at v4.11 40 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18 19/* 20 * Kernel-internal data types and definitions: 21 */ 22 23#ifdef CONFIG_PERF_EVENTS 24# include <asm/perf_event.h> 25# include <asm/local64.h> 26#endif 27 28struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32}; 33 34#ifdef CONFIG_HAVE_HW_BREAKPOINT 35#include <asm/hw_breakpoint.h> 36#endif 37 38#include <linux/list.h> 39#include <linux/mutex.h> 40#include <linux/rculist.h> 41#include <linux/rcupdate.h> 42#include <linux/spinlock.h> 43#include <linux/hrtimer.h> 44#include <linux/fs.h> 45#include <linux/pid_namespace.h> 46#include <linux/workqueue.h> 47#include <linux/ftrace.h> 48#include <linux/cpu.h> 49#include <linux/irq_work.h> 50#include <linux/static_key.h> 51#include <linux/jump_label_ratelimit.h> 52#include <linux/atomic.h> 53#include <linux/sysfs.h> 54#include <linux/perf_regs.h> 55#include <linux/workqueue.h> 56#include <linux/cgroup.h> 57#include <asm/local.h> 58 59struct perf_callchain_entry { 60 __u64 nr; 61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 62}; 63 64struct perf_callchain_entry_ctx { 65 struct perf_callchain_entry *entry; 66 u32 max_stack; 67 u32 nr; 68 short contexts; 69 bool contexts_maxed; 70}; 71 72typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 73 unsigned long off, unsigned long len); 74 75struct perf_raw_frag { 76 union { 77 struct perf_raw_frag *next; 78 unsigned long pad; 79 }; 80 perf_copy_f copy; 81 void *data; 82 u32 size; 83} __packed; 84 85struct perf_raw_record { 86 struct perf_raw_frag frag; 87 u32 size; 88}; 89 90/* 91 * branch stack layout: 92 * nr: number of taken branches stored in entries[] 93 * 94 * Note that nr can vary from sample to sample 95 * branches (to, from) are stored from most recent 96 * to least recent, i.e., entries[0] contains the most 97 * recent branch. 98 */ 99struct perf_branch_stack { 100 __u64 nr; 101 struct perf_branch_entry entries[0]; 102}; 103 104struct task_struct; 105 106/* 107 * extra PMU register associated with an event 108 */ 109struct hw_perf_event_extra { 110 u64 config; /* register value */ 111 unsigned int reg; /* register address or index */ 112 int alloc; /* extra register already allocated */ 113 int idx; /* index in shared_regs->regs[] */ 114}; 115 116/** 117 * struct hw_perf_event - performance event hardware details: 118 */ 119struct hw_perf_event { 120#ifdef CONFIG_PERF_EVENTS 121 union { 122 struct { /* hardware */ 123 u64 config; 124 u64 last_tag; 125 unsigned long config_base; 126 unsigned long event_base; 127 int event_base_rdpmc; 128 int idx; 129 int last_cpu; 130 int flags; 131 132 struct hw_perf_event_extra extra_reg; 133 struct hw_perf_event_extra branch_reg; 134 }; 135 struct { /* software */ 136 struct hrtimer hrtimer; 137 }; 138 struct { /* tracepoint */ 139 /* for tp_event->class */ 140 struct list_head tp_list; 141 }; 142 struct { /* intel_cqm */ 143 int cqm_state; 144 u32 cqm_rmid; 145 int is_group_event; 146 struct list_head cqm_events_entry; 147 struct list_head cqm_groups_entry; 148 struct list_head cqm_group_entry; 149 }; 150 struct { /* itrace */ 151 int itrace_started; 152 }; 153 struct { /* amd_power */ 154 u64 pwr_acc; 155 u64 ptsc; 156 }; 157#ifdef CONFIG_HAVE_HW_BREAKPOINT 158 struct { /* breakpoint */ 159 /* 160 * Crufty hack to avoid the chicken and egg 161 * problem hw_breakpoint has with context 162 * creation and event initalization. 163 */ 164 struct arch_hw_breakpoint info; 165 struct list_head bp_list; 166 }; 167#endif 168 }; 169 /* 170 * If the event is a per task event, this will point to the task in 171 * question. See the comment in perf_event_alloc(). 172 */ 173 struct task_struct *target; 174 175 /* 176 * PMU would store hardware filter configuration 177 * here. 178 */ 179 void *addr_filters; 180 181 /* Last sync'ed generation of filters */ 182 unsigned long addr_filters_gen; 183 184/* 185 * hw_perf_event::state flags; used to track the PERF_EF_* state. 186 */ 187#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 188#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 189#define PERF_HES_ARCH 0x04 190 191 int state; 192 193 /* 194 * The last observed hardware counter value, updated with a 195 * local64_cmpxchg() such that pmu::read() can be called nested. 196 */ 197 local64_t prev_count; 198 199 /* 200 * The period to start the next sample with. 201 */ 202 u64 sample_period; 203 204 /* 205 * The period we started this sample with. 206 */ 207 u64 last_period; 208 209 /* 210 * However much is left of the current period; note that this is 211 * a full 64bit value and allows for generation of periods longer 212 * than hardware might allow. 213 */ 214 local64_t period_left; 215 216 /* 217 * State for throttling the event, see __perf_event_overflow() and 218 * perf_adjust_freq_unthr_context(). 219 */ 220 u64 interrupts_seq; 221 u64 interrupts; 222 223 /* 224 * State for freq target events, see __perf_event_overflow() and 225 * perf_adjust_freq_unthr_context(). 