned long message = 0; 178 struct pid_namespace *ns; 179 180 rcu_read_lock(); 181 ns = task_active_pid_ns(rcu_dereference(current->parent)); 182 if (ns) 183 message = pid_nr_ns(pid, ns); 184 rcu_read_unlock(); 185 186 ptrace_event(event, message); 187} 188 189/** 190 * ptrace_init_task - initialize ptrace state for a new child 191 * @child: new child task 192 * @ptrace: true if child should be ptrace'd by parent's tracer 193 * 194 * This is called immediately after adding @child to its parent's children 195 * list. @ptrace is false in the normal case, and true to ptrace @child. 196 * 197 * Called with current's siglock and write_lock_irq(&tasklist_lock) held. 198 */ 199static inline void ptrace_init_task(struct task_struct *child, bool ptrace) 200{ 201 INIT_LIST_HEAD(&child->ptrace_entry); 202 INIT_LIST_HEAD(&child->ptraced); 203 child->jobctl = 0; 204 child->ptrace = 0; 205 child->parent = child->real_parent; 206 207 if (unlikely(ptrace) && current->ptrace) { 208 child->ptrace = current->ptrace; 209 __ptrace_link(child, current->parent); 210 211 if (child->ptrace & PT_SEIZED) 212 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP); 213 else 214 sigaddset(&child->pending.signal, SIGSTOP); 215 216 set_tsk_thread_flag(child, TIF_SIGPENDING); 217 } 218} 219 220/** 221 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped 222 * @task: task in %EXIT_DEAD state 223 * 224 * Called with write_lock(&tasklist_lock) held. 225 */ 226static inline void ptrace_release_task(struct task_struct *task) 227{ 228 BUG_ON(!list_empty(&task->ptraced)); 229 ptrace_unlink(task); 230 BUG_ON(!list_empty(&task->ptrace_entry)); 231} 232 233#ifndef force_successful_syscall_return 234/* 235 * System call handlers that, upon successful completion, need to return a 236 * negative value should call force_successful_syscall_return() right before 237 * returning. On architectures where the syscall convention provides for a 238 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly 239 * others), this macro can be used to ensure that the error flag will not get 240 * set. On architectures which do not support a separate error flag, the macro 241 * is a no-op and the spurious error condition needs to be filtered out by some 242 * other means (e.g., in user-level, by passing an extra argument to the 243 * syscall handler, or something along those lines). 244 */ 245#define force_successful_syscall_return() do { } while (0) 246#endif 247 248#ifndef is_syscall_success 249/* 250 * On most systems we can tell if a syscall is a success based on if the retval 251 * is an error value. On some systems like ia64 and powerpc they have different 252 * indicators of success/failure and must define their own. 253 */ 254#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs)))) 255#endif 256 257/* 258 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__. 259 * 260 * These do-nothing inlines are used when the arch does not 261 * implement single-step. The kerneldoc comments are here 262 * to document the interface for all arch definitions. 263 */ 264 265#ifndef arch_has_single_step 266/** 267 * arch_has_single_step - does this CPU support user-mode single-step? 268 * 269 * If this is defined, then there must be function declarations or 270 * inlines for user_enable_single_step() and user_disable_single_step(). 271 * arch_has_single_step() should evaluate to nonzero iff the machine 272 * supports instruction single-step for user mode. 273 * It can be a constant or it can test a CPU feature bit. 274 */ 275#define arch_has_single_step() (0) 276 277/** 278 * user_enable_single_step - single-step in user-mode task 279 * @task: either current or a task stopped in %TASK_TRACED 280 * 281 * This can only be called when arch_has_single_step() has returned nonzero. 282 * Set @task so that when it returns to user mode, it will trap after the 283 * next single instruction executes. If arch_has_block_step() is defined, 284 * this must clear the effects of user_enable_block_step() too. 285 */ 286static inline void user_enable_single_step(struct task_struct *task) 287{ 288 BUG(); /* This can never be called. */ 289} 290 291/** 292 * user_disable_single_step - cancel user-mode single-step 293 * @task: either current or a task stopped in %TASK_TRACED 294 * 295 * Clear @task of the effects of user_enable_single_step() and 296 * user_enable_block_step(). This can be called whether or not either 297 * of those was ever called on @task, and