226 */ 227 u64 freq_time_stamp; 228 u64 freq_count_stamp; 229#endif 230}; 231 232struct perf_event; 233 234/* 235 * Common implementation detail of pmu::{start,commit,cancel}_txn 236 */ 237#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 238#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 239 240/** 241 * pmu::capabilities flags 242 */ 243#define PERF_PMU_CAP_NO_INTERRUPT 0x01 244#define PERF_PMU_CAP_NO_NMI 0x02 245#define PERF_PMU_CAP_AUX_NO_SG 0x04 246#define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 247#define PERF_PMU_CAP_EXCLUSIVE 0x10 248#define PERF_PMU_CAP_ITRACE 0x20 249#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 250 251/** 252 * struct pmu - generic performance monitoring unit 253 */ 254struct pmu { 255 struct list_head entry; 256 257 struct module *module; 258 struct device *dev; 259 const struct attribute_group **attr_groups; 260 const char *name; 261 int type; 262 263 /* 264 * various common per-pmu feature flags 265 */ 266 int capabilities; 267 268 int * __percpu pmu_disable_count; 269 struct perf_cpu_context * __percpu pmu_cpu_context; 270 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 271 int task_ctx_nr; 272 int hrtimer_interval_ms; 273 274 /* number of address filters this PMU can do */ 275 unsigned int nr_addr_filters; 276 277 /* 278 * Fully disable/enable this PMU, can be used to protect from the PMI 279 * as well as for lazy/batch writing of the MSRs. 280 */ 281 void (*pmu_enable) (struct pmu *pmu); /* optional */ 282 void (*pmu_disable) (struct pmu *pmu); /* optional */ 283 284 /* 285 * Try and initialize the event for this PMU. 286 * 287 * Returns: 288 * -ENOENT -- @event is not for this PMU 289 * 290 * -ENODEV -- @event is for this PMU but PMU not present 291 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 292 * -EINVAL -- @event is for this PMU but @event is not valid 293 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 294 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 295 * 296 * 0 -- @event is for this PMU and valid 297 * 298 * Other error return values are allowed. 299 */ 300 int (*event_init) (struct perf_event *event); 301 302 /* 303 * Notification that the event was mapped or unmapped. Called 304 * in the context of the mapping task. 305 */ 306 void (*event_mapped) (struct perf_event *event); /*optional*/ 307 void (*event_unmapped) (struct perf_event *event); /*optional*/ 308 309 /* 310 * Flags for ->add()/->del()/ ->start()/->stop(). There are 311 * matching hw_perf_event::state flags. 312 */ 313#define PERF_EF_START 0x01 /* start the counter when adding */ 314#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 315#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 316 317 /* 318 * Adds/Removes a counter to/from the PMU, can be done inside a 319 * transaction, see the ->*_txn() methods. 320 * 321 * The add/del callbacks will reserve all hardware resources required 322 * to service the event, this includes any counter constraint 323 * scheduling etc. 324 * 325 * Called with IRQs disabled and the PMU disabled on the CPU the event 326 * is on. 327 * 328 * ->add() called without PERF_EF_START should result in the same state 329 * as ->add() followed by ->stop(). 330 * 331 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 332 * ->stop() that must deal with already being stopped without 333 * PERF_EF_UPDATE. 334 */ 335 int (*add) (struct perf_event *event, int flags); 336 void (*del) (struct perf_event *event, int flags); 337 338 /* 339 * Starts/Stops a counter present on the PMU. 340 * 341 * The PMI handler should stop the counter when perf_event_overflow() 342 * returns !0. ->start() will be used to continue. 343 * 344 * Also used to change the sample period. 345 * 346 * Called with IRQs disabled and the PMU disabled on the CPU the event 347 * is on -- will be called from NMI context with the PMU generates 348 * NMIs. 349 * 350 * ->stop() with PERF_EF_UPDATE will read the counter and update 351 * period/count values like ->read() would. 352 * 353 * ->start() with PERF_EF_RELOAD will reprogram the the counter 354 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 355 */ 356 void (*start) (struct perf_event *event, int flags); 357 void (*stop) (struct perf_event *event, int flags); 358 359 /* 360 * Updates the counter value of the event. 361 * 362 * For sampling capable PMUs this will also update the software period 363 * hw_perf_event::period_left field. 364 */ 365 void (*read) (struct perf_event *event); 366 367 /* 368 * Group events scheduling is treated as a transaction, add 369 * group events as a whole and perform one schedulability test. 370 * If the test fails, roll back the whole group 371 * 372 * Start the transaction, after this ->add() doesn't need to 373 * do schedulability tests. 374 * 375 * Optional. 376 */ 377 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 378 /* 379 * If ->start_txn() disabled the ->add() schedulability test 380 * then ->commit_txn() is required to perform one. On success 381 * the transaction is closed. On error the transaction is kept 382 * open until ->cancel_txn() is called. 383 * 384 * Optional. 385 */ 386 int (*commit_txn) (struct pmu *pmu); 387 /* 388 * Will cancel the transaction, assumes ->del() is called 389 * for each successful ->add() during the transaction. 390 * 391 * Optional. 392 */ 393 void (*cancel_txn) (struct pmu *pmu); 394 395 /* 396 * Will return the value for perf_event_mmap_page::index for this event, 397 * if no implementation is provided it will default to: event->hw.idx + 1. 398 */ 399 int (*event_idx) (struct perf_event *event); /*optional */ 400 401 /* 402 * context-switches callback 403 */ 404 void (*sched_task) (struct perf_event_context *ctx, 405 bool sched_in); 406 /* 407 * PMU specific data size 408 */ 409 size_t task_ctx_size; 410 411 412 /* 413 * Return the count value for a counter. 414 */ 415 u64 (*count) (struct perf_event *event); /*optional*/ 416 417 /* 418 * Set up pmu-private data structures for an AUX area 419 */ 420 void *(*setup_aux) (int cpu, void **pages, 421 int nr_pages, bool overwrite); 422 /* optional */ 423 424 /* 425 * Free pmu-private AUX data structures 426 */ 427 void (*free_aux) (void *aux); /* optional */ 428 429 /* 430 * Validate address range filters: make sure the HW supports the 431 * requested configuration and number of filters; return 0 if the 432 * supplied filters are valid, -errno otherwise. 433 * 434 * Runs in the context of the ioctl()ing process and is not serialized 435 * with the rest of the PMU callbacks. 436 */ 437 int (*addr_filters_validate) (struct list_head *filters); 438 /* optional */ 439 440 /* 441 * Synchronize address range filter configuration: 442 * translate hw-agnostic filters into hardware configuration in 443 * event::hw::addr_filters. 444 * 445 * Runs as a part of filter sync sequence that is done in ->start() 446 * callback by calling perf_event_addr_filters_sync(). 447 * 448 * May (and should) traverse event::addr_filters::list, for which its 449 * caller provides necessary serialization. 450 */ 451 void (*addr_filters_sync) (struct perf_event *event); 452 /* optional */ 453 454 /* 455 * Filter events for PMU-specific reasons. 456 */ 457 int (*filter_match) (struct perf_event *event); /* optional */ 458}; 459 460/** 461 * struct perf_addr_filter - address range filter definition 462 * @entry: event's filter list linkage 463 * @inode: object file's inode for file-based filters 464 * @offset: filter range offset 465 * @size: filter range size 466 * @range: 1: range, 0: address 467 * @filter: 1: filter/start, 0: stop 468 * 469 * This is a hardware-agnostic filter configuration as specified by the user. 470 */ 471struct perf_addr_filter { 472 struct list_head entry; 473 struct inode *inode; 474 unsigned long offset; 475 unsigned long size; 476 unsigned int range : 1, 477 filter : 1; 478}; 479 480/** 481 * struct perf_addr_filters_head - container for address range filters 482 * @list: list of filters for this event 483 * @lock: spinlock that serializes accesses to the @list and event's 484 * (and its children's) filter generations. 485 * @nr_file_filters: number of file-based filters 486 * 487 * A child event will use parent's @list (and therefore @lock), so they are 488 * bundled together; see perf_event_addr_filters(). 489 */ 490struct perf_addr_filters_head { 491 struct list_head list; 492 raw_spinlock_t lock; 493 unsigned int nr_file_filters; 494}; 495 496/** 497 * enum perf_event_active_state - the states of a event 498 */ 499enum perf_event_active_state { 500 PERF_EVENT_STATE_DEAD = -4, 501 PERF_EVENT_STATE_EXIT = -3, 502 PERF_EVENT_STATE_ERROR = -2, 503 PERF_EVENT_STATE_OFF = -1, 504 PERF_EVENT_STATE_INACTIVE = 0, 505 PERF_EVENT_STATE_ACTIVE = 1, 506}; 507 508struct file; 509struct perf_sample_data; 510 511typedef void (*perf_overflow_handler_t)(struct perf_event *, 512 struct perf_sample_data *, 513 struct pt_regs *regs); 514 515/* 516 * Event capabilities. For event_caps and groups caps. 517 * 518 * PERF_EV_CAP_SOFTWARE: Is a software event. 519 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 520 * from any CPU in the package where it is active. 521 */ 522#define PERF_EV_CAP_SOFTWARE BIT(0) 523#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 524 525#define SWEVENT_HLIST_BITS 8 526#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 527 528struct swevent_hlist { 529 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 530 struct rcu_head rcu_head; 531}; 532 533#define PERF_ATTACH_CONTEXT 0x01 534#define PERF_ATTACH_GROUP 0x02 535#define PERF_ATTACH_TASK 0x04 536#define PERF_ATTACH_TASK_DATA 0x08 537 538struct perf_cgroup; 539struct ring_buffer; 540 541struct pmu_event_list { 542 raw_spinlock_t lock; 543 struct list_head list; 544}; 545 546/** 547 * struct perf_event - performance event kernel representation: 548 */ 549struct perf_event { 550#ifdef CONFIG_PERF_EVENTS 551 /* 552 * entry onto perf_event_context::event_list; 553 * modifications require ctx->lock 554 * RCU safe iterations. 555 */ 556 struct list_head event_entry; 557 558 /* 559 * XXX: group_entry and sibling_list should be mutually exclusive; 560 * either you're a sibling on a group, or you're the group leader. 561 * Rework the code to always use the same list element. 562 * 563 * Locked for modification by both ctx->mutex and ctx->lock; holding 564 * either sufficies for read. 565 */ 566 struct list_head group_entry; 567 struct list_head sibling_list; 568 569 /* 570 * We need storage to track the entries in perf_pmu_migrate_context; we 571 * cannot use the event_entry because of RCU and we want to keep the 572 * group in tact which avoids us using the other two entries. 