even if arch_has_single_step() 298 * returned zero. 299 */ 300static inline void user_disable_single_step(struct task_struct *task) 301{ 302} 303#else 304extern void user_enable_single_step(struct task_struct *); 305extern void user_disable_single_step(struct task_struct *); 306#endif /* arch_has_single_step */ 307 308#ifndef arch_has_block_step 309/** 310 * arch_has_block_step - does this CPU support user-mode block-step? 311 * 312 * If this is defined, then there must be a function declaration or inline 313 * for user_enable_block_step(), and arch_has_single_step() must be defined 314 * too. arch_has_block_step() should evaluate to nonzero iff the machine 315 * supports step-until-branch for user mode. It can be a constant or it 316 * can test a CPU feature bit. 317 */ 318#define arch_has_block_step() (0) 319 320/** 321 * user_enable_block_step - step until branch in user-mode task 322 * @task: either current or a task stopped in %TASK_TRACED 323 * 324 * This can only be called when arch_has_block_step() has returned nonzero, 325 * and will never be called when single-instruction stepping is being used. 326 * Set @task so that when it returns to user mode, it will trap after the 327 * next branch or trap taken. 328 */ 329static inline void user_enable_block_step(struct task_struct *task) 330{ 331 BUG(); /* This can never be called. */ 332} 333#else 334extern void user_enable_block_step(struct task_struct *); 335#endif /* arch_has_block_step */ 336 337#ifdef ARCH_HAS_USER_SINGLE_STEP_INFO 338extern void user_single_step_siginfo(struct task_struct *tsk, 339 struct pt_regs *regs, siginfo_t *info); 340#else 341static inline void user_single_step_siginfo(struct task_struct *tsk, 342 struct pt_regs *regs, siginfo_t *info) 343{ 344 memset(info, 0, sizeof(*info)); 345 info->si_signo = SIGTRAP; 346} 347#endif 348 349#ifndef arch_ptrace_stop_needed 350/** 351 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called 352 * @code: current->exit_code value ptrace will stop with 353 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 354 * 355 * This is called with the siglock held, to decide whether or not it's 356 * necessary to release the siglock and call arch_ptrace_stop() with the 357 * same @code and @info arguments. It can be defined to a constant if 358 * arch_ptrace_stop() is never required, or always is. On machines where 359 * this makes sense, it should be defined to a quick test to optimize out 360 * calling arch_ptrace_stop() when it would be superfluous. For example, 361 * if the thread has not been back to user mode since the last stop, the 362 * thread state might indicate that nothing needs to be done. 363 * 364 * This is guaranteed to be invoked once before a task stops for ptrace and 365 * may include arch-specific operations necessary prior to a ptrace stop. 366 */ 367#define arch_ptrace_stop_needed(code, info) (0) 368#endif 369 370#ifndef arch_ptrace_stop 371/** 372 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace 373 * @code: current->exit_code value ptrace will stop with 374 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 375 * 376 * This is called with no locks held when arch_ptrace_stop_needed() has 377 * just returned nonzero. It is allowed to block, e.g. for user memory 378 * access. The arch can have machine-specific work to be done before 379 * ptrace stops. On ia64, register backing store gets written back to user 380 * memory here. Since this can be costly (requires dropping the siglock), 381 * we only do it when the arch requires it for this particular stop, as 382 * indicated by arch_ptrace_stop_needed(). 383 */ 384#define arch_ptrace_stop(code, info) do { } while (0) 385#endif 386 387#ifndef current_pt_regs 388#define current_pt_regs() task_pt_regs(current) 389#endif 390 391#ifndef ptrace_signal_deliver 392#define ptrace_signal_deliver() ((void)0) 393#endif 394 395/* 396 * unlike current_pt_regs(), this one is equal to task_pt_regs(current) 397 * on *all* architectures; the only reason to have a per-arch definition 398 * is optimisation. 399 */ 400#ifndef signal_pt_regs 401#define signal_pt_regs() task_pt_regs(current) 402#endif 403 404#ifndef current_user_stack_pointer 405#define current_user_stack_pointer() user_stack_pointer(current_pt_regs()) 406#endif 407 408extern int task_current_syscall(struct task_struct *target, long *callno, 409 unsigned long args[6], unsigned int maxargs, 410 unsigned long *sp, unsigned long *pc); 411 412#endif