573 */ 574 struct list_head migrate_entry; 575 576 struct hlist_node hlist_entry; 577 struct list_head active_entry; 578 int nr_siblings; 579 580 /* Not serialized. Only written during event initialization. */ 581 int event_caps; 582 /* The cumulative AND of all event_caps for events in this group. */ 583 int group_caps; 584 585 struct perf_event *group_leader; 586 struct pmu *pmu; 587 void *pmu_private; 588 589 enum perf_event_active_state state; 590 unsigned int attach_state; 591 local64_t count; 592 atomic64_t child_count; 593 594 /* 595 * These are the total time in nanoseconds that the event 596 * has been enabled (i.e. eligible to run, and the task has 597 * been scheduled in, if this is a per-task event) 598 * and running (scheduled onto the CPU), respectively. 599 * 600 * They are computed from tstamp_enabled, tstamp_running and 601 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 602 */ 603 u64 total_time_enabled; 604 u64 total_time_running; 605 606 /* 607 * These are timestamps used for computing total_time_enabled 608 * and total_time_running when the event is in INACTIVE or 609 * ACTIVE state, measured in nanoseconds from an arbitrary point 610 * in time. 611 * tstamp_enabled: the notional time when the event was enabled 612 * tstamp_running: the notional time when the event was scheduled on 613 * tstamp_stopped: in INACTIVE state, the notional time when the 614 * event was scheduled off. 615 */ 616 u64 tstamp_enabled; 617 u64 tstamp_running; 618 u64 tstamp_stopped; 619 620 /* 621 * timestamp shadows the actual context timing but it can 622 * be safely used in NMI interrupt context. It reflects the 623 * context time as it was when the event was last scheduled in. 624 * 625 * ctx_time already accounts for ctx->timestamp. Therefore to 626 * compute ctx_time for a sample, simply add perf_clock(). 627 */ 628 u64 shadow_ctx_time; 629 630 struct perf_event_attr attr; 631 u16 header_size; 632 u16 id_header_size; 633 u16 read_size; 634 struct hw_perf_event hw; 635 636 struct perf_event_context *ctx; 637 atomic_long_t refcount; 638 639 /* 640 * These accumulate total time (in nanoseconds) that children 641 * events have been enabled and running, respectively. 642 */ 643 atomic64_t child_total_time_enabled; 644 atomic64_t child_total_time_running; 645 646 /* 647 * Protect attach/detach and child_list: 648 */ 649 struct mutex child_mutex; 650 struct list_head child_list; 651 struct perf_event *parent; 652 653 int oncpu; 654 int cpu; 655 656 struct list_head owner_entry; 657 struct task_struct *owner; 658 659 /* mmap bits */ 660 struct mutex mmap_mutex; 661 atomic_t mmap_count; 662 663 struct ring_buffer *rb; 664 struct list_head rb_entry; 665 unsigned long rcu_batches; 666 int rcu_pending; 667 668 /* poll related */ 669 wait_queue_head_t waitq; 670 struct fasync_struct *fasync; 671 672 /* delayed work for NMIs and such */ 673 int pending_wakeup; 674 int pending_kill; 675 int pending_disable; 676 struct irq_work pending; 677 678 atomic_t event_limit; 679 680 /* address range filters */ 681 struct perf_addr_filters_head addr_filters; 682 /* vma address array for file-based filders */ 683 unsigned long *addr_filters_offs; 684 unsigned long addr_filters_gen; 685 686 void (*destroy)(struct perf_event *); 687 struct rcu_head rcu_head; 688 689 struct pid_namespace *ns; 690 u64 id; 691 692 u64 (*clock)(void); 693 perf_overflow_handler_t overflow_handler; 694 void *overflow_handler_context; 695#ifdef CONFIG_BPF_SYSCALL 696 perf_overflow_handler_t orig_overflow_handler; 697 struct bpf_prog *prog; 698#endif 699 700#ifdef CONFIG_EVENT_TRACING 701 struct trace_event_call *tp_event; 702 struct event_filter *filter; 703#ifdef CONFIG_FUNCTION_TRACER 704 struct ftrace_ops ftrace_ops; 705#endif 706#endif 707 708#ifdef CONFIG_CGROUP_PERF 709 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 710 int cgrp_defer_enabled; 711#endif 712 713 struct list_head sb_list; 714#endif /* CONFIG_PERF_EVENTS */ 715}; 716 717/** 718 * struct perf_event_context - event context structure 719 * 720 * Used as a container for task events and CPU events as well: 721 */ 722struct perf_event_context { 723 struct pmu *pmu; 724 /* 725 * Protect the states of the events in the list, 726 * nr_active, and the list: 727 */ 728 raw_spinlock_t lock; 729 /* 730 * Protect the list of events. Locking either mutex or lock 731 * is sufficient to ensure the list doesn't change; to change 732 * the list you need to lock both the mutex and the spinlock. 733 */ 734 struct mutex mutex; 735 736 struct list_head active_ctx_list; 737 struct list_head pinned_groups; 738 struct list_head flexible_groups; 739 struct list_head event_list; 740 int nr_events; 741 int nr_active; 742 int is_active; 743 int nr_stat; 744 int nr_freq; 745 int rotate_disable; 746 atomic_t refcount; 747 struct task_struct *task; 748 749 /* 750 * Context clock, runs when context enabled. 751 */ 752 u64 time; 753 u64 timestamp; 754 755 /* 756 * These fields let us detect when two contexts have both 757 * been cloned (inherited) from a common ancestor. 758 */ 759 struct perf_event_context *parent_ctx; 760 u64 parent_gen; 761 u64 generation; 762 int pin_count; 763#ifdef CONFIG_CGROUP_PERF 764 int nr_cgroups; /* cgroup evts */ 765#endif 766 void *task_ctx_data; /* pmu specific data */ 767 struct rcu_head rcu_head; 768}; 769 770/* 771 * Number of contexts where an event can trigger: 772 * task, softirq, hardirq, nmi. 773 */ 774#define PERF_NR_CONTEXTS 4 775 776/** 777 * struct perf_event_cpu_context - per cpu event context structure 778 */ 779struct perf_cpu_context { 780 struct perf_event_context ctx; 781 struct perf_event_context *task_ctx; 782 int active_oncpu; 783 int exclusive; 784 785 raw_spinlock_t hrtimer_lock; 786 struct hrtimer hrtimer; 787 ktime_t hrtimer_interval; 788 unsigned int hrtimer_active; 789 790#ifdef CONFIG_CGROUP_PERF 791 struct perf_cgroup *cgrp; 792 struct list_head cgrp_cpuctx_entry; 793#endif 794 795 struct list_head sched_cb_entry; 796 int sched_cb_usage; 797}; 798 799struct perf_output_handle { 800 struct perf_event *event; 801 struct ring_buffer *rb; 802 unsigned long wakeup; 803 unsigned long size; 804 union { 805 void *addr; 806 unsigned long head; 807 }; 808 int page; 809}; 810 811struct bpf_perf_event_data_kern { 812 struct pt_regs *regs; 813 struct perf_sample_data *data; 814}; 815 816#ifdef CONFIG_CGROUP_PERF 817 818/* 819 * perf_cgroup_info keeps track of time_enabled for a cgroup. 820 * This is a per-cpu dynamically allocated data structure. 821 */ 822struct perf_cgroup_info { 823 u64 time; 824 u64 timestamp; 825}; 826 827struct perf_cgroup { 828 struct cgroup_subsys_state css; 829 struct perf_cgroup_info __percpu *info; 830}; 831 832/* 833 * Must ensure cgroup is pinned (css_get) before calling 834 * this function. In other words, we cannot call this function 835 * if there is no cgroup event for the current CPU context. 836 */ 837static inline struct perf_cgroup * 838perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 839{ 840 return container_of(task_css_check(task, perf_event_cgrp_id, 841 ctx ? lockdep_is_held(&ctx->lock) 842 : true), 843 struct perf_cgroup, css); 844} 845#endif /* CONFIG_CGROUP_PERF */ 846 847#ifdef CONFIG_PERF_EVENTS 848 849extern void *perf_aux_output_begin(struct perf_output_handle *handle, 850 struct perf_event *event); 851extern void perf_aux_output_end(struct perf_output_handle *handle, 852 unsigned long size, bool truncated); 853extern int perf_aux_output_skip(struct perf_output_handle *handle, 854 unsigned long size); 855extern void *perf_get_aux(struct perf_output_handle *handle); 856 857extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 858extern void perf_pmu_unregister(struct pmu *pmu); 859 860extern int perf_num_counters(void); 861extern const char *perf_pmu_name(void); 862extern void __perf_event_task_sched_in(struct task_struct *prev, 863 struct task_struct *task); 864extern void __perf_event_task_sched_out(struct task_struct *prev, 865 struct task_struct *next); 866extern int perf_event_init_task(struct task_struct *child); 867extern void perf_event_exit_task(struct task_struct *child); 868extern void perf_event_free_task(struct task_struct *task); 869extern void perf_event_delayed_put(struct task_struct *task); 870extern struct file *perf_event_get(unsigned int fd); 871extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 872extern void perf_event_print_debug(void); 873extern void perf_pmu_disable(struct pmu *pmu); 874extern void perf_pmu_enable(struct pmu *pmu); 875extern void perf_sched_cb_dec(struct pmu *pmu); 876extern void perf_sched_cb_inc(struct pmu *pmu); 877extern int perf_event_task_disable(void); 878extern int perf_event_task_enable(void); 879extern int perf_event_refresh(struct perf_event *event, int refresh); 880extern void perf_event_update_userpage(struct perf_event *event); 881extern int perf_event_release_kernel(struct perf_event *event); 882extern struct perf_event * 883perf_event_create_kernel_counter(struct perf_event_attr *attr, 884 int cpu, 885 struct task_struct *task, 886 perf_overflow_handler_t callback, 887 void *context); 888extern void perf_pmu_migrate_context(struct pmu *pmu, 889 int src_cpu, int dst_cpu); 890extern u64 perf_event_read_local(struct perf_event *event); 891extern u64 perf_event_read_value(struct perf_event *event, 892 u64 *enabled, u64 *running); 893 894 895struct perf_sample_data { 896 /* 897 * Fields set by perf_sample_data_init(), group so as to 898 * minimize the cachelines touched. 899 */ 900 u64 addr; 901 struct perf_raw_record *raw; 902 struct perf_branch_stack *br_stack; 903 u64 period; 904 u64 weight; 905 u64 txn; 906 union perf_mem_data_src data_src; 907 908 /* 909 * The other fields, optionally {set,used} by 910 * perf_{prepare,output}_sample(). 911 */ 912 u64 type; 913 u64 ip; 914 struct { 915 u32 pid; 916 u32 tid; 917 } tid_entry; 918 u64 time; 919 u64 id; 920 u64 stream_id; 921 struct { 922 u32 cpu; 923 u32 reserved; 924 } cpu_entry; 925 struct perf_callchain_entry *callchain; 926 927 /* 928 * regs_user may point to task_pt_regs or to regs_user_copy, depending 929 * on arch details. 930 */ 931 struct perf_regs regs_user; 932 struct pt_regs regs_user_copy; 933 934 struct perf_regs regs_intr; 935 u64 stack_user_size; 936} ____cacheline_aligned; 937 938/* default value for data source */ 939#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 940 PERF_MEM_S(LVL, NA) |\ 941 PERF_MEM_S(SNOOP, NA) |\ 942 PERF_MEM_S(LOCK, NA) |\ 943 PERF_MEM_S(TLB, NA)) 944 945static inline void perf_sample_data_init(struct perf_sample_data *data, 946 u64 addr, u64 period) 947{ 948 /* remaining struct members initialized in perf_prepare_sample() */ 949 data->addr = addr; 950 data->raw = NULL; 951 data->br_stack = NULL; 952 data->period = period; 953 data->weight = 0; 954 data->data_src.val = PERF_MEM_NA; 955 data->txn = 0; 956} 957 958extern void perf_output_sample(struct perf_output_handle *handle, 959 struct perf_event_header *header, 960 struct perf_sample_data *data, 961 struct perf_event *event); 962extern void perf_prepare_sample(struct perf_event_header *header, 963 struct perf_sample_data *data, 964 struct perf_event *event, 965 struct pt_regs *regs); 966 967extern int perf_event_overflow(struct perf_event *event, 968 struct perf_sample_data *data, 969 struct pt_regs *regs); 970 971extern void perf_event_output_forward(struct perf_event *event, 972 struct perf_sample_data *data, 973 struct pt_regs *regs); 974extern void perf_event_output_backward(struct perf_event *event, 975 struct perf_sample_data *data, 976 struct pt_regs *regs); 977extern void perf_event_output(struct perf_event *event, 978 struct perf_sample_data *data, 979 struct pt_regs *regs); 980 981static inline bool 982is_default_overflow_handler(struct perf_event *event) 983{ 984 if (likely(event->overflow_handler == perf_event_output_forward)) 985 return true; 986 if (unlikely(event->overflow_handler == perf_event_output_backward)) 987 return true; 988 return false; 989} 990 991extern void 992perf_event_header__init_id(struct perf_event_header *header, 993 struct perf_sample_data *data, 994 struct perf_event *event); 995extern void 996perf_event__output_id_sample(struct perf_event *event, 997 struct perf_output_handle *handle, 998 struct perf_sample_data *sample); 999 1000extern void 1001perf_log_lost_samples(struct perf_event *event, u64 lost); 1002 1003static inline bool is_sampling_event(struct perf_event *event) 1004{ 1005 return event->attr.sample_period != 0; 1006} 1007 1008/* 1009 * Return 1 for a software event, 0 for a hardware event 1010 */ 1011static inline int is_software_event(struct perf_event *event) 1012{ 1013 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1014} 1015 1016extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1017 1018extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1019extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1020 1021#ifndef perf_arch_fetch_caller_regs 1022static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1023#endif 1024 1025/* 1026 * Take a snapshot of the regs. Skip ip and frame pointer to 1027 * the nth caller. We only need a few of the regs: 1028 * - ip for PERF_SAMPLE_IP 1029 * - cs for user_mode() tests 1030 * - bp for callchains 1031 * - eflags, for future purposes, just in case 1032 */ 1033static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1034{ 1035 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1036} 1037 1038static __always_inline void 1039perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1040{ 1041 if (static_key_false(&perf_swevent_enabled[event_id])) 1042 __perf_sw_event(event_id, nr, regs, addr); 1043} 1044 1045DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1046 1047/* 1048 * 'Special' version for the scheduler, it hard assumes no recursion, 1049 * which is guaranteed by us not actually scheduling inside other swevents 1050 * because those disable preemption. 1051 */ 1052static __always_inline void 1053perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1054{ 1055 if (static_key_false(&perf_swevent_enabled[event_id])) { 1056 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1057 1058 perf_fetch_caller_regs(regs); 1059 ___perf_sw_event(event_id, nr, regs, addr); 1060 } 1061} 1062 1063extern struct static_key_false perf_sched_events; 1064 1065static __always_inline bool 1066perf_sw_migrate_enabled(void) 1067{ 1068 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1069 return true; 1070 return false; 1071} 1072 1073static inline void perf_event_task_migrate(struct task_struct *task) 1074{ 1075 if (perf_sw_migrate_enabled()) 1076 task->sched_migrated = 1; 1077} 1078 1079static inline void perf_event_task_sched_in(struct task_struct *prev, 1080 struct task_struct *task) 1081{ 1082 if (static_branch_unlikely(&perf_sched_events)) 1083 __perf_event_task_sched_in(prev, task); 1084 1085 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1086 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1087 1088 perf_fetch_caller_regs(regs); 1089 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1090 task->sched_migrated = 0; 1091 } 1092} 1093 1094static inline void perf_event_task_sched_out(struct task_struct *prev, 1095 struct task_struct *next) 1096{ 1097 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1098 1099 if (static_branch_unlikely(&perf_sched_events)) 1100 __perf_event_task_sched_out(prev, next); 1101} 1102 1103static inline u64 __perf_event_count(struct perf_event *event) 1104{ 1105 return local64_read(&event->count) + atomic64_read(&event->child_count); 1106} 1107 1108extern void perf_event_mmap(struct vm_area_struct *vma); 1109extern struct perf_guest_info_callbacks *perf_guest_cbs; 1110extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1111extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1112 1113extern void perf_event_exec(void); 1114extern void perf_event_comm(struct task_struct *tsk, bool exec); 1115extern void perf_event_fork(struct task_struct *tsk); 1116 1117/* Callchains */ 1118DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1119 1120extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1121extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1122extern struct perf_callchain_entry * 1123get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1124 u32 max_stack, bool crosstask, bool add_mark); 1125extern int get_callchain_buffers(int max_stack); 1126extern void put_callchain_buffers(void); 1127 1128extern int sysctl_perf_event_max_stack; 1129extern int sysctl_perf_event_max_contexts_per_stack; 1130 1131static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1132{ 1133 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1134 struct perf_callchain_entry *entry = ctx->entry; 1135 entry->ip[entry->nr++] = ip; 1136 ++ctx->contexts; 1137 return 0; 1138 } else { 1139 ctx->contexts_maxed = true; 1140 return -1; /* no more room, stop walking the stack */ 1141 } 1142} 1143 1144static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1145{ 1146 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1147 struct perf_callchain_entry *entry = ctx->entry; 1148 entry->ip[entry->nr++] = ip; 1149 ++ctx->nr; 1150 return 0; 1151 } else { 1152 return -1; /* no more room, stop walking the stack */ 1153 } 1154} 1155 1156extern int sysctl_perf_event_paranoid; 1157extern int sysctl_perf_event_mlock; 1158extern int sysctl_perf_event_sample_rate; 1159extern int sysctl_perf_cpu_time_max_percent; 1160 1161extern void perf_sample_event_took(u64 sample_len_ns); 1162 1163extern int perf_proc_update_handler(struct ctl_table *table, int write, 1164 void __user *buffer, size_t *lenp, 1165 loff_t *ppos); 1166extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1167 void __user *buffer, size_t *lenp, 1168 loff_t *ppos); 1169 1170int perf_event_max_stack_handler(struct ctl_table *table, int write, 1171 void __user *buffer, size_t *lenp, loff_t *ppos); 1172 1173static inline bool perf_paranoid_tracepoint_raw(void) 1174{ 1175 return sysctl_perf_event_paranoid > -1; 1176} 1177 1178static inline bool perf_paranoid_cpu(void) 1179{ 1180 return sysctl_perf_event_paranoid > 0; 1181} 1182 1183static inline bool perf_paranoid_kernel(void) 1184{ 1185 return sysctl_perf_event_paranoid > 1; 1186} 1187 1188extern void perf_event_init(void); 1189extern void perf_tp_event(u16 event_type, u64 count, void *record, 1190 int entry_size, struct pt_regs *regs, 1191 struct hlist_head *head, int rctx, 1192 struct task_struct *task); 1193extern void perf_bp_event(struct perf_event *event, void *data); 1194 1195#ifndef perf_misc_flags 1196# define perf_misc_flags(regs) \ 1197 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1198# define perf_instruction_pointer(regs) instruction_pointer(regs) 1199#endif 1200 1201static inline bool has_branch_stack(struct perf_event *event) 1202{ 1203 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1204} 1205 1206static inline bool needs_branch_stack(struct perf_event *event) 1207{ 1208 return event->attr.branch_sample_type != 0; 1209} 1210 1211static inline bool has_aux(struct perf_event *event) 1212{ 1213 return event->pmu->setup_aux; 1214} 1215 1216static inline bool is_write_backward(struct perf_event *event) 1217{ 1218 return !!event->attr.write_backward; 1219} 1220 1221static inline bool has_addr_filter(struct perf_event *event) 1222{ 1223 return event->pmu->nr_addr_filters; 1224} 1225 1226/* 1227 * An inherited event uses parent's filters 1228 */ 1229static inline struct perf_addr_filters_head * 1230perf_event_addr_filters(struct perf_event *event) 1231{ 1232 struct perf_addr_filters_head *ifh = &event->addr_filters; 1233 1234 if (event->parent) 1235 ifh = &event->parent->addr_filters; 1236 1237 return ifh; 1238} 1239 1240extern void perf_event_addr_filters_sync(struct perf_event *event); 1241 1242extern int perf_output_begin(struct perf_output_handle *handle, 1243 struct perf_event *event, unsigned int size); 1244extern int perf_output_begin_forward(struct perf_output_handle *handle, 1245 struct perf_event *event, 1246 unsigned int size); 1247extern int perf_output_begin_backward(struct perf_output_handle *handle, 1248 struct perf_event *event, 1249 unsigned int size); 1250 1251extern void perf_output_end(struct perf_output_handle *handle); 1252extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1253 const void *buf, unsigned int len); 1254extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1255 unsigned int len); 1256extern int perf_swevent_get_recursion_context(void); 1257extern void perf_swevent_put_recursion_context(int rctx); 1258extern u64 perf_swevent_set_period(struct perf_event *event); 1259extern void perf_event_enable(struct perf_event *event); 1260extern void perf_event_disable(struct perf_event *event); 1261extern void perf_event_disable_local(struct perf_event *event); 1262extern void perf_event_disable_inatomic(struct perf_event *event); 1263extern void perf_event_task_tick(void); 1264extern int perf_event_account_interrupt(struct perf_event *event); 1265#else /* !CONFIG_PERF_EVENTS: */ 1266static inline void * 1267perf_aux_output_begin(struct perf_output_handle *handle, 1268 struct perf_event *event) { return NULL; } 1269static inline void 1270perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, 1271 bool truncated) { } 1272static inline int 1273perf_aux_output_skip(struct perf_output_handle *handle, 1274 unsigned long size) { return -EINVAL; } 1275static inline void * 1276perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1277static inline void 1278perf_event_task_migrate(struct task_struct *task) { } 1279static inline void 1280perf_event_task_sched_in(struct task_struct *prev, 1281 struct task_struct *task) { } 1282static inline void 1283perf_event_task_sched_out(struct task_struct *prev, 1284 struct task_struct *next) { } 1285static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1286static inline void perf_event_exit_task(struct task_struct *child) { } 1287static inline void perf_event_free_task(struct task_struct *task) { } 1288static inline void perf_event_delayed_put(struct task_struct *task) { } 1289static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1290static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1291{ 1292 return ERR_PTR(-EINVAL); 1293} 1294static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; } 1295static inline void perf_event_print_debug(void) { } 1296static inline int perf_event_task_disable(void) { return -EINVAL; } 1297static inline int perf_event_task_enable(void) { return -EINVAL; } 1298static inline int perf_event_refresh(struct perf_event *event, int refresh) 1299{ 1300 return -EINVAL; 1301} 1302 1303static inline void 1304perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1305static inline void 1306perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1307static inline void 1308perf_bp_event(struct perf_event *event, void *data) { } 1309 1310static inline int perf_register_guest_info_callbacks 1311(struct perf_guest_info_callbacks *callbacks) { return 0; } 1312static inline int perf_unregister_guest_info_callbacks 1313(struct perf_guest_info_callbacks *callbacks) { return 0; } 1314 1315static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1316static inline void perf_event_exec(void) { } 1317static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1318static inline void perf_event_fork(struct task_struct *tsk) { } 1319static inline void perf_event_init(void) { } 1320static inline int perf_swevent_get_recursion_context(void) { return -1; } 1321static inline void perf_swevent_put_recursion_context(int rctx) { } 1322static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1323static inline void perf_event_enable(struct perf_event *event) { } 1324static inline void perf_event_disable(struct perf_event *event) { } 1325static inline int __perf_event_disable(void *info) { return -1; } 1326static inline void perf_event_task_tick(void) { } 1327static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1328#endif 1329 1330#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1331extern void perf_restore_debug_store(void); 1332#else 1333static inline void perf_restore_debug_store(void) { } 1334#endif 1335 1336static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1337{ 1338 return frag->pad < sizeof(u64); 1339} 1340 1341#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1342 1343struct perf_pmu_events_attr { 1344 struct device_attribute attr; 1345 u64 id; 1346 const char *event_str; 1347}; 1348 1349struct perf_pmu_events_ht_attr { 1350 struct device_attribute attr; 1351 u64 id; 1352 const char *event_str_ht; 1353 const char *event_str_noht; 1354}; 1355 1356ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1357 char *page); 1358 1359#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1360static struct perf_pmu_events_attr _var = { \ 1361 .attr = __ATTR(_name, 0444, _show, NULL), \ 1362 .id = _id, \ 1363}; 1364 1365#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1366static struct perf_pmu_events_attr _var = { \ 1367 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1368 .id = 0, \ 1369 .event_str = _str, \ 1370}; 1371 1372#define PMU_FORMAT_ATTR(_name, _format) \ 1373static ssize_t \ 1374_name##_show(struct device *dev, \ 1375 struct device_attribute *attr, \ 1376 char *page) \ 1377{ \ 1378 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1379 return sprintf(page, _format "\n"); \ 1380} \ 1381 \ 1382static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1383 1384/* Performance counter hotplug functions */ 1385#ifdef CONFIG_PERF_EVENTS 1386int perf_event_init_cpu(unsigned int cpu); 1387int perf_event_exit_cpu(unsigned int cpu); 1388#else 1389#define perf_event_init_cpu NULL 1390#define perf_event_exit_cpu NULL 1391#endif 1392 1393#endif /* _LINUX_PERF_EVENT_H */